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Abstract The conformal prediction framework allows for specifying the probability of
making incorrect predictions by a user-provided confidence level. In addition to a learning
algorithm, the framework requires a real-valued function, called nonconformity measure, to
be specified. The nonconformity measure does not affect the error rate, but the resulting effi-
ciency, i.e., the size of output prediction regions, may vary substantially. A recent large-scale
empirical evaluation of conformal regression approaches showed that using random forests
as the learning algorithm together with a nonconformity measure based on out-of-bag errors
normalized using a nearest-neighbor-based difficulty estimate, resulted in state-of-the-art
performance with respect to efficiency. However, the nearest-neighbor procedure incurs a
significant computational cost. In this study, a more straightforward nonconformity mea-
sure is investigated, where the difficulty estimate employed for normalization is based on
the variance of the predictions made by the trees in a forest. A large-scale empirical eval-
uation is presented, showing that both the nearest-neighbor-based and the variance-based
measures significantly outperform a standard (non-normalized) nonconformity measure,
while no significant difference in efficiency between the two normalized approaches is
observed. The evaluation moreover shows that the computational cost of the variance-based
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measure is several orders of magnitude lower than when employing the nearest-neighbor-
based nonconformity measure. The use of out-of-bag instances for calibration does,
however, result in nonconformity scores that are distributed differently from those obtained
from test instances, questioning the validity of the approach. An adjustment of the variance-
based measure is presented, which is shown to be valid and also to have a significant positive
effect on the efficiency. For conformal regression forests, the variance-based nonconformity
measure is hence a computationally efficient and theoretically well-founded alternative to
the nearest-neighbor procedure.

Keywords Conformal prediction · Nonconformity measures · Regression · Random
forests

Mathematics Subject Classification (2010) 62G08 · 62G15 · 62J02 · 62M20

1 Introduction

When employing the conformal prediction (CP) framework [17], prediction regions rather
than point predictions are output, and the error rate, i.e., the probability of excluding the
correct label for a test instance, is determined by a user-provided confidence level. Rather
than outputting prediction regions of a specific size, CP allows for providing regions of dif-
ferent sizes, something which may be useful in many scenarios. For example, in the medical
domain, the ability to assess the uncertainty of a prediction related to an individual patient,
rather than at the group level, may be crucial input for decisions concerning alternative
treatments for the patient.

CP relies on real-valued functions, called nonconformity measures, that provide esti-
mates for how different a new example is from a set of previously observed examples. It is
possible to design many different nonconformity functions for a specific predictive model,
and each will result in a different conformal predictor. All conformal predictors are valid,
i.e., the probability of excluding the correct label is not larger than one minus the confidence
level, under the assumption of exchangeability, i.e., the nonconformity scores are identically
distributed as generated by a stationary process [17]. However, there may be significant dif-
ferences in terms of their efficiency, i.e., the size of output prediction regions, meaning that
the informativeness of the output of different conformal predictors may vary substantially.
For classification, efficiency is often measured as the (average) number of labels present
in the prediction sets, while for regression, which is investigated in this paper, efficiency is
most commonly measured as the (average) size of the prediction intervals.

CP was originally introduced as a transductive approach [7], which requires the learning
of a new model for each new test instance to be predicted. Since this in many cases can be
computationally prohibitive, inductive conformal prediction (ICP) was suggested [13]. In
ICP, which is the focus of this study, a single model is learned from the training data and
that model is then used for predicting all test instances. In ICP, however, the calculation of
the nonconformity scores requires comparing predicted values with true target values that
have not been used to form the predictions, and the standard procedure to achieve this is
to set aside a separate subset of the training examples, called the calibration set. However,
when the underlying model is an ensemble constructed using bagging, such as a random
forest [5], there is also an option to use out-of-bag estimates for the calibration, effectively
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allowing all training data to be used for constructing the underlying model, something which
has been exploited in the context of ICP for bagged ANNs [9] and random forests [8].
All prediction intervals output by a standard ICP regressor will be of the same size. Using
normalization [11] though, it is possible to produce tighter intervals for easier instances, and
larger intervals for more difficult ones. The normalization component of the nonconformity
function, consequently, estimates the difficulty of a specific test instance, and again, the
choice of function may have a large impact on efficiency.

Until recently, most studies on inductive conformal regression have focused on one spe-
cific underlying model, using a limited number of data sets, making them serve mainly
as proofs-of-concept rather than allowing for statistical inference; see e.g., [10, 13]. The
apparent need for larger studies evaluating techniques for producing efficient conformal
predictors, motivated the study in [8], in which the use of a random forest as the underly-
ing model was compared to existing state-of-the-art conformal regressors, based on neural
networks [12] and k-nearest neighbors [14]. A number of nonconformity measures were
investigated, including the option to use out-of-bag estimates for the necessary calibra-
tion. The results in [8] showed that for almost all considered confidence levels and using
both standard and normalized nonconformity functions, a random forest conformal pre-
dictor calibrated using a normalized nonconformity function based on out-of-bag errors of
neighboring instances, produced significantly more efficient conformal predictors than the
existing alternatives.

However, the use of a nonconformity measure based on the k nearest neighbors requires
access to all training instances, even at the time the model is deployed, something which
occasionally may limit the usefulness of the approach, e.g., when there are size constraints,
such as on mobile devices, or when data is highly sensitive and may not be re-distributed.
A possibly even more important constraint is the computation time, both for training and
testing. The computational cost of calculating the average error of the k nearest neighbors
for each example in the training set is quadratic in the number of examples, hence incurring
a substantial additional cost for employing the conformal framework. This may be a limiting
factor in particular when handling large training sets. Even for testing, there is an additional
cost when using the nearest-neighbor nonconformity measure, since the distance of each
test instance to all training instances needs to be calculated. To increase the applicability
of conformal regression using random forests, there is hence a need for nonconformity
measures with lower computational cost. One such candidate approach is to estimate the
difficulty of an instance, not by averaging the errors of its neighbors, but by utilizing the fact
that each prediction of a random forest is formed by averaging votes of the individual trees
in the forest. For difficult cases, one would expect a larger degree of disagreement among
the trees, i.e., a higher variance among the individual predictions, than for easier cases. In
other words, variance could be used as an estimate of the difficulty. In fact, this idea is not
entirely novel, but was already investigated for k-nearest neighbor regressors in [14], where
the variance of the target value of the k neighbors was one of several proposed estimates of
difficulty. The main question of this study is whether or not this is an effective approach for
forests of regression trees.

In ICP, it is imperative that the nonconformity scores are calculated in the same way
for the calibration instances and the test instances. Unfortunately, in previous studies, the
use of out-of-bag instances for calibration has been employed without any theoretical jus-
tification. In fact, the out-of-bag instances have been treated as a regular calibration set,
without any modification to the ICP procedure. In [8], it was argued that calibrating on out-
of-bag instances leads to conservative conformal predictors, simply because the out-of-bag
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error overestimates the expected error of the random forest. In real-world situations, a con-
servative model is of course preferred to a model with a higher error rate than allowed by
the significance level. However, it must be noted that in order to maximize efficiency, the
expected error rate should not be less than one minus the confidence level. With this in
mind, we will in this study analyze the general procedure of using out-of-bag estimates
for calibration, both theoretically and empirically. A specific goal is to investigate nec-
essary modifications to the straightforward use of out-of-bag instances for calibration, in
order to calculate scores for calibration and testing in the exact same way, i.e., to guarantee
exchangeability.

The main contributions of the paper are:1

– a large-scale empirical investigation comparing the use of variance as an estimate of
difficulty for conformal regression forests to the current state-of-the-art, i.e., using k-
nearest neighbor for difficulty estimation

– a theoretical investigation of the standard approach to using out-of-bag instances as a
substitute for a separate calibration set

– a modified procedure for using out-of-bag instances for obtaining calibration scores,
which is shown to ensure exchangeability

– an empirical comparison of the standard and modified procedures when using variance
as a measure of difficulty.

In the next section, we formalize the conformal regression framework. In Section 3, we
describe the current state-of-the-art approach for conformal regression, i.e., random forests
using out-of-bag errors of neighboring instances, as well as the proposed variance-based
approach, which instead of employing the nearest-neighbor procedure uses the variance of
the predictions made by the individual trees to normalize the prediction regions. The setup
for, and the results from, the empirical investigation are presented in Section 4. The use of
out-of-bag instances for the calibration is then investigated theoretically in Section 5 and
a modified procedure is proposed, analyzed and evaluated, in order to address the issue
with nonconformity scores not being identically distributed for out-of-bag instances and
test instances. Finally, we summarize the main conclusions and outline directions for future
work in Section 6.

2 Background

Predictions of a conformal regressor take the form of real-valued intervals (a, b), where
P(a ≤ y ≤ b) ≥ 1 − δ for a test pattern x with true output value y and a user-specified
significance level δ. To produce such prediction intervals, a conformal regressor utilizes a
nonconformity measure, which is a real-valued function that measures the strangeness of an
example (x, y). This nonconformity measure is typically based on the prediction error of a
traditional machine learning model, called the underlying model of the conformal regressor.
Based on the nonconformity scores of examples with known labels, a conformal predic-
tor uses hypothesis testing to reject (or fail to reject) tentative output values ỹ ∈ R at

1An earlier version of this paper was presented at the 5th International Symposium on Conformal and Prob-
abilistic Prediction with Applications, on April 20-22, 2016 [3]. This paper extends the previous with the
analysis of the use of out-of-bag instances for calibration, the adjusted method for calculating variance using
out-of-bag predictions, its theoretical guarantees and experimental results comparing the unadjusted and
adjusted methods.
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significance δ. For regression problems, the nonconformity measure is most often simply
the absolute prediction error [12–14], i.e.,

αi = A(xi , yi , h) = |yi − ŷi | = |yi − h(xi )|, (1)

where h is the underlying model trained on the problem in question, e.g., a regression tree,
a neural network or an ensemble model.

To train an inductive conformal regressor, the following procedure is used:

1. Divide the training set Z = {(x1, y1), ..., (xl , yl)} into two disjoint subsets, Zt (a
proper training set) and Zc (a calibration set) such that:

– Zt = {(x1, y1), ..., (xm, ym)}
– Zc = {(xm+1, ym+1), ..., (xl , yl)}

2. Train the underlying model h using Zt .
3. Use the nonconformity measure, e.g. (1), to measure the nonconformity of the examples

in Zc, obtaining a list, sorted in descending order, of calibration scores S = α1, ..., αq

where q = |Zc|.
When a new test instance xl+1 arrives, a prediction region is constructed as:

1. Obtain a prediction ŷl+1 = h(xl+1).
2. Find the calibration score αs(δ) where s(δ) = �δ(q + 1)�.
3. Using the (partial) inverse of the nonconformity measure, obtain the largest error that is

consistent with δ, i.e., A−1(αs(δ)). This is the maximum error made by h on xl+1 with
confidence 1 − δ.

If the nonconformity measure in (1) is used, the predictive step simply translates into a
prediction region for xl+1 being constructed as

Ŷ δ
l+1 = ŷl+1 ± αs(δ), (2)

since, with probability 1 − δ, the underlying model h will not make an absolute prediction
error greater than αs(δ).

It must be noted that when using (1) and (2), the conformal regressor will, for any specific
significance level δ, always produce prediction intervals of the same size for every xl+1; i.e.,
the distance between the error bounds will not be dependent on properties of a specific test
instance. It is, however, possible to introduce normalized nonconformity measures, where
the absolute error is divided by a term σi that is dependent on the prediction instance, usu-
ally corresponding to the estimated difficulty of the underlying model for making a correct
prediction for that instance; see e.g., [12, 14]:

αi = |yi − ŷi |
σi

. (3)

With normalized nonconformity measures, the prediction interval for xl+1 is

Ŷ δ
l+1 = ŷl+1 ± αs(δ)σl+1 . (4)

The motivation for employing normalized nonconformity functions is that instances esti-
mated to be easier to predict will be assigned narrower intervals than instances that are
judged to be more difficult. It should be noted that there are several ways to estimate the
difficulty; one suggestion is to train another model for predicting the errors; see e.g., [12].
Other approaches use properties of the underlying model; see e.g., [14].



130 H. Boström et al.

3 Methods

In this section, we describe the approach for regression conformal prediction using random
forests. In particular, we describe three nonconformity measures that will be compared in
the empirical investigation: i) a standard (non-normalized) nonconformity measure, ii) a
nonconformity measure where the difficulty is estimated by the average error of the near-
est neighbors, which was shown to result in state-of-the-art performance in [8], and iii) a
variance-based nonconformity measure, originally proposed for k-nearest neighbors in [14],
which previously has not been evaluated for random forests.

3.1 Regression conformal prediction using random forests

A random forest [5] is an ensemble consisting of random trees, which are decision trees
generated in a specific way. In order to introduce the necessary diversity, each random tree is
trained on a bootstrap replicate [4], and only a randomized subset of the attributes are avail-
able for the algorithm when optimizing each interior split. The instances that were missing
in the bootstrap replicate, for a specific tree, are said to be out-of-bag (oob) for that tree.
In this study, and similar to [8], we will investigate nonconformity functions that are based
on absolute errors, see (1) and (3), where oob instances are used for calculating calibration
scores, instead of using a separate calibration set. This means that for each instance in the
original training set, only those trees in the generated forest for which the instance is oob,
are used for generating the prediction, i.e., instead of ŷi = h(xi ) in (1) and (3), where h is
a random forest, ŷi = hi(xi ), where hi ⊆ h. The expected number of trees used to form
an oob prediction is approximately 0.368 of the original number of trees, since the prob-
ability of including a training example in a bootstrap replicate is about 0.632 [4], leading
to that prediction errors on the oob instances can be expected to be at least as large as for
independent test instances when using the entire forest, since the underlying model used for
the calibration is weaker. Hence, as argued in [8], calculating nonconformity scores using
oob instances can be expected to not exceed, but also to not reach, the determined error
level, or in other words, to sacrifice efficiency by outputting too conservative predictions. In
Section 5, we analyze this conjecture more thoroughly. It should be noted that since all train-
ing data can be used for constructing the underlying models, these are typically stronger than
the corresponding models trained on a subset, i.e., when excluding the calibration instances,
something which was demonstrated in [8] to result in significant efficiency improvements.

3.2 Non-normalized nonconformity measure

The first nonconformity measure employs (2), i.e., there is no normalization, so all predic-
tion regions will have identical sizes. It must be noted, however, that out-of-bag instances
are used for the calibration instead of a separate calibration set, making it possible to use all
available instances for both the training and the calibration. More specifically, when produc-
ing the nonconformity score for a calibration instance zi , the ensemble used for producing
the prediction ŷi consists of all trees that were not trained using zi , i.e., zi was out-of-bag
for those trees.

3.3 Nearest-neighbor-based normalization

The second nonconformity measure employs normalization using (3), i.e., the sizes of the
prediction regions vary depending on the estimated difficulty of the instances. Inspired by
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nonconformity measures proposed for k-nearest neighbor classifiers [14], this nonconfor-
mity measure estimates difficulty by the (out-of-bag) error of the k nearest neighbors, with
the obvious motivation that low errors for neighboring instances imply a relatively easy part
of the feature space. The exact number of neighbors to use is optimized (between 1 and 45)
for each training set (more precisely, for each fold, when performing cross-validation), and
the k resulting in the smallest average interval size of the resulting conformal regressor is
chosen.

The resulting nonconformity measure for an instance (xi , yi) is

αi = |yi − ŷi |
μi + β

, (5)

where μi is an estimate of the difficulty and β is a parameter, used to control the sensitivity
of the nonconformity measure. The difficulty estimate for this particular nonconformity
measure is the average, distance-weighted, out-of-bag error of the k nearest neighbors, i.e.,

μi =
∑k

n=1 on/dn
∑k

n=1 1/dn

, (6)

where {o1, . . . , ok} are the out-of-bag errors of the k nearest neighbors and {d1, . . . , dk} are
the Euclidean distances of the nearest neighbors to xi plus a small term ε (to avoid division
by zero).

Using this nonconformity function, the prediction intervals become

Ŷ δ
l+1 = ŷl+1 ± αs(δ)(μl+1 + β) (7)

When used with random forests and out-of-bag calibration, this nonconformity measure
was in [8] shown to outperform all competing approaches, including conformal regres-
sors based on neural networks [12] and k-nearest neighbors [14]. Hence, this particular
configuration may be considered as the current state-of-the-art for inductive conformal
regression.

3.4 Variance-based normalization

The third, and last, nonconformity measure estimates difficulty by the variance of the pre-
dictions of the individual trees in the forest. The motivation for this difficulty estimator is
that for easier instances, one may expect a higher degree of agreement among the trees in
the forest. This nonconformity measure has, again, been studied in the context of k-nearest
neighbor regressors [14], but has not previously been investigated for conformal regression
forests. This measure is on the same form as the previous (5), but where μi now corresponds
to the variance of the individual predictions for an instance (xi , yi), i.e.,

μi =
∑s

n=1 p2
n

s
−

(∑s
n=1 pn

s

)2

, (8)

where {p1, . . . , ps} are the predictions of the trees in the forest for which the instance
(xi , yi) is out-of-bag.

Using this nonconformity measure, the prediction intervals are, as for the previous
measure, calculated using (7).
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4 Empirical evaluation

In this section, we first describe the experimental setup, i.e., what algorithms, datasets and
performance metrics have been chosen, and then report the results from the experiment.

4.1 Experimental setup

For the empirical investigation, all competing methods were re-implemented in the Julia
language,2 and a large-scale study, using 33 publicly available data sets from the UCI [1]
and Delve [15] repositories, was performed. The considered data sets are small to medium
sized, ranging from approximately 500 to 10000 instances. To allow for comparing sizes of
prediction regions with the entire output space, the target variable was normalized for each
dataset using

ỹi = ymax − yi

ymax − ymin

, (9)

where ymax and ymin are the highest and lowest output values, respectively, for the dataset.
The same normalization was employed also for each input variable, to avoid choice of scale
having an impact when calculating Euclidean distances for the nearest-neighbor-based non-
conformity measure. The latter has neither any effect on the other nonconformity measures
nor on the underlying random forest models, i.e., the predictive performance is unaffected.

Regarding parameter values, similar settings as in [8] were employed for all data sets
and methods. Specifically, all random forests consisted of 500 random trees, the sensitivity
parameter β was set to 0.01 while the parameter ε was set to 0.001. A ten-fold cross-
validation scheme was adopted with all reported values being averaged over the ten folds.
Results are reported for three confidence levels: 90 %, 95 % and 99 %.

For each method and dataset in the experiments, the error rate, i.e., the fraction of target
values in the test set that fall outside the predicted regions, and the efficiency, i.e., the size of
the predicted intervals, are measured. For a conformal predictor, the error rate should (in the
long run) not exceed one minus the chosen confidence threshold. Hence, by investigating
the error rate, we may confirm (or reject) that this actually holds for a certain predictor.
Given that we have a set of regression conformal predictors, the perhaps most interesting
aspect to compare is the size of the predicted regions, as this directly corresponds to how
informative these regions are. Such a comparison could be done in different ways, e.g.,
comparing extreme values, but we have similar to [8] opted for comparing the average sizes
over all prediction regions.

In order to allow for a comparison of the computational cost for generating and applying
the different nonconformity measures, i.e., during training and testing, respectively, the CPU
times for these activities were recorded, separately from the time taken to build the forests
and obtaining predictions from the individual trees. In the experiment, a DELL T7910 with
two 14-core 2.6 GHz CPUs (E5-2697v3) with 64 GB RAM was employed. The generation
and application of all nonconformity measures was performed on a single core only, while
the forest construction and predictions utilized all cores in parallel.3

To analyze any differences in efficiency between the two normalized approaches, the
correlation coefficient between the estimated difficulty of the test instances and the actual

2www.julialang.org.
3The Julia implementation can be obtained from http://github.com/henrikbostrom/RandomForest.

www.julialang.org
http://github.com/henrikbostrom/RandomForest
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prediction error are reported for each method. The expectation is that a higher correlation
leads to more efficient predictions.

4.2 Experimental results

Table 1 shows the error rates, i.e., the fraction of test instances for which the true target
value falls outside the predicted region, of three methods utilizing different nonconformity
functions: using no normalization (M1); using nearest-neighbor normalization (M2); and,
using variance-based normalization (M3).

Looking at these results, it is apparent that all three methods behave as expected for valid
predictors: the error rates, for each data set, lie close to the predetermined significance level.
A statistical analysis of the error rates at the three confidence levels presented (90 %, 95 %
and 99 %), using a Friedman test followed by a Nemenyi post-hoc test (with alpha=0.05)
[6], shows that: i) M3 has a significantly lower error rate than both M1 and M2 for the
90 % level, ii) M3 has a significantly lower error rate than M1 for the 95 % level, and iii)
M3 has a significantly lower error rate than M2 for the 99 % confidence level. Hence, the
variance-based approach clearly seems to be the most conservative of the three methods.

Looking at the interval sizes tabulated in Table 2, while remembering that the output was
normalized so that an interval size of 1.0 would cover the entire range of the target values,
it can be seen from the averaged values that the best method at the 90 % confidence level
returned prediction regions covering, approximately, 21 % of the range. The corresponding
average values for the 95 % and 99 % confidence levels are (approximately) 26 % and
38 %, respectively. Clearly, these prediction regions must be considered informative. An
analysis of the interval sizes, using the same statistical test as earlier, reveals that there is no
significant difference between M2 and M3 for any of the three confidence levels, while both
M2 and M3 result in significantly smaller interval sizes than M1 for all three confidence
levels (with p-values much smaller than 0.01).

Table 3 displays execution times for the three different methods tested. First listed is the
total time (in seconds) for the tasks common to all methods of training the underlying model
(random forest), collecting out-of-bag predictions and obtaining the individual predictions
for the test instances. As expected, only small variations are observed, since these tasks are
identical for all three approaches.4 Second, the total number of seconds required to generate
the nonconformity measure using the out-of-bag instances is listed. Here, there is a clear
difference between the three methods. M1 requires only that the errors on the out-of-bag
instances are computed and ordered, which is a fairly quick operation. M2, on the other
hand, requires an extra (particularly costly) step of making, for each out-of-bag instance,
an additional prediction using the nearest-neighbor procedure to calculate the normalization
term of the nonconformity measure. Finally, M3, for which normalization does not require
any additional predictive step, the calculation of nonconformity scores comes with very
little overhead compared to the non-normalized variant M1.

Listed in the third column is the total time (in seconds) required to calculate prediction
regions for the test set. Again, the time required for making predictions using the variance-
based M3 is only marginally longer than for the non-normalized M1, while M2 again incurs
a very large overhead.

4The minor observed variations can be explained by factors that have not been controlled, e.g., garbage
collection.
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Table 1 Error rates
Confidence 0.90 0.95 0.99

Dataset \ Technique M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone .099 .101 .104 .050 .053 .049 .010 .013 .010

anacalt .099 .082 .094 .047 .036 .047 .008 .012 .009

bank8fh .100 .099 .098 .049 .050 .047 .011 .011 .009

bank8fm .099 .098 .093 .049 .049 .048 .010 .010 .009

bank8nh .100 .101 .098 .050 .051 .050 .010 .011 .010

bank8nm .100 .102 .098 .050 .051 .048 .009 .011 .010

boston .107 .101 .099 .049 .042 .036 .008 .010 .010

comp .096 .100 .098 .049 .050 .050 .010 .011 .010

concreate .098 .081 .100 .050 .044 .049 .010 .008 .008

cooling .095 .092 .092 .052 .050 .050 .012 .013 .012

deltaA .101 .103 .100 .050 .051 .049 .009 .010 .010

deltaE .099 .103 .099 .051 .053 .048 .010 .012 .010

friedm .097 .098 .093 .050 .046 .050 .008 .004 .007

heating .102 .081 .092 .050 .048 .053 .005 .006 .009

istanbul .105 .108 .099 .050 .052 .050 .007 .011 .007

kin8fh .099 .098 .099 .050 .049 .049 .010 .009 .009

kin8fm .099 .094 .094 .049 .043 .047 .010 .007 .009

kin8nh .099 .100 .098 .049 .048 .048 .009 .009 .008

kin8nm .096 .092 .096 .049 .047 .047 .010 .009 .008

laser .098 .088 .090 .047 .041 .049 .009 .009 .007

mg .097 .097 .095 .046 .055 .051 .009 .013 .012

mortage .091 .087 .091 .044 .034 .044 .009 .007 .008

plastic .101 .107 .098 .052 .050 .050 .008 .015 .007

puma8fh .097 .100 .097 .050 .051 .048 .009 .011 .010

puma8fm .100 .099 .100 .050 .051 .049 .009 .010 .008

puma8nh .100 .102 .096 .051 .050 .047 .010 .010 .009

puma8nm .095 .096 .095 .048 .049 .046 .009 .011 .009

quakes .100 .107 .096 .051 .060 .053 .014 .026 .019

stock .094 .088 .099 .046 .040 .046 .008 .003 .009

treasury .099 .095 .103 .048 .042 .045 .011 .012 .010

wineRed .101 .104 .098 .051 .054 .048 .009 .014 .010

wineWhite .103 .107 .101 .048 .053 .047 .011 .011 .008

wizmir .095 .106 .089 .047 .046 .045 .010 .012 .012

Mean .099 .097 .097 .049 .048 .048 .009 .011 .009

Mean rank 2.26 2.21 1.53 2.32 2.03 1.65 1.95 2.39 1.65

It should be noted that the observed execution times are dependent on the particular
implementation of the algorithms, and possibly some of the performance differences could
be reduced by carefully optimizing the code. However, there is an inherent difference in
computational complexity of the underlying algorithms, which will not disappear even with
smarter implementations. Comparing the computational cost that is specific to performing
conformal prediction, i.e., not including the time for building and obtaining predictions from
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Table 2 Region sizes
Confidence 0.90 0.95 0.99

Dataset \ Technique M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone .234 .214 .214 .321 .274 .282 .544 .463 .495

anacalt .139 .081 .107 .258 .092 .126 .501 .190 .221

bank8fh .300 .290 .268 .377 .361 .342 .533 .538 .585

bank8fm .139 .131 .123 .175 .158 .145 .251 .211 .191

bank8nh .322 .307 .281 .447 .420 .414 .789 .744 .782

bank8nm .145 .121 .111 .210 .160 .141 .399 .245 .217

boston .193 .192 .200 .276 .254 .253 .605 .432 .418

comp .086 .077 .083 .114 .098 .107 .187 .153 .170

concreate .204 .208 .184 .258 .270 .235 .475 .473 .362

cooling .170 .107 .150 .216 .124 .184 .287 .146 .243

deltaA .117 .108 .113 .154 .139 .141 .260 .212 .228

deltaE .174 .170 .172 .215 .215 .214 .315 .305 .304

friedm .215 .205 .217 .258 .243 .269 .360 .319 .406

heating .070 .058 .065 .087 .068 .078 .168 .094 .102

istanbul .260 .247 .257 .318 .315 .336 .491 .497 .494

kin8fh .241 .240 .240 .291 .285 .285 .398 .372 .375

kin8fm .134 .123 .132 .166 .144 .160 .245 .183 .218

kin8nh .413 .404 .408 .488 .472 .478 .622 .595 .613

kin8nm .331 .303 .321 .396 .350 .374 .527 .445 .478

laser .044 .039 .041 .085 .054 .059 .330 .150 .141

mg .243 .172 .163 .341 .221 .201 .596 .322 .336

mortage .022 .019 .021 .036 .027 .032 .073 .044 .059

plastic .549 .545 .592 .644 .637 .734 .807 .851 .943

puma8fh .470 .446 .444 .565 .532 .529 .741 .724 .754

puma8fm .210 .204 .201 .254 .243 .240 .341 .323 .322

puma8nh .438 .427 .416 .543 .518 .503 .731 .697 .697

puma8nm .202 .199 .201 .243 .238 .233 .345 .328 .310

quakes .556 .540 .605 .705 .681 .751 1.000 .900 .942

stock .076 .074 .074 .093 .089 .088 .158 .131 .124

treasury .026 .022 .025 .042 .030 .039 .088 .051 .071

wineRed .366 .375 .336 .495 .499 .452 .734 .721 .636

wineWhite .321 .320 .289 .416 .420 .372 .644 .662 .551

wizmir .059 .058 .059 .074 .072 .073 .139 .126 .125

Mean .226 .213 .216 .290 .264 .269 .445 .383 .391

Mean rank 2.79 1.42 1.79 2.76 1.61 1.64 2.73 1.55 1.73

the underlying model, the variance-based approach is in this experiment several orders of
magnitude faster than the nearest-neighbor approach (the former is on average over twenty
thousand times faster than the latter) and this gap will most likely remain wide even with a
substantially more efficient implementation of the k-nearest neighbor procedure.

Finally, in order to investigate how well the difficulty estimates employed by the nearest-
neighbor and the variance-based approaches actually work, we investigated the correlation
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Table 3 Time taken (in seconds)
to build and obtain predictions
from the underlying models
(identical tasks for all methods),
to generate the nonconformity
functions and to calculate
prediction regions for the test set

Common tasks Calibration Application

Dataset \ Technique M1 M2 M3 M1 M2 M3 M1 M2 M3

abalone 2.91 3.02 2.98 .002 35.1 .003 .000 4.00 .000

anacalt 1.02 .98 1.03 .002 31.8 .003 .000 3.62 .000

bank8fh 6.54 6.60 6.74 .003 151.8 .005 .000 17.19 .000

bank8fm 6.67 6.67 6.78 .005 150.3 .005 .000 17.11 .000

bank8nh 6.47 6.54 6.49 .005 151.0 .006 .000 17.24 .000

bank8nm 6.36 6.43 6.53 .003 150.9 .005 .000 17.21 .000

boston .34 .33 .33 .000 .4 .000 .000 .05 .000

comp 6.67 6.83 6.90 .003 150.3 .007 .000 17.17 .000

concreate .63 .64 .62 .000 1.7 .001 .000 .19 .000

cooling .26 .27 .27 .000 1.0 .001 .000 .11 .000

deltaA 5.35 5.38 5.31 .011 108.5 .005 .000 12.40 .000

deltaE 7.15 7.36 7.37 .004 207.1 .007 .000 23.78 .001

friedm .77 .78 .77 .000 2.3 .001 .000 .27 .000

heating .27 .28 .27 .000 .9 .001 .000 .10 .000

istanbul .36 .36 .36 .000 .5 .000 .000 .05 .000

kin8fh 5.93 5.96 6.19 .003 148.0 .007 .000 16.91 .000

kin8fm 5.94 6.06 6.09 .003 147.6 .005 .000 16.85 .001

kin8nh 6.21 6.26 6.29 .003 147.3 .006 .000 16.89 .000

kin8nm 6.07 6.10 6.18 .003 149.2 .007 .000 17.07 .000

laser .64 .63 .63 .000 1.7 .001 .000 .19 .000

mg .93 .94 .95 .001 3.2 .001 .000 .36 .000

mortage .74 .73 .74 .000 1.8 .001 .000 .20 .000

plastic .49 .50 .49 .001 4.7 .001 .000 .53 .000

puma8fh 6.24 6.31 6.33 .004 149.6 .006 .000 17.04 .000

puma8fm 6.51 6.26 6.26 .003 150.0 .005 .000 17.14 .000

puma8nh 6.22 6.33 6.21 .005 148.7 .006 .000 17.00 .000

puma8nm 6.11 6.22 6.19 .003 146.2 .005 .000 16.71 .000

quakes 1.53 1.48 1.49 .001 8.3 .001 .000 .94 .000

stock .62 .61 .64 .000 1.5 .001 .000 .17 .000

treasury .71 .71 .72 .000 1.9 .001 .000 .23 .000

wineRed .90 .90 .93 .001 4.5 .002 .000 .51 .000

wineWhite 3.32 3.24 3.25 .002 50.6 .017 .000 5.82 .000

wizmir 1.05 1.06 1.06 .001 3.6 .001 .000 .40 .000

Mean 3.39 3.42 3.44 .002 73.1 .004 .000 8.35 .000

Mean rank 1.73 2.03 2.24 1.03 3.00 1.97 1.00 3.00 2.00

coefficients between μi+β and the test error for the two normalized approaches. The results
are displayed in Table 4. When testing for significant differences, the p-value is 0.056 in
favor of M3 over M2, hence indicating that variance in fact may be a more effective way
of ordering instances according to expected test error than employing the nearest-neighbor
procedure. This difference obviously does not directly carry over to a corresponding differ-
ence in region size, as the latter was found above to be insignificant (Table 2). However,
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Table 4 Correlation between
difficulty estimates and test error Correlation

Dataset \ Technique M2 M3

abalone .360 .372

anacalt .853 .825

bank8fh .172 .300

bank8fm .404 .498

bank8nh .196 .272

bank8nm .602 .670

boston .361 .429

comp .443 .346

concreate .352 .450

cooling .821 .649

deltaA .414 .425

deltaE .176 .204

friedm .348 .040

heating .701 .628

istanbul .072 .129

kin8fh .221 .226

kin8fm .557 .272

kin8nh .248 .224

kin8nm .468 .317

laser .571 .695

mg .668 .764

mortage .667 .652

plastic −.082 −.082

puma8fh .264 .298

puma8fm .234 .274

puma8nh .241 .345

puma8nm .222 .256

quakes .133 .156

stock .397 .348

treasury .713 .594

wineRed .238 .423

wineWhite .257 .435

wizmir .193 .214

Mean .378 .383

Mean rank 1.67 1.33

the importance of correctly ranking the instances according to difficulty is demonstrated by
the fact that the method with the highest correlation coefficient of the two for each dataset,
also produces the smallest average prediction region for 21 out of 33 cases. The probability
of observing this (or a larger) number is only 0.081, if the resulting region size would be
independent of this correlation.
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5 On the use of oob instances for calibration

The overall purpose of using out-of-bag instances for calibration is, as described above,
to be able to use all available labeled data for both training of the underlying model and
calibration. This procedure is, however, not identical to standard ICP, so it not obvious
that the usage of the out-of-bag instances as a calibration set will provide the guaran-
tees associated with ICP. In the following subsection, we perform a theoretical analysis of
out-of-bag calibration and show that some modifications are indeed necessary to obtain
well-calibrated conformal predictors. Specifically, the procedure must make sure that a test
instance is treated identically to a calibration instance when the nonconformity score is cal-
culated. Finally, we describe exactly how this can be accomplished by making some minor
adjustments to standard ICP.

5.1 Theoretical analysis

Conformal predictors are automatically valid when the scores generated by the nonconfor-
mity measure are exchangeable. This clearly holds for inductive conformal predictors, since
both the calibration instances and the test instances are drawn from the same underlying
distribution and the same nonconformity measure, which is defined independently of the
drawn samples, is employed for each instance, resulting in identically distributed scores for
both the calibration and test sets.

The situation is different, however, if we instead of using a separate calibration set, use
out-of-bag predictions when calculating the nonconformity scores.

Let α1, . . . , αl be the nonconformity scores obtained from the training instances z1 =
(x1, y1), . . . , zl = (xl, yl), where each αi is calculated according to

αi = |yi − hi(xi)|
σhi ,xi

, (10)

where hi is a subset of the random forest h for which zi is out-of-bag, i.e., a subset of the
trees that are generated independently of zi , and where σhi ,xi

is an estimate of the difficulty,
dependent on the model and input features, e.g., the variance of the individual predictions
in the forest.

When calculating the nonconformity score for a test instance zl+1, the most straightfor-
ward approach is to simply calculate the score using h, i.e., the entire forest, since the test
instance is out-of-bag for all trees:

αl+1 = |yl+1 − h(xl+1)|
σh,xl+1

. (11)

However, the nonconformity scores of the calibration (oob) and test instances are then
not necessarily identically distributed. This follows from that one can expect the numerator
(prediction error) of (11) to be smaller than that of (10), since hi contains only a fraction
(on average approximately 0.368) of the trees contained in h. Moreover, the denominators
(the difficulty estimates) of (10) and (11) can also be expected to be distributed differently,
e.g., since the variance is typically larger for larger forests, see e.g., [2].

A candidate remedy for this would be to calculate the nonconformity score of a test
instance as

αl+1 = |yl+1 − hl+1(xl+1)|
σhl+1,xl+1

, (12)
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where hl+1 is a pseudo-out-of-bag sub-ensemble, i.e., a randomly selected sub-ensemble
containing ≈ 0.368 of the total number of trees. However, this does not completely resolve
the issue, since the trees in such a random subset may still be constructed from all (l) training
instances, and hence will have access to more information, compared to the forests applied
to the calibration (oob) instances, where each forest is generated from at most l − 1 training
instances (all training examples except for zi , for any given hi).

The suggested procedure is to instead do the following when making a prediction for a
test instance zl+1:

1. Select one of the calibration (oob) instances randomly, i.e., zr ∈ {z1, . . . , zl}
2. Use the subset of trees in the forest for which the randomly selected instance is out-of-

bag, i.e., hr , to generate both a point prediction, i.e., ŷl+1 = hr(xl+1) and an estimate
of difficulty for the test instance, i.e., σl+1 = σhr ,xl+1

3. Use the nonconformity scores of the remaining calibration (oob) instances, i.e.,
{z1, . . . , zl}\ {zr }, the point prediction ŷl+1 and estimate of difficulty σl+1 to derive the
size of the prediction region for the test instance, according to (4)

Proposition 1 The calibration score obtained for a test instance using the above procedure
and for the remaining calibration (oob) instances are exchangeable.

Proof We will show that the nonconformity score of the test instance is drawn from the
same distribution as the score of the randomly selected calibration instance. Since the latter
is exchangeable with respect to the scores of the remaining calibration instances, it follows
that the score for the test instance and the remaining calibration scores are also exchangeable.

Let z1 = (x1, y1), ..., zl = (xl, yl) be the calibration instances. Let αi = |hi(xi) −
yi |/σhi ,xi

for i = 1, . . . , l, be the calibration scores, where each hi is a specific subset of
the random forest h and σhi ,xi

is an estimate of the difficulty. Let zl+1 be the test instance
and zr a randomly drawn calibration instance from {z1, . . . , zl}. Let αl+1 = |hr(xl+1) −
yl+1|/σhr ,xl+1 .

Both zl+1 = (xl+1, yl+1) and zr = (xr , yr ) are drawn from the same underlying dis-
tribution and since hr and σ are generated without access neither to zl+1 nor zr , it follows
that hr(xl+1) is identically distributed to hr(xr ) and that σhr ,xl+1 is identically distributed to
σhr ,xr . Since yl+1 is identically distributed to yr , it follows that αl+1 is identically distributed
to αr .

Corollary 1 The above procedure is valid.

Proof Let αs(δ) be the lowest value in C = {α1, . . . , αl} \ {αr }, such that |{αi : αi ≤
αs(δ)&αi ∈ C}|/(l − 1) ≥ 1 − δ, where 1 − δ is the confidence level.

Then P(yl+1 ∈ hr(xl+1) ± σhr ,xl+1αs(δ)) = P(yr ∈ hr(xr ) ± σhr ,xr αs(δ)), since
yl+1 is identically distributed to yr , E(hr(xl+1)) = E(hr(xr )) and E(σhr ,xl+1αs(δ)) =
E(σhr ,xr αs(δ)). Since P(yr ∈ hr(xr ) ± σhr ,xr αs(δ)) ≥ 1 − δ, it follows that P(yl+1 ∈
hr(xl+1) ± σhr ,xl+1αs(δ)) ≥ 1 − δ.

The original and adjusted procedures for conformal prediction using out-of-bag-
instances differ mainly in the way in which nonconformity scores are calculated for the test
instances; the way in which the scores are calculated for the calibration (oob) instances are
the same, except for that one randomly chosen score is removed by the adjusted procedure.
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This means that the value chosen from the calibration scores to calculate prediction inter-
vals, i.e., αs(δ), will be approximately the same. Although the expected error of the point
predictions vary between the approaches, i.e., the error of the original approach is expected
to be lower since a stronger underlying model (with more trees) is employed, this does not
affect the efficiency, i.e., the width of the prediction intervals, since the latter is determined

Table 5 Error rates of the
unadjusted (M3) vs. adjusted
(M4) approach

0.99

Dataset \ Technique M3 M4 M3 M4 M3 M4

abalone .099 .099 .048 .051 .010 .010

anacalt .099 .098 .049 .049 .011 .010

bank8fh .096 .098 .049 .051 .009 .010

bank8fm .096 .102 .046 .049 .008 .010

bank8nh .096 .101 .048 .049 .011 .011

bank8nm .097 .102 .047 .049 .009 .010

boston .093 .097 .048 .050 .010 .010

comp .098 .101 .048 .050 .009 .010

concreate .085 .087 .048 .049 .008 .007

cooling .096 .099 .052 .060 .006 .009

deltaA .100 .101 .049 .048 .010 .011

deltaE .099 .099 .049 .051 .009 .009

friedm .094 .101 .053 .056 .009 .009

heating .090 .102 .056 .049 .008 .008

istanbul .108 .101 .047 .052 .006 .006

kin8fh .099 .102 .049 .051 .009 .009

kin8fm .096 .099 .048 .048 .010 .009

kin8nh .098 .100 .046 .050 .009 .010

kin8nm .097 .101 .047 .050 .008 .008

laser .102 .104 .051 .051 .008 .007

mg .095 .098 .047 .053 .009 .010

mortage .094 .094 .051 .051 .012 .012

plastic .099 .095 .051 .052 .008 .011

puma8fh .096 .102 .050 .051 .010 .011

puma8fm .098 .099 .046 .049 .008 .010

puma8nh .095 .099 .048 .048 .010 .011

puma8nm .097 .103 .046 .047 .008 .010

quakes .101 .103 .048 .051 .017 .019

stock .104 .101 .048 .051 .007 .009

treasury .097 .102 .044 .049 .011 .011

wineRed .099 .099 .049 .049 .008 .009

wineWhite .097 .101 .048 .048 .010 .011

wizmir .098 .097 .045 .047 .010 .010

Mean .097 .100 .048 .050 .009 .010

Mean Rank 1.21 1.79 1.14 1.86 1.23 1.77
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only by αs(δ) and the difficulty estimate σ . When estimating difficulty by variance, i.e.,
spread in the predictions, a larger value is expected when using the whole forest compared
to when using a subset, which leads to wider intervals for the original procedure compared
to the adjusted.

Table 6 Region sizes of the
unadjusted (M3) vs. the adjusted
(M4) approach

Confidence 0.90 0.95 0.99

Dataset \ Technique M3 M4 M3 M4 M3 M4

abalone .214 .213 .281 .282 .493 .492

anacalt .110 .110 .125 .125 .218 .217

bank8fh .269 .269 .340 .340 .585 .584

bank8fm .122 .122 .146 .146 .191 .191

bank8nh .282 .282 .415 .413 .781 .776

bank8nm .111 .111 .141 .141 .219 .218

boston .204 .204 .251 .252 .403 .403

comp .083 .083 .107 .107 .171 .171

concreate .183 .183 .237 .236 .368 .367

cooling .150 .150 .180 .181 .245 .245

deltaA .112 .112 .142 .142 .226 .226

deltaE .172 .172 .215 .215 .304 .304

friedm .216 .216 .266 .266 .398 .397

heating .065 .065 .078 .078 .103 .103

istanbul .253 .252 .334 .333 .488 .485

kin8fh .240 .240 .285 .285 .371 .371

kin8fm .132 .132 .160 .160 .219 .219

kin8nh .408 .407 .478 .477 .613 .611

kin8nm .321 .321 .374 .373 .478 .476

laser .041 .041 .059 .059 .140 .140

mg .163 .163 .200 .200 .328 .327

mortage .021 .021 .032 .032 .059 .059

plastic .595 .593 .741 .739 .941 .936

puma8fh .444 .442 .528 .526 .755 .753

puma8fm .202 .202 .241 .240 .320 .320

puma8nh .416 .415 .503 .502 .701 .698

puma8nm .200 .199 .234 .234 .311 .311

quakes .604 .603 .753 .750 .939 .935

stock .074 .074 .088 .088 .124 .125

treasury .025 .025 .039 .039 .070 .070

wineRed .336 .335 .449 .450 .643 .642

wineWhite .288 .287 .373 .372 .542 .541

wizmir .059 .059 .074 .074 .127 .127

Mean .216 .215 .269 .268 .390 .389

Mean Rank 1.88 1.12 1.79 1.21 1.79 1.21
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5.2 Empirical analysis

In this section, we empirically compare the unadjusted variance based approach, labeled
M3 throughout the paper, and the adjusted variance based approach, labeled M4, which
employs the procedure described in the previous section, which for each test instance ran-
domly selects one of the training instances and uses the trees for which it is out-of-bag

Table 7 Predictive performance
of the unadjusted (M3) vs.
adjusted (M4) approach

MSE Correlation

Dataset \ Technique M3 M4 M3 M4

abalone .006 .006 .744 .741

anacalt .004 .004 .985 .985

bank8fh .008 .008 .866 .865

bank8fm .002 .002 .980 .980

bank8nh .012 .012 .673 .670

bank8nm .003 .003 .937 .935

boston .005 .005 .940 .939

comp .001 .001 .989 .989

concreate .004 .004 .958 .958

cooling .002 .002 .983 .983

deltaA .001 .001 .846 .846

deltaE .003 .003 .797 .797

friedm .004 .004 .953 .952

heating .001 .001 .997 .997

istanbul .006 .006 .718 .719

kin8fh .005 .006 .857 .855

kin8fm .002 .002 .975 .974

kin8nh .016 .016 .739 .737

kin8nm .010 .010 .871 .869

laser .001 .001 .983 .983

mg .006 .006 .954 .954

mortage .000 .000 .999 .999

plastic .030 .030 .895 .894

puma8fh .020 .021 .778 .777

puma8fm .004 .004 .974 .973

puma8nh .018 .018 .819 .818

puma8nm .004 .004 .976 .976

quakes .032 .032 .132 .126

stock .001 .001 .995 .994

treasury .000 .000 .999 .999

wineRed .013 .013 .715 .713

wineWhite .010 .010 .751 .748

wizmir .000 .000 .997 .997

Mean .007 .007 .872 .871

Mean Rank 1.36 1.64 1.11 1.89
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to form the prediction. In Table 5, the error rates of the unadjusted (M3) and the adjusted
approach (M4) are compared using the confidence levels ∈ {0.90, 0.95, 0.99}.

Using a Wilcoxon sign rank test on each pair of results, it turns out that the adjusted
approach (M4) is significantly (at the 0.05-level) less conservative than the unadjusted (M3)
for all confidence levels tabulated in Table 5. In fact, the results indicate that error rates of
M4 are very close to what can be expected for the considered confidence thresholds. The
consequence of M4 being less conservative can be seen in Table 6, where the region sizes of
M4 is significantly smaller than M3, using the same statistical test, for all confidence levels,
which is in agreement with the above theoretical analysis.

While the adjusted approach turns out to produce significantly more efficient confor-
mal predictors, the predictive performance of the underlying models is affected as well.
Table 7 shows the mean squared error (MSE) and the (Pearson) correlation coefficient of
the underlying models.

The Wilcoxon sign rank test shows that the predictive performance of the underlying
models, in terms of both MSE and correlation, is significantly worse when employing the
proposed adjustment (M4) than when using the original ensemble (M3). This may not be
very surprising considering the fact that when using the adjusted approach, approximately
only a third of the trees in the ensemble are used to form a prediction.

6 Concluding remarks

In this paper, we have presented a large-scale empirical evaluation of conformal regression
approaches using random forests with out-of-bag calibration. We have compared a variance-
based nonconformity measure, which has previously not been evaluated in this context, to
a standard (non-normalized) nonconformity measure as well as to one measure based on
k-nearest neighbors, which previously was found to give state-of-the-art performance in
terms of efficiency, i.e., average size of prediction regions. The experimental results in this
study show that both the nearest-neighbor-based and the variance-based measures signifi-
cantly outperform the non-normalized measure, while no significant difference in efficiency
between the two normalized approaches is observed. Moreover, the evaluation shows that
state-of-the-art performance is achieved by the variance-based measure at a computational
cost that is several orders of magnitude lower than when employing the nearest-neighbor-
based nonconformity measure. We have also investigated the use of out-of-bag calibration
theoretically, specifically highlighting the fact that nonconformity scores are distributed
differently for calibration and test instances.

An adjustment to the procedure for making predictions was proposed and shown to
ensure exchangeability. Theoretical arguments for why the adjustment can be expected to
lead to efficiency improvements were provided, which were supported by an empirical
investigation. For conformal regression forests, the variance-based nonconformity measure
can hence be concluded to be a computationally efficient and theoretically well-founded
alternative to the nearest-neighbor procedure.

There are several possible directions for future research. One direction concerns refining
the rather straightforward difficulty estimate further, e.g., by not only considering variance
of the ensemble member predictions, but also estimates of uncertainty for the individual
predictions. Other directions for future research include investigating ways of combining
several different difficulty estimates and evaluating the alternative nonconformity measures
for other ensemble approaches for which out-of-bag predictions can be obtained. Comparing
the suggested out-of-bag calibration procedure to other inductive methods that circumvent
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the need for a separate calibration set, e.g., cross-conformal predictors and bootstrap con-
formal predictors [16], both analytically and empirically, would also be of interest. Finally,
adapting the suggested method for classification should be considered—as of now, there are
no approaches to conformal classification utilizing normalization.
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8. Johansson, U., Boström, H., Löfström, T., Linusson, H.: Regression conformal prediction with random

forests. Mach. Learn. 97(1-2), 155–176 (2014)
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