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Abstract
The universal approximation property of various machine learning models is currently only
understood on a case-by-case basis, limiting the rapid development of new theoretically jus-
tified neural network architectures and blurring our understanding of our current models’
potential. This paper works towards overcoming these challenges by presenting a charac-
terization, a representation, a construction method, and an existence result, each of which
applies to any universal approximator on most function spaces of practical interest. Our
characterization result is used to describe which activation functions allow the feed-forward
architecture to maintain its universal approximation capabilities when multiple constraints
are imposed on its final layers and its remaining layers are only sparsely connected. These
include a rescaled and shifted Leaky ReLU activation function but not the ReLU activation
function. Our construction and representation result is used to exhibit a simple modifica-
tion of the feed-forward architecture, which can approximate any continuous function with
non-pathological growth, uniformly on the entire Euclidean input space. This improves the
known capabilities of the feed-forward architecture.
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1 Introduction

Neural networks have their organic origins in [1] and in [2], wherein the authors pioneered
a method for emulating the behavior of the human brain using digital computing. Their
mathematical roots are traced back to Hilbert’s 13th problem, which postulated that all high-
dimensional continuous functions are a combination of univariate continuous functions.
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Arguably the second major wave of innovation in the theory of neural networks hap-
pened following the universal approximation theorems of [3, 4], and of [5], which merged
these two seemingly unrelated problems by demonstrating that the feed-forward architecture
is capable of approximating any continuous function between any two Euclidean spaces,
uniformly on compacts. This series of papers initiated the theoretical justification of the
empirically observed performance of neural networks, which had up until that point only
been justified by analogy with the Kolmogorov-Arnold Representation Theorem of [6].

Since then the universal approximation capabilities, of a limited number of neural net-
work architectures, such as the feed-forward, residual, and convolutional neural networks
has been solidified as a cornerstone of their approximation success. This, coupled with the
numerous hardware advances have led neural networks to find ubiquitous use in a number
of areas, ranging from biology, see [7, 8], to computer vision and imaging, see [9, 10], and
to mathematical finance, see [11–15]. As a result, a variety of neural network architectures
have emerged with the common thread between them being that they describe an algorith-
mically generated set of complicated functions built by combining elementary functions in
some manner.

However, the case-by-case basis for which the universal approximation property is
currently understood limits the rapid development of new theoretically justified archi-
tectures. This paper works at overcoming this challenges by directly studying universal
approximation property itself in the form of far-reaching characterizations, representations,
construction methods, and existence results applicable to most situations encounterable in
practice.

The paper’s contributions are organized as follows. Section 2 overviews the analytic,
topological, and learning-theoretic background required in formulating the paper’s results.

Section 3 contains the paper’s main results. These include a characterization, a repre-
sentation result, a construction theorem, and existence result applicable to any universal
approximator in most function spaces of practical interest. The characterization result shows
that an architecture has the UAP on a function space if and only if that architecture implicitly
decomposes the function space into a collection of separable Banach subspaces, whereon
the architecture contains the orbit of a topologically transitive dynamical system. Next, the
representation result shows that any universal approximator can always be approximately
realized as a transformation of the feed-forward architecture. This result reduces the prob-
lem of constructing new universal architectures for identifying the correct transformation of
the feed-forward architecture for the given learning task. The construction result gives con-
ditions on a set of transformations of the feed-forward architecture, guaranteeing that the
resultant is a universal approximator on the target function space. Lastly, we obtain a gen-
eral existence and representation result for universal approximators generated by a small
number of functions applicable to many function spaces.

Section 4 then focuses the main theoretical results to the feed-forward architecture. Our
characterization result is used to exhibit the dynamical system representation on the space
of continuous functions by composing any function with an additional deep feed-forward
layer whose activation function is continuous, injective, and has no fixed points. Using this
representation, we show that the set of all such deep feed-forward networks constructed
through this dynamical system maintain its universal approximation property even when
constraints are imposed on the network’s final layers or when sparsity is imposed on the
network’s connections’ initial layers. In particular, we show that feed-forward networks with
ReLU activation function fail these requirements, but a simple affine transformation of the
Leaky-ReLU activation function is of this type. We provide a simple and explicit method
for modifying most commonly used activation functions into this form. We also show that
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the conditions on the activation function are sharp for this dynamical system representation
to have the desired topological transitivity properties.

As an application of our construction and representation results, we build a modification
of the feed-forward architecture which can uniformly approximate a large class of contin-
uous functions which need not vanish at infinity. This architecture approximates uniformly
on the entire input space and not only on compact subsets thereof. This refines the known
guarantees for feed-forward networks (see [16, 17]) which only guarantee uniform approxi-
mation on compacts subsets of the input space, and consequentially, for functions vanishing
at infinity. As a final application of the results, the existence theorem is then used to pro-
vide a representation of a small universal approximator on L∞(R), which provides the first
concrete step towards obtaining a tractable universal approximator thereon.

2 Background and preliminaries

This section overviews the analytic, topological, and learning-theoretic background used to
in this paper.

2.1 Metric spaces

Typically, two points x, y ∈ R
m are thought of as being near to one another if y belongs

to the open ball with radius δ > 0 centered about x defined by BallRm(x, δ) {z ∈ R
m :

x − z < δ}, where (x, z) x − z denotes the Euclidean distance function. The
analogue can be said if we replace R

m by a set X on which there is a distance function
dX : X × X → [0, ∞) quantifying the closeness of any two members of X. Many familiar
properties of the Euclidean distance function are axiomatically required of dX in order to
maintain many of the useful analytic properties of Rm; namely, dX is required to satisfy the
triangle inequality, symmetry in its arguments, and it vanishes precisely when its arguments
are identical. As before, two points x, y ∈ X are thought of as being close if they belong
to the same open ball, BallX(x, δ) {z ∈ X : dX(x, z) < δ} where δ > 0. Together, the
pair (X, dX) is called a metric space, and this simple structure can be used to describe many
familiar constructions prevalent throughout learning theory. We follow the convention of
only denoting (X, dX) by X whenever the context is clear.

Example 1 (Spaces of Continuous Functions) For instance, the universal approximation
theorems of [16–19] describe conditions under which any continuous function from R

m

to R
n can be approximated by a feed-forward neural network. The distance function used

to formulate their approximation results is defined on any two continuous functions f, g :
R

m → R
n via

ducc(f, g)

∞

k=1

supx∈[−k,k]m f (x) − g(x)

2k 1 + supx∈[−k,k]m f (x) − g(x)
.

In this way, the set of continuous functions from R
m to R

n by C(Rm,Rn) is made into a
metric space when paired with ducc. In what follows, we make the convention of denoting
C(X,R) by C(X).

Example 2 (Space of Integrable Functions) Not all functions encountered in practice
are continuous, and the approximation of discontinuous functions by deep feed-forward
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networks is studied in [20, 21] for functions belonging to the space L
p
μ(Rm,Rn). Briefly,

elements of L
p
μ(Rm,Rn) are equivalence classes of Borel measurable f : R

m → R
n,

identified up to μ-null sets, for which the norm

f p,μ
x∈Rm

f (x) pdμ(x)

1
p

is finite; here μ is a fixed Borel measure on R
m and 1 ≤ p < ∞. We follow the convention

of denoting L
p
μ(Rm,R) by Lp(Rm) when μ is the Lebesgue measure on R

m.

Unlike C(Rm,Rn), the distance function on L
p
μ(Rm,Rn) is induced through a norm via

(f, g) f − g p,μ. Spaces of this type simultaneously carry compatible metric and
vector spaces structures. Moreover, in such a space, if every sequence converges whenever
its pairwise distances asymptotically tend to zero, then the space is called a Banach space.
The prototypical Banach space is Rm.

Unlike Banach spaces or the space of Example 1, general metric spaces are non-linear.
That is, there is no meaningful notion of addition, scaling, and there is no singular ref-
erence point analogous to the 0 vector. Examples of non-linear metric spaces arising in
machine learning are shape spaces used in neuroimaging applications (see [22]), graphs and
trees arising in structured and hierarchical learning (see [23, 24]), and spaces of probability
measures appearing in adversarial approaches to learning (see [25]).

The lack of a reference point may always be overcome by artificially declaring a fixed
element of X, denoted by 0X , to be the central point of reference in X. In this case, the
triple (X, dX, 0X), is called a pointed metric space. We follow the convention of denoting
the triple by X, whenever the context is clear. For pointed metric spaces X and Y , the
class of functions f : X → Y satisfying f (0X) = 0Y and f (x1) − f (x2) L x1 −
x2 , for some L > 0 and every x1, x2 ∈ X, is denoted by Lip0(X, Y ) and this class is
understood as mapping the structure of X into Y without too large of a distortion. In the
extreme case where an f ∈ Lip0(X, Y ) perfectly respects the structure of X, i.e. : when
f (x1) − f (x2) x1 − x2 , we call f a pointed isometry. In this case, f (X) represents

an exact copy of X within Y .
The remaining non-linear aspects of a general metric space pose no significant challenge

and this is due to the following linearization feature map of [26]. Since its inception, the
following method has found notable applications in clustering [27] and in optimal transport
[28]. In particular, the later connects this linearization procedure with optimal transport
approaches to adversarial learning of [29, 30].

Example 3 (Free-Space over X) We follow the formulation described in [28]. Let X be a
metric space and for any x ∈ X, let δx be the (Borel) probability measure assigning value 1
to any BallX ⊆ X if x ∈ BallX and 0 otherwise.

The Free-space over X is the Banach space B(X) obtained by completing the vec-

tor space N
n=1 αnδxn : an ∈ R, xn ∈ X, n = 1, . . . , N, N ∈ N+ with respect to the

following
n

i=1

αixi

B(X)

sup
f 1; f ∈Lip0(X,R)

n

i=1

αif (xi). (1)

As shown in [31, Proposition 2.1], the map δX : x → δx is a (non-linear) isometry from X to
B(X). As shown in [32], the pair (B(X), δX) is characterized by the following linearization
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property: whenever f ∈ Lip0(X, Y ) and Y is a Banach space then there exists a unique
continuous linear map satisfying

f = F ◦ δX . (2)

Thus, δX : X → B(X) can be interpreted as a minimal isometric linearizing feature map.

Sometimes the feature map δX can be continuously inverted from the left. In [31] any
continuous map ρ : B(X) → X is called a barycenter if it satisfies ρ ◦ δX = 1X , where 1X

is the identity on X.
Following [31], if a barycenter exists then X is called barcycentric. Examples of

barycentric spaces are Banach spaces [33], Cartan-Hadamard manifolds described (see
[34, Corollary 6.9.1]), and other structures described in [35]. Accordingly, many function
spaces of potential interest contain a dense barycentric subspace. When the context is clear,
we follow the convention of denoting δX simply by δ.

2.2 Topological Background

Rather than using open balls to quantify closeness, it is often more convenient to work with
open subsets of X; where U ⊆ X is said to be open whenever every point x ∈ U belongs
to some open ball BX(x, δ) contained in U . This is because open sets have many desirable
properties; for example, a convergent sequence contained in the complement of an open set
must also have its limit in that open set’s complement. Thus, the complement of open sets
are often called closed sets since their limits cannot escape them.

Unfortunately, many familiar situations arising in approximation theory cannot be
described by a distance function. For example, there is no distance function describing the
point-wise convergence of a sequence of functions {fn}n∈N on R

m to any other such func-
tion f (for details [36, page 362]). In these cases, it is more convenient to work directly
with topologies. A topology τ is a collection of subsets of a given set X whose members are
declared as being open if τ satisfies certain algebraic conditions emulating the basic prop-
erties of the typical open subsets of Rm (see [37, Chapter 2]). Explicitly, we require that τ

contain the empty set ∅ as well as the entire space X, we require that the arbitrary union
of subsets of X belonging to τ also belongs to τ , and we require that finite intersections of
subsets of X belonging to τ also be a member of τ . A topological space is a pair of a set X

and a topology τ thereon. We follow the convention of denoting topological spaces with the
same symbol as their underlying set.

Most universal approximation theorems [4, 16, 17] guarantee that a particular subset of
C(Rm,Rn) is dense therein. In general, A ⊆ X is dense if the smallest closed subset of X

containing A is X itself. Topological spaces containing a dense subset which can be put in a
1-1 correspondence with the natural numbers N is called a separable space. Many familiar
spaces are separable, such as C(Rm) and R

m.
A function f : Rm → R

n is thought of as continuously depending on its inputs if small
variations in its inputs can only produce small variations in its outputs; that is, for any x ∈
R

m 0 there exists some δ > 0 such that f −1 [BallRn ] ⊆ BallRm(x, δ). It can
be shown, see [37], that this condition is equivalent to requiring that the pre-image f −1[U ]
of any open subset U of Rn is open in R

m. This reformulation means that open sets are
preserved under the inverse-image of continuous functions, and it lends itself more readily
to abstraction. Thus, a function f : X → Y between arbitrary topological spaces X and Y is
continuous if f −1[U ] is open in X whenever U is open in Y . If f is a continuous bijection
and its inverse function f −1 : Y → X is continuous, then f is called a homeomorphism
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and X and Y are thought of as being topologically identical. If f is a homeomorphism onto
its image, f is an embedding.

We illustrate the use of homeomorphisms with a learning theoretic example. Many learn-
ing problems encountered empirically benefit from feature maps modifying the input a of
learning model; for example, this is often the case with kernel methods (see [38–40]), in
reservoir computing (see [41, 42]), and in geometric deep learning (see [23, 43]). Recently,
in [44], it was shown that, a feature map φ : X → R

m is continuous and injective if and
only if the set of all functions f ◦φ ∈ C(X), where f ∈ C(Rm) is a deep feed-forward net-
work with ReLU activation, is dense in C(X). A key factor in this characterization is that
the map Φ : C(Rm) → C(X), given by f → f ◦φ, is an embedding if φ is continuous and
injective.

The above example suggests that our study of an architecture’s approximation capa-
bilities is valid on any topological space which can be mapped homeomorphically onto
a well-behaved topological space. For us, a space will be well-behaved if it belongs to
the broad class of Fréchet spaces. Briefly, these spaces have compatible topological space
and vector space structures, meaning that the basic vector space operations such as addi-
tion, inversion, and scalar multiplication are continuous; furthermore, their topology is
induced by a complete distance function which is invariant under translation and satisfies
an additional technical condition described in [45, Section 3.7]. The class of Fréchet spaces
encompass all Hilbert and Banach spaces and they share many familiar properties with R

m.
Relevant examples of a Fréchet space are C(Rm,Rn), the free-space B(X) over any pointed
metric space, and L1

μ(Rm,Rn).

2.3 Universal approximation background

In the machine learning literature, universal approximation refers to a model class’ ability
to generically approximate any member of a large topological space whose elements are
functions, or more rigorously, equivalence classes of functions. Accordingly, in this paper,
we focus on a class of topological spaces which we call function spaces. In this paper, a
function space X is a topological space whose elements are equivalence classes of functions
between two sets X and Y . For example, when X = R = Y then X may be C(R) or Lp(R).
We refer to X as a function space between X and Y and we omit the dependence to X and
Y if it is clear from the context.

The elements in X are called functions, whereas functions between sets are referred to
as set-functions. By a partial function f : X → Y we mean a binary relation between the
sets X and Y which attributes at-most one output in Y to each input in X.

Notational Conventions The following notational conventions are maintained throughout
this paper. Only non-empty outputs of any partial function f are specified. We denote the
set of positive integers by N

+. We set N N
+ ∪ {0}. For any n ∈ N

+, the n-fold Cartesian
product of a set A with itself is denoted by An. For n ∈ N, we denote the n-fold composition
of a function φ : X → X with itself by φn and the 0-fold composition φ0 is defined to be
the identity map on X.

Definition 1 (Architecture) Let X be a function space. An architecture on X is a pair
(F , ) of a set of set-functions F between (possibly different) sets and a partial function

: J∈N F J → X , satisfying the following non-triviality condition: there exists some
f ∈ X , J ∈ N

+, and f1, . . . , fJ ∈ F satisfying

f = (fj )
J
j=1 ∈ X . (3)
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The set of all functions f in X for which there is some J ∈ N
+ and some f1, . . . , fJ ∈ F

satisfying the representation (3) is denoted by NN (F , ).

Many familiar structures in machine learning, such as convolutional neural networks,
trees, radial basis functions, or various other structures can be formulated as architectures.
To fix notation and to illustrate the scope of our results we express some familiar machine
learning models in the language of Definition 1.

Example 4 (Deep Feed-Forward Networks) Fix a continuous function σ :
R → R, denote component-wise composition by •, and let Aff(Rd ,RD) be
the set of affine functions from R

d to R
D . Let X = C(Rm,Rn), F

d1,d2,d3∈N (W2,W1) : W1 ∈ Aff(Rdi ,Rdi+1), i = 1, 2 , and set

((Wj,2, Wj,1)
J
j=1) W2,J ◦ σ • W1,J ◦ · · · ◦ W2,1 ◦ σ • W1,1 (4)

whenever the right-hand side of (4) is well-defined. Since the composition of two affine
functions is again affine then NN (F , ) is the set of deep feed-forward networks from R

m

to R
n with activation function σ .

Remark 1 The construction of Example 4 parallels the formulation given in [46, 47]. How-
ever, in [47] elements of F are referred to as neural networks and functions in NN (F , )

are called their realizations.

Example 5 (Trees) Let X = L1(R), F {(a, b, c) : a ∈ R, b, c ∈ R, b ≤ c}, and let
((aj , bj , cj )

J
j=1)

J
j=1 aj I(bj ,cj ). Then, NN (F , ) is the set of trees in L1(R).

We are interested in architectures which can generically approximate any function on
their associated function space. Paraphrasing [48, page 67], any such architecture is called
a universal approximator.

Definition 2 (The Universal Approximation Property) An architecture (F , ) is said to
have the universal approximation property (UAP) if NN (F , ) is dense in X .

3 Main Results

Our first result provides a correspondence between the apriori algebraic structure of uni-
versal approximators on X and decompositions of X into subspaces on which NN (F , )

contains the orbit of a topologically generic dynamical system, which are a priori of a topo-
logical nature. The interchangeability of algebraic and geometric structures is a common
theme, notable examples include [49–52].

Theorem 1 (Characterization: Dynamical Systems Structure of Universal Approximators)
Let X be a function space which is homeomorphic to an infinite-dimensional Fréchet space
and let (F , ) be an architecture on X . Then, the following are equivalent:

(i) (F , ) is a universal approximator,
(ii) There exist subspaces {Xi}i∈I of X , continuous functions {φi}i∈I with φi : Xi → Xi ,

and {gi}i∈I ⊆ NN (F , ) such that:

(a) i∈I Xi is dense in X ,
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(b) For each i ∈ I and every pair of non-empty open U,V ⊆ Xi , there is some
Ni,U,V ∈ N satisfying

φNi,U,V (U) ∩ (V ) = ∅,

(c) For every i ∈ I , gi ∈ Xi and {φn
i (gi)}n∈N is a dense subset of NN (F , ) ∩ Xi ,

(d) For each i ∈ I , Xi is homeomorphic to C(R).

In particular, φn
i (gi) : i ∈ I, n ∈ N is dense in NN (F , ).

Theorem 1 describes the structure of universal approximators, however, it does not
describe an explicit means of constructing them. Nevertheless, Theorem 1 (ii.a) and (ii.d)
suggest that universal approximators on most function spaces can be built by combining
multiple, non-trivial, transformations of universal approximators on C(Rm,Rn).

This is type of transformation approach to architecture construction is common in geo-
metric deep learning, whereby non-Euclidean data is mapped to the input of familiar
architectures defined between R

d and R
D using specific feature maps and that model’s out-

puts are then return to the manifold by inverting the feature map. Examples include the
hyperbolic feed-forward architecture of [24], and the shape space regressors of [53], and
the matrix-valued regressors of [54, 55], amongst others. This transformation procedure is
a particular instance of the following general construction method, which extends [44].

Theorem 2 (Construction: Universal Approximators by Transformation) Let n, m, ∈ N
+,

X be a function space, (F , ) be a universal approximator on C(Rm,Rn), and { i}i∈I

be a non-empty set of continuous functions from C(Rm,Rn) to X satisfying the following
condition:

i∈I

Φi C(Rm,Rn) is dense in X . (5)

Then (FΦ, Φ) has the UAP on X , where FΦ F × I and Φ {fj , ij }Jj=1

ΦIJ
(fj )

J
j=1 .

The alternative approach to architecture development, subscribed to by authors such as
[56–59], specifies the elementary functions F and the rule for combining them. Thus, this
method explicitly specifies F and implicitly specifies . These competing approaches are
in-fact equivalent since every universal approximator an approximately a transformation of
the feed-forward architecture on C(R).

Theorem 3 (Representation: Universal Approximators are Transformed Neural Networks)
Let σ be a continuous, non-polynomial activation function, and let (F0, 0) denote the
architecture of Example 4. Let X be a function space which is homeomorphic to an infinite-
dimensional Fréchet. If (F , ) has the UAP on X then, there exists a family { i}i∈I of
embeddings i : C(R) → X such that for every 0, f ∈ NN (F , ) there exists some
i ∈ I , g ∈ NN (F0, 0), and f ∈ NN (F , ) satisfying

dX ( i(g )) and ducc g −1
i (f ) .

The previous two results describe the structure of universal approximators but they do
not imply the existence of such architectures. Indeed, the existence of a universal approxi-
mator on X can always be obtained by setting F = X and (f ) = f ; however, this is
uninteresting since F is large, is trivial, and NN (F , ) is intractable. Instead, the next
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result shows that, for a broad range of function spaces, there are universal approximators
for which F is a singleton, and the structure of is parameterized by any prespecified
separable metric space. This description is possible by appealing to the free-space on X .

Theorem 4 (Existence: Small Universal Approximators) Let X be a separable pointed met-
ric space with at least two points, let X be a function space and a pointed metric space,
and let X0 be a dense barycentric sub-space of X . Then, there exists a non-empty set I with
pre-order ≤, {xi}i∈I ⊆ X − {0X} there exist triples {(Bi i , φi)}i∈I of linear subspaces
Bi of B(X0), bounded linear isomorphisms i : B(X) → Bi , and bounded linear maps
φi : B(X) → B(X) satisfying:

(i) B(X0) = i∈I Bi ,
(ii) For every i ≤ j , Bi ⊆ Bj ,

(iii) For every i ∈ I , n∈N+ i ◦ φn
i (xi) is dense in Bi with respect to its subspace

topology,
(iv) The architecture F = {xi}i∈I , and |FJ : (x1, . . . , xJ ) ρ ◦ i ◦ φJ

i ◦ δxj
,

whenever x1 = xj for each j ≤ J , is a universal approximator on X .

Furthermore, if X = X then the set I is a singleton and i is the identity on B(X0).

The rest of this paper is devoted to the concrete implications of these results in learning theory.

4 Applications

The dynamical systems described by Theorem 1 (ii) can, in general, be complicated. How-
ever, when (F , ) is the feed-forward architecture with certain specific activation functions
then these dynamical systems explicitly describe the addition of deep layers to a shallow
feed-forward network. We begin the next section by characterizing those activation function
before outlining their approximation properties.

4.1 Depth as a transitive dynamical system

The impact of different activation functions on the expressiveness of neural network archi-
tectures is an active research area. For example, [60] empirically studies the effect of
different activation function on expressiveness and in [61] a characterization of the activa-
tion functions for which shallow feed-forward networks are universal is also obtained. The
next result characterizes the activation functions which produce feed-forward networks with
the UAP even when no weight or bias is trained and the matrices {An}Nn=1 are sparse, and
the final layers of the network are slightly perturbed.

Fix an activation function σ : R → R. For every m × m matrix A and b ∈ R
m,

define the associated composition operator A,b : f → f ◦ σ • (A · +b), with termi-
nology rooted in [62]. The family of composition operators { A,b}A,b creates depth within
an architecture (F , ) by extending it to include any function of the form AN,bN

◦ · · · ◦
A1,b1 ((fj )

J
j=1) , for some m × m matrices {An}Nn=1, {bn} in R

m, and each fj ∈ F

for j = 1, . . . , J . In fact, many of the results only require the following smaller extension
of (F , ), denoted by (Fdeep;σ , deep;σ ), where Fdeep;σ F × N and where

deep;σ {(fj , nj )}Jj=1
NJ

Im,b ((fj )
J
j=1) ,
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and b is any fixed element of Rm with positive components and Im is the m × m identity
matrix.

Theorem 5 (Characterization of Transitivity in Deep Feed-Forward Networks) Let (F , )

be an architecture on C(Rm,Rn), σ be a continuous activation function, fix any b ∈ R
m

with strictly positive components. Then Im,b is a well-defined continuous linear map from
C(Rm,Rn) to itself and the following are equivalent:

(i) σ is injective and has no fixed-points,
(ii) Either σ(x) > x or σ(x) < x holds for every x ∈ R

(iii) For every g ∈ (F , ) and every δ > 0, there exists some g̃ ∈ C(Rm,Rn) with
ducc(g, g̃) < δ such that, for each f ∈ C(Rm,Rn) and each 0 there is a
N ∈ N satisfying

ducc
N

Im,b ( ˜
(iv) For each 0 and every f, g ∈ C(Rm,Rn) there is some NU,V ∈ N

+ such that

N

Im,b (g̃) : ducc(g̃, g) < δ ∩ f̃ : ducc( ˜ = ∅.

Remark 2 A characterization is given in Appendix B when A = Im, however, this less
technical formulation is sufficient for all our applications.

We call an activation function transitive if it satisfies any of the conditions (i)-(ii) in
Theorem 5.

Example 6 The ReLU activation function σ(x) = max{0, x} does not satisfy Theorem 5 (i).

Example 7 The following variant of the Leaky-ReLU activation of [63] does satisfy
Theorem 5 (i)

σ(x)
1.1x + .1 x ≥ 0

0.1x + .1 x < 0.

More generally, transitive activation functions also satisfying the conditions required by
the central results of [17, 61] can be build via the following.

Proposition 1 (Construction of Transitive Activation Functions) Let σ̃ : R → R be a
continuous and strictly increasing function satisfying σ̃ (0) = 0. Fix hyper-parameters 0 <

α1 < 1, 0 < α2 such that α2 = σ̃ (0) − 1, and define

σ(x)
σ̃ (x) + x + α2 : x ≥ 0

α1x + α2 : x < 0.

Then, σ is continuous, injective, has no fixed-points, is non-polynomial, and is continuously
differentiable with non-zero derivative on infinitely many points. In particular, σ satisfies
the requirements of Theorem 5.

Transitive activation functions allow one to automatically conclude that
(Fσ ;deep, σ ;deep) has the UAP on C(Rm,Rn) if (F , ) is only a universal approximator
on some non-empty open subset thereof.
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Corollary 1 (Local-to-Global UAP) Let X be a non-empty open subset of C(Rm,Rn) and
(F , ) be a universal approximator on X . If any of the conditions described by Lemma 3
(i)-(iii) hold, then (F , )[σ ; deep] is a universal approximator on C(Rm,Rn).

The function space affects which activation functions are transitive. Since most universal
approximation results hold in the space C(Rm,Rn) or on L

p
μ(Rm), for suitable μ and p, we

describe the integrable variant of transitive activation functions.

4.1.1 Integrable variants

Some notation is required when expressing the integrable variants of the Theorem 5 and its
consequences. Fix a σ -finite Borel measure μ on R

m. Unlike in the continuous case, the
operators A,b may not be well-defined or continuous from L1

μ(Rm) to itself. We require
the notion of a push-forward measure by a measurable function is required. If S : Rm → R

m

is Borel measurable and μ is a finite Borel measure on R
m, then its push-forward by S is the

measure denoted by S#μ and defined on Borel subsets B ⊆ R
m by S#μ(B) μ S−1[B] .

In particular, if μ is absolutely continuous with respect to the Lebesgue measure μM

on R
m, then as discussed in [64, Chapter 2.1], S#μ admits a Radon-Nikodym derivative

with respect to the Lebesgue measure on R
m. We denote this Radon-Nikodym derivative

by dS#μ
dμM

. A finite Borel measure μ on R
m is equivalent to the Lebesgue measure thereon,

denoted by μM if both μM and μ are absolutely continuous with one another.
Recall that, if a function is monotone on R, then it is differentiable outside a μM -null

set. We denote the μM -a.e. derivative of any such a function σ by σ . Lastly, we denote the
essential supremum of any f ∈ L1

μ(Rm) by f L∞ . The following Lemma is a rephrasing
of [64, Corollary 2.1.2, Example 2.17].

Lemma 1 Fix a σ -finite Borel measure μ on R
m equivalent to the Lebesgue measure, let

1 ≤ p < ∞, b ∈ R
m, A be an m × m matrix, and let σ : R → R be a Borel measurable.

Then, the composition operator A,b : L1(Rm;Rn) → L1(Rm;Rn) is well-defined and
continuous if and only if (σ • (A · +b))#μ is absolutely-continuous with respect to μ and

d(σ • (A · +b))#μ

dμM L∞
< ∞. (6)

In particular, when σ is monotone then Im,b is well-defined if and only if there exists some
M > 0 such that for every x ∈ R, M ≤ σ (x + b).

For g ∈ L1
μ(Rm,Rn) and δ > 0, we denote the set of all functions f ∈ L1

μ(Rm,Rn)

satisfying
x∈R f (x)−g(x) by BallL1

μ(Rm,Rn)(g, δ). A function is called Borel
bi-measurable if both the image and pre-images of Borel sets, under that map, are again
Borel sets.

Corollary 2 (Transitive Activation Functions (Integrable Variant)) Let μ be a σ -finite mea-
sure on R

m, let b ∈ R
m with bi > 0 for i = 1, . . . , m, and suppose that σ is injective,

Borel bi-measurable, that σ(x) > x except on a Borel set of μ-measure 0, and assume that
condition (6) holds. If (F , ) has the UAP on Ball(g, δ) for some f ∈ L1

μ(Rm) and some

δ > 0 then, for every f ∈ L1
μ(Rm) and every 0 there exists some f ∈ NN (F , ) and

N ∈ N such that

x∈Rm

f (x) − N

Im,b (f (x)) .
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We call activation functions satisfying the conditions of Corollary 2 L
p
μ-transitive. The

following is a sufficiency condition analogous to the characterization of Proposition 1.

Corollary 3 (Construction of Transitive Activation Functions (Integrable Variant)) Let μ

be a finite Borel measure on R
m which is equivalent to μM . Let σ̃ : [0, ∞) → [0, ∞) be a

surjective continuous and strictly increasing function satisfying σ̃ (0) = 0, let 0 < α1 < 1.
Define the activation function

σ(x)
σ̃ (x) + x : x ≥ 0

αx : x < 0.

Then σ is Borel bi-measurable, σ(x) > x outside a μM -null-set, it is non-polynomial, and
it is continuously differentiable with non-zero derivative for every x < 0.

Different function spaces can have different transitive activation functions. By shifting
the Leaky-ReLU variant of Example 7 we obtain an Lp-transitive activation function which
fails to be transitive.

Example 8 (Rescaled Leaky-ReLU is Lp-Transitive) The following variant of the Leaky-
ReLU activation function

σ(x)
1.1x x ≥ 0

0.1x x < 0,

is a continuous bijection on R with continuous inverse and therefore it is injective and bi-
measurable. Since 0 is its only fixed point, then the set {σ(x) > x} = {0} is of Lebesgue
measure 0, and thus of μ measure 0 since μ and μM are equivalent. Hence, σ is injective,
Borel bi-measurable, that σ(x) > x except on a Borel set of μ-measure 0, as required in (2).
However, since 0 is a fixed point of σ then it does not meet the requirements of Theorem 5
(i).

Our main interest with transitive activation functions is that they allow for refinements
of classical universal approximation theorems, where a network’s last few layers satisfy
constraints. This is interesting since constraints are common in most practical citations.

4.2 Deep networks with constrained final layers

The requirement that the final few layers of a neural network to resemble the given function
f̂ is in effect a constraint on the network’s output possibilities. The next result shows that,
if a transitive activation function is used, then a deep feed-forward network’s output layers
may always be forced to approximately behave like f̂ while maintaining that architecture’s
universal approximation property. Moreover, the result holds even when the network’s initial
layers are sparsely connected and have breadth less than the requirements of [17, 19]. Note
that, the network’s final layers must be fully connected and are still required to satisfy the
width constraints of [17]. For a matrix A (resp. vector b) the quantity A 0 (resp. b 0)
denotes the number of non-zero entries in A (resp. b).

Corollary 4 (Feed-Forward Networks with Approximately Prescribed Output Behavior)
Let f̂ : Rm → R

n, 0, and let σ be a transitive activation function which is non-affine
continuous and differentiable at-least at one point with non-zero derivative at that point. If
there exists a continuous function f̃0 : Rm → R

n such that

ducc(f0, f̃0) < δ, (7)
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then there exists f ∈ NN (F , ), J, J1, J2 ∈ N
+, 0 ≤ J1 < J , and sets of composable

affine maps {Wj }Jj=1, {W̃j }J2
j=1 such that f = WJ ◦σ •· · ·◦σ •W1 and the following hold:

(i) ducc f̂ , WJ ◦ σ • · · · ◦ σ • WJ1 < δ,

(ii) ducc f, f ,
(iii) maxj=1,...,J1 AWj 0 ≤ m,
(iv) Wj : R

dj → R
dj+1 is such that dj ≤ m + n + 2 if J1 < j ≤ J and dj = m if

0 ≤ j ≤ J1.

If J1 = 0 we make the convention that WJ1 ◦ σ • · · · ◦ σ • W1(x) = x.

Remark 3 Condition 7, for any δ > 0, whenever f0 is continuous.

We consider an application of Corollary 4 to deep transfer learning. As described in
[65], deep transfer learning is the practice of transferring knowledge from a pre-trained
model into a neural network architecture which is to be trained on a, possibly new, learning
task. Various formalizations of this paradigm are described in [66] and the next example
illustrates the commonly used approach, as outlined in [67], where one first learns a feed-
forward network f̂ : Rm → R

n and then uses this map to initialize the final portion of a
deep feed-forward network. Here, given a neural network f̂ , typically trained on a different
learning task, we seek to find a deep feed-forward network whose final layers are arbitrarily
close to f̂ while simultaneously providing an arbitrarily precise approximation to a new
learning task.

Example 9 (Feed-Forward Networks with Pre-Trained Final Layers are Universal) Fix a
continuous activation function σ , let N > 0 be given, let (F , ) as in Example 4, let K

be a non-empty compact subset of Rm, and let f̂ ∈ NN (F , ). Corollary 4 guarantees that
there is a deep feed-forward neural network f = WJ ◦ σ • · · · ◦ σ • W1 satisfying

(i) supx∈K f̂ (x) − WJ ◦ σ • · · · ◦ σ • WJ1(x) < N−1,

(ii) supx∈K f (x) − f (x) < N−1,
(iii) maxj=1,...,J1 AWj 0 ≤ m,
(iv) Wj : R

dj → R
dj+1 is such that dj ≤ m + n + 2 if J1 < j ≤ J and dj = m if

0 ≤ j ≤ J1.

The structure imposed on the architecture’s final layers can also be imposed by a set
of constraints. The next result shows that, for a feed-forward network with a transitive
activation function, the architecture’s output can always be made to satisfy a finite num-
ber of compatible constraints. These constraints are described by a finite set of continuous
functionals {Fn}Nn=1 on C(Rm,Rn) together with a set of thresholds {Cn}Nn=1, where each
Cn > 0.

Corollary 5 (Feed-Forward Networks with Constrained Final Layers are Universal) Let
σ be a transitive activation function which is non-affine continuous and differentiable at-
least at one point with non-zero derivative at that point, let (F , ) denote the feed-forward
architecture of Example 4, {Fn}Nn=1 be a set of continuous functions from C(Rm,Rn) to
[0, ∞), and {Cn}Nn=1 be a set of positive real numbers. If there exists some f0 ∈ C(Rm,Rn)
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such that for each n = 1, . . . , N the following holds

Fn(f0) < Cn, (8)

then for every f ∈ C(Rm,Rn) and every 0, there exist f1 , f2 ∈ NN (F , ),
diagonal m × m-matrices {Aj }Jj=1 and b1, . . . , bJ ∈ R

m satisfying:

(i) f2 ◦ f1 is well-defined,
(ii) ducc f, f2 ◦ f1 ,

(iii) f2 ∈ N
n=1 F−1

n [[0, Cn)],
(iv) f1 (x) = σ • (An · +bn) ◦ · · · ◦ σ • (A1x + b1).

Next, we show that transitive activation functions can be used to extend the currently-
available approximation rates for shallow feed-forward networks to their deep counterparts.

4.3 Approximation bounds for networks with transitive activation function

In [68, 69], it is shown that the set of feed-forward neural networks of breadth N ∈ N
+, can

approximate any function lying in their closed convex hull of at a rate of O(N
−1
2 ). These

results do not incorporate the impact of depth into its estimates and the next result builds
on them by incorporating that effect. As in [69], the convex-hull of a subset A ⊆ L1

μ(Rm)

is the set co (A)A
n
i=1 αifi : fi ∈ A, αi ∈ [0, 1], n

i=1 αi = 1 and the interior of
co (A) A, denoted int(co (A)A), is the largest open subset thereof.

Corollary 6 (Approximation-Bounds for Deep Networks) Let μ be a finite Borel measure
on R

m which is equivalent to the Lebesgue measure, F ⊆ L1
μ(Rm) for which int(co (A)F )

is non-empty and co (A)F ∩ int(co (A)F ) is dense therein. If σ is a continuous non-
polynomial L1-transitive activation function, b ∈ R

m have positive entries, and that (6) is
satisfied, then the following hold:

1. For each f ∈ L1
μ(Rm) and every n ∈ N, there is some N ∈ N such that the following

bound holds

inf
fi∈F , n

i=1 αi=1, αi∈[0,1] x∈Rm

n

i=1

αi
N
Im,b (fi ) (x)−f (x) dμ(x)≤

d(σ•(·+b))#μ
dμM

N
2

∞√
n

1+ 2μ(Rm) . ,

2. There exists some κ > 1 such that d(σ•(·+b)#μ
dμM ∞ > κN . In particular,

lim
N→∞

d(σ•(·+b))#μ
dμM

N
p

∞ = ∞,

3. n
i=1 αi

N
Im,b(fi) : N, n ∈ N, fi ∈ F , αi ∈ [0, 1], n

i=1 αi = 1 is dense in

L1
μ(Rm).

Remark 4 Unlike in [69], Corollary 6(i) holds even when the function f does not lie in the
closure of co (A)F . This is entirely due to the topological transitivity of the composition
operator Im,b and is therefore entirely due to the depth present in the network. In particular,
Corollary 6 (iii) implies that universal approximation can be achieved even if a feed-forward
networks’ output weights are all constrained to satisfy n

i=1 αi = 1 and αi = [0, 1] and
even if all but the architecture’s final two layers are sparsely connected and not trainable.
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To date, we have focused on the application and interpretation of Theorem 1. Next,
Theorem 3 is used to modify and improve the approximation capabilities of universal
approximators on C(R).

4.4 Improving the approximation capabilities of an architecture

Most currently available universal approximation results for spaces of continuous functions,
provide approximation guarantees for the topology of uniform convergence on compacts.
Unfortunately, this is a very local form of approximation and there is no guarantee that the
approximation quality holds outside a prespecified bounded set. For example, the sequence

fn(x) e
− 1

1−(x−n)2 I|x−n|≤1 converges to the constant 0 function, uniformly on compacts
while maintaining the constant error supx∈R fn(x) − 0 1.

These approximation guarantees are strengthened by modifying any given universal
approximator on C(Rm,Rn) to obtain a universal approximator in a smaller space of
continuous functions for a much finer topology. We introduce this space as follows.

Let be a finite set of non-negative-valued, continuous functions ω from [0, ∞) to
[0, ∞) for which there is some ω0 ∈ satisfying ω0(·) = 1. Let C (Rm,Rn) be the set
of all continuous functions whose asymptotic growth-rate is controlled by some ω ∈ , in
the sense that, C (Rm,Rn) ω∈ Cω(Rm,Rn), where f ∈ Cω(Rm,Rn) if f ω,∞

f (x)
ω( x )+1 < ∞. Each Cω(Rm,Rn) is a special case of the weighted spaces studied in [70],
which are Banach spaces when equipped with the norm ω,∞. Accordingly, C (Rm,Rn)

is equipped with the finest topology making each Cω(Rm,Rn) into a subspace. Indeed, such
a topology exists by [71, Proposition 2.6].

Example 10 If = {max{t, t i}}i>0 then f ∈ C (Rm,Rn) if and only if f has asymptot-
ically sub-polynomial growth, in the sense that, there is a polynomial p : Rm → R

n with
lim

x

f (x)
( p(x) 1)

< ∞.

Given an architecture (F , ) on C(Rm,Rn), define its -modification to be the
architecture (F , ) on C (Rm,Rn) given by F F × × (0,∞)2 and where

fj , αj , ωj , bj , aj
J

j=1 ωJ ( 1) fe
− bJ

bJ
2 + aJ I <bJ

+ aJ e−|f(·)|( x bJ ) I bJ
,

f (fJ , . . . , f1)

Therefore, the functions in NN (F , ) are capable of adjusting to the different growth
rates of functions in C (Rm,Rn) into continuous functions of different growth rates;
whereas those in (F , ) need not be.

Theorem 6 ((F , ) is a Universal Approximator in C (Rm,Rn)) If (F , ) is a uni-
versal approximator on C(Rm,Rn) for which each f ∈ NN (F , ) satisfies the following
growth condition

sup
x∈Rm

f (x) e x < ∞, (9)

then (F , ) is a universal approximator on C (Rm,Rn).
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Remark 5 Condition (9) is satisfied by any set of piecewise linear functions. For instance,
NN (F , ) is comprised of piecewise linear functions if F is as in Example 4 and σ is the
ReLU activation function.

The architecture (F , ) often provides a strict improvement over (F , ).

Proposition 2 Let (F , ) be a universal approximator on C(Rm,Rn) such that each f ∈
NN (F , ) is either constant or supx∈Rm f (x) , and let {exp(−kt) : n ∈ N}.

Then (F , ) is not a universal approximator on C (Rm,Rn).

4.5 Representation of approximators on L ∞

There is currently no available universal approximation theorem describing a small archi-
tecture on L∞(Rm,Rn) with the UAP. Indeed, even trees are not dense therein since
the Lebesgue measures is σ -finite and not finite. A direct consequence of Theorem 4
is the guarantee that a minimal architecture on L∞(R) exists and admits the following
representation.

Corollary 7 (Existence and Representation of Minimal Universal Approximator on L∞(R))
There exists a non-empty set I with pre-order ≤, a subset {xi}i∈I ⊆ L1(R) − {0},
triples {(Bi i , φi)}i∈I of linear subspaces Bi of B(L∞), bounded linear isomorphisms

i : L1(R) → Bi , and bounded linear maps φi : L1(R) → L1(R) such that:

(i) B(L∞) = i∈I Bi ,
(ii) For every i ≤ j , Bi ⊆ Bj ,

(iii) For every i ∈ I , n∈N+ i ◦ φn
i (xi) is dense Bi for its subspace topology,

(iv) The architecture (F , ) defined by

F = {xi}i∈I , |FJ : (x1, . . . , xj ) ρ ◦ i ◦ φ
j
i ◦ η(xi) (10)

if x1 = xj , for each j ≤ J , has the UAP on L∞(R), where η : R → L1 and
ρ : B(L∞) → L∞ are respectively defined as the linear extensions of the maps

η(r)
I[0,r) : s > 0

−I[−r,0) : s < 0,
ρ

n

i=1

αiδfi

1

n

n

i=1

αifi .

The contributions of this article are now summarized.

5 Conclusion

In this paper, we studied the universal approximation property in a scope applicable to
most architectures on most function spaces of practical interest. Our results were used to
characterize, construct, and establish the existence of such structures both in many familiar
and exotic function spaces.

Our results were used to establish the universal approximation capabilities of deep and
narrow networks with constraints on their final layers and sparsely connected initial layers.
We derived approximation bounds for feed-forward networks with this activation function
in terms of depth and height. We showed that the set of activation functions for which these
results hold is broader when the underlying functions space is Lp(Rm) than if it is C(Rm),
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which showed that the choice of activation function depends on the underlying topologi-
cal criterion quantifying the UAP. We characterized the activation functions for which these
results hold as precisely being the set of injective, continuous, non-affine activation func-
tions which are differentiable at at-least one point with non-zero derivative at that point and
have no fixed points. We provided a simple direct way to construct these activation func-
tions. We showed that a rescaled and shifted Leaky-ReLU activation is an example of such
an activation function while the ReLU activation is not. We used our construction result
to build a universal approximator in the space of continuous functions between Euclidean
spaces, which have controlled growth, equipped with a uniform notion of convergence. This
result strengthens the currently available guarantees for feed-forward networks, which state
that this architecture is universal in C(Rm,Rn) for the weaker uniform convergence on com-
pacts topology. Finally, we obtained a representation of a small universal approximator on
L∞(Rm).

The results, structures, and methods introduced in this paper provide a flexible and
broad toolbox to the machine learning community to build, improve, and understand uni-
versal approximators. It is hoped that these tools will help others develop new, theoretically
justified architectures for their learning tasks.
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Appendix A: Proofs of Main Results

Theorem 1 is encompassed by the following broader but more technical result.

Lemma 2 (Characterization of the Universal Approximation Property) Let X be a function
space, E is an infinite-dimensional Fréchet space for which there exits some homeomor-
phism : X → E, and F , be an architecture on X . Then the following are
equivalent:

(i) UAP: F , has the UAP,
(ii) Decomposition of UAP via Subspaces: There exist subspaces {Xi}i∈I of X such that:

(a) i∈I Xi is dense in X ,
(b) For each i ∈ I , Xi ) is a separable infinite-dimensional Fréchet subspace

of E and NN (F , ) ∩ Xi contains a countable, dense, and linearly-

independent subset of Xi ),
(c) For each i ∈ I , there exists a homeomorphism i : Xi → L2(R).

(iii) Decomposition of UAP via Topologically Transitive Dynamics: There exist sub-
spaces {Xi}i∈I of X and continuous functions {φi}i∈I with φi : Xi → Xi such
that:
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(a) i∈I Xi is dense in X ,
(b) For every pair of non-empty open subsets U, V of X and every i ∈ I , there is

some Ni,U,V ∈ N such that φNi,U,V (U ∩ Xi ) ∩ (V ∩ Xi ) = ∅,
(c) For every i ∈ I , there is some gi ∈ NN (F , ) ∩ Xi such that {φn

i (gi)}n∈N is a

dense subset of NN (F , ) ∩ Xi , and in particular, it is a dense subset of Xi ,
(d) For each i ∈ I , Xi is homeomorphic to C(R).

(iv) Parameterization of UAP on Subspaces: There are triples {(Xi i , ψi)}i∈I of sep-
arable topological spaces Xi , non-constant continuous functions i : Xi → X , and
functions ψi : Xi → Xi satisfying the following:

(a) i∈I i (Xi) is dense in X ,
(b) For every i ∈ I and every pair of non-empty open subsets U, V of Xi , there is

some Ni,U,V ∈ N such that ψNi,U,V (U ∩ Xi) ∩ (V ∩ Xi) = ∅,
(c) For every i ∈ I , there is some xi ∈ NN (F , ) ∩ Xi such that { i ◦ ψn

i (xi)}n∈N
is a dense subset of NN (F , ) ∩ i (Xi), and in particular, it is a dense subset
of i (Xi).

Moreover, if X is separable, then I may be taken to be a singleton.

Proof of Lemma 2 Suppose that (ii) holds. Since i∈I Xi is dense in X and since

i∈I NN (F , ) ∩Xi ⊆ NN (F , ), then, it is sufficient to show that i∈I NN (F , ) ∩Xi

is dense in i∈I Xi to conclude that is is dense in X . Since each Xi is a subspace of X then,
by restriction, each Xi is a subspace of i∈I NN (F , ) ∩ Xi with its relative topology.

Let X̃ denote the set i∈I Xi equipped with the finest topology making each Xi into a
subspace, such a topology exists by [71, Proposition 2.6]. Since each Xi is also a subspace
of i∈I Xi with its relative topology and since, by definition, that topology is no finer than
the topology of X̃ then it is sufficient to show that i∈I NN (F , ) ∩ Xi is dense in X̃ to
conclude that it is dense in i∈I Xi equipped with its relative topology.

Indeed, by [71, Proposition 2.7] the space X̃ is given by the (topological) quotient of the
disjoint union i∈IXi , in the sense of topological spaces (see [71, Example 3, Section 2.4]),
under the equivalence relation fi ∼ fj if fi = fj in X . Denote the corresponding quotient
map by QX̃ . Since a subset U of the quotient topology is open (see [71, Example 2, Section
2.4]) if and only if Q−1

X̃ [U ] is an open subset of i∈IXi and since a subset V of i∈IXi is

open if and only if V ∩Xi is open for each i ∈ I in the topology of Xi then U ⊆ X̃ is open
if and only if Q−1

X̃ [U ] ∩Xi is open for each i ∈ I . Since {NN (F , ) ∩Xi}n∈N+ is dense in
Xi then for every open subset U ⊆ Xi

∅ = U ∩ NN (F , ) ∩ Xi ⊆ U ∩
i∈I

NN (F , ) ∩ Xi . (11)

In particular, (11) implies that for every open subset U ⊆ X̃

∅ = NN (F , ) ∩ Xi ∩ Q−1
X̃ [U ] ∩ Xi ⊆ U ∩

i∈I

NN (F , ) ∩ Xi . (12)

Therefore, i∈I NN (F , )∩Xi is dense in X̃ and therefore it is dense in i∈I Xi equipped
with its relative topology. Hence, F has the UAP and therefore (i) holds.

In the next portion of the proof, we denote the (linear algebraic) dimension of any vector
space V by dim(V ). Recall, that this is the cardinality of the smallest basis for V . We follow
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the Von Neumann convention and, whenever required by the context, we identify the natural
number n with the ordinal {1, . . . , n}.

Assume that (i) holds. For the first part of this proof, we would like to show that D

contains a linearly independent and dense subset D′. Since X is homeomorphic to some
infinite-dimensional Fréchet space E, then there exists a homeomorphism 
 : X → E

mapping NN (F , ) to a dense subset D of E. We denote the metric on E by d. A con-
sequence of [72, Theorem 3.1], discussed thereafter by the authors, implies that since E is
an infinite dimensional Fréchet space then it has a dense Hamel basis, which we denote by
{ba}a∈A. By definition of the Hamel basis of E we may assume that the cardinality of A,
denoted by Card(A), is equal to dim(E). Next, we use {ba}a∈A to produce a base of open
sets for the topology of E of cardinality equal to dim(E).

Since E is a metric space, then its topology is generated by the open sets
{BallE(ba, q)}a∈A,r∈(0,∞), where BallE(ba, r) {d(ba, x) < r} . Indeed, since Q is dense
in R, then for every a ∈ A and r ∈ (0, ∞) the basic open set BallE(ba, r) can be expressed
by BallE(ba, r) = q∈Q∩(0,r) BallE(ba, q). Hence, {BallE(ba, q)}a∈A,q∈Q∩(0,∞) generates
the topology on E. Moreover, the cardinality the indexing set A × Q is computed by

Card(A×Q∩(0, ∞))=max{Card(A), Card(Q)}=max{dim(E), Card(Q)} = dim(E),

since E is infinite and therefore at-least countable. Therefore, {BallE(ba, q)}a∈A,q∈Q∩(0,∞)

is a base for the topology on E of Cardinality equal to dim(E). Let ω be the smallest
ordinal with Card(ω) = dim(E) = Card(A × Q ∩ (0, ∞)). In particular, there exists a
bijection F : ω → A × Q ∩ (0, ∞) which allows us to canonically order the open sets
{BallE(F (j)1, F (j)2)}j≤ω, where for any j < ω we denote F(j)1 ∈ A and F(j)2 ∈
Q ∩ (0,∞).

We construct D′ by transfinite induction using ω. Indeed since 1 < ω, then since D is
dense in E and
{BallE(F (j)1, F (j)2)}j≤ω defines a base for the topology of E, then there exists some
U1 ∈ {BallE(F (j)1, F (j)2)}j≤ω containing some d1 ∈ D. For the inductive step,
suppose that for all i ≤ j for some j < ω, we have constructed a linearly inde-
pendent set {di}i<j with di ∈ {BallE(F (i)1, F (i)2)} for every i ≤ j . Since j <

ω and {di}i<j contains Card(j) and {di}i<j is a Hamel basis of span({xi}i<j ) then
dim span({xi}i<j ) < dim(E). Hence, span({xi}i<j ) has empty interior and therefore
it cannot contain any {BallE(F (j)1, F (j)2)}j≤ω. In particular, there is an open subset
V ′ ⊆ BallE(F (j)1, F (j)2)−span({xi}i<j ) and since D was assumed to be dense in E then
there must be some dj ∈ V ′ ⊆ BallE(F (j)1, F (j)2). This completes the inductive step and
therefore there is a linearly independent and dense subset D′ {dj }j≤ω contained in D of
cardinality Card(ω) = dim(E).

Next, let I be the set of all countable sequences of distinct elements in ω. For every i ∈ I ,
let Ei spanj∈i (dj ), where A denotes the closure of a subset A ⊆ E in the topology of
E. Then, each Ei is a linear subspace of E with countable basis {dj }j∈i . Since any Fréchet
space with countable basis is separable and therefore each Ei is a separable Fréchet space.
Moreover, by construction,

D′ ⊆
i∈I

Ei ⊆ E (13)

and therefore i∈I Ei is dense in E since D′ is dense in E. Since 
 is a homeomorphism
then 
−1 : E → X is a continuous surjection, and since the image of a dense set under any
continuous map is dense in the range of that map then 
−1(D′) is dense in X . Moreover,
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using the fact that inverse images commute with unions and the fact that that 
 is a bijection,
we compute that


−1(D′) ⊆ 
−1

i∈I

Ei =
i∈I


−1 [Ei] . (14)

Since 
 as a bijection and D was defined as the image of NN (F , ) in E under 
, then
D′ ⊂ NN (F , ) and D′ is dense in X . In particular, (14) implies that i∈I 
−1[Ei] ⊆

i∈I (NN (F , ) ∩ 
−1[Ei]) and therefore i∈I (NN (F , ) ∩ 
−1[Ei]) is dense in X . In
particular, i∈I 
−1[Ei] is dense in X , and for each i ∈ I , if we define Xi 
−1[Ei]
then we obtain (ii.a).

Since 
 is a homeomorphism then it preserves dense sets and in particular since {di}j∈i

is a countable, dense, and linearly independent subset of 
−1[{dj }j∈i] then it is a dense
countable subset of Xi . Hence, each Xi is separable.

This gives (ii.b). Lastly, by [73] any two separable infinite-dimensional Fréchet space
are homeomorphic. In particular, since L2(R) is a separable Hilbert space is a separable
Fréchet space. Therefore, for each i ∈ I , there is a homeomorphism 
i : Ei → L2(R).
In particular, 
i ◦ 
 : Xi → L2(R) must be a homeomorphism and therefore (ii.b) holds.
Therefore, (i) implies (ii).

Suppose that (ii) holds. Then, (iii.a) holds by (ii.a). For each i ∈ I , let {dn,i}n∈N be a
countable dense subset of Xi ∩NN (F , ) for which 
({dn,i}n∈N) is a linearly independent,
and let Ei = span({dn,i}n∈N). Let D i∈I {dn,i}n∈N and D′ 
(D). Thus, for every
i ∈ I , D′ ∩ Ei is a countably infinite linearly independent and dense subset of Ei then by
[74, Theorem 8.24] there exists a continuous linear operator Ti : D∩Ei → D∩Ei satisfying

T n
i (dn,i) = dn+1,i ,

for each n ∈ N and each i ∈ I . In particular, T n
i (d0,i ) is dense in Ei . For each i ∈ I ,

define φi 
−1 ◦ Ti ◦ 
 and gi 
−1(d0,i ) and observe that for every n ∈ N

φn
i (gi) = (
−1 ◦ Ti ◦ 
) ◦ · · · ◦ (
−1 ◦ Ti ◦ 
)

n−t imes

(
−1(di,0))

= 
−1 ◦ T n
i (d0,i ). (15)

Since {T n
i (d0,i )}n∈N is dense in Ei and 
 is a homeomorphism from Xi to Ei then


−1 {T n
i (d0,i )}n∈N = φn

i (gi) n∈N

is dense in Xi . Thus, (iii.c) holds. For any i ∈ I , define the map ψi : L2(R) → L2(R) by

ψi (
i ◦ 
)−1 ◦ φi ◦ (
i ◦ 
),

and define the vector g̃i ∈ L2(R) by g̃i 
i ◦
(gi). Since 
 and 
i are homeomorphisms
and since φi is continuous then ψi is well-defined and continuous. Moreover, analogously
to (15) we compute that ψn

i (g̃i) n∈N is dense in L2(R). Since L2(R) is a complete separa-
ble metric space with no isolated points and ψi is continuous self-map of L2(R) for which
there is a vector g̃i ∈ L2(R) such that the set of iterates {ψn

i (g̃i)}n∈N is dense in L2(R) then
Birkhoff Transitivity Theorem, see the formulation of [74, Theorem 1.16], implies that for
every pair of non-empty open subsets Ũ , Ṽ ⊆ L2(R) there is some n

Ũ,Ṽ
satisfying

φ
n

Ũ,Ṽ (Ũ ) ∩ Ṽ 
= ∅. (16)
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Since 
i ◦
 is a homeomorphism, then [74, Proposition 1.13] and (16) imply that for every
pair of non-empty open subsets U ′, V ′ ⊆ Xi there exists some nU ′,V ′ ∈ N satisfying

φnU ′,V ′ (U ′) ∩ V ′ 
= ∅. (17)

Since Xi is equipped with the subspace topology then every non-empty open subset
U ′ ⊆ Xi is of the form U ∩ Xi for some non-empty open subset U ⊆ X . Therefore,
(17) implies (iii.b). Since both L2(R) and C(R) are separable infinite-dimensional Fréchet
spaces then the [73, Anderson-Kadec Theorem] implies that there exists a homeomor-
phism � : L2(R) → C(R). Therefore, for each i ∈ I , � ◦ 
i ◦ 
 : X → C(R) is a
homeomorphism and thus (ii.c) implies (iii.d).

Suppose that (iii) holds. For every i ∈ I , set Xi Xi , let 
i 1Xi
be the identity map

on Xi , set ψi φi , and set xi gi . Therefore, (iv) holds.
Suppose that (iv) holds. By (iv.c), for each i ∈ I , NN (F , ) ∩ Xi is dense in Xi .

Therefore,

i∈I

Xi =
i∈I

NN (F , ) ∩ Xi ⊆
i∈I

NN (F , ) ∩ Xi ⊆ X . (18)

By (iv.a) since i∈I Xi is dense in X therefore its closure is X and therefore the smallest,
and thus only, closed set containing i∈I Xi is X itself. Therefore, by (18) the smallest set
containing i∈I NN (F , ) ∩ Xi must be X . Therefore, NN (F , ) is dense in X and (i)
holds. This concludes the proof.

Proof of Theorem 2 By the [73, Anderson-Kadec Theorem] there is no loss of general-
ity in assuming that m = n = 1, since C(Rm,Rn) and C(R) are homeomorphic. Let
X ′

i∈I 
i(C(R)). By (5), X ′ is dense in X and since density is transitive, then it is
enough to show that i∈I 
i(NN (F , )) is dense in X ′ to conclude that it is dense in X .
Since each 
i is continuous, then, the topology on X ′ is no finer than the finest topology
on i∈I 
i(C(R)) making each 
i continuous and by [71, Proposition 2.6] such a topol-
ogy exists. Let X ′′ denote i∈I 
i(C(R)) equipped with the finest topology making each

i(C(R)) into a subspace. By construction, if U ⊆ X ′ is open then it is open in X ′′ and
therefore if i∈I 
i(NN (F , )) intersects each non-empty open subset of X ′′ then it must
do the same for X ′. Hence, it is enough to show that i∈I 
i(NN (F , )) is dense in X ′′
to conclude that it is dense in X ′ and therefore, i∈I 
i(NN (F , )) is dense in X .

We proceed similarly to the proof of Lemma 2. Indeed, by [71, Proposition 2.7] the space
X ′′ is given by the (topological) quotient of the disjoint union �i∈I
i(C(R)), in the sense
of topological spaces (see [71, Example 3, Section 2.4]), under the equivalence relation
fi ∼ fj if fi = fj in X . Denote the corresponding quotient map by QX ′ . Since a subset U

of the quotient topology is open (see [71, Example 2, Section 2.4]) if and only if Q−1
X ′ [U ] is

an open subset of �i∈I
i(C(R)) and since a subset V of �i∈I
i(C(R)) is open if and only
if V ∩
i(C(R)) is open for each i ∈ I in the topology of 
i(C(R)) then U ⊆ X ′′ is open if
and only if Q−1

X ′ [U ]∩
i(C(R)) is open for each i ∈ I . Since {NN (F , )∩
i(C(R))}n∈N+
is dense in 
i(C(R)) then for every open subset U ′ ⊆ 
i(C(R))

∅ 
= U ′ ∩ NN (F , ) ∩ 
i(C(R)) ⊆ U ′ ∩
i∈I

NN (F , ) ∩ 
i(C(R)). (19)

In particular, (19) implies that for every open subset U ⊆ X ′′

∅ 
= NN (F , ) ∩ 
i(C(R)) ∩ Q−1
X ′ [U ] ∩ 
i(C(R)) ⊆ U ∩

i∈I

NN (F , ) ∩ 
i(C(R)).

(20)
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Therefore, i∈I NN (F , ) ∩ 
i(C(R)) is dense in X ′′ and therefore it is dense in

i∈I 
i(C(R)) equipped with its relative topology. Hence, (F
, 
) has the UAP on X ′′
and therefore it has the UAP on X itself.

Proof of Theorem 3 Let σ be a continuous and non-polynomial activation function. Then
[61] implies that the architecture F0, 0 , as defined in Example 4, is a universal
approximator on C(R).

By Theorem 1, since F , has the UAP on X and since X is homeomorphic to an
infinite-dimensional Fréchet space then there are homeomorphisms {
i}i∈I from C(R) onto
a family of subspaces {Xi}i∈I of X such that i∈I Xi is dense. Fix ε > 0 and f ∈ X .
Since i∈I Xi is dense in X there exists some i ∈ I and some fi ∈ Xi such that

dX (f, fi) <
ε

2
. (21)

Since 
i is a homeomorphism then it must map dense sets to dense sets. Since F0, 0
has the UAP on C(R) then NN (F0, 0) is dense in C(R) and therefore, for each i ∈ I ,

i(NN (F0, 0)) is dense in Xi . Hence, there exists some g̃ε ∈ 
i(NN (F0, 0)) such that
dX (fi, g̃ε) < ε

2 . Since 
i is a homeomorphism, it is a bijection, therefore there exists a

unique gε ∈ NN (F0, 0) with 
i(gε) = g̃ε . Hence, the triangle inequality and (21) imply
that

dX (f,
i(gε)) ≤ dX (f, fi) + dX (fi,
i(gε)) < ε. (22)

This yields the first inequality in the Theorem’s statement.
By Theorem 1 since, for each i ∈ I , NN (F , ) ∩ Xi is dense in Xi and since 
−1

i is a

homeomorphism on Xi then 
−1
i NN (F , ) ∩ Xi is dense in C(R). In particular, there

exits some f̃ε ∈ 
−1
i NN (F , ) ∩ Xi satisfying

ducc gε(x), f̃ε(x) < ε. (23)

Since 
i is a bijection then there exists a unique fε ∈ NN (F , ) such that 
−1
i (fε) = f̃ε .

Therefore, (23) and the triangle inequality imply that

ducc gε(x),
−1
i (fε)(x) < ε.

Therefore the conclusion holds.

Remark 6 By the [73, Anderson-Kadec Theorem], since both L2(R) and C(R) are separa-
ble infinite-dimensional Fréchet spaces then there exists a homeomorphism 
 : L2(R) →
C(R). Therefore, the proof of Corollary 3 holds (mutatis mutandis) with each 
 replaced
by 
i ◦ 
−1 and with C(R) in place of L2(R).

The proof of the next result relies on some aspects of inductive limits of Banach spaces.
Briefly, an inductive limit of Banach spaces is a locally convex space B for which there
exists a pre-ordered set I , a set of Banach sub-spaces {Bi}i∈I with Bi ⊆ Bj if i ≤ j . The
inductive limit of this direct system is the subset i∈I Bi equipped with the finest topology
which simultaneously makes each Bi into a subspace and makes i∈I Bi into a locally-
convex spaces. Spaces constructed in this way are called ultrabornological spaces and more
details about them can be found in [75, Chapter 6].
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Proof of Theorem 4 Since B(X0) and B(X) are both infinite-dimensional Banach spaces,
then they are infinite-dimensional ultrabornological space, in the sense of [75, Defini-
tion 6.1.1]. Since X is separable, then as observed in [33], B(X) is separable. Therefore,
[75, Theorem 6.5.8] applies; hence, there exists a directed set I with pre-order ≤, a collec-
tion of Banach subspaces {Bi}i∈I satisfying (i) and (ii), and a collection of continuous linear
isomorphisms 
i : B(X) → Bi . Furthermore, the topology on B is coarser than the induc-
tive limit topology lim−→i∈I

Bi . Since each B(X) and Bi are Banach spaces, and in particular
normed linear spaces, then by the results of [76, Section 2.7] the maps 
i are bounded linear
isomorphisms.

Let i ∈ I , and fix any xi ∈ X−{0X} then since δX : X → B(X) is base-point preserving
then δX

xi

= 0 and therefore there exists a linearly independent subset Bxi

of B(X) containing
δX
xi

. Since B(X) is separable then Bxi
is countably infinite and therefore [74, Theorem 8.24]

there exists a bounded linear map φi : B(X) → B(X) such that {φn
i (δX

xi
)}n∈N+ is a dense

subset of B(X).
Since 
i is a continuous linear isomorphisms then it is in particular a surjective continu-

ous map from B(X) onto Bi . Since the image of a dense set under a continuous surjection is
itself dense then 
i ◦ φn

i (δxi
)

n∈N+ is a dense subset of Bi . Moreover, this holds for each
i ∈ I .

By definition, the topology on lim−→i∈I
Bi is at-least as fine as the Banach space topology

on B(X0), since each Bi is a linear subspace of B(X0). Moreover, the topology on lim−→i∈I
Bi

is no finer than the finest topology on i∈I Bi making each Bi into a topological space (but
not requiring that i∈I Bi be locally-convex), which exists by [77, Proposition 6]. Denote
this latter space by B̃. Therefore, if

i∈I ; n∈N+

i ◦ φn

i (δxi
) , (24)

is dense in B̃ then it is dense in lim−→i∈I
Bi and in B(X0). Hence, we show that (24) is dense

in B̃. That is, it is enough to show that every open subset of B̃ contains an element of (24).
By [71, Proposition 2.7] the space B̃ is given by the topological quotient of the disjoint

union �i∈IBi , in the sense of topological spaces (see [71, Example 3, Section 2.4]), under
the equivalence relation xi ∼ xj for any i ≤ j if xi = xj in Bj . Denote the corresponding
quotient map by Q

B̃
. Since a subset U of the quotient topology is open (see [71, Example

2, Section 2.4]) if and only if Q−1
B̃

[U ] is an open subset of �i∈IBi and since a subset V

of �i∈IBi is open if and only if V ∩ Bi is open for each i ∈ I in the topology of Bi then
U ⊆ B̃ is open if and only if Q−1

B̃
[U ] ∩ Bi is open for each i ∈ I . Since {
i ◦ φn

i (xi)}n∈N+

is dense in Bi then for every open subset U ′ ⊆ Bi

∅ 
= U ′ ∩ {
i ◦ φn
i (xi)}n∈N+ ⊆ U ′ ∩

i∈I ; n∈N+

i ◦ φn

i (δxi
) . (25)

In particular, (25) implies that for every open subset U ⊆ B̃

∅ 
= {
i ◦ φn
i (xi)}n∈N+ ∩ Q−1

B̃
[U ] ∩ Bi ⊆

i∈I ; n∈N+

i ◦ φn

i (δxi
) ∩ U . (26)

Therefore, (24) is dense in B̃ and, in particular, it is dense in B(X0).
Since X0 was barycentric, then there exists a continuous linear map ρ : B(X0) → X0

which is a left-inverse of δX0 . Thus, for every f ∈ X0, ρ ◦ δ
X0
f = f and therefore ρ is a

457The Universal Approximation Property



continuous surjection. Since the image of a dense set under a continuous surjection is dense
and since (24) is dense then

i∈I ; n∈N+
ρ ◦ 
i ◦ φn

i (δxi
) , (27)

is a dense subset ofX0. SinceX0 has assumed to be dense inX and since density is transitive
then (27) is dense in X . This concludes the main portion of the proof.

The final remark follows from the fact that if X = X0 then the identity map 1X : X →
X0 is an isometry and therefore the universal property of B(X) described in Theorem [32,
Theorem 3.6] implies that 1X uniquely extends to a bounded linear isomorphism L between
B(X) and B(X0) satisfying

L ◦ δX = δX0 ◦ 1X = δX0 and L−1 ◦ δX0 = δX ◦ 1−1
X = δX .

Hence L must be the identity on B(X).

Appendix B: Proof of Applications of Main Results

Lemma 3 Fix some b ∈ R
m, and let σ : R → R be a continuous activation function.

Then 
A,b is a well-defined and continuous linear map from C(Rm,Rn) to itself and the
following are equivalent:

(i) For each δ > 0, ε > 0 and each f, g ∈ C(Rm,Rn) there is some NU,V ∈ N
+ such

that

NU,V (g̃) : ducc(g̃, g) < δ ∩ f̃ : ducc(f̃ , f ) < ε 
= ∅,

(ii) σ is injective, A is of full-rank, and for every compact subset K ⊆ [a, b] there is
some NK ∈ N

+ such that
SN(K) ∩ K = ∅,

where S(x) = σ • (Ax + b).

If A is the m × m-identity matrix Im and bi > 0 for i = 1, . . . , m then (i) and (ii) are
equivalent to

(iii) σ is injective and has no fixed-points.

If A is the m × m-identity matrix Im and bi > 0 for i = 1, . . . , m then (iii) is equivalent to

(iv) Either σ(x) > x or σ(x) < x for every x ∈ R.

Proof Lemma 3 By [37, Theorem 46.8] the topology of uniform convergence on compacts
is the compact-open topology on C(Rm,Rn) and by [37, Theorem 46.11] composition is
a continuous operation in the compact-open topology. Therefore, 
A,b is well-defined and
continuous map. Its linearity follows from the fact that


A,b(af + g) = (afg) ◦ S = a(f ◦ S) + g ◦ S.

Since the topology of uniform convergence on compacts is a metric topology, with met-
ric ducc, then
Uf,ε : f ∈ C(Rm,Rn), ε > 0 defines a base for this topology, where Uf,ε

{g ∈ C(Rm,Rn) : ducc(f, g) < ε}. Therefore, Lemma 3 (i) is equivalent to the statement:
for each pair of non-empty open subsets U, V ∈ C(Rm,Rn) there is some NU,V ∈ N

+ such

that 

NU,V

I,b (U) ∩ V 
= ∅. Without loss of generality, we prove this formulation instead.
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Next, by [78, Corollary 4.1] 
A,b satisfies Theorem 1 (ii.b) if and only if S(x) σ (Ax+
b) is injective and for every compact subset K ⊆ R

m there exists some NK ∈ N
+ such that

SNK (K) ∩ K = ∅. (28)

Therefore, A must be injective which is only possible if A is of full-rank. This gives the
equivalence between (i) and (ii).

We consider the equivalence between (ii) and (iii) in the case where A is the identity
matrix and bi > 0 for i = 1, . . . , m. Since S(x) = (σ (x + b1), . . . , σ (x + bm)) it is
sufficient to verify condition (28) in the case where m = 1. Since bi > 0 for 1, . . . , m then
it is clear that S is injective and has no fixed points if and only if σ is injective and has no
fixed points. We show that S is injective and has no fixed points if and only if (ii) holds.
Indeed, note that if S has not fixed points, then since bi > 0 for i = 1, . . . , m then S has no
fixed points if and only if σ no fixed points.

From here, we proceed analogously to the proof of [79, Lemma 4.1]. If S has a fixed-
point then for every N ∈ N

+, SN(x) = {x} which is a non-empty compact subset
of R. Therefore, (28) cannot hold. Conversely, suppose that S has no fixed points. The
intermediate-value theorem and the fact that S has no fixed-points that either S(x) < x or
S(x) > x. Mutatis mutandis, we proceed with the first case. Since σ is injective and S has
not fixed points then S must be a strictly increasing function; thus S([a, b]) = [S(a), S(b)]
for every a < b.

Let K be a non-empty compact subset of R. By the Heine-Borel theorem K is closed
and bounded, thus it is contained in some [a, b] for a < b. Therefore, it is sufficient to
show the results for the case where K = [a, b]. Since S is increasing then for every n ∈ N,
the sequence {Sn(a)}n∈N satisfies Sn(a) < Sn+1(a). If this sequence is not unbounded then
there would exist some a0 ∈ R such that a0 = lim

n→∞ Sn(a). Therefore, by the continuity of

S we would find that

a0 = lim
n→∞ Sn(a) = lim

n→∞ Sn+1(a) = lim
n→∞ S(Sn(a)) = S lim

n→∞ Sn(a) = S(a0),

but since S has not fixed points then there cannot exist such an a0 since otherwise a0 =
S(a0). Therefore, a0 does not exist and thus {Sn(a)}n∈N is unbounded. Hence, for every
a < b there exists some N[a,b] ∈ N

+ such that

SN[a,b]([a, b]) ∩ [a, b] = ∅.

Thus, (ii) and (iii) are equivalent when A = Im.
Next, assume that any of (i) to (iii) hold, that X is a non-empty subset of C(Rm,Rn), and

that F , has the UAP on X . Then for any other non-empty open subset U ⊆ C(Rm,Rn)

there exists some NX ,U ∈ N such that



NX ,U

A,b [X ] ∩ U 
= ∅. (29)

Since 
A,b is continuous then so is 
N
A,b and therefore (


NX ,U

A,b )−1[U ] is a non-empty open
subset of C(Rm,Rn). Since the finite intersection of open sets is again open, then we have
that

(

NX ,U

A,b )−1 

NX ,U

A,b [X ] ∩ U = X ∩ 

NX ,U

A,b [U ]. (30)

This implies that X ∩

NX ,U

Im,b [U ] is a non-empty open subset of C(Rm,Rn) contained in X .

Since F , has te UAP on X , then there exists some f ∈ NN (F , ) ∩[X ∩

NX ,U

A,b [U ]].
Thus, 
NX ,U (f ) ∈ U and, by definition, 
NX ,U (f ) ∈ NN (Fσ ;deep, σ ;deep).
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Thus, for each U in

g ∈ C(Rm,Rn)ducc(g, f ) < ε
f ∈C(Rm,Rn),ε>0 , (31)

there exists some NU ∈ N
+ and some fU ∈ NN (F , ) such that 
NU (fU ) ∈ U . In particu-

lar, since (31) is a base for the topology on C(Rm,Rn) and since the intersection of open sets
is again open, then every non-empty open subset of U is contained an element of (31) which,
in turn, contains an element of the form 
NU (fU ). Thus, NN (Fσ ;deep, σ ;deep) ∩ U 
= ∅.

Hence, NN (Fσ ;deep, σ ;deep) has the UAP on C(Rm,Rn).

Proof of Theorem 5 The equivalence between (i), (ii), and (iv) follows from Lemma 3. The
equivalence between (iii) and (iv) follows from the formulation of Birkhoff’s transitivity
theorem described in [74, Theorem 2.19].

Proof of Proposition 1 Since α1 < 1 then σ(x) > x for every x < 0. Since 0 < α2 then
σ(0) = 0 < α2. Lastly, since σ̃ is monotone increasing then for every x > 0 we have that

σ(x) > x + α2 > x.

Therefore, σ cannot have a fixed point. Moreover, since σ̃ is strictly increasing it must be
injective, since if x < y then σ(x) < σ(y) and therefore σ(x) 
= σ(y) if x 
= y. Hence, σ

is injective. Moreover, since the sum of continuous functions is again continuous, then σ is
continuous.

Since α1x + α2 is affine then it is continuously differentiable. Thus σ is continuously
differentiable on any x < 0. Lastly, setting α2 not equal to σ̃ ′(0) − 1 ensure that σ is
not differentiable at 0 and therefore it cannot be polynomial. In particular, it cannot be
affine.

For convenience, we denote the collection of set-functions from R
m to R

n by [Rm,Rn].

Proof of Corollary 4 Since ducc is a metric on [Rm,Rn] and since C(Rm,Rn) ⊆ [Rm,Rn],
then the map F : C(Rm,Rn) → C(Rm,Rn) defined by F(g) ducc(f̃0, g) is continuous.
Therefore, the set F−1 [(−∞, δ)] is an open subset of C(Rm,Rn). In particular, (7) guar-
antees that it is non-empty. Since σ is non-affine and continuously differentiable at-least at
one point with non-zero derivative at that point then [17, Theorem 3.2] applies, whence the
set X0 of continuous functions h : Rm → R

n with representation

h(x) = WJ ◦ σ • · · · ◦ σ • W1,

where Wj : Rdj → R
dj+1 , for j = 1, . . . , J − 1, are affine and nm + 2 ≥ dj if j 
∈ {1, J }

and d1 = m, and dJ = n, is dense in C(Rm,Rn). Therefore, since F−1 [(−∞, δ)] is an
open subset of C(Rm,Rn) then X0 ∩ F−1 [(−∞, δ)] is dense in F−1 [(−∞, δ)].

Fix some b ∈ R
m with bi > 0 for i = 1, . . . , m. Since σ is continuous, injective,

and has no fixed-points then applying Lemma 3 implies that X1 {
N
Im,b(f ) : f ∈

F−1[(−∞, δ)] ∩ X0, N ∈ N
+}, is a dense subset of C(Rm,Rn). This gives (i). Moreover,

by construction, every g ∈ X1 admits a representation satisfying (iii) and (iv). Furthermore,
since WJ ◦ σ • · · · ◦ σ • W1 ∈ X2 and by construction there exists some g ∈ X1 for which
ducc (WJ ◦ σ • · · · ◦ σ • W1, g) < δ,; then (ii) holds.
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Proof of Corollary 5 Since each Fn, for n = 1, . . . , N , is a continuous function from
C(Rm,Rn) to [0, ∞] then each F−1

n [[0, Cn)] is an open subset of C(Rm,Rn). Since the
finite intersection of open sets is itself open, then ∩N

n=1F
−1
n [[0, Cn)] is an open subset of

C(Rm,Rn). Since there exists some f0 ∈ C(Rm,Rn) satisfying (8) then U is non-empty.
Since F , has the UAP on C(Rm,Rn) then F , ∩ U is dense in U .

Fix b ∈ R
m with bi > 0 for i = 1, . . . , m and set A = Im.

Since σ is a transitive activation function then Corollary 1 applies and therefore the set


N
Im,b(f ) : f ∈ NN (F , ) ∩ U is dense in C(Rm,Rn). Therefore (i)-(iv) hold.

Proof of Corollary 2 Let S(x) = σ •(x+b) and let B {x ∈ R
m : σ(x) > x}. By hypothe-

sis B is Borel and μ(B) > 0. For each i = 1, . . . , m we compute σ •(xi+bi) > xi+bi ≥ xi .
Therefore, for μ-a.e. every x ∈ B, N ∈ N and each i = 1, . . . , m

SN(x)i ≥ xi + Nbi .

Since bi > 0 then lim
N→∞ SN(x) = ∞. Therefore, the condition [80, Corollary 1.3 (C2)] is

met, and by the discussion following the result on [80, page 127], condition [80, Corollary
1.3 (C1)] holds; i.e.: for every non-empty open subset U, V ⊆ L1

μ(Rm,Rn) there exists
some NU,V ∈ N such that



NU,V

Im,b (U) ∩ V 
= ∅. (32)

By Lemma 1, the map 
Im,b and therefore the map 

NU,V

Im,b is continuous. Thus,

(

NU,V

Im,b )−1[V ] is a non-empty open subset of L1
μ(Rm,Rn) and therefore U ∩(


NX ,U

Im,b )−1[V ]
is a non-empty open subset of U . Taking U = BallL1

μ(Rm,Rn)(g, δ) and V =
BallL1

μ(Rm,Rn)(f, ε) we obtain the conclusion.

Proof of Corollary 3 By Proposition 1 and the observation in its proof that σ(x) > x we
only need to verify that σ is Borel bi-measurable. Indeed, since σ is continuous and injective
then by [81, Proposition 2.1], σ−1 exists and is continuous on the image of σ . Since σ was
assumed to be surjective then σ−1 exists on all of R and is continuous thereon. Hence, σ−1

and σ are measurable since any continuous function is measurable.

Proof of Theorem 6 Fix A = Im and b ∈ R
m with bi > 0 for i = 1, . . . , m. Since

int (co (A)F ) is a non-empty open set then there exists some f ∈ int (co(F )) and some
δ > 0 for which

BallL1
μ(Rm)(f, δ) g ∈ L1

μ(Rm) :
x∈Rm

‖f (x) − g(x)‖dμ(x) < δ

is an open subset of int (co (A)F ). Since co (A)F ∩ int(co (A)F ) is dense in
int(co (A)F ) then its intersection with any non-empty open subset thereof is also dense; in
particular, co(F ) ∩ BallL1

μ(Rm)(f, δ) is dense in BallL1
μ(Rm)(f, δ). Since σ is L1-transitive

then (iii) follows from Corollary 2.

Since L1
μ is a metric space then BallL1

μ(Rm)(g, δ) : g ∈ L1
μ(Rm), δ > 0 is a base for

the topology thereon. Therefore, Corollary 2 implies that for any two non-empty open sub-

sets U, V ∈ L1
μ(Rm) there exists some NU,V ∈ N satisfying 


NU,V

Im,b (U) ∩ V 
= ∅. Hence,


Im,b is topologically transitive on L1
μ(Rm), in the sense of [74, Definition 1.38]. Moreover,

since 
Im,b is a continuous linear map then Birkhoff’s transitivity theorem, as formulated
in [74, Theorem 2.19], applies and therefore 
Im,b is a hypercylic operator on L1

μ(Rm).
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Therefore, [74, Proposition 5.8] implies that ‖
Im,b‖op > 1. Setting κ ‖
Im,b‖op yields
(ii).

It remains to show the approximation bound of described by (i). Fix f ∈ L1
μ(Rm).

Since L1
μ(Rm) is a Banach space then it has no isolated points and since 
Im,b is a hyper-

cylic operator then Birkhoff’s transitivity theorem, as formulated in [74, Theorem 2.19],
implies that there exists a dense Gδ-subset HC(
Im,b) ⊆ L1

μ(Rm) such that for every

g ∈ HC(
Im,b) the set {
N
Im,b(g)}N∈N is dense in L1

μ(Rm). Therefore, every non-empty

open subset of L1
μ(Rm) contains some element of HC(
Im,b). In particular, there is some

g ∈ HC(
Im,b) ∩ int(co(F )) since int(co(F )) is a non-empty open subset of L1
μ(Rm).

Since co (A)F ∩ int(co (A)F ) is dense in int(co (A)F ) then, in particular, g ∈
int(co (A)F ). Therefore, the conditions of [69, Theorem 2] and [69, Equation (23)] are
met, hence, for each n ∈ N

+ the following approximation bound holds

inf
fi∈F , n

i=1 αi=1, αi∈[0,1] x∈Rm

n

i=1

αifi(x) − g(x) dμ(x) ≤ 2μ(Rd)√
n

, (33)

Since {
N
Im,b(g)}N∈N is dense in L1

μ(Rm) then there exists some N ∈ N for which


N
Im,b(g) ∈ BallL1

μ(Rm) f, 1√
n

. Thus, the following bound holds

x∈Rm

‖f (x) − 
N
Im,b(g)(x)‖dμ(x) ≤ 1√

n
, (34)

Since 
Im,b is a continuous linear map from the Banach space L1
μ(Rm) to itself then

it is Lipschitz with constant ‖
Im,b‖op, where ‖ · ‖op denotes the operator norm, and by
[64, Corollary 2.1.2] we have

‖
Im,b‖N
op = d(σ • (· + b))#μ

dμM

N

∞
. (35)

Moreover, by Lemma 1, we know that the right-hand side of (35) is finite. Therefore (34)
implies that for every f1, . . . , fn ∈ F , α1, . . . , αn ∈ [0, 1] with n

i=1 αi = 1, the following
holds

x∈Rm


N
Im,b

n

i=1

αifi (x) − f (x) dμ(x)

≤
x∈Rm


N
Im,b

n

i=1

αifi (x) − 
N
Im,b (g) (x) dμ(x)

+
x∈Rm

f (x) − 
N
Im,b (g) (x) dμ(x)

≤ 
N
Im,b

op x∈Rm

n

i=1

αifi(x) − g(x) dμ(x)

+
x∈Rm


N
Im,b (g) (x) − f (x) dμ(x)

≤ d(σ • (· + b))#μ

dμM

N

∞ x∈Rm

n

i=1

αifi(x) − g(x) dμ(x) + 1√
n

.

(36)
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Combining the estimates (33)–(36) we obtain

inf
fi∈F , n

i=1 αi=1, αi∈[0,1] x∈Rm


N
Im,b

n

i=1

αifi (x) − f (x) dμ(x)

≤ d(σ • (· + b))#μ

dμM

N

∞ x∈Rm

n

i=1

αifi(x) − g(x) dμ(x) + 1√
n

≤ d(σ • (· + b))#μ

dμM

N

∞
2μ(Rd)√

n
+ 1√

n

= 1√
n

1 + 2μ(Rm) .

(37)
Since 
N

Im,b is linear, then the right-hand side of (37) reduces and we obtain the following
estimate

inf
fi∈F , n

i=1 αi=1, αi∈[0,1] x∈Rm

n

i=1

αi

N
Im,b (fi) (x)−f (x) dμ(x)≤ 1√

n
1+ 2μ(Rm) .

(38)
Therefore, the estimate in (i) holds.

For the statement of the next lemma concerns the Banach space of functions vanishing
at infinity. Denoted by C0(R

m,Rn), this is the set of continuous functions f from R
m to

R
n such that, given any ε > 0 there exists some compact subset Kε ⊆ R

m for which
supx∈Kε

‖f (x)‖ < ε. As discussed in [82, VII], C0(R
m,Rn) is made into a Banach space

by equipping with the supremum norm ‖f ‖∞ supx∈Rm ‖f (x)‖.

Lemma 4 (Uniform Approximation of Functions Vanishing at Infinity) Suppose that
F , is a universal approximator on C(Rm,Rn), then for every f ∈ C0(R

m,Rn) and
every ε > 0 there exists gε ∈ C0(R

m,Rn) with representation

fε(·) = gεe
− b

b−‖·‖2 + a I‖·‖<b + ae−|gε(·)|(‖x‖−b) I‖·‖≥b, (39)

the absolute value |·| is applied component-wise, gε ∈ NN (F , ), and a, b > 0, and
satisfying the uniform approximation bound

‖f − fε‖∞ < ε.

Proof of Lemma 4 Let F , be a universal approximator on C(Rm,Rn), let f ∈
C0(R

m,Rn), and ε > 0. Since f vanishes at infinity then there exists some non-empty com-
pact Kε,f ⊆ R

m for which ‖f (x)‖ ≤ ε2−1 for every x 
∈ Kε,f . By the Heine-Borel theorem
Kε,f is bounded and therefore there exists some b� > 0 such that Kε,f ⊆ BallRm(0, b�)

{x ∈ R
m : ‖x‖ < b�}. Therefore,

sup
x∈Rm−BallRm(0,b�)

‖f (x)‖ < ε2−1. (40)

Since the bump function x �→ e
−1 1

1−x2 I|x|<1 is continuous, affine functions are contin-
uous, f ∈ C(Rm,Rn), and the composition and multiplication of continuous functions is

again continuous then the function x �→ f (x) − ε2−1 e
b�

b�−‖x‖2 I‖x‖<b� is itself continu-
ous. Observe also that the set Ball(0, b�) = {x ∈ R

m : ‖x‖ ≤ b�} is closed and bounded,
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thus it is compact by the Heine-Borel theorem. Since F , is a universal approximator
on C(Rm,Rn) for the topology of uniform convergence on compacts then there exists some
gε ∈ NN (F , ) satisfying

sup
x∈Ball(0,b�)

gε(x) − f (x) − ε2−1 e
b�

b�−‖x‖2 I‖x‖<b� < ε2−1. (41)

Since 0 ≤ e
− b�

b�−‖x‖2 ≤ 1 for every x ∈ R
m, then from (41) we compute

sup
x∈Ball(0,b�)

gε(x)e
− b�

b�−‖x‖2 I‖x‖<b� + ε2−1I‖x‖<b� − f (x)

≤ sup
x∈Ball(0,b�)

gε(x)e
− b�

b�−‖x‖2 + ε2−1 − f (x)

≤ sup
x∈Ball(0,b�)

gε(x)e
− b�

b�−‖x‖2 + f (x) − ε2−1 e
b�

b�−‖x‖2 e
− b�

b�−‖x‖2

≤ sup
x∈Ball(0,b�)

e
− b�

b�−‖x‖2 gε(x) + f (x) − ε2−1 e
b�

b�−‖x‖2

≤ sup
x∈Ball(0,b�)

gε(x) + f (x) − ε2−1 e
b�

b�−‖x‖2

≤ε

2
.

(42)

Observe that, for every x ∈ R
m − Ball(0, b�) we have ‖x‖ − b� ≥ 0, −|gε(x)| ≤ 0 and

therefore

0 ≤ ε2−1e−|gε(x)|(‖x‖−b�) ≤ ε. (43)

Combining (40), (42), and (43) we compute the following bound

sup
x∈Rm

gε(x)e
− b�

b�−‖x‖2 + ε2−1 I‖x‖<b� + ε2−1e−|gε(x)|(‖x‖−b)I‖x‖≥b� − f (x)

≤ max sup
x∈Ball(0,b�)

gε(x)e
− b�

b�−‖x‖2 I‖x‖<b� + ε2−1e−|gε(x)|(‖x‖−b)I‖x‖<b� − f (x) ,

sup
x∈Rm−Ball(0,b�)

gε(x)e
− b�

b�−‖x‖2 I‖x‖<b� + ε2−1e−|gε(x)|(‖x‖−b)I‖x‖<b� − f (x)

≤ max ε, sup
x∈Rm−Ball(0,b�)

gε(x)e
− b�

b�−‖x‖2 I‖x‖<b� + ε2−1e−|gε(x)|(‖x‖−b)I‖x‖<b� −f (x)

= max ε, sup
x∈Rm−Ball(0,b�)

ε2−1e−|gε(x)|(‖x‖−b)I‖x‖<b� − f (x)

≤ max ε, sup
x∈Rm−Ball(0,b�)

ε2−1e−|gε(x)|(‖x‖−b) + sup
x∈Rm−Ball(0,b�)

‖f (x)‖

= max{ε, ε2−1 + ε2−1} = ε.
(44)

Thus, the result holds.
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Proof of Theorem 6 For each ω ∈ �, define the map 
ω : C0(R
m,Rn) → Cω(Rm,Rn) by


ω(f ) (ω(‖ · ‖) + 1) f . For each f, g ∈ C0(R
m,Rn) we compute

‖
ω(f ) − 
ω(g)‖ω,∞ = sup
x∈Rm

‖
ω(f ) − 
ω(g)‖
ω(‖ · ‖) + 1

= sup
x∈Rm

‖(ω(‖ · ‖) + 1) f (x) − (ω(‖ · ‖) + 1) g(x)‖
ω(‖ · ‖) + 1

= sup
x∈Rm

(ω(‖ · ‖) + 1) ‖f (x) − g(x)‖
ω(‖ · ‖) + 1

=‖f − g‖∞.

(45)

Therefore, for each ω ∈ �, the map 
ω is an isometry. For each ω ∈ �, define the map
�ω : Cω(Rm,Rn) → C0(R

m,R) by �ω(f̃ ) 1
ω(‖·‖)+1 f̃ . For each f̃ ∈ Cω(Rm,Rn) and

compute


ω ◦ �ω(f̃ ) =
ω

1

ω(‖ · ‖) + 1
f̃ = (ω(‖ · ‖) + 1)

1

ω(‖ · ‖) + 1
f̃ =f̃ . (46)

Hence, �ω is a right-inverse of 
ω. Since every isometry is a homeomorphism onto
its image and since 
ω is surjective isometry then 
ω defines a homeomorphism from
C0(R

m,Rn) onto Cω(Rm,Rn). In particular, 
ω (C0(R
m,Rn)) = Cω(Rm,Rn). Therefore,

C�(Rm,Rn) =
ω∈�

Cω(Rm,Rn) =
ω∈�


ω C0(R
m,Rn) = Cω(Rm,Rn).

Hence, condition (5) holds.
Since it was assumed that supx∈Rm ‖f (x)‖e−‖x‖ < ∞ holds, then Lemma 4 applies,

whence,

f e
− b

b−‖·‖2 + a I‖·‖<b + ae−|f (·)|(‖x‖−b) I‖·‖≥b : 0 < b, a, f ∈ NN (F , )

is dense in C0(R
m,Rn). Therefore, the conditions for Theorem 2 are met. Hence,

ω∈�


ω f e
− b

b−‖·‖2 + a I‖·‖<b+ ae−|f (·)|(‖x‖−b) I‖·‖≥b : 0<b, a, f ∈NN (F , )

(47)
is dense in C�(Rm,Rn). By definition, (47) is a subset of NN (F�, �) and therefore
NN (F�, �) is dense in C�(Rm,Rn). Hence, F�, � is a universal approximator on
C�(Rm,Rn).

Proof of Proposition 2 For each k, m ∈ N with n ≤ m, we have that exp(−kt) > exp(−mt)

for every t ∈ [0, ∞). Thus,

Cexp(−k·)(Rm,Rn) ⊆ Cexp(−m·)(Rm,Rn), (48)

and the inclusion is strict if n < m. Moreover, for n ≤ m, the inclu-
sion of each ikm : Cexp(−n·)(Rm,Rn) into Cexp(−m·)(Rm,Rn) is continuous. Thus,
Cexp(−k·)(Rm,Rn), ikm n∈N is a strict inductive system of Banach spaces. Therefore, by

[83, Proposition 4.5.1] there exists a finest topology on k∈N Cexp(−k·)(Rm,Rn) both mak-
ing it into a locally-convex space and ensuring that each Cexp(−k·)(Rm,Rn) is a subspace.
Denote k∈N Cexp(−k·)(Rm,Rn) equipped with this topology by CLCS

� (Rm,Rn).
If f ∈ CLCS

� (Rm,Rn) then by construction there must exist some K ∈ N such that
f ∈ Cexp(−K·)(Rm,Rn). By [84, Propositions 2 and 4], a sequence {ft }t∈N converges
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to some f if and only if there exists some K ∈ N and some NK ∈ N
+ such that for

every t ≥ NK every ft ∈ Cexp(−K·)(Rm,Rn) and the sub-sequence {ft }t≥NK
converges in

the Banach topology of Cexp(−K·)(Rm,Rn) to f . In particular, since Cexp(−0·)(Rm,Rn) =
C0(R

m,Rn) then the function f (x) (exp(−|x|), . . . , exp(−|x|)) ∈ Cexp(−0·)(Rm,Rn).
Since each f ∈ NN (F , ) is either constant of supx∈Rm ‖f (x)‖ = ∞ then for any
sequence {ft }t∈N ∈ NN (F , ) there exists some N0 ∈ N

+ for which the sub-sequence
{ft }t≥N0 lies in Cexp(−0·)(Rm,Rn) = C0(R

m,Rn) if and only if for each t ≥ N0 the map ft

is constant. Therefore, for each t ≥ N0 we compute that

‖f − ft‖exp(0·),∞ = ‖f − ft‖∞ ≥ inf
c∈Rm

sup
x∈Rm

| exp(−|x|) − c| >
1

2
.

Hence, ft cannot converge to f in C�(Rm,Rn) and therefore F , does not have the
UAP on C�(Rm,Rn).

Proof of Corollary 7 Let X R and X0 X L∞(R). Since every Banach space is
a pointed metric space with reference-point its zero vector and since R is separable then
Theorem 4 applies. We only need to verify the form of η and of ρ. Indeed, the identification
of B(R) with L1(R) and explicit description of η is constructed in [32, Example 3.11].
The fact that L∞(R) is barycentric follows from the fact that it is a Banach space and by
[31, Lemma 2.4].
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