Annals of Mathematics and Artificial Intelligence (2019) 86:231-255
https://doi.org/10.1007/510472-019-09627-9

®

A paraconsistent approach to actions Check for
in informationally complex environments gidates

Lukasz Biatek' - Barbara Dunin-Keplicz' - Andrzej Szatas'2

Published online: 31 May 2019
© The Author(s) 2019

Abstract

Contemporary systems situated in real-world open environments frequently have to cope
with incomplete and inconsistent information that typically increases complexity of rea-
soning and decision processes. Realistic modeling of such informationally complex envi-
ronments calls for nuanced tools. In particular, incomplete and inconsistent information
should neither trivialize nor stop both reasoning or planning. The paper introduces ACT-
LoG, a rule-based four-valued language designed to specify actions in a paraconsistent
and paracomplete manner. ACTLOG is an extension of 4QLP¢!, a language for reasoning
with paraconsistent belief bases. Each belief base stores multiple world representations. In
this context, ACTLOG’s action may be seen as a belief bases’ transformer. In contrast to
other approaches, ACTLOG actions can be executed even when the underlying belief base
contents is inconsistent and/or partial. ACTLOG provides a nuanced action specification
tools, allowing for subtle interplay among various forms of nonmonotonic, paraconsistent,
paracomplete and doxastic reasoning methods applicable in informationally complex envi-
ronments. Despite its rich modeling possibilities, it remains tractable. ACTLOG permits for
composite actions by using sequential and parallel compositions as well as conditional spec-
ifications. The framework is illustrated on a decontamination case study known from the
literature.

Keywords Action languages - Paraconsistent reasoning - Paracomplete reasoning -
Doxastic reasoning - Belief bases

Supported by the Polish National Science Centre grant 2015/19/B/ST6/02589, the ELLIIT Network
Organization for Information and Communication Technology, and the Swedish Foundation for
Strategic Research FSR (SymbiKBot Project).

P4 Andrzej Szatas
andrzej.szalas@mimuw.edu.pl

Lukasz Biatek
lukasz.bialek @mimuw.edu.pl

Barbara Dunin-Keplicz
keplicz@mimuw.edu.pl

Institute of Informatics, University of Warsaw, Warsaw, Poland

Department of Computer and Information Science, Linkoping University, Linkdping, Sweden

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10472-019-09627-9&domain=pdf
http://orcid.org/0000-0002-6000-6581
mailto: andrzej.szalas@mimuw.edu.pl
mailto: lukasz.bialek@mimuw.edu.pl
mailto: keplicz@mimuw.edu.pl

232 L. Biatek et al.

Mathematics Subject Classification (2010) 03B42 - 03B53 - 68N17 - 68T27 - 97R40

1 Actions in informationally complex environments

Reasoning about actions and change is an essential ingredient of Al systems. Throughout
the years a variety of advanced solutions has been introduced, developed, verified and used
in this field. Despite a broad and intensive research (see, e.g., [40] and references there),
the issue of inconsistent information has rarely been addressed in this context. However, in
informationally complex environments, due to the heterogeneity of distributed information
sources of diverse quality and credibility, inconsistent and incomplete information (further
abbreviated in this paper by 3i) is a common phenomenon. Therefore, inconsistency and
incompleteness tolerance lies at the heart of our approach. Essentially, this attitude is shared
by many researchers who addressed related issues in other application areas. In particular,
the importance of addressing inconsistencies in a robust manner is emphasized in [28] (see
also [29]), where inconsistency robustness is phrased as:

“information system performance in the face of continually pervasive inconsisten-
cies — a shift from the previously dominant paradigms of inconsistency denial and
inconsistency elimination attempting to sweep them under the rug.”

For a related discussion see also [4] or an overview in [3] where the authors point out that:

“inconsistency is useful in directing reasoning, and instigating the natural processes of
argumentation, information seeking, multi-agent interaction, knowledge acquisition
and refinement, adaptation, and learning.”

The ultimate goal of our research is to develop a planning system that is rich enough to
cope with 3i. An important subgoal, which we address here, is to develop actions’ spec-
ification language, adequate for reasoning and planning in informationally complex and
sometimes defective environments. Planning as a key ingredient of intelligent systems, in
particular multiagent systems, has been intensively developed, with its roots in early seven-
ties of the previous century. The seminal planner, STRIPS, introduced already in 1971 [22],
initiated the classical approach to automated planning, further developed by many followers.
On the modern level, STRIPS was lacking means for dealing with inconsistencies and gaps
in knowledge. That does not mean that these issues have been neglected in the field. Even
though paraconsistent approaches have been proposed (see, e.g., [18, 47]), in majority of
contemporary planners, inconsistent or missing knowledge is projected into the two-valued
classical setting. Such a projection is typically performed with the use of nonmonotonic
techniques or other heuristics. The key of our approach, which is also rooted in STRIPS, is to
find a language that is expressive enough to explicitly deal with 3 in all phases of planning.
This includes resolving inconsistencies whenever it is necessary. For this reason different
context-sensitive strategies of resolving conflicts maybe applied or constructed. Notice, that
solving this problem in general terms is not possible. Disambiguation methods are highly
context, application-dependent and individualized. They include strategies, like:

— “killing inconsistencies at the root”: to solve them as soon as possible;

— “living with inconsistency”: to postpone disambiguation to the last possible moment
(or even forever);

— solving inconsistency whenever relevant information appears.

@ Springer

A paraconsistent approach to actions 233

When building applications dealing with pervasive information gaps and gluts, it is cru-
cial to design knowledge completion and disambiguation in accordance with the recognized
needs and the requirements of the application in question. Along these lines, action speci-
fication languages call for nuanced but possibly simple and uniform tools supporting a rich
repertoire of related techniques.

Since the inception of knowledge representation and planning, beliefs have usually been
modeled via various combinations of multi-modal logics [15, 20], nonmonotonic logics
[40], probabilistic reasoning [54] or fuzzy reasoning [58], just to mention some of them.
However, most of those approaches either lack tools for handling 3i or are too complex for
real-world applications. This motivated a total shift in perspective, presented in [12, 13].
Rather than reasoning in modal logics or other complex formalisms, a tractable approach
based on querying paraconsistent belief bases has been introduced there. It has further been
developed in [5]. In order to achieve the required expressiveness and modeling convenience,
next to truth and falsity two additional truth values: i (inconsistent) and u (unknown) have
been employed.

In summary, we aim to define a formal language ACTLOG for specifying actions in
informationally complex environments, enjoying the following features:

— concise rule-based specification of actions and their effects in the presence of 3i;

— flexibility in evaluation of formulas in distributed paraconsistent belief bases;

— tractability of computing actions’ preconditions and resulting belief bases;

— practical expressiveness meaning that all actions (and only such) with preconditions
and effects computable in deterministic polynomial time can be specified in ACTLOG.

ACTLOG belongs to the 4QL family of four-valued, rule-based languages. It builds on
4QLBel [5], which, in turn, extends the 4QL rule language [34-36]. While 4QL already
permits to flexibly resolve/disambiguate 3i at any level of reasoning, 4QLB®! includes means
for doxastic reasoning by specifying paraconsistent belief bases and referring to them in
rules. Specifically, the paper continues a line of research initiated in [6] by:

— extending the ACTLOG language with composite actions, in particular providing a novel
semantics for parallel composition;

— providing many new examples of actions’ specifications;

— extending the tractability results which now apply to composite actions, too.

The paper is structured in the following manner. First, in Section 2, we recall the back-
ground formalism used in ACTLOG and including the “plain” four-valued logic R4, its
doxastic extension RECI and the 4QIB! rule-language. Next, in Section 3, we introduce
the ACTLOG action specification language with atomic actions (Section 3.1) and composite
actions (Section 3.2) using sequential and parallel compositions and the conditional spec-
ification. Section 3.3 provides results concerning tractability of the approach. In Section 4
we provide a decontamination case study illustrating ACTLOG. Section 5 discusses related
work. Finally, Section 6 concludes the paper.

2 The background formalism

Let us now introduce logical formalisms used in the paper: R4, Rfel and 4QLB¢!. We recall
them in a structured manner, “layer by layer”:

@ Springer

234 L. Biatek et al.

— Section 2.1 recalls R4, the basic logic with the first-order syntax and a four-valued se-
mantics of propositional connectives, quantifiers, and an additional inspection operator;

— Section 2.2 recalls Rfel, a four-valued doxastic extension of R4 introducing operators
for reasoning with beliefs and belief bases;

— Section 2.3 recalls 4QIB¢! a four-valued rule-based language, based on R4Be' and
providing a tractable reasoning engine.

2.1 The basic four-valued logic

The four-valued logic R4 has originally been introduced in [37] (see also [34, 36, 50, 55]).
Below we present its main features and motivations behind its design choices.

2.1.1 Syntaxof R4

The syntax of R4 is an extension of the syntax of classical first-order logic (see Table 1),
where we assume the set of truth values t (true), i (inconsistent), u (unknown), § (false), con-
stants Const, variables Var and relation symbols Rel. By convention, constant and relation
symbols are denoted by names beginning with a small letter and variables beginning with
a capital letter. Note that the only non-classical formulas, listed in the last line of Table 1,
involve an inspection operator ‘€’. Intuitively, the formula « € T is t when the truth value
of « is in the set of truth values 7.

An occurrence of variable X in a formula « is called bound if it occurs in the scope of a
quantifier VX or 3X. An occurrence of a variable is free in formula « if it is not bound in «.
A literal is an ‘(AtomicFormula)’ or ‘—(AtomicFormula)’. A ground literal is a literal
not containing variables. A ground formula is a formula without free variables.

2.1.2 Semantics of R4
The logic R4 uses four truth values, two classical values: t, f, and two non-classical ones: i
and u. The values i and u, are introduced to indicate:

— the presence of inconsistent evidence supporting both truth and falsity of the formula;
— the lack of information needed to assign a truth value to the formula.
Let us start with the semantics of negation, applied to truth values:
def def . def . def
=, ofEtL S0 U= (1)

The negation behaves classically on the classical truth values. For non-classical ones, it
behaves like traditional negation in three- and four-valued logics:

— the value u of a formula « indicates that the actual truth value of « is unknown, so the
value of —« is unknown, too;

Table 1 Syntax of R4

(AtomicFormula)
(Formula)

r(ui,...,u), where r € Rel,u1,...,u € ConstU Var,
(AtomicFormula) | = (Formula) |

(Formula) N (Formula) | (Formula) V (Formula) |
(Formula) — (Formula) |

VX (Formula) | 3X (Formula) |

(Formula) € T, where § # T C {t,f,i,u}.

@ Springer

A paraconsistent approach to actions 235

Fig. 1 Orderings on truth values
t
| i
i /N
| t f
u N/
| u
f
Truth ordering (<¢) Information ordering (<)

— the value i of a formula « indicates that the actual truth value of « is claimed to be both
true and false at the same time, so consequently —« is claimed false and true at the
same time, being inconsistent, too.

By convention, we remove double negations: ——a« is always identified with .

Basic semantical structures we consider are finite sets of ground literals, further called
3i-worlds. Each such a set provides a specific, possibly inconsistent set of facts about a
given reality. More complex semantical structures used in this paper are belief bases, being
finite sets of 3i-worlds representing complementary or alternative views on a given reality.
We shall discuss them in Section 2.3. Since the full language, involving beliefs, is evaluated
in belief bases, in order to keep the presentation uniform, every 3i-world w is identified
with a one-element belief base {w}.!

The semantics of R4 formulas uses {w} and an assignment v : Var —> Const assigning
domain values to variables. If £ is a literal, by £(v) we mean the ground literal obtained
from ¢ by substituting each variable x occurring in £ by v(x).

Definition 1 The truth value of a literal £ wrt an assignment v and a singleton belief base
{w}, denoted by £(w, v), is defined as follows:

t if £(v) € wand (—£(v)) ¢ w;

def | i if £(v) € w and (—€(v)) € w;
Ew,v) =1 i) ¢ w and (=€) ¢ w:
f if £(v) ¢ w and (—£(v)) € w.

Example 1 Consider the following 3i-world:
w = {safe(r1), —safe(r2), safe(r3), —safe(r3)} (@)

In w, the truth value of safe(ry) is t, of safe(ry) is f, of safe(r3) is i, and of safe(r4) (not
present in w) is u.

The semantics of our framework is based on two different orderings, shown in Fig. 1.
The first ordering, <, called the truth ordering, is used to evaluate formulas of R4 and the
second one, <, the information ordering, is used to provide meaning to the belief operator.

The truth ordering reflects the truth level of a formula «:

— the value t indicates that the available evidence pieces support the truth of o and no
contradicting evidence weakens this support;

— the value i contains “less true” than t: though it indicates a support for the truth of «,
the support is weakened by a contradicting evidence;

1To simplify the notation we sometimes omit brackets {} and write w rather than {w}.

@ Springer

236 L. Biatek et al.

— the value u contains “less true” than i: it indicates no evidence for the truth of «;
— the value § contains “less true” than u: it not only lacks a support for the truth of « but,
moreover, expresses the contrary.

The information ordering, when analyzed bottom up, reflects the process of fusing beliefs
about (ground) formula «:

— initially no pieces of evidence are gathered, so there is no support for the truth nor for
the falsity of «, so the status of « is unknown, represented by the value u;

— next, in the course of evidence acquisition, one may obtain pieces supporting only the
truth of « or only its falsity (assigning to « the truth value t or f, respectively);

— finally, if evidence for both: truth and falsity of « are gathered, its truth value becomes i.

Remark 1 The use of two different orderings on truth values is rather typical in application
areas we deal with. A known framework for such orderings is based on the use of bilattices
introduced by [25] (see also [23, 24, 26]). However, the linear truth ordering with negation
defined by (1) does not fit the bilattices framework. Specifically, the requirement:

11 <; t implies—1, <; =ty

is violated for r{y = uand r, = i.

The semantics of propositional connectives, quantifiers and inspection expressions is
given in Table 2. Traditionally, the semantics of disjunction is given by the maximum and
of conjunction — by the minimum wrt truth ordering.

Implication is defined classically:

a8 wvs. 3)

The universal quantifier generalizes conjunction and the existential quantifier generalizes
disjunction.

Remark 2 The connectives —, A, V, — behave classically on classical truth values t, §.
When the set of truth values is restricted to t, f,u or to tf,i, the resulting logic is the
well-known three-valued logic of Kleene, where the non-classical truth value represents

Table 2 The semantics of R4 formulas, where A = {w}, v is an assignment of constants to variables,
min, max are respectively minimum and maximum wrt truth ordering and «(X/a) denotes the formula
obtained from « by substituting all free occurrences of variable X by constant a

If o is a literal then a(A, v) is defined in Definition 1;
~a)(A,v) € = (a(4,v));
a A B)(4,v) E minfa(A,v), B(4,v)};

,0) def max{a(A,v), B(A,v)};
,0) def max{-a(A,v), B(A,v)};

VXa(X))(A,v) € min {(a(X/a)(A,v)};
acConst

1
2ET e T
<
=

(3Xa(X))(A,0) ¥ max {(a(X/a)(4,v)}:
acConst
def [t when a(L,v) € T (here ‘€’ denotes set membership),
- (@eD)(4,v) = {fotherwise.

@ Springer

A paraconsistent approach to actions 237

indefinitness, which is commonly accepted in modeling lack of knowledge (respectively,
inconsistency) in the three-valued approaches.

Remark 3 One of commonly considered four-valued logics is the logic of Belnap [2]. It’s
information ordering is the <, while the truth ordering is <; “rotated right”, with { being its
bottom, t — its top and u, i being its intermediate, incomparable elements. Thus, in particular,
in Belnap’s logic i V u = tand i A u = § which violates intuitions we want to preserve:

— the disjunction should only be true when at least one of its disjuncts is true;
— the conjunction should only be false when at least one of its conjuncts is false.

For example, assume there are two paths, p; and pj, between some given places. If a
robot has inconsistent information whether p; is passable and no information whether p» is
passable, in Belnap’s logic we obtain:

passable(py) V passable(pr) = t; 4
passable(p1) A passable(pz) = §. 5)

Both outcomes are questionable. In R4 the value of the disjunction (4) is i, and the value of
the conjunction (5) is u.

2.2 Doxastic extension of R4

In this section we recall the approach of [5, 14] in a possibly compact, yet comprehensive
manner.? In particular, we show an extension of R4 by the two operators for expressing
beliefs. This extension is further denoted by Rfel.

2.2.1 Syntax of RE¢!
Let us first introduce belief bases.

Definition 2 By a belief base over a set of constants Const we understand any finite set A
consisting of 3i-worlds over Const.

Recall that each 3i-world in a belief base represents a possibly incomplete and/or incon-
sistent view of the world. For example, a belief base can consist of three 3i-worlds: the first
one containing facts based on measurements received from a ground robot’s sensor plat-
form, the second one containing facts extracted from a drone’s camera video stream and the
third one representing views provided by ground operators.

As regards belief operators, the syntax of Rfel is given in Table 3. It extends the syntax
given in Table 1 by clauses for the following operators:

— Bela (@), expressing beliefs related to belief bases (indicated by A);
— @(A).(x), allowing one to evaluate Bel()-free formulas in belief bases: here ¢ is a
mapping transforming a belief base into a single 3i-world. In general, ¢ occurring in

2For a detailed description of belief bases and belief structures, see [5, 12-14]. Belief bases in 4QLB¢! have
been presented in [5].

@ Springer

238 L. Biatek et al.

Table3 Syntax of RP!, where A is a belief base and ¢ is a mapping transforming a belief base into a (single)

3i-world; if ¢ is not specified explicitly, it is by default assumed to be ¢ (A) def U A, ie., Aa def (U A)a

(Formula) = ¢(A).((Formula)) | Bela ((Formula))

@(A).() is an arbitrary (but tractable) belief fusion method, intended as a means to

combine information included in 3i-worlds of A. For example, ¢(A) may be [J D or
DeA

ﬂ D (further abbreviated by | A and (1) A, respectively).
DeA

2.2.2 Semantics of RE¢!

In Table 4 we extend the semantics of R4 to all formulas of R}f’d. Note that for nested Bel()
operators, one starts evaluation with the innermost one.

Example 2 Let a belief base A consists of two 3i-worlds:

{safe(r1), —safe(rz), safe(r3), —safe(rs)}, {safe(ra), —safe(rs)}. (6)

Then, for example,

— Bela(safe(ry)) is t, Bela (safe(r2)) as well as Bela (safe(r3)) are i, Bela (safe(rs)) is f,
and Bela (safe(rp) Vv —safe(rr)) is t;
- fori=1,...,4, A(safe(r;)) is as above, but A.(safe(r>) V —safe(rp)) is i.

2.3 Representing and querying belief bases

The logic Rfel offers means for general paraconsistent and paracomplete reasoning about
beliefs. Recall that we aim to develop a tractable framework for action specification. There-
fore we need a suitable language to represent and query belief bases. As shown in [5], a
suitable candidate is the 4QIB®! language.3 4QIB is an extension of 4QL. Though the full
definition of 4QIB! is available in [5], for clarity we recall the most important constructs
of the language. The language inherits a fair amount of elements from the 4QL language
[34, 36, 50], including basic program syntax and semantics. The 4QLP¢! program consists
of modules, structured as shown in Module 1. Sections domains and relations are used to
specify domains of arguments and signatures of relations used in rules.

Module 1 Syntax of 4QL2! modules.

1 module moduleName:

2 domains:
3 relations:
4 rules:

5 facts:

6 end.

3 An open source experimental interpreter of 4QLB! is available via 4q1 . org.

@ Springer

A paraconsistent approach to actions 239

Table4 Semantics of R4Bd, where A is a belief base, v assigns constants to variables, « is a formula without
Bel() operators, LUB denotes the least upper bound wrt the information ordering (see Fig. 1)

a(A,v) def a(JA4,v);

- (Bela (t))(v) ey fort e {t,f,i,u};
- (Bela(a))(v) def LuB{a({w},v) |w € A};
- (p(A).()(v) E a({p(A)},v).

4QLB® ryles, specified in the section rules have the following form, where (Formula)
is an arbitrary formula of the logic presented in Section 2.2

(Literal) : —(Formula). @)

Facts, specified in the facts section, are rules with the empty (Formula) part (being t). In
such cases we simply write (Literal).

A model w of a 4QIB¢! module m is a 3i-world, not necessarily minimal, such that for
every rule (thus also every fact) of the form (7) in m and every assignment v of constants
appearing in m to free variables of m,

— whenever ((Formula))({w}, v) = t, the conclusion v({Literal)) is in w, and
— whenever v((Formula)) = i, the conclusion v({(Literal)) as well as its negation
—wv((Literal)) are in w.

The above conditions reflect a generalization of the Shepherdson’s implication [46].

The semantics of a module is given by its well-supported model. Intuitively, a model
of m is well-supported when all literals of m are justified by reasoning starting from facts
of m and using rules of m.* Importantly, for every 4QL module a well-supported model
exists and is uniquely determined. Therefore, each 4QILB®' module can be identified with a
3i-world. That way:

4QLP! modules have a very important role as a tool for concise and

uniform specification of 3i — worlds. ®)

A 4QLB! program is a finite set of 4QLP®' modules. Its semantics is given by a set of
well-supported models of its modules.

One can query modules using traditional remote calls’ notation: m.c, where m is a mod-
ule name and « is a formula. The meaning of m.« is the (four-valued) relation defined as
the answer to the query expressed by «, evaluated in m.>

Belief bases, as defined in the current paper, are specified in 4QLB¢! as in Belief Base 2.

Belief Base 2 Syntax of belief bases.

1 beliefs beliefBaseName:

2 worlds:

3 | // list of 4QIB¢! module names specifying 3¢-worlds
4 end.

“Well-supportedness does not entail minimality. This is an intended feature of our approach since in many
contexts minimality is not desired [11, 21, 34, 44, 49].
3 Acyclicity of references among modules is required (needed for tractability of computing queries).

@ Springer

240 L. Biatek et al.

As shown in [5], computing well-supported models contained in belief bases as well as
querying them using 4QLB¢! formulas can be done in deterministic polynomial time wrt the
number of constants occurring in the belief base.

3 The AcTtLoG language

Let us now extend 4QIB®! towards specifying actions. Our approach reflects the general
idea of action definition. As a novelty, an ACTLOG action is a belief bases transformer: a
state of the environment, expressed as a belief base, is transformed by an action into the
resulting belief base. Next, the use of 4QLP¢! to represent actions’ effects ensures their
concise representation which is one of our important goals. Finally, due to tractability results
for 4QLBe! [5], effects of actions can be computed in a tractable manner.

All back-end operations like reasoning management is handled by 4QILB¢!.

3.1 Atomic actions

Let us start from defining actions’ specification. The syntax is presented as Action 3, where:

— act is the action name and x are its parameters;

— «(x) is an arbitrary formula of 4Q1B¢ called the precondition of action act;

- BH(X), B (%) are 4QLBY rules, representing effects of action act by specifying sets
of literals to be added (87 (¥)) and to be removed (87 (X));

— itis assumed that o, B and B~ contain no free variables other than those in x.

By an instance of action act (x) we mean act (a), where a is a tuple of constants.

Action 3 Syntax of actions in ACTLOG.

1 action act (Z):

2 preconditions:
3 | a(z)

4 postconditions:
5 add:

‘ | Bt (@)
7 remove:

8
9

| B8~ (@)

end.

Recall that one of our goals is to achieve concise specifications of actions’ pre- and
postconditions. The following example illustrates how this feature is achieved in ACTLOG".

Example 3 Assume that the following properties of action move (ID,X,Y) are to be
expressed, where ‘ID’ is a robot’s identifier, ‘safe-path(X,Y)’ indicates whether the path
from ‘X’ to ’Y” is safe, and ‘in(ID,X)’ states that the robot ‘ID’ is in the place ‘X’:

1. when ‘safe-path(X,Y)’ is true, and ‘in(ID,X)’, ‘X#Y’ are true

then move (ID, X, Y) results in a state where ‘—in(ID,X)’ and ‘in(ID,Y)’ are true;
2. when ‘safe-path(X,Y)’ is inconsistent, and ‘in(ID,X)’, ‘Xz£Y" are true

then move (X, Y) results in a state where ‘—in(ID,X)’ is true

and ‘in(ID,Y)’ is inconsistent;

@ Springer

A paraconsistent approach to actions 241

3. when ‘safe-path(X,Y)’ is unknown, and ‘in(ID,X)’, ‘X#Y’ are true
then move (X, Y) results in a state where ‘—in(ID,X)’ is true
and ‘in(ID,Y)’ is unknown.

Action 4 provides a concise specification of points 1-3 in ACTLOG.

Action 4 A concise specification of points 1-3 in ACTLOG.

1 action move (ID, X, Y):
2 preconditions:
3 | safe-path(X,Y) € {t,{,u} A in(ID,X)=t A X#Y
4 postconditions:
5 add:
6 in(ID, Y) :— safe-path(X,Y).
7 —in(ID,X).
8 remove:
9 | in(ID, X).
10 end.

It is also important to notice that rules in action specification may use operators like,
e.g., Bela (), referring to belief bases. This allows one to deal with distributed belief bases.
In this paper belief bases are known from the context, so we sometimes omit the subscript
indicating a belief base.

Let us now define the ACTLOG’s semantics formally.

Definition 3 Tuples (ay, ..., ar), (b1, ..., b;) consisting of variables and/or constants are
called compatible if k = [and, fori = 1, ..., k, at least one of a;, b; is a variable or both
a;, b; € Constand a; = b;.

Given a 3i-world w, specification expressed as Action 3 and a tuple of constants a com-
patible with x, the action act(a) is executable on w when its precondition o ({w}, v) = t,
where v assigns constants a to variables v, respectively.

An action is executable on a belief base A, if it is executable on at least one w € A.

Remark 4 Note that in preconditions of actions (formula « of Action 3) one can use
any formula of the form defined in Tables 1-3, in particular involving the Bel() oper-
ator as well as the operator ‘c T’, permitting to react to inconsistency and lack of
knowledge. Therefore an action can be executed when the state is inconsistent and/or
some/all literals are unknown. Running actions in such circumstances is a unique feature of
AcTLOG.

When action act(a) is executed, it transforms its input belief base A into the result-
ing belief base A’ as shown in Algorithm 5, where A’ represents effects of action act(a)
on A. The algorithm iterates through the 3i-worlds in A. Recall that 3i-worlds in A rep-
resent different views on the world. If the considered action is executable on a given
3i-world w € A then the contents of w is considered to be actual, so is added to both
BT and B~ and literals to be added (respectively, removed) are computed and added to
(respectively subtracted from) w and the resulting world is added to A’. If the action is
not executable on w, the 3i-world w itself is not affected by the action, so is added to
A’ unchanged.

@ Springer

242 L. Biatek et al.

Algorithm 5 Computing effects of actions.

Input:
— action act (@), specified as Action 3, where @ is a tuple of constants;
— belief base A;

Output: belief base A’ representing effects of executing act (@) on A;

1 set A =
2 foreach w € A do
3 if action act (a) is executable on w then
4 set uT = (0; set u— = 0;
5 compute the well-supported model of 81 (@) U w adding to u
each literal obtained as a conclusion of a rule of 31 (a);
6 compute the well-supported model of 8~ (@) U w adding to v~
each literal obtained as a conclusion of a rule of 87 (a);
7 add the set ((wUu™)\u™) to A
8 else
9 | add the set w to A’
10 end
11 end

Remark 5 Notice that u™ and u~ computed in Algorithm 5 contain conclusions of rules
(thus facts, too) specified in the action. These conclusions can be (and typically are) com-
puted taking the contents of the underlying belief base into account. However, the contents
of the belief base should not be automatically “imported” as action effects. If this was
allowed, it would be difficult control actions’ specifications. For example, belief bases may
contain literals involving relations unknown for the actions’ designer. Such literals could
become part of actions’ effects even though the actions do not affect them.

The following example illustrates the use of Algorithm 5.

Example 4 Let move be the action specified as Action 4 in Example 6 and let the input
belief base be:

A = {{safe-path(a,b), —safe-path(a,b), —in(rob,a)} 9
{— safe-path(a,b), in(rob,a)}} . (10)

After executing the action move (rob, a,b) we obtain:

A’ = {{safe-path(a,b), —safe-path(a,b), — in(rob,a), in(rob,b), —in(rob,b)} (11)

{— safe-path(a,b), in(rob,a)}} . (12)

Since ‘safe-path(a,b)’ is inconsistent in the 3i-world (9), rule in Line 6 of Action 4 makes

‘in(rob,b)’ inconsistent in (11). The action is not executable on (10), so this world is added
to A’ without any changes (as the world (12)).

3.2 Composite actions

Composite actions’ specifications are important in applications. Apart from simplifying
actions’ specification, they can allow for more efficient plan building. Namely, their use as

@ Springer

A paraconsistent approach to actions 243

templates frequently occurring in a given application can substantially reduce the branching
factor when searching for plans by avoiding explorations of useless branches. For example
the sequence ‘locate-lift-move’, consisting of three atomic actions, can be used in planning
without the necessity to construct this sequence during the planing process. For further
discussion of performance gains see Remark 6 (page 250).

For simplicity, we concentrate on sequential and parallel compositions, and if-then-else
operator only. First, these operations do not increase the number of 3i-worlds within belief
bases. Second, their use does not violate tractability of the approach.

Composite actions are specified as shown in Action 6, where y is an expression con-
sisting of atomic actions (with parameters), built using ‘;’ (sequential composition), =
(conditional ‘if-then-else’) and ‘||’ (parallel composition).

Action 6 Syntax of composite actions in ACTLOG.

1 action act (Z):

2 composite:
3 | (@)
4 end.

The syntax of composite actions’ expressions (y in Action 6) is given in Table 5.

We assume that arguments of actions in y belong to arguments x of the action act
and we disallow recursion. To formally define this requirement, for a set of actions’ spec-
ifications consider a reference graph (V, E) where V is a set of nodes labeled by action
names and (n1, ny) € E iff ny occurs in n1’s composite section. In ACTLOG we only allow
actions’ specifications whose reference graph is acyclic.

Operators ‘;’, ‘=" and ‘||’ transform belief bases into belief bases. Given a belief base
A, and action act, by act(A) we denote the belief base representing effects of act.
While the semantics of ‘;” and ‘=’ is rather standard, let us explain our approach to
‘II’. When there are no conflicts between actions act; and actj, their parallel composi-
tion acti|lact, simply adds to 3i-worlds literals determined by act; or by act, and
removes literals determined by act; or by act,. However, in the case of conflict (e.g.,
act attempts to add a literal £ and at the same time act; attempts to remove it), we solve
it by assuming that £ is inconsistent in the resulting 3i-world. Of course, using 4QLB¢!
one can later disambiguate such conflicts, e.g., taking into account the relative strengths of
actions (if known).

Before providing formal semantics, let us illustrate the intended meaning of the intro-
duced operators.

Example 5 Let the actions of pouring water and lighting fire are given as Actions 7-8, where
the parameter ‘O’ indicates the object subject to the actions.

Table 5 Syntax of composite actions’ expressions, where (AromicAction) represents atomic actions, as
defined in Section 3.1, referenced by their names and arguments

(Composite) = (AtomicAction) | (Composite) ; (Composite) |
(Formula) = (Composite) / (Composite) |
(Composite) || (Composite)

@ Springer

244 L. Biatek et al.

Action 7 The action of pouring water.

1 action pour—-water (0):
2 postconditions:
3 add:
4 wet(O).
5 —flammable(O).
6 remove:
7 flammable(X) — wet(X).
8 —wet(O).
9 on-fire(O).
10 end.

Action 8 The action of lighting fire.

action 1ight-fire (0):
postconditions:

add:
on-fire(O) :— flammable(O).
—wet(X) :— on-fire(X).
remove:
—on-fire(O).
—flammable(X) :— on-fire(X).

AR T 7 T N I S R

end.

Consider a belief base consisting of a single 3i-world w = {flammable(o1), — wet(ol)}.

1. Action al=(pour-water;light-fire) (0ol), run on w, starts with
pour-water (ol), transforming w into w’'={wet(o1), — flammable(o1)}. The action
light-fire (ol) executed next, does not change w’ so w’ remains the result of al.

2. Action a2=(light-fire;pour-water) (ol), run on w, starts with
light-fire(ol), transforming w into w”={flammable(ol), on-fire(ol),
—wet(o1)}. The next action, pour-water (o1), executed on w” again returns w’.

3. a3=flammable (X)=1light-fire (X) /pour-water (X) (ol) results in w”
since its condition, flammable (ol) is tin w;

4., Action a4=(pour-water || light-fire) (ol), run on w, executes both
pour-water (ol) and light-fire(ol) at the same time. Table 6 contains
u™, u~ computed by Algorithm 5 for these actions.

Actions pour-water (0ol) and 1ight-fire (ol) have conflicting effects on
literals:

Table 6 Effects of pour-water (ol) and light-fire (ol)

ut u~
pour-water (ol) wet(ol), — flammable(ol) flammable(ol), — wet(ol), on-fire(o1)
light-fire (ol) on-fire(ol), — wet(o1) — on-fire(ol), — flammable(o1)

@ Springer

A paraconsistent approach to actions 245

— —flammable(ol): added by pour-water(ol) and removed by
light-fire(ol);

— on-fire(ol), —wet(ol): removed by pour-water(ol) and added by
light-fire(ol).

The inconsistent effects are reflected by inconsistency of corresponding literals.
The resulting world will then consist of literals: flammable(ol), — flammable(ol),
on-fire(o1), — on-fire(ol), wet(ol), — wet(o1).

Note that in parallel composition act||act, both actions are executed when their precon-
ditions are both true. If this is not the case, one or none of act, act; is executed. To make
sure that both actions are actually executed, one can use conditional specification with the
condition being the conjunction of preconditions of act; and preconditions of act.

The semantics of action instances is given in Table 7.

3.3 Tractability of the approach

For any ACTLOG specification of an action act (x), by #D we denote the sum of sizes of all
domains in the specification, #L stands for the sum of lengths of composite actions’ specifi-
cations and by #M we denote the number of 4QI2°! modules occurring in the specification.
For belief base A, by #A we denote the number of all literals appearing in A. Note that #A
is polynomial in the size of #D (the size of relations is constant). In real-world applications,
#M as well as #D are manageable by the hardware/database systems used, so is #A.

The following theorems can be proved similarly to analogous results for 4QL [34-36]
and 4QLB¢ [5].

Theorem 1 Let A be a belief base. For every ACTLOG specification of action act(x) and
a tuple of constants a, compatible with X, the preconditions and effects of act(a) can be
computed in deterministic polynomial time in max{#D, #L, #P, #A}.

Proof (Sketch) First assume that act is an atomic action. The preconditions of act(a) are
expressed by a 4QLB¢! formula whose evaluation on a belief base is deterministic polyno-
mial [5]. Computing the effects of act requires to iterate through 3i-worlds in the belief
base A. In each iteration zero or two well supported models are computed which requires

Table 7 Semantics of actions’ instances

For any atomic action instance act (@), act (a)(A4) 4eF A’, where A’ is defined by Algorithm 5;

(act;act)(@)(A) ¥ acta(@)(act1(a@)(A));

(F = act1/act2)(@)(4) = zz;%ggg :)zt}llzrrlwf;(j)(A) -

(actilacta)(@)(A) & {
(ugct1 (a) (w) U ugctz(r’z) (w)\ (ué_lc"—l (a) (w) U Uacts(@) ()u

+ - - +
{621 L€ (ugee, @) (W) NUgery @) (W)U (gt @) (W) NUgery(a (W)}
|we A};
where, for i € {1,2}, u;a‘-cti(a) and ugcti(a) refer to sets of literals computed in Algorithm 5

applied to action act;(a).

@ Springer

246 L. Biatek et al.

deterministic polynomial time in #D [5, 36] The number of worlds is not greater than #A,
so altogether deterministic polynomial time (in max{#D, #P, #A}) suffices.

If act is a composite action, recursive procedure based on clauses given in Table 7, can
be executed. The recursion depth is limited by #L and each recursion step requires either
constant time or (when atomic action is reached), deterministic polynomial time, as above.
Altogether deterministic polynomial time (in max{#D, #L, #P, #A}) suffices as well. [

Theorem 2 ACTLOG captures deterministic polynomial time over linearly ordered
domains. That is, every atomic action with polynomially computable preconditions and
effects can be expressed in ACTLOG.

Proof (Sketch) To prove the theorem, a technique similar to one given in [35] can be
applied. That is, as shown there, all stratified DATALOG™ programs can be emulated in 4QL.
It is well-known that over linearly ordered domains, stratified DATALOG™ captures PTIME
[1], so 4QL does, too. The same holds for 4QLBCI, being an extension of 4QL.

Let act be an action with polynomially computable preconditions and effects. Then
such preconditions and effects can be expressed in stratified DATALOG™, so in 4QLB"1, t00.
Since formulas specifying preconditions (like o in Action 3) may refer to 4QLB¢! modules,
they can express any polynomially computable preconditions. The effects are expressed
by 4QLB¢! programs (like 8T, B~ in Action 3), so obviously capture all polynomially
computable effects as well. O

4 A decontamination case study

Let us illustrate our approach by sample actions’ specifications related to a scenario
originally introduced in [16].

4.1 The scenario

Assume that a contamination has been detected in a grid-shaped area and a clean-up mission
is to be started. When the contamination is too strong in a given cell, an evacuation has to
be launched there. Each cell of the grid is characterized by the following features:

— poison concentration level with possible values safe, dangerous and explosive.
When the concentration of the poison is high enough and weather conditions are
adverse, then an explosive state occurs. In such a case, evacuation has to be initiated
immediately, followed by a rescue mission after the explosion;

— current weather conditions given by temperature and pressure (expressed by integers),
as well as humidity with possible values: rain, normal and dry.

When the situation in a cell is safe then no action is required. Otherwise, when the sit-
uation is unsafe or the safety of a cell cannot be determined, relevant actions have to be
applied according to the following rules:

— when safe poison concentration: then unconditionally: situation recognition;
— when dangerous poison concentration then:

— when humidity rain: spread a decontamination powder and then pour a liquid
catalyst;
— when humidity normal or dry: pour the liquid catalyst from the air;

@ Springer

A paraconsistent approach to actions 247

— when explosive poison concentration then:

— before explosion: evacuation;
— after explosion: rescue action.

We assume that a sufficient number of neutralizing ground robots and drones is avail-
able. Each robot and drone is equipped with sensors measuring poison concentration,
temperature, pressure and humidity. The goal is to make all cells in the area safe.

4.2 Sample actions in the case study

Actions will refer to the relations described in Table 8. We assume that these relations are
provided by the underlying belief base.

The most basic ground robot’s activity depends on moving from one place to another.
Action 9 provides its specification.

Action 9 Ground robot R moves to the cell c.

1 action goTo (R, C):

2 preconditions:

3 | safe(C)c{f, i, U} A status(R, ready) A type(R, ground)
4 postconditions:

5 add:

6 status(R, occupied).

7 position(R, C).

8 remove:

9 status(R, ready).

position(R, C’) :— place(C") AC’'#£C.

10
11 end.

Note that the action can be executed only when its preconditions are true. This may
happen when its input belief base entails safe(C)=f, or contains inconsistent information as
to the safety of cell C or C’s safety is unknown, which happens when safe(C) € {f, i, u} is
true.

Table 8 Relations used in the case study

— place(C), indicating that cell C belongs to the considered area;

— concentration(C, PC), indicating the poison’s concentration level PC in cell C;

— safe(C), indicating that cell C is decontaminated;

— temperature(C, T), indicating the temperature level T in cell C;

— pressure(C, P), indicating the pressure level P in cell C;

— humidity(C, H), indicating the humidity level H in cell C;

— position(R, C), indicating that robot R is in the cell C;

— type(R, T), indicating the robot’s R type, where T& {ground, uav};

— status(R, S), indicating the current status S of robot R, where S€ {ready, occupied};

— acceptable(D, P, T), indicating that pressure P and temperature T are suitable for
applying the decontamination method D;

— airSupportNeeded(C), indicating a need for air support in cell C;

— catalystNeeded(C), indicating a need to use a catalyst in cell C;

— checkNeeded(C), indicating a need for a final check in cell C;

— rescueNeeded(C), indicating a need for an after-explosion rescue in C.

@ Springer

248 L. Biatek et al.

Consider the belief base A consisting of the following two 3i-worlds:

— Bl={place(1), place(2), place(3), status(r1, ready), position(r1, 2),
type(rl, ground), safe(1), — safe(1) };

— B2={place(1), place(2), place(3), status(rl, ready), position(rl, 2),
type(rl, ground), safe(1)}.

In BI1, the value of safe(l) is i, the values of status(rl, ready), type(rl, ground)
are t, and airSupportNeeded(1) and catalystNeeded(1) are u making the precondition of
goto (rl, 1) true. Therefore the action is executable on B1.

In B2, the values of safe(1), status(rl,ready) and type(rl,ground) are t, making the
precondition of goto (r1, 1) false. Therefore the action is not executable on B2.

The effects of executing action goto (r1,1) on A is A’ ={B1’, B2}, where:

B1’ = {place(1), place(2), place(3), status(r1, occupied),
position(r1, 1), type(rl, ground), safe(1), — safe(1)}.

Action 10 specifies an action of flying to a given position.

Action 10 Robot r flies to the cell c.

1 action f1yTo (R, C):

2 preconditions:

3 | airSupportNeeded(C) A status(R, ready) A type(R, uav)
4 postconditions:

5 | the sameasin Action 9

¢ end.

In the scenario we have two neutralization actions specified as Action 11 (the decontamina-
tion powder spreading) and Action 12 (the catalyst pouring).

Action 11 Robot R spreads decontamination powder on the cell c.

1 action spreadPowder (R, C):
2 preconditions:
3 position(R, C) A status(R, occupied) A type(R, ground) A
4 Bel(humidity(C, rain)in {t,{ }) A
5 Bel(pressure(C, P) A temperature(C, T) A concentration(C, dangerous)) A
6 acceptable(powderdPlusCatalyst, P, T)
7 postconditions:
8 add:
9 | catalystNeeded(X).
10 end.

@ Springer

A paraconsistent approach to actions 249

Action 12 Robot r pours catalyst on cell c.

action pourCatalyst (R, C):

preconditions:

position(R, C) A status(R, occupied) A type(R, ground) A catalystNeeded(C) A
Bel(pressure(C, P) A temperature(C, V)) A
acceptable(catalystAfterPowder, P, T)
postconditions:

add:

checkNeeded(C).

status(R, ready).

remove:

status(ID, occupied).
catalystNeeded(X).

e % N S s W N =

—
—-

12
13 end.

Action 13 is to be performed under dry and normal weather conditions when air support is
needed and the catalyst should be sprayed from the air.

Action 13 Robot R calls air support for the cell c.

1 action callAirSupport (R, C):

2 preconditions:

3 position(R, C) A status(R, occupied) A type(R, ground) A
4 (Bel(humidity(C, normal)e{t, i }) v

Bel(humidity(X, dry)e{t,{ })) A

5 Bel(pressure(C, P) A temperature(C, T) A concentration(C,dangerous) A
6 acceptable(catalystAfterPowder, P, T)

7 postconditions:

8 add:

9 airSupportNeeded(C).

10 status(R, ready).
11 remove:

12 | status(R, occupied).

13 end.

When air support is called, the robot is free to find another unhandled cell. Later, after the de-
contamination, a (possibly the same) ground robot will return to the cell to verify its safety.
The air-decontamination action is formalized as Action 14.

Action 14 Drone 1D sprays liquid 1.1 over place X.

action spray (ID, X):
preconditions:

‘ airSupportNeeded(X) A position(ID, X) A status(ID, occupied) A type(ID, uav)
postconditions:

add:

checkNeeded(X).
status(ID, ready).
remove:
status(ID, occupied).
airSupportNeeded(X).

e ® 9 o n B ow =

—
5

11 end.

@ Springer

250 L. Biatek et al.

Each ground robot can perform a check by moving to a cell and comparing sensor readings
with the current norm values (Action 15).

Action 15 Robot Rr validates safety of cell c.

action checkCell (R, C):
preconditions:
\ position(R, C) A status(R, occupied) A type(R, ground) A checkNeeded(C)

postconditions:

add:
safe(C) :— Bel(concentration(C,safe)).
—safe(C) :— —Bel(concentration(C,safe)).
status(R, ready).

remove:
status(R, occupied).

11 checkNeeded(C).

12 end.

RN B R VI

—
<

Note that a cell safety is inconsistent when concentration sensor’s readings are contradictory.
Generally, inconsistencies may be produced as the output of action’s postconditions. Using
this property, inconsistencies may be passed between belief bases.

4.3 Composite actions in the case study

Composite actions allow one to specify complex procedures rather than planning them
properly from scratch. Although the planner could eventually find appropriate ordering of
actions, hinting the typical solutions may significantly reduce planning time and resources.
An example of a composite action is given as Action 16.

Action 16 A composite action for a complex decontamination procedure.

1 action decontaminateFromAir (R, UAV, C):
2 composite:

3 callAirSupport(R, C);

4 flyTo(UAV, C);

5 spray(UAV, C);

6 checkCell(C, R)

7 end.

Remark 6 Action 16 illustrates the performance gain with a composite action. The action
consists of a sequential composition of four atomic actions and each one has six pos-
sible actions (goTo, £1yTo, spreadPowder, pourCatalyst, callAirSupport
and checkCell) that might be tried before selecting a proper one for decontamination.
Altogether, this gives 6* = 1296 possible actions’ sequences checks to construct this plan.
When Action 16 is introduced, the number of checks can be reduced to just one for
the composite action. Also the branching factor in planning is decreased. Clearly, the
performance gain in more complex real-world scenarios may be more spectacular.

@ Springer

A paraconsistent approach to actions 251

Action 17 specifies a parallel action. A catalyst can be poured simultaneously with the
powder spread which may save the time spent on the whole decontamination process.

Action 17 Simple parallel action.

1 action decontaminateWithCatalyst (R1, R2, C):

2 composite:
3 | spreadPowder(R1, C) Il pourCatalyst(R2, C)
4 end.

Finally, conditional composite actions can be easily used in the scenario. Decontamination
actions in Section 4.2 contain humidity checks to select the appropriate method. Action 18
is such a higher-level action. It also demonstrates the possibility of providing additional
preconditions for the entire composite action. Observe that each of atomic actions included
in a composite action can change the environment and affect preconditions of other atomic
actions (and, e.g., break their sequential execution).

Action 18 A single action dealing with all humidity conditions.

1 action unifiedDecontamination (R, C):

2 preconditions:

3 position(R, C) A status(R, occupied) A type(R, ground) A
4 concentration(C, dangerous)

5 composite:
6

7

8

Bel(humidity(C, rain)) =
decontaminateWithCatalyst(R, C) / callAirSupport(R, C)

end.

All actions can be freely composed to achieve the desired specification. Action 19 provides
a specification of this kind.

Action 19 More advanced action for two agents.

1 action decontaminateAndvalidate (R1, R2, Cl, C2, C3):
2 composite:

3 unifiedDecontamination(R1, C1);

4 (goTo(R1, C2) Il checkCell(R2, C1));

5 goTo(R2, C3)

6 end.

5 Related work

Theories of action and change have been intensively investigated during the past decades
(see books [40, 43, 45, 48, 53] and references there). Below we concentrate on the most
relevant results.

Though ACTLOG is influenced by the STRIPS formalism [22], it is more general. While
STRIPS uses classical logic as the specification language, our approach is based on a

@ Springer

252 L. Biatek et al.

non-classical four-valued formalism, allowing for inconsistencies, ignorance and doxas-
tic reasoning. While STRIPS actions are state transformers, in ACTLOG they transform
belief bases representing possible alternatives and non-determinism in a complexitywise
controlled manner. Moreover, unlike in SRIPS, ACTLOG’s actions’ effects are expressed by
rules capturing PTIME specifications.

After STRIPS, a great deal of attention has been devoted to the reasoning about action
and change. The main formalisms developed in this area are Situation Calculus (SC), Flu-
ent Calculus (FC), Event Calculus (EC) and Temporal Action Logic (TAL). SC, introduced
in [38], has been intensively studied and developed [32, 42, 43]. The main concepts in SC
are actions, fluents and situations. Actions are domain elements, situations are sequences of
actions and fluents are features whose values may change over time. As an implementation
tool built over SC, the GOLOG logic programming language has been developed [33]. The
FC formalism is a variant of SC, where situations and states are separated: situations rep-
resent the history while states represent the current state of the world [51, 53]. A constraint
logic programming framework based on the FC has been designed [52]. In the EC formal-
ism [30], actions (events) and fluents are considered. Fluents are evaluated in time points.
EC, restricted to Horn clauses with negation, can be run in Prolog. For an exhaustive pre-
sentation of EC see [40]. A comprehensive approach to temporal action specification based
on Temporal Action Logic (TAL), together with a forward chaining planner, has been devel-
oped in a series of papers — see, e.g., [7-9]. TAL-based composite actions with constraints
are investigated in [10]. Though these formalisms allow for composite actions and address
incomplete information, none of them attacks 3i-related phenomena in a comprehensive
manner. In particular, no tools for handling and disambiguating inconsistent information are
provided.

Since early 1980s, plans more complex than sequences of actions have been considered.
SIPE (System for Interactive Planning and Execution Monitoring [56]) with its later suc-
cessor SIPE-2 [57] consider plans to be acyclic graphs with actions executed in parallel or
sequentially. This planning system explicitly supports parallelism and conditionals which
is also one of our goals to achieve. However our planning mechanism supports 3i environ-
ments while SIPE-based systems recognize general uncertainty of information represented
by action’s likeliness-of-success parameter. In our opinion, ACTLOG ensures higher level of
freedom in defining actions and modeling realistic environments. Later, composite actions
were investigated in many works, e.g., in [19, 27, 39]. Parallel action compositions have
been used in the SC, FC, EC, TAL frameworks, and also, e.g., in [41] (determining which
actions can be executed in parallel), [31] (developing a planning architecture with paral-
lel action executions) or [17] (supporting parallel actions prepared especially for IPC-4
planning contest).

Unlike other approaches, ACTLOG offers a uniform framework allowing for tractable
forms of paracomplete, paraconsistent, and doxastic reasoning. While guaranteeing
tractability of reasoning and computing actions’ effects, it is expressive enough to capture
all tractable actions’ specifications and underlying reasoning processes.

6 Conclusions
The paper presents a rule-based language ACTLOG developed for specifying actions

in informationally complex and possibly defective environments. ACTLOG complements
other approaches by providing rich and comfortable tools for handling inconsistency and

@ Springer

A paraconsistent approach to actions 253

ignorance in a tractable manner. Moreover, the involved agents can have their own belief
bases or share beliefs in a group. The language permits to evaluate belief operators on arbi-
trary belief bases, not necessarily on the global one. This supports contemporary approaches
to individual and group reasoning.

Planning in situated systems is a complex issue, substantially affecting their perfor-
mance. To overcome this complexity, predefined plan skeleton libraries are typically being
used rather than planning from the first principles. However, plan libraries are applicable
when the environment and goals are recognized at least to some extent. When agents explore
unknown environments, planning from scratch may turn out necessary: the predefined
composite actions as plans’ building blocks, may reduce the complexity of planning.

We have illustrated ACTLOG with a scenario adapted form the literature. We demon-
strated that the generated plans may result in unknown or inconsistent results being still
valuable: in situations where other frameworks fail, ACTLOG may deliver a feasible plan to
be monitored and updated during its execution. This is especially important in critical/rescue
situations.

Summing up, ACTLOG provides a nuanced action specification tools, allowing for subtle
interplay among various forms of nonmonotonic, paraconsistent, paracomplete and doxastic
reasoning methods applicable in informationally complex environments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley Pub. Co., Reading (1996)
2. Belnap, N.: How a Computer Should Think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy,

pp. 30-55. Oriel Press, Stocksfield (1977)

3. Bertossi, L., Hunter, A., Schaub, T.: Introduction to inconsistency tolerance. In: Bertossi et al. (ed.).
Inconsistency Tolerance, LNCS, pp. 1-14

4. Bertossi, L., Hunter, A., Schaub, T. (eds.): Inconsistency Tolerance, LNCS, vol. 3300. Springer, Berlin
(2005)

5. Biatek, L., Dunin-Keplicz, B., Szatas, A.: Rule-Based Reasoning with Belief Structures. In:
Kryszkiewicz, M., Appice, A., Slgzak, D., Rybinski, H., Skowron, A., RaS, Z. (eds.) Foundations of
Intelligent Systems, Proceedings of ISMIS Conference. LNAI, vol. 10352, pp. 229-239. Springer (2017)

6. Biatek, L., Dunin-Keplicz, B., Szatas, A.: Towards a Paraconsistent Approach to Actions in Distributed
Information-Rich Environments. In: Ivanovi¢, M., Badica, C., Dix, J., Jovanovié, Z., Malgeri, M.,
Savi¢, M. (eds.) Proceedings of IDC - Intelligent Distributed Computing XI. Studies in Computational
Intelligence, vol. 737, pp. 49-60. Springer (2017)

7. Doherty, P., Kvarnstrom, J.: TALplanner: A temporal logic based forward chaining planner. Ann. Math.

Artif. Intell. 30, 119-169 (2001)
. Doherty, P., Kvarnstrom, J.: TALplanner: A temporal logic-based planner. Al Mag. 22(3), 95-102 (2001)
9. Doherty, P., Kvarnstrom, J.: The Handbook of Knowledge Representation. In: Lifschitz, V., Van
Harmelen, F.,, Porter, F. (eds.), pp. 709-757. Elsevier (2008)

10. Dobherty, P., Kvarnstrom, J., Szatas, A.: Temporal Composite Actions with Constraints. In: Brewka, G.,
Eiter, T., Mcilraith, S. (eds.) Proceedings of 13Th International Conference KR: Principles of Knowledge
Representation and Reasoning, pp. 478-488. AAAI Press (2012)

11. Doherty, P., Szatas, A.: Stability, supportedness, minimality and Kleene Answer Set Programs. In:
Eiter, T., Strass, H., Truszczynski, M., Woltran, S. (eds.) Advances in Knowledge Representation, Logic
Programming, and Abstract Argumentation, LNCS, vol. 9060, pp. 125-140. Springer International
Publishing (2015)

o0

@ Springer

http://creativecommons.org/licenses/by/4.0/

254 L. Biatek et al.

12. Dunin-Keplicz, B., Szatas, A.: Epistemic Profiles and Belief Structures. In: Proceedings of KES-AMSTA
2012: Agents and Multi-Agent Systems: Technologies and Applications. LNCS, vol. 7327, pp. 360-369.
Springer (2012)

13. Dunin-Keplicz, B., Szatas, A.: Taming complex beliefs. Trans. Comput. Collective Intell. XI LNCS
8065, 1-21 (2013)

14. Dunin-Keplicz, B., Szatas, A.: Indeterministic Belief Structures. In: Jezic, G., Kusek, M., Lovrek,
1., Howlett, J., Lakhmi, J. (eds.) Agent and Multi-Agent Systems: Technologies and Applications:
Proceedings of 8th International Conference KES-AMSTA, pp. 57-66. Springer (2014)

15. Dunin-Kgplicz, B., Verbrugge, R.: Teamwork in Multi-Agent systems. a formal approach. Wiley, New
York (2010)

16. Dunin-Keplicz, B., Verbrugge, R., Slizak, M.: TeamLog in action: a case study in teamwork. Comput.
Sci. Inf. Syst. 7(3), 569-595 (2010)

17. Edelkamp, S., Hoffmann, J.: PDDL2: The language for the classical part of the 4th international planning
competition. In: Proceedings of the 4th International Planning Competition (2004)

18. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: Planning under Incomplete Knowledge. In:
Lloyd, J., Dahl, V., Furbach, U., Kerber, M., Lau, K.K., Palamidessi, C., Pereira, L., Sagiv, Y., Stuckey,
P. (eds.) Proceedings of Computational Logic: 1St International Conference, pp. 807-821. Springer
(2000)

19. Eiter, T., Faber, W., Pfeifer, G.: Declarative Planning and Knowledge Representation in an Action Lan-
guage. In: Sugumaran, V. (ed.) Intelligent Information Technologies: Concepts, Methodologies, Tools,
and Applications, pp. 192-221. IGI Global (2008)

20. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about knowledge the. MIT Press, Cambridge
(2003)

21. Ferraris, P., Lifschitz, V.: On the Minimality of Stable Models. In: Balduccini, M., Son, T. (eds.) Logic
Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS, vol. 6565, pp. 64-73.
Springer (2011)

22. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem
solving. In: Proceedings of the 2Nd International Joint Conference on Artificial Intelligence, pp. 608—
620. IJICAI’71, Morgan Kaufmann Publishers Inc. (1971)

23. Fitting, M.: Bilattices are Nice Things. In: Proceedings of Philog Conference on Self-Reference. The
Danish Network for Philosophical Logic and Its Applications, Copenhagen (2002)

24. Fitting, M.C.: Bilattices in Logic Programming. In: Epstein, G. (ed.) 20Th International Symposium on
Multiple-Valued Logic, pp. 238-247. IEEE CS Press, Los Alamitos (1990)

25. Ginsberg, M.: Multi-Valued Logics. In: 5Th National Conference on Al Proceedings of AAAI-86. pp.
243-247 (1986)

26. Ginsberg, M.: Multivalued logics: a uniform approach to reasoning in AI. Comput. Intell. 4, 256-316
(1988)

27. Giunchiglia, E., Lee, J., Lifschitz, V., Mc-Cain, N., Turner, H.: Nonmonotonic causal theories. Artif.
Intell. 153(1-2), 49-104 (2004)

28. Hewitt, C.: Formalizing common sense for scalable inconsistency-robust information integration using
Direct Logic reasoning and the actor model. arXiv:0812.4852 (2008)

29. Hewitt, C., Woods, J. (eds.): Inconsistency Robustness. College Publications (2015)

30. Kowalski, R., Sergot, M.: A logic-based calculus of events. N. Gener. Comput. 4(1), 67-95 (1986)

31. Lever, J., Richards, B.: parcPlan: a Planning Architecture with Parallel Actions, Resources and Con-
straints. In: Ras, Z.W., Zemankova, M. (eds.) Methodologies for Intelligent Systems, pp. 213-222.
Springer Berlin Heidelberg, Berlin (1994)

32. Levesque, H., Pirri, F., Reiter, R.: Foundations for the situation calculus. Electron. Trans. Al 2(3-4),
159-178 (1998)

33. Levesque, H., Reiter, R., Lespérance, Y., Lin, F,, Scherl, R.: GOLOG: a logic programming language for
dynamic domains. J. Log. Program. 31, 59-84 (1997)

34. Matuszynski, J., Szatas, A.: Living with Inconsistency and Taming Nonmonotonicity. In: De Moor, O.,
Gottlob, G., Furche, T., Sellers, A. (eds.) Datalog Reloaded. LNCS, vol. 6702, pp. 384-398. Springer
(2011)

35. Matuszynski, J., Szatas, A.: Logical foundations and complexity of 4QL, a query language with
unrestricted negation. J. Appl. Non-Class. Log. 21(2), 211-232 (2011)

36. Matuszynski, J., Szatas, A.: Partiality and Inconsistency in Agents’ Belief Bases. In: Barbucha, D.,
Le, M., Howlett, R., Jain, L. (eds.) KES-AMSTA. Frontiers in Artificial Intelligence and Applications,
vol. 252, pp. 3—-17. I0S Press (2013)

@ Springer

http://arXiv.org/abs/0812.4852

A paraconsistent approach to actions 255

37.

38.

39.
40.

41.

42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Matuszyniski, J., Szatas, A., Vitdria, A.: Paraconsistent Logic Programs with Four-Valued Rough Sets.
In: Chan, C.C., Grzymala-Busse, J., Ziarko, W. (eds.) Proceedings of 6Th International Conference on
Rough Sets and Current Trends in Computing (RSCTC 2008). LNAL vol. 5306, pp. 41-51 (2008)
McCarthy, J., Laboratory, S.A.L: Situations, Actions, and Causal Laws. Memo (Stanford Artificial
Intelligence Project), Stanford University, Al Project (1963)

Mcilraith, S., Fadel, R.: Planning with Complex Actions. In: Proceedings NMR’02, pp. 356-364 (2002)
Mueller, E.: Commonsense reasoning. An Event Calculus Based Approach. Morgan Faufmann, San
Mateo (2006)

Regnier, P., Fade, B.: Complete Determination of Parallel Actions and Temporal Optimization in Linear
Plans of Action. In: European Workshop on Planning, pp. 100-111. Springer, Berlin (1991)

Reiter, R.: The Frame Problem in the Situation Calculus: a Simple Solution (Sometimes) and a Com-
pleteness Result for Goal Regression. In: Lifshitz, V. (ed.) Artificial Intelligence and Mathematical
Theory of Computation: Papers in Honour of John Mccarthy, pp. 359-380. Academic Press Professional
Inc. (1991)

Reiter, R.: Knowledge in action: Logical foundations for specifying and implementing dynamical
systems. MIT Press, Cambridge (2001)

Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic programs and
deductive databases. J. Autom. Reason. 13(1), 145-172 (1994)

Sandewall, E.: Features and Fluents: The Representation of Knowledge about Dynamical Systems, vol.
1 Clarendon Press (1994)

Shepherdson, J.: Negation in Logic Programming. In: Minker, J. (ed.) Foundations of Deductive
Databases and Logic Programming, pp. 19-88, Morgan Kaufmann (1988)

Shieber, S.M.: Solving Problems in an Uncertain World. Bachelor’s thesis, Harvard College (1981)
Shoham, Y.: Reasoning about change: Time and causation from the standpoint of artificial intelligence.
MIT Press, Cambridge (1987)

Soininen, T., Niemela, I.: Developing a Declarative Rule Language for Applications in Product Con-
figuration. In: Gupta, G. (ed.) Proceedings of PADL’99. LNCS, vol. 1551, pp. 305-319. Springer
(1999)

Szatas, A.: How an agent might think. Log. J. IGPL 21(3), 515-535 (2013)

Thielscher, M.: Introduction to the fluent calculus. Electron. Trans. Al 2(3-4), 179-192 (1998)
Thielscher, M.: FLUX: a logic programming method for reasoning agents. Theory Pract. Log. Pro-
gramm. 5(4-5), 533-565 (2005)

Thielscher, M.: Reasoning robots: The art and science of programming robotic agents. Springer, Berlin
(2011)

Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics (intelligent robotics and autonomous agents). The
MIT Press, Cambridge (2005)

Vitéria, A., Matuszynski, J., Szatas, A.: Modeling and reasoning with paraconsistent rough sets. Fund.
Inf. 97(4), 405-438 (2009)

Wilkins, D.E.: Domain-independent planning representation and plan generation. Artif. Intell. 22(3),
269-301 (1984)

Wilkins, D.E., Myers, K.L., Lowrance, J.D., Wesley, L.P.: Planning and reacting in uncertain and
dynamic environments. J. Exper. Theor. Artif. Intell. 7(1), 121-152 (1995)

Zadeh, L.: Fuzzy sets. Inf. Control 8, 333-353 (1965)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	A paraconsistent approach to actions
	Abstract
	Actions in informationally complex environments
	The background formalism
	The basic four-valued logic
	Syntax of R4
	Semantics of R4

	Doxastic extension of R4
	Syntax of RBel4
	Semantics of RBel4

	Representing and querying belief bases

	The ActLog language
	Atomic actions
	Composite actions
	Tractability of the approach

	A decontamination case study
	The scenario
	Sample actions in the case study
	Composite actions in the case study

	Related work
	Conclusions
	References

