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Abstract
Supervised learning in neural nets means optimizing synaptic weights W such that out-
puts y(x;W) for inputs x match as closely as possible the corresponding targets t from the
training data set. This optimization means minimizing a loss function L(W) that usually
motivates from maximum-likelihood principles, silently making some prior assumptions on
the distribution of output errors y − t. While classical crossentropy loss assumes triangular
error distributions, it has recently been shown that generalized power error loss functions
can be adapted to more realistic error distributions by fitting the exponent q of a power
function used for initializing the backpropagation learning algorithm. This approach can sig-
nificantly improve performance, but computing the loss function requires the antiderivative
of the function f (y) := yq−1/(1 − y) that has previously been determined only for natural
q ∈ N. In this work I extend this approach for rational q = n/2m where the denominator is
a power of 2. I give closed-form expressions for the antiderivative

∫
f (y)dy and the corre-

sponding loss function. The benefits of such an approach are demonstrated by experiments
showing that optimal exponents q are often non-natural, and that error exponents q best fit-
ting output error distributions vary continuously during learning, typically decreasing from
large q > 1 to small q < 1 during convergence of learning. These results suggest new adap-
tive learning methods where loss functions could be continuously adapted to output error
distributions during learning.
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1 Introduction

Special functions like the beta, gamma or hypergeometric functions have many applications
in various domains including probability theory, computational chemistry and statistical
physics [2, 8, 39]. They are often used to express antiderivatives that are otherwise difficult
to compute. Here I focus on the antiderivative

F(y) :=
∫ y

0

yq−1

1 − y
dy

(

= lim
b→0

B(y; q, b)

)

(1)

being a limit case of the incomplete beta function B(y; a, b) := ∫ y

0 ta−1(1−t)b−1dt defined
for Re(a),Re(b) > 0 and y ∈ (0; 1). It is easy to see that F(y) can also be written in
terms of the hypergeometric function (see Proposition 1), but for many applications it is
desirable to have expressions in closed form using only common functions that can be
automatically derived and efficiently computed around the poles (here y → 1). One such
application is machine learning where the antiderivative F(y) relates to loss functions like
cross entropy (for q = 1) that are minimized to solve classification and related AI tasks [4].
This needs typically large amounts of annotated training data D := {(xn, tn)|n = 1, ..., N}
for supervised learning of a prediction model with

yn := y(xn;W)
!≈ tn ∈ R

K (2)

for inputs xn ∈ R
D and targets or labels tn. Specifically, the learning task is to find “good”

parametersW such that the model function y(x;W) applied to the inputs xn reproduces the
annotation labels tn as closely as possible. The model performance can be quantified by a
loss function L({(yn, tn)|n = 1, . . . , N}) evaluating the differences between model outputs
yn and targets tn. For example, for binary or multi-label classification tasks with binary
labels tnk ∈ {0, 1} a good choice is binary cross entropy (BCE)

LBCE := −
N∑

n=1

K∑

k=1

tnk log(ynk) + (1 − tnk) log(1 − ynk) (3)

whereas for multi-class classification or regression problems we may use categorical cross
entropy LCCE := −∑N

n=1
∑K

k=1 tnk log(ynk) with one-hot coding (tnk ∈ {0, 1}, ∑k tnk =
1) or sum-of-squared-error LSSE := 1

2

∑N
n=1 ||yn − tn||2 with tnk ∈ R [4, 7, 11, 17, 22, 27,

35].
In the last decade, deep neural network models have become dominant for applications

related to classification including object recognition and detection, image segmentation,
speech understanding, autonomous driving, or robot control [12, 14, 21, 30, 34, 38]. This
success can be attributed to an improved understanding of large-scale deep neural architec-
tures and solving earlier problems like vanishing gradients blocking learning progress [3].
For example, to overcome such problems, improved activation function, weight initializa-
tion, regularization, and optimization methods have been developed [10, 13, 16, 18, 31, 37].
The current work complements these efforts by proposing a new family of improved loss
functions based on the antiderivative (1) that enables continuous adaptation to training data
or learning progress as explained in the following.

In deep neural networks, loss functions are typically minimized by gradient descent using
the error backpropagation algorithm [4, 5, 28, 32, 33, 40]: After forward-propagating an
input vector xn through the network, the backpropagation algorithm initializes so-called
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error signals

δnk := ∂Ln

∂ank

(4)

for each output unit with firing rate ynk := σk(ank) and dendritic activation potential
ank := ∑

j Wkj znj computed from a typically sigmoidal activation function σk . Similarly,
for each hidden neuron j , the firing rate znj := σj (aj ) with aj := ∑

j Wkj zni is com-
puted recursively in the forward pass, where zni := ani := xni for input units. After the
initialization (4), error signals are backpropagated through the transposed synaptic weights
WT towards the input layer using the recursion δnj = h′(anj )

∑
k Wkj δk . After this back-

ward pass, each neuron j knows both its firing rate znj and error signal δnj . With this each

synapse Wji can compute its partial derivative ∂Ln

∂Wji
= ∂Ln

∂anj

∂anj

∂Wji
= δnj zni as the product

of postsynaptic error signal and presynaptic firing rate, and thus the corresponding weight
change according to (stochastic) gradient descent is

�Wnji := −η
∂Ln

∂Wji

= −ηδnj zni (5)

where η > 0 is the learning rate. Thus, the initialization (4) determines synaptic learning (5)
and should therefore be chosen as simple as possible for the sake of biological plausibility
and computational efficiency. Indeed, for the three most commonly employed settings of
I) regression with LSSE and linear outputs ynk = ank ∈ R, II) binary classification with
LBCE and sigmoidal outputs ynk = σ(ank) ∈ (0; 1) with the logistic sigmoid σ(a) :=
1/(1+e−a), and III) categorical (multi-class) classification with LCCE and softmax outputs
ynk = Sk(an) := exp(−ank)∑

j exp(−anj )
∈ (0; 1), the initialization (4) becomes simply the difference

δnk = ynk − tnk = −εnk for εnk := tnk − ynk (6)

between model outputs and targets, that is (up to the sign), the output error εnk . However, as I
have argued in previous work [19], such settings do not always maximize likelihood or other
relevant performance measures like accuracy, as they rely on unrealistic prior assumptions
like a triangular distribution of output errors, which is often not fulfilled. Therefore a novel
more general initialization of error signals in the output layer has been suggested (see eq. 3.1
in [19]) using powers

δnk(ynk, tnk) := (1 − 2tnk) · |ynk − tnk|q (7)

of the output errors with exponent q > 0. Interestingly, this new initialization method can
significantly speed up learning and improve convergence of the backpropagation algorithm
by adapting the exponent q to the true distribution of output errors [19]. However, many
software platforms for machine learning like Keras, Tensorflow, and PyTorch [1, 6, 29])
do not directly initialize error signals like in (6), (7), but instead compute gradients via
automatic differentiation [23] of the loss function. For this we require an explicit symbolic
representation of the corresponding loss functions which, as we will see, involves integrat-
ing (4) for (7) or determining appropriate expressions for the antiderivative (1). While for
the special case q ∈ N this problem is easy to solve, and corresponding loss functions have
already been determined previously [19], it is more demanding to integrate (7) for general
q ∈ R

+, and the corresponding loss functions have been unknown so far. However, contin-
ually adapting q to training data and learning progress with arbitrary distributions of output
errors requires also q �∈ N, including the case 0 < q < 1.

In this paper I compute the loss functions that correspond to the power function initializa-
tion of error signals (7) for rational exponents of the form q = n/2m, where the numerator
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is a positive integer and the denominator is a power of 2 (n ∈ N, m ∈ N0). With this it
becomes possible to approximate the loss functions corresponding to (7) for any q ∈ R

+
with arbitrary precision. To this end the paper is organized as follows: Section 2 shows
that determining the loss functions corresponding to (7) for binary classification problems
involves the antiderivative (1) and briefly recapitulates the solution for q ∈ N. Section 3
determines (1) for the more general case of positive rational exponents q = n/2m, where
the most convenient final form is given by (30) in Theorem 3. Section 4 shows results from
numerical learning experiments verifying correctness and demonstrating the benefits of the
new loss functions. Finally, Section 5 gives a summary and discussion of the results.

2 Generalized loss functions for exponents q ∈ N

In order to determine the generalized loss function that is minimized by the backpropaga-
tion algorithm, we have to integrate (4) using the generalized error signal initialization (7).
Here it is sufficient to consider the loss contribution Lnk of one output unit ynk = σk(ank)

after presenting the training vector tuple (xn, tn). Thus, up to an additive constant, the loss
function corresponding to the generalized initialization (7) with exponent q > 0 is

L̃(q)
nk (ynk, tnk) :=

∫ ank

−∞
∂Ln

∂ank

dank =
∫ ank

−∞
(1 − 2tnk) · |σk(ank) − tnk|qdank

=
∫ ynk

0

(1 − 2tnk) · |ynk − tnk|q
σ ′

k(ank)
dynk (8)

where the last equation follows from the substitution ynk = σk(ank) with the deriva-
tive dynk

dank
= σ ′

k(ank). For the most common case of logistic sigmoids in the output layer,

σk(ank) = σ(ank) ∈ (0, 1) for σ(a) := 1
1+e−a with σ ′(a) = σ(a)(1 − σ(a)), we have

σ ′
k(ank) = σ(ank)(1−σ(ank)) = ynk(1− ynk) and thus, skipping variable indices y := ynk

and t := tnk for brevity,

L̃(q)
nk (y, t) =

∫ y

0

(1 − 2t)|y − t |q
y(1 − y)

dy =
{∫ y

0
yq−1

1−y
dy = F(y) , t = 0

−∫ y

0
(1−y)q−1

y
dy = F(1 − y) − F(1) , t = 1

(9)

where the last equation (for t = 1) follows with the substitution y �→ 1−y and corresponds
to an improper integral with diverging F(1) → ∞. This shows that in order to determine
the loss function for generalized error signal initialization, we have to find the antiderivative
(1), where we choose the additive constants in each case such that the resulting loss is zero
for correct predictions:

Theorem 1 (Loss for power function error initialization) For feed-forward neural net-
works using the logistic sigmoid function y = σ(a) ∈ (0; 1) in the output layer, the
loss function corresponding to the power function initialization (7) of the error signals for
backpropagation with exponent q > 0 is

L(q)
nk (y, t) = (1 − t)F (y) + tF (1 − y) (10)

where F(y) = ∫ y

0
yq−1

1−y
dy is the antiderivative (1) being a limit case of the incomplete beta

function. In particular, the resulting loss function has zero baseline and is symmetric,

L(q)
nk (0, 0) = L(q)

nk (1, 1) = 0 and L(q)
nk (y, 1) = L(q)

nk (1 − y, 0) (11)
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Proof : The theorem follows immediately from (9) by merging the two cases t = 0 and t =
1, and noting that F(0) = 0, such that we just have to skip the offset F(1) for t = 1 in order
to get zero loss in case the neural network makes a correct prediction y = t ∈ {0, 1}.

Therefore, the remainder of the paper deals mainly with determining closed form expres-
sions for the antiderivative F(y). This is particularly easy for natural exponents q ∈ N

[19]:

Theorem 2 (Power error loss for natural exponent q ∈ N) For q ∈ N the antiderivative (1)
and corresponding loss function of Theorem 1 become

F(y) = − log(1 − y) −
q−1∑

i=1

yi

i
(12)

= − log(1 − y) +
q−2∑

r=0

(
q − 1

r

)
(−1)q−r

q − 1 − r

(
(1 − y)q−1−r − 1

)
(13)

L(q)
nk (y, t) = LBCE

nk (y, t) −
q−1∑

i=1

(1 − t)yi + t (1 − y)i

i
(14)

= LBCE
nk (y, t) −

q−1∑

i=0

a
(q)
i yi with coefficients (15)

a
(q)

0 := t

q−1∑

j=1

1

j
and

a
(q)
i :=

(
(−1)i

∑q−1
j=i

(
j−1
i−1

) − 1
)

t + 1

i
for i = 1, . . . , q − 1

the latter being the binary cross entropy loss LBCE
nk (y, t) := −t log(y) − (1− t) log(1− y)

as in (3) minus a polynomial a(q)(y) := ∑q−1
i=0 a

(q)
i yi in y of degree q − 1, where the

coefficients a
(q)
i are linear in t .

For the proof of this and the following Theorems and Propositions see Appendix A. It is
convenient to rewrite (15) in terms of another set of coefficients b

(q)
i ,

L(q)
nk (y, t) = LBCE

nk (y, t) −
q−1∑

i=0

aiy
i = LBCE

nk (y, t) − b
(q)

0 t −
q−1∑

i=1

(−1)ib(q)
i t + 1

i
yi

= LBCE
nk (y, t)−b

(q)

0 t+ b
(q)

1 t − 1

1
y − b

(q)

2 t + 1

2
y2+ b

(q)

3 t − 1

3
y3 − . . . (16)

where the coefficients b0 := ∑q−1
j=1

1
j
and bi := ∑q−1

j=i

(
j−1
i−1

)−(−1)i for i = 1, 2, . . . , q−1
can be precomputed as shown by Table 1 in Appendix A for q = 1, 2, . . . , 12.
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3 The antiderivative
∫ yq−1

1−y dy for real and rational exponents q > 0

We see from (10) that computing the generalized loss functions L(q)
nk (y, t) requires the

antiderivative (1) with

F(y) := F̃ (y) − F̃ (0) for F̃ (y) :=
∫

f (y)dy and f (y) := yq−1

1 − y
(17)

It is easy to verify that F(y) can be expressed in terms of the hypergeometric function
2F1(a, b; c, z) := ∑∞

n=0
(a)n(b)n

(c)n

zn

n! with the (x)n := πn−1
i=0 x + i being rising Pochhammer

symbols:

Proposition 1 (F(y) for real q and outputs |y| < 1) For q ∈ R\{0, −1,−2, · · · } and
|y| < 1 we have

F(y) = yq

q
2F1(q, 1; q + 1, y) = yq

∞∑

n=0

yn

q + n
= yq(

1

q
+ y

q + 1
+ y2

q + 2
+ . . .) (18)

Like with the incomplete beta function in (1), expressing F(y) in terms of the limit of an
infinite sum is not viable as current software libraries employing automatic differentiation
(like Tensorflow or PyTorch) cannot efficiently handle such expressions. For example, using
(18) to approximate F(y) → ∞ for y → 1 would need to sum a very large number of terms
(as each term except the first one is< 1). Instead, we have to find finite expressions for F(y)

in terms of common functions that have simple derivatives. With computer algebra systems
(CAS) like Mathematica or Maxima [24, 26] it is possible to further explore (17). Trying
some particular values shows that for rational exponents q = n

N
with n, N ∈ N appropriate

antiderivatives exist in closed form. However, for larger values of the denominator N the
results of the CAS are inconvenient and involve complicated sums over complex roots. Still,
the results are relatively simple if N = 2m is a power of 2. Therefore we focus on the
case q = n

2m ∈ Q
+ for n ∈ N, m ∈ N0, which is sufficient to approximate F(y) for any

q ∈ R
+
0 with arbitrary precision. We start with the case 0 < q < 1 and 0 ≤ y < 1 and then

generalize to y ≥ 0 and q > 0. Trying the CAS for some special cases q = n/2m ∈ (0; 1)
with n, m ∈ N and 0 < n < 2m =: N gives the correct hypothesis for the antiderivative
F̃ (y):

Proposition 2 (Complex F(y) for exponents 0 < q < 1, outputs 0 ≤ y < 1)

F̃ (y) = −
∑

Z:ZN=1

Zn log
(
y1/N − Z

)
(19)

= −
N−1∑

k=0

log
(
y1/N − ej2π k

N

)
· ej2π kn

N = DFT{s[k]}[N − n] (20)

F̃ (0) = −π sin(2π n
N

)

1 − cos(2π n
N

)
− jπ (21)

where j is the imaginary unit and the sum is over the N := 2mth complex unit roots

Z = ej2π k
N for k = 0, 1, . . . , N − 1, and thus F̃ (y) corresponds to the N − nth

value of the Discrete Fourier Transform (DFT) of the discrete N -periodic signal s[k] :=
log

(
y1/N − ej2π k

N

)
.
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Via (17), Proposition 2 provides closed-form expressions for F(y) for 0 < q, y < 1 that
involve complex numbers. However, by definition (1), there should exist an equivalent real-
valued representation for F(y) ∈ R. In the following we simplify computation of F(y) by
reducing the number of terms and eliminating complex-valued expressions:

Proposition 3 (Real-valued representation of F(y) for 0 < q < 1 and 0 ≤ y < 1) Let
q = n/2m ∈ (0; 1) with n, m ∈ N and 0 ≤ y < 1. Then (17) with (20) and (21) simplifies
for N := 2m ≥ 4 to the real-valued expression

F(y) = F̃ (y) − F̃ (0) = π sin(2π n
N

)

1 − cos(2π n
N

)
+ log

(
(1 + y1/N )(−1)n+1

1 − y1/N

)

(22)

− cos(π
n

2
) · log(y2/N + 1) − 2 sin(π

n

2
) · arctan(y−1/N )

−2
N/4−1∑

k=1

cos(2π
kn

N
) · log

(
rk · r

(−1)n

N/2−k

)
− sin(2π

kn

N
) · (

ϕk − (−1)nϕN/2−k

)

where rk and ϕk must be computed from (37) or (40). For the remaining case N = 2
corresponding to q = 1/2 we have

F(y) = ∫ y

0
1

(1−y)y1/2
dy = log

(
1+√

y

1−√
y

)
(23)

If q = n/N = n/2m ∈ (0; 1) is in reduced form, we gain a considerable simplification
because then n is odd for any m ≥ 1, we have (−1)n = −1, and the case disctinctions
involved in computing rk and ϕk get aligned:

Proposition 4 (Simplification for irreducible 0 < q = n/2m < 1, 0 ≤ y < 1) For
q = n/2m ∈ (0; 1) with n,m ∈ N, N := 2m ≥ 4, odd n = 1, 3, 5, . . . , N − 1 (that is, n/N

is irreducible), and 0 ≤ y < 1, it is

2
N/4−1∑

k=1

sin(2π
kn

N
) = sin(2π n

N
)

1 − cos(2π n
N

)
− (−1)(n−1)/2 (24)

F(y) = log

(
1 + y1/N

1 − y1/N

)

+ (−1)(n−1)/2 · 2 arctan(y1/N ) (25)

+
N/4−1∑

k=1

cos(2π
kn

N
) · log

(
1 + 2y1/N cos

(
2π k

N

) + y2/N

1 − 2y1/N cos
(
2π k

N

) + y2/N

)

+
N/4−1∑

k=1

2 sin(2π
kn

N
) · arctan

(
2 sin

(
2π k

N

)
y1/N

1 − y2/N

)

So far we have determined the antiderivative F(y) for 0 ≤ y < 1, which is suffi-
cient for computing loss functions for binary classification, where y corresponds to a class
probability. For other applications, it may be useful to include also the case y > 1:

Proposition 5 (Including the case y > 1 for 0 < q < 1) The antiderivative of f (y) =
1

(1−y)y1−q for y ∈ R
+
0 \{1} assuming irreducible q = n/N ∈ (0; 1) with N := 2m ≥ 4 and
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odd n = 1, 3, 5, . . . N − 1 is

∫
1

(1 − y)y1−q
dy = F(y) = log

(
1 + y1/N

|1 − y1/N |
)

+ (−1)(n−1)/2 · 2 arctan(y1/N )

+
N/4−1∑

k=1

cos(2π
kn

N
) · log

(
1 + 2y1/N cos

(
2π k

N

) + y2/N

1 − 2y1/N cos
(
2π k

N

) + y2/N

)

+
N/4−1∑

k=1

2 · sin(2π kn

N
) · arctan

(
2 sin

(
2π k

N

)
y1/N

1 − y2/N

)

(26)

whereas for the remaining case N = 2 corresponding to q = 1/2 we have

∫
1

(1 − y)y1/2
dy = log

(
1 + √

y

|1 − √
y|

)

(27)

Let us now re-address the antiderivative
∫ yq−1

1−y
dy for q = n/N > 1 and y ≥ 0:

Proposition 6 (Rational exponents q > 1 with y ≥ 0) Let q = n/N > 1 be irreducible
with N := 2m, m ∈ N, and odd n = 1, 3, 5, . . . N − 1. Further, let η := n − N , ñ :=
nmod N , andM := (η−1) divN . Then the antiderivative of f (y) = yq−1

(1−y)
for y ∈ R

+
0 \{1}

is for N ≥ 4

∫
yq−1

1 − y
dy = −Nyñ/N

M∑

i=0

yM−i

n − (i + 1) · N

+ log

(
1 + y1/N

|1 − y1/N |
)

+ (−1)(ñ−1)/2 · 2 arctan(y1/N )

+
N/4−1∑

k=1

cos(2π
kñ

N
) · log

(
1 + 2y1/N cos

(
2π k

N

) + y2/N

1 − 2y1/N cos
(
2π k

N

) + y2/N

)

+
N/4−1∑

k=1

2 · sin(2π kñ

N
) · arctan

(
2 sin

(
2π k

N

)
y1/N

1 − y2/N

)

= F(y) (28)

whereas for N = 2 we have

∫
yq−1

1 − y
dy = F(y) = −Nyñ/N

M∑

i=0

yM−i

n − (i + 1) · N
+ log

(
1 + y1/N

|1 − y1/N |
)

(29)

To account for the different ranges of the variable y and the exponent q, we can finally
merge the results of Theorem 2 and Propositions 5,6 to a unifying theorem using the
Heaviside function H(y) and the discrete Dirac impulse δ[n] defined in the proofs of Propo-
sitions 4 and 3 (that is, H(y) = 1 for y ≥ 0 and H(y) = 0 otherwise, and δ[n] = 1 for
n = 0 and δ[n] = 0 otherwise):

Theorem 3 (Final antiderivative F(y) for q > 0 and y ≥ 0) For irreducible q = n/N ∈
Q

+ with n ∈ N, N = 2m ∈ N, m ∈ N0, ñ := n mod N , and q̃ := n div N , an antiderivative
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of f (y) := yq−1

1−y
is given by

∫
yq−1

1 − y
dy = F(y) := −Nyñ/N ·

⎛

⎝H(N − 2)

n − q̃ · N
+

q̃−1∑

i=1

yi

n − (q̃ − i) · N

⎞

⎠ · H(q − 1)

+ log

(
1 + y1/N · H(N − 2)

|1 − y1/N |
)

+(−1)(ñ−1)/2 · 2 arctan(y1/N ) · H(N − 4)

+
N/4−1∑

k=1

cos(2π
kñ

N
) · log

(
1 + 2y1/N cos

(
2π k

N

) + y2/N

1 − 2y1/N cos
(
2π k

N

) + y2/N

)

+
N/4−1∑

k=1

2 · sin(2π kñ

N
) · arctan

(
2 sin

(
2π k

N

)
y1/N

1 − y2/N

)

(30)

where the last two sums are relevant only for N ≥ 23 = 8.
F(y) is strictly increasing for 0 ≤ y < 1 and strictly decreasing for y > 1.
Furthermore, F(0) = 0, limy→1 F(y) = ∞, and for large y → ∞

F(y) ≈ −Nyñ/N ·
⎛

⎝H(N − 2)

n − q̃ · N
+

q̃−1∑

i=1

yi

n − (q̃ − i) · N

⎞

⎠ · H(q − 1) (31)

− log(y − 1) · δ[N − 1] + (−1)(ñ−1)/2 · π · H(N − 4)
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

→ 0 , q = 1
2

→ (−1)(ñ−1)/2 · π , 0 < q < 1, N ≥ 4

= − log(y − 1) → −∞ , q = 1

∼ − 1
q−1y

q−1 → −∞ , q > 1

Note that, by adding a constant C := −(−1)(ñ−1)/2 ·π = (−1)(ñ+1)/2 ·π for N ≥ 4 and
y > 1 we obtain an equivalent antiderivative

F̂ (y) := F(y) + (−1)(ñ+1)/2 · π · H(N − 4) · H(y − 1) (32)

for f (y) with the same properties as F(y) in Theorem 3, except that F̂ (y) has a unique
limit limy→∞ F̂ (y) = 0 for 0 < q < 1. Note also that C corresponds to the constant (50)
that we have skipped previously to get F(0) = 0 for all q > 0.

Figure 1 illustrates f (y) and F(y) from (30) for different values of the exponent q. Note
that the dependency of F(y) on q is monotonic for 0 ≤ y < 1, but non-monotonic and even
discontinuous for finite 1 < y  ∞, where monotonicity and continuity are restored in the
limit of very large y → ∞ due to (31).

I have also verified F(y) from (30) by numerical differentiation using Matlab [25]
with variable precision arithmetics (function vpa with a precision of 500 decimal digits) to
compute relative errors between the numerical derivative F ′

num(y) := F(y+�y)−F(y)
�y

and

f (y) := yq−1

1−y
sampling from y ∈ [y0; 1 − y0] ∪ [1 + y0; 1000]. The relative errors were

largest around the poles at y ≈ 0 and y ≈ 1, whereas apart from the poles, they generally
decreased for larger y and increased for larger q. For minimal pole distance y0 = 10−6

and difference �y = 10−20, the relative error for q ≤ 50 was always below 10−12, thus
confirming Theorem 3.
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Fig. 1 Illustration of f (y) = yq−1

1−y
and the antiderivative F(y) = ∫

f (y)dy as computed from (30) for

exponents q ∈ { 18 , 3
8 , 1

2 , 1, 47
32 , 2, 3, 4}

4 Applying the generalized loss function to neural networks

The purpose of the following experiments is, first, to verify Theorem 1 with (30) as used for
implementing L(q)

nk in Appendix B, and, second, to demonstrate the usefulness of the loss

function L(q)
nk for general q > 0. For the verification, I have implemented a simple recur-

rent neural network (Simple RNN; see Fig. 2A) for sequence classification and trained it
on the Embedded Reber Grammar data set (see Appendix B for details; cf. [19]). Figure 2
shows results from single trial learning experiments using fixed standard parameters (initial
learning rate η0 = 0.001 and minibatch size MBS=4) without any further hyperparame-
ter optimization: Fig. 2B shows test error as function of learning epoch for different error
exponents q ∈ { 14 , 1

2 , 1,
711
256 ≈ 2.777, 3157

512 ≈ 6.166}. The exponents q have been cho-
sen to test all (conditional) terms of (30) in sufficient detail. It can be seen that the two
implementations (Keras vs. custom) yield very similar, but not identical results. At least
in the initial phase of learning, test errors are virtually identical for both implementations,
suggesting the correctness of (10), (30), and the implementation in Appendix B. To further
confirm correctness, Fig. 2C shows for the custom implementation the maximum relative
error of gradients estimated from backpropagation compared to computing gradients from
the partial derivatives of the loss function with respect to all synaptic weights (where max-
imum is over all partial gradient vectors for synaptic connections A, B, U , and the two
bias vectors of u and y). It can be seen that, at least initially, all relative gradient errors are
below 10−6, which finally confirms the correctness of (10), (30), and the implementation in
Appendix B. During learning, relative errors typically increase, but are always below 10−4.
The increase is most pronounced for large q � 1 or large denominators of q. This increase
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Fig. 2 Single trial learning experiments to verify the formulas for the generalized power error loss func-
tions (10) and (30). A: Architecture of the Simple Recurrent Neural Network model. B: Test errors for the
Embedded Reber Grammar data set as obtained from neural network implementations using either Keras
(solid; automatic differentiation of (10) with (30)) or a custom neural network library (dotted; backpropaga-
tion algorithm using (5),(7)). C: Maximal relative error between gradients computed with backpropagation
(as in (B)) and a naive estimation of partial derivatives from differential quotients (adding δ = 10−8 to each
synaptic weight). D: Estimated power error exponent q̃ obtained from the (absolute) output error distribu-
tions of the experiments in (B) represented as histograms with 10 equally spaced bins. For each histogram,
q̃ is estimated by selecting the best fitting theoretical histogram (minimal Euclidean distance) obtained from
(33) for q ∈ { 18 , . . . , 7

8 , 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, . . . , 20} (cf., Fig. 4). All experiments employ identical
non-optimized standard hyperparameters (ADAM optimizer, η0 = 0.001, minibatch size 8), identical initial
synaptic weights (Glorot/Xavier uniform), and identical presentation order of training data

may be explained by steeper loss surfaces for q � 1 and increasing numerical errors due to
increasing numbers of mutually canceling terms in (30).

Although hyperparameters have not yet been optimized, Fig. 2A shows the existence of
an optimal error exponent somewhere between q = 1 and q = 7. In particular, learning for
q = 711/256 ≈ 2.777 and q = 3157/512 ≈ 6.166 reaches an error count < 300 by factor
1.5-2 faster than for binary cross entropy loss (q = 1). This is consistent with previous
results evaluating more complex network models involving LSTM layers and integer q ∈ N

(see Fig.8, Fig. 9A in [19]).
Figure 3 shows corresponding results after optimizing the hyperparameters initial

learning rate (η0) and minibatch size (MBS), and averaging over 16 learning tri-
als (by taking medians, similar as in previous works [19]). For all tested q ∈
{0.25, 0.5, . . . , 2.75, 3, 3.5, . . . , 9, 12, 15} it was possible to reach zero average test error
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Fig. 3 Learning experiments of the Simple RNN (Keras implementation) applied to the Embedded Reber
Grammar data set when optimizing hyperparameters η0 and MBS and averaging over 16 trials (taking
median error for each epoch; otherwise similar setting as in Fig. 2). A: Test errors for the Embedded
Reber Grammar data set when learning for 20 epochs for different error exponents q as indicated by
the legends. B: Minimal epoch number required to reach zero test error as function of q. The plot also
shows optimal hyperparameters η0 (initial learning rate) and MBS (minibatch size) from grid search with
η0 ∈ {0.001, 0.002, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1} and MBS ∈ {1, 2, 4, 8}. Curves in (A) correspond to
(B)

(see also remarks in Appendix B). Therefore the first epoch number reaching zero aver-
age errors was used as a criterion for optimizing hyperparameters. Best q = 1.75 reached
zero errors after 4.12 learning epochs, whereas q = 1 (BCE) required 10.63 epochs. Thus,
optimizing the exponent q of the generalized power error loss function (10) yields factor
> 2.5 improvement in learning time. This demonstrates that optimal exponents q may in
general be non-integer. Still, there is a broad range of q between 1.25 and 9 where learn-
ing performance improves significantly compared to classical BCE. Note also that optimal
hyperparameters are quite independent of q, mostly being η0 = 0.005 and MBS= 1. This
suggests that optimizing q may cause only little additional costs during hyperparameter
optimization.

To understand the potential usefulness of the general case q > 0, let us reconsider a rela-
tionship found in [19] between the loss functionsL(q)

nk (y, t) from (10) and the corresponding
distributions r(ε) of output errors ε := t − y ∈ (−1; 1) defined by (6): Specifically,
L(q)

nk (y, t) turns out to be optimal in maximizing the likelihood of the classification model
if output errors are distributed with density function (see [19], eq. 5.7)

r(ε) := p0r0(ε) + p1r1(−ε) = C0e
−L(q)

nk (−ε,0) + C1e
−L(q)

nk (ε,0) (33)

where pt are the prior class probabilities that an input belongs to class t , rt (ε) are the

conditional output error densities given t , and Ct := pt/
∫ 1
0 e−L(q)

nk (y,0)dy are corresponding
normalization constants. While [19] has computed r(ε) only for q ∈ N, we can now use
(30) to approximate r(ε) for any q ∈ R

+ with arbitrary precision. Figure 4 shows the output
error distributions r(ε) for some values of q. It can be seen that q � 1 corresponds to a
uniform (rectangular) distribution, q = 1 to a linear (triangular) distribution, and q < 1
to distributions where most output errors are close to zero. This suggests two hypotheses
about the relation between learning progress, error distributions, and an optimal choice for
the exponent q of L(q)

nk . First, for any reasonable loss function, the exponent parameter q̃

best fitting the current error distribution should decrease with learning progress from large
values q̃ > 1 towards small values q̃ < 1. This is confirmed by Fig. 2D: For all investigated
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Fig. 4 A: Illustration of output error density r(ε) as computed from (33) for balanced class priors p0 = p1 =
0.5. Each curve corresponds to a specific power error exponent q ∈ { 14 , 1

2 , 3
4 , 1, 3

2 , 2, 3, 5, 10} as indicated
by the legends. B: Same as (A), but logarithmic scale where, for symmetry, data is shown only for positive
output errors ε > 0

loss functions, the best fit q̃ decreases with training epochs. While q̃ = 4 for initial synaptic
weights, most error distributions have q̃ < 1 after 5 learning epochs (see Appendix B for
further details). Second, adapting the error exponent q of the loss function L(q)

nk during
learning to the distribution of output errors should improve learning performance.

Although a thorough investigation of the latter hypothesis is out of the scope of the cur-
rent work, Fig. 5 shows results for a simplified setting employing a Convolutional Neural
Network of moderate depth classifying the CIFAR-10 dataset after 15 training epochs (see
Appendix B for details). In previous works, employing the power error loss function with
fixed q in similar networks improved learning only marginally [19]. In the current experi-
ments, the exponent parameter q of L(q)

nk can be adapted once after 5 training epochs. For
the control experiments with fixed q the results are in line with the previous findings: The
case q > 1 improves learning to some degree, whereas q < 1 typically impairs learning
performance. However, loss functions with adaptation, employing q > 1 in the early learn-
ing phase (epoch 1-5) and q < 1 in a later phase (epoch 6-15), can significantly improve
accuracy (e.g., from 0.855 for fixed BCE or q = 1 to 0.863 for early q = 60/8 = 7.5 and
late q = 0.5). By contrast, employing the reverse order (early q < 1 and late q > 1) impairs
learning. This confirms the second hypothesis and shows that the case q < 1 can be useful
if employed in a later training phase.

5 Summary and discussion

Motivated from classification applications with neural networks, this work gives closed-

form expressions for the antiderivative F(y) of the function f (y) = yq−1

1−y
defined in (1),

where the exponent q = n/N should be rational with n ∈ N and N a power of 2. The
most general and convenient form for F(y) is given by (30) in Theorem 3. The special case
for q ∈ N simplifies to (12) or (13) in Theorem 2, and has already been discussed in prior
work [19]. Other intermediate representations involving complex roots and further special
cases are given by Propositions 2-6. In principle, it would be possible to extend the range
of exponents q = n/N to more general forms with N ∈ N being an arbitrary integer, but
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Fig. 5 Effect of adapting loss functions:A: Test accuracy as function of training epochs for fixed q (q = 4/8,
q = 8/8 = 1, q = 44/8) and changing q after 5 epochs (q = 44/8 → 4/8 = 0.5 and q = 4/8 → 44/8) as
indicated by the legends. Results for BCE and CCE are given for reference. B: Test accuracy after 15 training
epochs as function of q for the cases fixed q (qx15), changing q at epoch 5 for the remaining epochs to 4/8
(qx5+4/8x10), and changing q in the reverse order (4/8x5+qx10). Note that starting with large q > 1 and
then changing to small q < 1 (but not the reverse order) can significantly improve performance

this seems to lead to much more inconvenient formulas. As q = n/N for N = 2m can
approximate any rational or real-valued exponent with arbitrary precision, the current results
seem sufficient for most applications.

Here I have considered a neural network application involving binary classification with
logistic sigmoidal output units. For this network type, maximum-likelihood optimization
is equivalent to minimizing the power error loss function (10) of Theorem 1 with the
antiderivative F(y) from Theorem 3. For that the exponent q can be related to the distribu-
tion of output errors (Fig. 4) and the initialization of error signals (7) for backpropagation
learning [19]. Although knowing the correct loss function is actually not necessary for a cus-
tom gradient descent implementation based on error backpropagation with the power error
initialization (7), modern neural network libraries like Keras, Tensorflow, and PyTorch [1,
6, 29] employ automatic differentiation [23] of the loss function to determine gradients for
learning synaptic weights. Therefore Theorems 1 and 3 with the Python-based implemen-
tation of the power error loss function in Appendix B enable using such libraries for neural
network learning with power error initialization.

For the special case of natural exponents q ∈ N, this power error loss function has been
derived and evaluated already in previous work [19]. There it has also been shown that
optimizing q can significantly improve learning performance and convergence over various
classical loss functions (like BCE, CCE, SSE), in particular for binary classification tasks
in deep or recurrent networks. The current work extends these previous results for ratio-
nal error exponents q = n/2m > 0. Numerical and learning experiments have verified the
correctness of Theorems 1 and 3 and the implementation of (10) and (30) in Python for
Keras given in Appendix B. The experiments confirm that the usual outcome of optimizing
error exponents is at least a moderate improvement of learning performance and conver-
gence compared to cross entropy (q = 1), where optimal q is typically larger than one and
not integer. Moreover, they show that adaptive loss functions decreasing q to values below
1 during learning may provide significant further improvements. A more thorough investi-
gation of a continuous adaptation of q to the current distribution of output errors should be
done in future work.
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Appendix A: Proofs and supplements of Sections 2 and 3

Proof of Theorem 2: By iterated polynomial division it is easy to verify that for n ∈ N

yn

y − 1
= yn−1 + yn−2 + . . . + y + 1 + 1

y − 1
(34)

and for q ∈ N and y ∈ (0; 1) therefore F(y) := ∫ y

0
yq−1

1−y
dy = −∫ y

0

∑q−2
i=0 yi + 1

1−y
dy =

− ∑q−2
i=0

yi+1

i+1 − log(1 − y) showing (12). The second form (13) has been used previously
[19] and is given here for completeness. The two forms are equivalent as (13) satis-
fies F(0) = 0 and, with the binomial sum, has the correct derivative F ′(y) = 1

1−y
+

∑q−2
r=0

(
q−1

r

)
(−1)q−r (−(1 − y)q−2−r ) = 1

1−y
− (−1)q

1−y
(
∑q−1

r=0

(
q−1

r

)
(−1)r (1 − y)q−1−r −

(−1)q−1) = 1−(−1)q ((−y)q−1+(−1)q )
1−y

= yq−1

1−y
. Then (14) follows from inserting (12) into (10),

L(q)
nk (y, t) = (1 − t)(− log(1 − y) −

q−1∑

i=1

yi

i
) + t (− log(y) −

q−1∑

i=1

(1 − y)i

i
)

= −t log(y) − (1 − t) log(1 − y) −
q−1∑

i=1

(1 − t)yi + t (1 − y)i

i
.

With the binomial sum (1−y)i = ∑i
j=0

(
i
j

)
(−y)j , the sum in (14) writes as the polynomial

a(q)(y) =
q−1∑

i=1

(1 − t)yi + t
i∑

j=0

(
i
j

)
(−y)j

i
=

q−1∑

i=1

(1 − t)yi + t

i
+

q−1∑

i=1

i∑

j=1

t
(
i
j

)
(−y)j

i

=
q−1∑

i=1

t

i
+

q−1∑

i=1

1 − t

i
yi +

q−1∑

j=1

q−1∑

i=j

t

i

(
i

j

)

(−y)j
!=

∑

i

a
(q)
i yi

from which we can read the polynomial coefficients a
(q)

0 = ∑q−1
i=1

t
i
and

a
(q)
i = 1 − t

i
+ (−1)i

q−1∑

j=i

t
(
j
i

)

j
= 1 − t

i
+ (−1)i

q−1∑

j=i

t
(
j−1
i−1

)

i
=

(

(−1)i
q−1∑

j=i

(
j−1
i−1

) − 1

)

t + 1

i

for i = 1, . . . , q−1. Table 1 gives examples for the alternative coefficients b
(q)
i of (16).

Proof of Proposition 1: It is well known that d
dz 2

F1(a, b; a + 1, z) = a ·
(1−z)−b−2F1(a,b;a+1,z)

z
. Defining G(y) :=2 F1(q, 1; q + 1, y) for brevity we get from this

(yqG(y)/q)′ = yq−1G(y) + yq(q
(1−y)−1−G(y)

y
)/q = yq−1/(1 − y).
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Table 1 Coefficients b
(q)
i to compute generalized loss functions L(q)

nk (y, t) for q ∈ N from (16)

q b
(q)

0 b
(q)

1 b
(q)

2 b
(q)

3 b
(q)

4 b
(q)

5 b
(q)

6 b
(q)
7 b

(q)

8 b
(q)

9 b
(q)

10 b
(q)

11

1 0

2 1 2

3 3/2 3 0

4 11/6 4 2 2

5 25/12 5 5 5 0

6 137/60 6 9 11 4 2

7 49/20 7 14 21 14 7 0

8 363/140 8 20 36 34 22 6 2

9 761/280 9 27 57 69 57 27 9 0

10 7129/2520 10 35 85 125 127 83 37 8 2

11 7381/2520 11 44 121 209 253 209 121 44 11 0

12 83711/27720 12 54 166 329 463 461 331 164 56 10 2

For example, for q = 1, . . . , 5 we haveL(1)
nk (y, t) = LBCE

nk (y, t) := −t log y−(1−t) log(1−y),L(2)
nk (y, t) =

LBCE
nk (y, t) − t + (2t − 1)y, L(3)

nk (y, t) = LBCE
nk (y, t) − 3

2 t + (3t − 1)y − 1
2y2, L(4)

nk (y, t) = LBCE
nk (y, t) −

11
6 t + (4t − 1)y − 2t+1

2 y2 + 2t−1
3 y3, L(5)

nk (y, t) = LBCE
nk (y, t) − 25

12 t + (5t − 1)y − 5t+1
2 y2 + 5t−1

3 y3 − 1
4y4

Proof of Proposition 2: We have to show that F̃ ′(y) = f (y). In fact, it is

F̃ ′(y) = −
∑

Z:ZN=1

Zn d

dy
log(y1/N − Z)

= −
∑

Z:ZN=1

Zn
1
N

y1/N−1

y1/N − Z
= −1

Ny(N−1)/N

∑

Z:ZN=1

1

y1/N − Z
· Zn

= −1

Ny(N−1)/N

N−1∑

k=0

1

y1/N − ej2π k
N

·ej2π kn
N = −1

Ny(N−1)/N
DFT{u[k]}[N−n] (35)

where the last equation involves the DFT of the discrete N -periodic signal

u[k] := 1

y1/N − ej2π k
N

= 1

y1/N
· 1

1 − y−1/Nej2π k
N

= c · 1 − eαN

1 − eα · ej2π k
N

with c := 1

y1/N (1 − eαN)
and α := − log(y)/N .

Using some well known facts of the DFT [36] for signals and

it follows . Thus, inserting U [N −n] =
cNeα(N−n) = cNe−(N−n) log(y)/N = cNy−(N−n)/N in (35) with eαN = e− log(y) = 1/y
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yields

F̃ ′(y) = −1

Ny(N−1)/N
U [N − n] = −cNy−(N−n)/N

Ny(N−1)/N
= −y−(N−n)/N

y(N−1)/Ny1/N (1 − eαN)

= −y−(1−n/N)

y(1 − 1
y
)

= y−(1−q)

1 − y
= 1

(1 − y) · y1−q
= f (y)

proving (19), (20). We still have to prove (21) because determining the generalized loss
function (10) with (17) involves subtracting F̃ (0): With the geometric-type sum

N−1∑

k=0

kzk = (N − 1)zN+1 − NzN + z

(z − 1)2

(which can easily be proved by induction), the complex logarithm log(jr) ∈ (−π; π ] in the
primary sheet

log(−ej2π k
N ) = log(ej 2π

N
k−jπ ) = log(ej 2π

N
(k− N

2 )) = j
2π

N
(k − N

2
) + j2πK for K ∈ Z

=
{

j 2π
N

(k − N
2 ) , k = 1, 2, . . . , N − 1

j 2π
N

(k − N
2 ) + j2π , k = 0

,

using z := ej2πn/N and DFT{1}[n] = δ[n] = 0 for n = 1, . . . , N − 1, where δ[n] is the
discrete Dirac impulse (that is, δ[n] = 0 for n = 0, and δ[n] = 0 for n �= 0), we get from
(20)

F̃ (0) = −
N−1∑

k=0

log
(
−ej2π k

N

)
· ej2π kn

N = −
N−1∑

k=0

(−jπ + j2π
k

N
)ej2π kn

N − j2π

= jπDFT{1}[N − n] − j
2π

N

N−1∑

k=0

kzk − j2π = −j
2π

N
· (N − 1)zN+1 − NzN + z

(z − 1)2
− j2π

= −j
2π

N
· (N − 1)ej2πn(N+1)/N − Nej2πn + ej2πn/N

(z − 1)2
− j2π

= −j
2π

N
· (N − 1)ej2πn/N − N + ej2πn/N

(z − 1)2
− j2π

= −j
2π

N
· Nej2πn/N − N

(z − 1)2
− j2π = −j

2π

N

N(z − 1)

(z − 1)2
− j2π = 2πj

1 − ej2πn/N

= 2πj

1 − cos(2π n
N

) − j sin(2π n
N

)
− j2π = 2πj (1 − cos(2π n

N
) + j sin(2π n

N
))

(1 − cos(2π n
N

))2 + sin2(2π n
N

)
− j2π

= 2πj (1 − cos(2π n
N

)) − 2π sin(2π n
N

)

1 − 2 cos(2π n
N

) + 1
− j2π = −π sin(2π n

N
)

1 − cos(2π n
N

)
− jπ

Proof of Proposition 3: We can rewrite (20) as

F̃ (y) = −
N−1∑

k=0

F̃ [k] for F̃ [k] := log
(
y1/N − ej2π k

N

)
· ej2π kn

N (36)
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where F̃ [k] is a discrete N -periodic signal. In polar form,

y1/N − ej2π k
N = y1/N − cos

(

2π
k

N

)

− j sin

(

2π
k

N

)

= rke
jϕk with

rk :=
√(

y1/N − cos

(

2π
k

N

))2

+ sin2
(

2π
k

N

)

=
√

y2/N − 2y1/N cos

(

2π
k

N

)

+ 1

ϕk :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− arctan

(
sin

(
2π k

N

)

y1/N−cos
(
2π k

N

)

)

, if y1/N ≥ cos
(
2π k

N

)

− arctan

(
sin

(
2π k

N

)

y1/N−cos
(
2π k

N

)

)

−π , if y1/N<cos
(
2π k

N

)
and sin

(
2π k

N

)≥0

− arctan

(
sin

(
2π k

N

)

y1/N−cos
(
2π k

N

)

)

+ π , if y1/N < cos
(
2π k

N

)
and sin

(
2π k

N

)
< 0

, (37)

where the last two cases are necessary to distinguish between different sheets of the complex
logarithm, and thus

F̃ [k] := log
(
rke

jϕk

)
· ej2π kn

N = (log(rk) + jϕk) · (cos(2π
kn

N
) + j sin(2π

kn

N
)) (38)

= cos(2π
kn

N
) · log(rk) − sin(2π

kn

N
) · ϕk +j

(

cos(2π
kn

N
) · ϕk + sin(2π

kn

N
) · log(rk)

)

.

As (36) obviously implies conjugate complex symmetry F̃ [−k] = F̃ [N − k] = F̃ ∗[k], we get
for 0 ≤ y < 1

F̃ (y) = −
N−1∑

k=0

F̃ [k] = −F̃ [0] − F̃ [N/2] −
N/2−1∑

k=1

(F̃ [k] + F̃ [−k])

= − log(y1/N − 1) − (−1)n log(y1/N + 1) − 2
N/2−1∑

k=1

Re{F̃ [k]}

= −jπ − log(1 − y1/N ) − (−1)n log(1 + y1/N ) − 2
N/2−1∑

k=1

cos(2π
kn

N
) log(rk) − sin(2π

kn

N
)ϕk

= −jπ + log

(
(1 + y1/N )(−1)n+1

1 − y1/N

)

− 2G̃(y) (39)
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where, in the sum G̃(y) := ∑N/2−1
k=1 cos(2π kn

N
) · log(rk) − sin(2π kn

N
) · ϕk , the terms with index

k = 1, ..., N
4 − 1 are similar to those with index N

2 − k . Specifically,

cos(2π
(N
2 − k)n

N
) = cos(−(2π

kn

N
− πn)) = (−1)n cos(2π

kn

N
),

− sin(2π
(N
2 − k)n

N
) = − sin(−(2π

kn

N
− πn)) = (−1)n sin(2π

kn

N
),

cos(2π
(N
2 − k)

N
) = − cos(2π

kn

N
), sin(2π

(N
2 − k)n

N
) = sin(2π

kn

N
),

rk =
√

y2/N − 2y1/N cos

(

2π
k

N

)

+ 1, rN/2−k =
√

y2/N + 2y1/N cos

(

2π
k

N

)

+ 1

ϕk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− arctan

(
sin

(
2π k

N

)

y1/N −cos
(
2π k

N

)

)

, if y1/N ≥ cos
(
2π k

N

)

− arctan

(
sin

(
2π k

N

)

y1/N −cos
(
2π k

N

)

)

− π , otherwise

ϕN/2−k = − arctan

(
sin

(
2π k

N

)

y1/N + cos
(
2π k

N

)

)

, (40)

where the last equation for ϕN/2−k follows from y ≥ 0 and cos
(
2π N/2−k

N

)
< 0 for k =

1, . . . , N
4 − 1. Thus for N ≥ 4

G̃(y) = cos(π
n

2
) · log(rN/4) − sin(π

n

2
) · ϕN/4

+
N/4−1∑

k=1

cos(2π
kn

N
) · log(rk) − sin(2π

kn

N
) · ϕk

+(−1)n cos(2π
kn

N
) log(rN/2−k) + (−1)n sin(2π

kn

N
)ϕN/2−k

= cos(π n
2 ) · log(y2/N + 1)

2
+ sin(π

n

2
) · arctan(y−1/N )

+
N/4−1∑

k=1

cos(2π
kn

N
) · log

(
rk · r

(−1)n

N/2−k

)
− sin(2π

kn

N
) · (

ϕk − (−1)nϕN/2−k

)
(41)

such that inserting (41) in (39) and using (21) we obtain (22). The remaining special case

(23) is easily shown by the derivative
(
log

1+√
y

1−√
y

)′ = 1−√
y

1+√
y

·
1

2
√

y
(1−√

y)+(1+√
y) 1

2
√

y

(1−√
y)2

=
1

(1−y)
√

y
.

On the antiderivatives of xp/(1 − x) with an application to optimize... 443



Proof of Proposition 4: For irreducible q = n/N = n/2m ∈ (0; 1), we have odd n for
m ≥ 1 and (−1)n = −1. From (40) we then obtain for k = 1, . . . , N

4 − 1

log
(
rk · r

(−1)n

N/2−k

)
= log

(
rk

rN/2−k

)

= 1

2
log

(
y2/N − 2y1/N cos

(
2π k

N

) + 1

y2/N + 2y1/N cos
(
2π k

N

) + 1

)

(42)

ϕk − (−1)nϕN/2−k = ϕk + ϕN/2−k = − arctan

(
sin

(
2π k

N

)

y1/N − cos
(
2π k

N

)

)

−π ·
(

1 − H

(

y1/N − cos

(

2π
k

N

)))

− arctan

(
sin

(
2π k

N

)

y1/N + cos
(
2π k

N

)

)

(43)

with the Heaviside function H(y) = 1 if y ≥ 0 and H(y) = 0 otherwise. We can further
simplify the last equation using the addition theorem of the arctan function

arctan(a) + arctan(b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

arctan
(

a+b
1−ab

)
, ab < 1

π + arctan
(

a+b
1−ab

)
, ab > 1 and a + b ≥ 0

−π + arctan
(

a+b
1−ab

)
, ab > 1 and a + b < 0

.

Specifically, for a := sin
(
2π k

N

)

y1/N−cos
(
2π k

N

) and b := sin
(
2π k

N

)

y1/N+cos
(
2π k

N

) we get

ab = sin2
(
2π k

N

)

y2/N − cos2
(
2π k

N

) , thus ab < 1 ⇔
{
sin2(.) + cos2(.) = 1 < y2/N , y2/N > cos2(.)
sin2(.) + cos2(.) = 1 > y2/N , y2/N < cos2(.)

,

a + b =
sin

(
2πk
N

)
(y

1
N + cos

(
2πk
N

)
) + sin

(
2πk
N

)
(y

1
N − cos

(
2πk
N

)
)

y
2
N − cos2

(
2πk
N

) =
2 sin

(
2πk
N

)
y

1
N

y
2
N − cos2

(
2πk
N

) ,

arctan

(
a + b

1 − ab

)

= arctan

(
2 sin

(
2π k

N

)
y1/N

y2/N − 1

)

.

Note that for k ∈ {1, . . . , N
4 − 1} both sin

(
2π k

N

)
> 0 and cos

(
2π k

N

)
> 0. Thus, for

0 < y < 1 the conditions ab < 1 and a + b < 0 are both equivalent to y1/N < cos
(
2π k

N

)
.

Therefore the addition theorem implies

arctan(a) + arctan(b) = arctan

(
2 sin

(
2π k

N

)
y1/N

y2/N − 1

)

+ π · H

(

y1/N − cos

(

2π
k

N

))

and (43) gets ϕk − (−1)nϕN
2 −k

= ϕk + ϕN
2 −k

= −π − arctan

⎛

⎝
2 sin

(
2πk
N

)
y

1
N

y
2
N − 1

⎞

⎠ (44)
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such that with (42), the identity arctan( 1
x
) = π

2 − arctan(x), and (−1)n = −1 the
antiderivative (22) becomes for odd n with cos(π n

2 ) = 0 and sin(π n
2 ) = (−1)(n−1)/2

F(y) = π sin( 2πn
N

)

1 − cos( 2πn
N

)
+ log

(
1 + y

1
N

1 − y
1
N

)

− 2 · (−1)
n−1
2 · (

π

2
− arctan(y

1
N )) −

N
4 −1∑

k=1

cos(
2πkn

N
)

· log
⎛

⎝
y

2
N − 2y

1
N cos

(
2πk
N

)
+ 1

y
2
N + 2y

1
N cos

(
2πk
N

)
+ 1

⎞

⎠−
N
4 −1∑

k=1

2 sin(
2πkn

N
) ·

⎛

⎝π+arctan

⎛

⎝
2 sin

(
2πk
N

)
y

1
N

y
2
N − 1

⎞

⎠

⎞

⎠ . (45)

Simplifying this result yields Proposition 4: As arctan(0) = 0, log(1) = 0, and F(y) = 0 by
definition (see (22)), the trigonometric identity (24) follows from (45) for y = 0. Inserting
(24) back into (45) yields (25).

Proof of Proposition 5: Recapitulating our results so far, we find that Proposition 2
(including all equations in the proof) and (36)–(38) hold also for y > 1. With this we can
easily verify that for y > 1 we have real-valued log(y1/N − 1) ∈ R and the antiderivative
(39) becomes

F̃ (y) = log

(
(1 + y1/N )(−1)n+1

y1/N − 1

)

− 2G̃(y) (46)

Then, because of y > 1 ≥ cos(2π k
n
), we see that (40) simplifies to

ϕk = − arctan

(
sin

(
2π k

N

)

y1/N − cos
(
2π k

N

)

)

and ϕN/2−k = − arctan

(
sin

(
2π k

N

)

y1/N + cos
(
2π k

N

)

)

,

whereas all equations of (40) and (41) still hold true. Thus, in correspondence to (22) we
get for y > 1 and any n = 1, 2, 3, 4, . . . , N − 1

F̃ (y) = log

(
(1 + y1/N )(−1)n+1

y1/N − 1

)

− cos(π
n

2
) log(y2/N + 1) − 2 sin(π

n

2
) arctan(y−1/N )

−2
N/4−1∑

k=1

cos(2π
kn

N
) log

(
rk · r

(−1)n

N/2−k

)
− sin(2π

kn

N
)
(
ϕk − (−1)nϕN/2−k

)
(47)

employing real-valued computations only (whereas (22) is still a valid antiderivative
for y > 1, but includes imaginary numbers). For irreducible q = n/2m with odd
n = 1, 3, 5, . . . , N − 1, it is easy to verify that (42) and (43) remain valid, whereas
y1/N − cos

(
2π k

N

)
> 0 for y > 1 implies always ab < 1 and therefore (44) simplifies

to

ϕk − (−1)nϕN/2−k = ϕk + ϕN/2−k = − arctan

(
2 sin

(
2π k

N

)
y1/N

y2/N − 1

)

. (48)
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Thus, (47) becomes for odd n with (42), (44), arctan( 1
x
) = π

2 − arctan(x), (−1)n = −1,
cos(π n

2 ) = 0, and sin(π n
2 ) = (−1)(n−1)/2

F̃ (y) = log

(
(1 + y

1
N )(−1)n+1

y
1
N − 1

)

− 2 · (−1)
n−1
2 · (

π

2
− arctan(y

1
N )) −

N
4 −1∑

k=1

cos(
2πkn

N
)

· log
⎛

⎝
y

2
N − 2y

1
N cos

(
2πk
N

)
+ 1

y
2
N + 2y

1
N cos

(
2πk
N

)
+ 1

⎞

⎠ +
N
4 −1∑

k=1

2 · sin(2πkn

N
) ·

⎛

⎝− arctan

⎛

⎝
2 sin

(
2πk
N

)
y

1
N

y
2
N − 1

⎞

⎠

⎞

⎠

= log

(
1 + y

1
N

y
1
N − 1

)

+ (−1)
n−1
2 · 2 arctan(y 1

N ) +
N
4 −1∑

k=1

cos(
2πkn

N
)

· log
⎛

⎝
1 + 2y

1
N cos

(
2πk
N

)
+ y

2
N

1 − 2y
1
N cos

(
2πk
N

)
+ y

2
N

⎞

⎠−
N
4 −1∑

k=1

2 · sin(2πkn

N
) · arctan

⎛

⎝
2 sin

(
2πk
N

)
y

1
N

y
2
N − 1

⎞

⎠+C (49)

where with the identity (24) the constant is C = π · (−1)(n+1)/2 . (50)

Merging this with Proposition 4 gives almost immediately Proposition 5: Skipping the
constant C in (49) and then comparing to (25) reveals that, after taking absolute values
|1 − y1/N |, both (25) for 0 ≤ y < 1 and (49) for y > 1 represent the same function that is
unified by (26). The case N = 2 corresponding to (27) can be shown as in (23).

Proof of Proposition 6: We assume irreducible q = n/N > 1 with N := 2m > 1 and odd

n > N . Using odd η := n − N > 0 and substituting u := y1/N with du/dy = y1/N−1

N
=

1
Ny(N−1)/N , y = uN , dy = Ny(N−1)/Ndu = NuN−1du we obtain

∫
yq−1

1 − y
dy =

∫
y(n−N)/N

1 − y
dy =

∫
yη/N

1 − y
dy =

∫
uη

1 − uN
NuN−1du = N

∫
uN+η−1

1 − uN
du (51)

By polynomial division we get for M := (η − 1) div N ≥ 0 and even R := (η − 1) mod N =
η − 1 − M · N ∈ {0, . . . , N − 2}

uN+η−1

uN − 1
= uη−1 + uη−1

uN − 1
= . . . =

M∑

i=0

uη−1−i·N + uR

uN − 1
(52)

and therefore, with re-substituting u := y1/N , η := n − N , and du = dy

Ny(N−1)/N , (51)
becomes

∫
yq−1

1 − y
dy = −N

∫
uN+η−1

uN − 1
du = −N

M∑

i=0

∫
uη−1−i·Ndu − N

∫
uR

uN − 1
du

= −N

M∑

i=0

uη−i·N

η − i · N
+ N

∫
uR

1 − uN
du = −N

M∑

i=0

yη/N−i

η − i · N
+ N

∫
yR/N

1 − y
· dy

Ny(N−1)/N

= −N

M∑

i=0

y(η div N)+(η mod N)−i

n − N − i · N
+

∫
1

(1 − y) · y(N−1−R)/N
dy

= −N

M∑

i=0

yM−i+(R+1)/N

n − (i + 1) · N
+

∫
1

(1 − y) · y1−(R+1)/N
dy (53)
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where (53) uses η div N = (η − 1) div N and η mod N = ((η − 1) mod N) + 1 = R + 1
as η := n − N is odd while N := 2m is even, and so η mod N ∈ {1, 3, 5, . . . , N − 1}
is odd. Using (53) completes the proof: As ñ := R + 1 = η mod N = n mod N ∈
{1, 3, 5, . . . , N − 1} is odd, q̃ := (R + 1)/N = ñ/N is irreducible and 0 < q̃ < 1,
thus the remaining integral in (53) follows from (26) for N ≥ 4 or from (27) for N = 2,
replacing q and n by q̃ and ñ, respectively. Thus we get (28) for N ≥ 4 and (29) for N = 2.
Both antiderivatives have already the correct offset 0 for y = 0, so they correspond to
continuations of F(y) as defined earlier.

Proof of Theorem 3: First, let us show that (30) contains Proposition 6 (as special case for
irreducible q = n/N > 1 with N ≥ 2 and y ∈ R

+
0 \{1}): Indeed, for M := (n − N −

1) div N = (n div N) − 1 = q̃ − 1, the first sums in (6) and (29) become after substituting
i by M − i

−Nyñ/N ·
M∑

i=0

yM−i

n − (i + 1) · N
= −Nyñ/N ·

q̃−1∑

i=0

yi

n−(M−i+1)·N ,

which, for the case N ≥ 2 with H(N − 2) = H(q − 1) = 1, equals the first line of (30)
writing the first summand for i = 0 as a separate term for later case distinctions. It is easy
to verify that also the remaining terms in (6) and (29) are equivalent to those in (30) as here
H(N − 2) and H(N − 4) select the necessary terms, respectively.

Second, we show that (30) contains Theorem 2 (as special case for q ∈ N, 0 ≤ y < 1)
and extends it for y > 1: As here q = n/N = n ∈ N with N = 1, and thus ñ = 0,
q̃ = n = q, M = q − 1, and H(N − 2) = H(N − 4) = 0, H(q − 1) = 1, the antiderivative
(30) becomes

F(y) = −Nyñ/N ·
⎛

⎝H(N − 2)

n − q̃ · N
+

q̃−1∑

i=1

yi

n − (q̃ − i) · N

⎞

⎠ + log

(
1 + y1/N · H(N − 2)

|1 − y1/N |
)

= −
q−1∑

i=1

yi

i
− log (|1 − y|) ,

which equals (12) for 0 ≤ y < 1 and, also for the case y > 1, is still a proper antiderivative
of f (y), as can easily be seen by recapitulating the proof of (12) using (34).

Third, it is easy to verify that (30) contains Proposition 5 (as special case for irreducible
0 < q = n/N < 1 with N ≥ 2 and y ∈ R

+
0 \{1}) using H(q − 1) = 0, H(N − 2) = 1, and

either H(N − 4) = 1 (for (26)) or H(N − 4) = 0 (for (27)).
Finally, the monotonicity of F(y) follows from f (y) > 0 for 0 < y < 1 and f (y) < 0

for y > 1, and the limits and asymptotic expressions (31) are easily verified by inspecting
each case. In particular, F(0) = 0 follows from 0i = 0, log(1) = 0, and arctan(0) = 0.

F(1) = ∞ follows from limy→1 log(
1+y

1
N ·H(N−2)

|1−y1/N | ) = ∞ and all other terms remaining

finite for y → 1. For y → ∞, approximation (31) follows because arctan(
2 sin( 2πk

N
)y

1
N

1−y
2
N

) →

0, log(
1+2y

1
N cos( 2πk

N
)+y

2
N

1−2y
1
N cos( 2πk

N
)+y

2
N

) → 0, arctan(y
1
N ) → π

2 , and log( 1+y
1
N ·H(N−2)

|1−y
1
N |

) → 0 for N ≥
2. From this the asymptotics can easily be seen, in particular for q > 1 the dominating
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term in (31) is − N
n−N

yñ/N+q̃−1 = − 1
(n−N)/N

y(n mod N)/N+n div N−1 = − 1
q−1y

(n−N)/N =
− 1

q−1y
q−1.

Appendix B: Implementation details

Figures 2–3 used the Simple RNN of Fig. 2A with D inputs, M = 10 hidden units, and K

outputs. The layers are linked by dense connections A, U , B and include also bias weights
for layers u, y. Activation functions are tanh for u and the logistic sigmoid σ for y. Synaptic
connections are initialized by uniform Xavier [10]. Training used ADAM optimizer [18, 31]
with standard parameters β1 = 0.9, β2 = 0.999. Experiments used eitherKeras 2.2.5 with a
Tensorflow 1.14.0 backend [1, 6] or a custom neural network library for backpropagation.
While Keras computes gradients based on automatic differentiation [23] of the loss function
(see Python code below for the power error loss (10) with (30)), the custom implementation
uses (5) with the power error initialization (7).

The Embedded Reber Grammar Problem is to predict the next output symbol of a
finite automaton with non-deterministic state transitions [15]. Inputs are symbol sequences
xn(1), xn(2), . . . , xT generated by the automaton, representing each of the D = 7 sym-
bols by a one-hot input vector xn(τ ). The output to be predicted at time τ is the next
symbol xn(τ + 1) generated by the automaton in the next time step (K = 7). Due to the
non-determinism, target vectors tn(τ ) can have multiple one-entries, one for each possible
output symbol. Network decision ŷn(τ ) is evaluated as correct if ŷn(τ ) = tn(τ ) at decision
threshold 0.5. Learning used N = 2048 sequences (90% training, 10% validating/testing).
Average sequence length is T = 12 (maximum 40).

Remarks to Fig. 3: Reaching zero median errors suggests that all 16 learning trials of
an experiment converged to zero error, while previous works reported problems of simple
RNN solving this data set [9, 15]. However, as zero median means that at least half of
trials reached zero errors, I have analyzed also mean test errors (instead of medians), which
also reached zero within the total learning duration of 65 epochs for all exponents 0.5 ≤
q ≤ 15 (data not shown). The profile of minimal epoch numbers until zero test errors
was similar to Fig. 3B, although absolute values were about factor 2-2.5 larger (best was 9
epochs for q = 1.5 vs. 26 epochs for q = 1). The discrepancy may be that earlier works
used a suboptimal initialization of synaptic weights, causing either vanishing or exploding
gradients [3, 15]. Additional experiments (data not shown) revealed that at least q > 1 can
still reach zero error, even if initial weights deviate substantially (by factors between 0.125
and 3) from Xavier initialization. This is consistent with the idea that, for q > 1, the power
error loss provides a better gradient-to-loss ratio and, thereby, avoids flat loss landscapes
and vanishing gradients [19].

Remarks to Fig. 2D: Panel (D) shows estimated power exponents q̃ of absolute out-
put error distributions |ε| = |t − y| corresponding to panels (B) and (C). Estimated q̃ are
obtained from selecting the minimum Euclidean distance of histogram vectors (10 equally
spaced bins of interval |ε| ∈ [0; 1]) between experimental and theoretical distributions
(33) evaluated for q ∈ { 18 , . . . , 7

8 , 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, . . . , 20}. As expected, q̃

decreases gradually with epoch number, and may therefore be used to characterize learning
progress as discussed in Section 4. Again, there are some deviations between Keras and the
custom implementation, in particular, in later learning phases (but note the logarithmic scale).

Figure 5 used a sequential 2D Convolutional Neural Network (CNN) architecture
implemented with PyTorch 1.7.0+cu101 [29], including 6 CNN-Layers (kernel size 3, stride
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1, “same” padding), 2 Max-Pooling layers (MaxPool; kernel size 2; stride 2), 2 Batch-
Normalization (BN) layers, 2 Fully Connected (FC) layers, and 2 Dropout-Layers: Input
→ CNN(32) → BN(32) → ReLU → CNN(64) → ReLU → MaxPool → CNN(128) →
BN → ReLU → CNN(128) → ReLU → MaxPool → Dropout(p = 0.05) → CNN(256)
→ BN → ReLU → CNN(256) → ReLU → MaxPool → Dropout(p = 0.1) → FC(1024)
→ ReLU → FC(512) → Dropout(p = 0.1) → FC(512) → σ . Numbers in brackets corre-
spond to channels (CNN/BN) and size (FC). Activation functions were rectified linear units
(ReLU) except σ for outputs (or softmax for CCE loss). The CIFAR10 dataset consists of
50000 training and 10000 test images (RGB) of size 32 × 32 from 10 classes [20]. Accu-
racies were computed from maximum decisions averaged (mean value) over 16 learning
trials. Standard parameters were used without any further optimizations (ADAM optimizer
as above, but initial learning rate 0.0001, minibatch 64).

Backpropagation involving automatic differentiation (as with Keras and PyTorch)
requires implementing the power error loss function (10) with (30). All experiments
involving Keras used the following Python code (for PyTorch replace K and tf by torch
and clip by value by clamp):

import numpy as np, tensorflow as tf
from keras import backend as K

def powererrorloss_wrapper(n=3,N=1,_eps=1e-7):
"""
computes power error loss function eq.10 for q=n/N using eq.30
it is assumed that n and N are positive integers with N=2ˆm being a power of two
_eps: clip y and powers of y to interval [_eps;1-_eps] to avoid NaN etc.
"""

def F(y): # eq.30: assumes that n is odd, N=2ˆm is a power of two for m>=0, and 0<y<1
y=tf.clip_by_value(y,_eps,1.0-_eps)
n_tilde = n%N
q_tilde = n//N
y_1divN = tf.clip_by_value(K.pow(y,1.0/N),_eps,1.0-_eps)
y_2divN = tf.clip_by_value(K.pow(y,2.0/N),_eps,1.0-_eps)
y_ntildedivN = tf.clip_by_value(K.pow(y,n_tilde/N),_eps,1.0-_eps)
# (i) first line of F(y) in eq.30
L = 0
if n>=N: # if q>=1

if N>=2: L=L+1.0/(n-q_tilde*N)
for i in range(1,q_tilde): L=L+K.pow(y,i)*(1.0/(n-(q_tilde-i)*N))
L=L*(-N*y_ntildedivN)

# (ii) second line of eq.30
tmp=1.0/tf.clip_by_value(1.0-y_1divN,_eps,1.0-_eps) # abs(.) not necessary (clipping)
if N>=2: tmp=tmp*(1.0+y_1divN);
L=L+K.log(tmp);
# (iii) third line of eq.30
if N>=4:

tmp=(n_tilde-1)//2 # exponent of (-1)ˆ((n_tilde-1)/2)
if ((tmp//2)*2) == tmp: sg=1 # sign of (-1)ˆ((n_tilde-1)/2)
else: sg=-1
L=L+sg*2.0*tf.atan(y_1divN)

# (iv) fourth line of eq.30
if N>=4:

for k in range(1,N//4):
tmp=tf.clip_by_value(1.0+2.0*y_1divN*np.cos(2.0*np.pi*k/N)+y_2divN,_eps,4.)
tmp=tmp/tf.clip_by_value(1.0-2.0*y_1divN*np.cos(2.0*np.pi*k/N)+y_2divN,_eps,4.)
L=L+np.cos(2.0*np.pi*k*n_tilde/N)*K.log(tmp)

# (v) fifth line of eq.30
for k in range(1,N//4):

tmp=2.0*np.sin(2.0*np.pi*k/N)*y_1divN
tmp=tf.atan(tmp/tf.clip_by_value(1.0-y_2divN,_eps,1.0-_eps))
L=L+2.0*np.sin(2.0*np.pi*k*n_tilde/N)*tmp

return L
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def powererrorloss(t,y):
loss=(1.0-t)*F(y)+t*F(1.0-y) # eq.10
return K.mean(loss) # averaging to be consistent with other Keras losses

# main program of powererrorloss_wrapper
assert n>0 and isinstance(n,int),’n must be positive integer!’
assert N>0 and isinstance(N,int),’N must be positive integer!’
m,N_=0,N
while N_>1: # check if N is power of 2

N_old=N_
N_=N_//2
assert N_*2==N_old,’N must be power of two!’
m=m+1

while ((n//2)*2==n) and (N>1): # reduce n/N
n=n//2
N=N//2

return powererrorloss
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