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Abstract
To improve the performance of all-digital synthesizable comparators for the stochastic circuit, we present a three-stage rail-

to-rail fully synthesizable dynamic voltage comparator. Compared with the state-of-the-art designs, the proposed com-

parator uses XOR, XNOR, NAND, and NOR logic gates to further improve the comparator’s common-mode input range,

offset, speed and power-delay product (PDP). The comparator is implemented on CMOS 45 nm technology, operating with

a supply voltage of 250 mV–1.0 V. The comparator has reduced the delay by 0.70 to 0:82�, increased the standard

deviation of offset by 1.28 to 1:65� and reduced the PDP down to 0:67� compared to NAND & NOR-based comparator.

Hence, these improvements help to increase the performance of the stochastic Flash ADC, and improve the reliability of

the stochastic PUF circuit.

Keywords Digital gates � Standard cells � Synthesis � Analog-to-digital converter (ADC) � Flash ADC � Stochastic ADC �
Physical unclonable function (PUF)

1 Introduction

The traditional analog circuit requires careful custom-de-

signed and layout matching, resulting in a higher design

cost and a longer design cycle. The continuous scaling of

the feature sizes in advanced CMOS technology allows

digital circuits to achieve a more competitive cost, area,

and power consumption compared to analog circuits. If an

analog circuit design can be entirely written in Verilog and

synthesized into digital standard cells with similar circuit

performance, it will significantly reduce design time, and

cost while enhancing the portability and scalability of

analog circuits. Hence, analog circuit designers need to

consider all-digital design method, reducing complexity,

and improving productivity.

In recent years, we have witnessed different types of

synthesizable digital design, such as comparator, analog-

to-digital converters (ADC) [1–8], time-to-digital converter

(TDC) [9, 10], filter [11], physical unclonable function

(PUF) [12–14], low-dropout regulator (LDO) [15], phase-

locked loop (PLL) [16], delay-locked loop (DLL) [17],

transmitter [18, 19]. Since this research direction is rela-

tively new, there are many ongoing works to improve the

performance of these state-of-the-art designs.

Synthesizable comparator is the key building block for

stochastic based circuits, such as stochastic based Flash

ADC [1, 2, 8], TDC [9], PUF [12, 13], and sensor system

[20]. Stochastic PUFs [12, 13] leverage on the variation in

the comparator’s offset to generate a random sequence.

Reference [12, 13] reported that comparator should be

designed to have a large variation in the offset to generate a

reliable output across varying environmental conditions. In

another example, Fig. 1(a) illustrates a new type of ADC

architecture, stochastic Flash ADC, that leverages on the

variation in comparator’s offset to provide intrinsic voltage

references. Since the comparator’s offset follows Gaussian

random distribution, the summation of the outputs follows

the cumulative distribution function (CDF) of the com-

parator’s offset, eliminating the need for a power-hungry

resistive ladder. Hence, an inverse Gaussian CDF function

is implemented to linearize the ADC’s output [1]. An N-bit

stochastic Flash ADC requires a minimum of 2 � 4N
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number of comparators [1] and its input dynamic range is

associated with the comparator’s offset and common-mode

input range. The first reported synthesizable stochastic

ADC [1] uses a NAND-based comparator, which faced a

limitation in the common-mode input range. The input

dynamic range of the ADC is approximately from �r to

þr, where r is the standard deviation of the comparator’s

offset [1]. Reference [2] uses multiple groups of com-

parators, biased at different common-mode voltage to

extend the input dynamic range, allowing a configurable

resolution, dynamic range, and power consumption for

various applications. Both architectures have a limited

common-mode input range since the input transistors need

to be high enough to ensure input-connected PMOS tran-

sistors are in the cut-off region [3, 8]. A new type of

comparator is proposed in [3, 8], by combining 2-to-5-input

NAND-based and NOR-based comparator to extend its

common-mode range (Fig. 1(b)) at the expense of

increasing area and power consumption. Hence, there is a

need to explore a new type of synthesizable comparator to

further improve its intrinsic offset variation to increase the

stochastic ADC’s input dynamic range [1, 2] and improve

the reliability of the stochastic PUF circuit [12, 13], and

reduces its delay to achieve a higher operating frequency/

throughput.

As shown in Fig. 1(c–d), we explored a different com-

bination of standard cell logic and proposed a new dynamic

voltage comparator using XOR, XNOR, NAND, and NOR

logic gates (Fig. 1(c)) to further improve the common-

mode range, speed, offset and power-delay product (PDP)

compared to the state-of-the-art designs [1–3, 8]. Our

comparator has reduced the delay by 0.70-to-0:82�,

increased the standard deviation of offset by 1.28-to-1:65�
and reduced the PDP down to 0:67� compared to

NAND&NOR-based comparator [8]. Hence, the new design

can be used to increase the performance of the stochastic

Flash ADCs [1, 2], and improve the reliability of the

stochastic PUF circuits [12, 13].

The rest of the paper is organized as follows. Section 2

reviews the state-of-the-art synthesizable comparators.

Section 3 describes the proposed architecture and explains

the functional blocks of the architecture. Section 4 details

the verification results of our proposed comparator and

analyzes its performance. Finally, conclusions are drawn in

Sect. 5.

2 Synthesizable NAND-based and NAND &
NOR-based comparators

As shown in Fig. 2(a), the synthesizable dynamic com-

parators are made up of a regenerative latch, and an SR

latch [1, 2, 7, 8, 21]. These latches can be made up of

NAND3 (three-input NAND logic gate), and NOR2 (two-

input NOR logic gate) logic gates, respectively [1]. The

input and output terminals of the NAND-based comparator
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are expressed in the truth table, as shown in Fig. 2(b). The

differential input signals, non-inverting VIP and inverting

VIN, are connected to input terminals, A1 and A2, of the

NAND3 logic gates. The input terminals, B1 and B2, are

connected from the output signals, Q1B and Q1, in a cross-

coupled structure. The input terminals, C1 and C2, are

connected to the sampling clock signal, CLK.

NAND-based regenerative latch Upon careful observa-

tion of the NAND3 schematic diagram (Fig. 2(c)), the

synthesizable dynamic comparator resembles an analog-

input comparator if the common-mode of the input termi-

nals is high enough to ensure that the PMOS transistors

(PM11 and PM12), connected to the input terminals, are in

the cut-off region. When the clock signal, CLK, is at the

logic-low signal (reset phase), both output terminals, Q1

and Q1B, are reset to the logic-high signal (supply voltage,

VDD). When the clock signal, CLK, becomes the logic-

high signal (comparison phase), the output terminals begin

to discharge through the NMOS transistors. The discharge

rate depends on the capacitance on the output terminals and

the current through these transistors. When one of the

output nodes discharges below a PMOS threshold voltage,

the cross-coupled connection creates a positive feedback

that causes the comparator to force the outputs to the

supply rails.

SR latch A static Set-Reset (SR) latch consists of a

cross-coupled NOR logic gate, and it is connected to the

output terminals of the regenerative latch. The SR latch

holds the output data valid even if the comparator is in the

reset phase. The SR-latch input is buffered with inverters to

reduce a memory-effect on the comparator due to the SR-

latch.

3 Our synthesizable comparator
architecture

XOR?NAND&XNOR?NOR-based regenerative latch As

discussed in Sect. 1, the performance of stochastic flash

ADC [1, 2, 8], stochastic TDC [9], and PUF [12, 13] cir-

cuits, are largely limited by the common-mode input

voltage, offset, and speed of the comparator. We have

carefully revisited the NAND-based comparator and pro-

posed a new type of comparator based on the combination

of XOR?NAND-based regenerative latch and XNOR?-

NOR-based regenerative latch. As shown in Fig. 1(c), our

proposed regenerative latch can be divided into two stages:

XOR and XNOR logic gates as the first stage, and NAND

and NOR logic gates as the second stage. By observing and

comparing the comparators between Fig. 1(b) and (c), we

have added XOR and XNOR logic gates in the NAND-based

and NOR-based comparators, respectively. The cross-cou-

pled output signals Q1 and Q1B are connected to the input

terminals of the XOR logic gate instead of the terminals

from the NAND logic gate. To ensure the proper func-

tionality of the comparator, a logic-low signal (ground

voltage), VSS, is connected to the input terminal of the

XOR logic gate. The input and output terminals of the

proposed comparator are expressed in the truth table, as

shown in Table 1.
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The behavior simulation results of our proposed com-

parator are shown in Fig. 3. During the reset phase, the

clock signal, CLK, is at a logic-low signal (ground voltage),

the nodes Q1 and Q1B are precharged to the logic-high

signal (supply voltage), VDD. Similarly, the output signals

of NOR-based latch, OUT2, and OUT2B, are at a logic-low

signal (ground voltage) because one of the NOR logic

gate’s input terminal is connected to CLKB, which is

inverted to a logic-high signal. During the comparison

phase, the clock signal, CLK, changes to a logic-high signal

(supply voltage), the outputs will begin to discharge the

charge through the NMOS transistors in the NAND logic

gate. The input terminals of the NAND logic gate are

connected to the output terminals of the XOR logic gate

instead of the feedback signals Q1 and Q1B. The XOR

logic gate acts as a buffer to improve the slew rate of the

signal, thus improve the delay of the comparator.

According to the symmetry of digital circuit, replacing

XOR logic gates with XNOR logic gates, CLK with CLKB,

and VSS with VDD, XNOR ? NOR-based regenerative

latch will have the same function as the XOR ? NAND-

based Latch.

Multi-input SR latch When the common-mode input

voltage, VCM, is nearer to supply voltage, VDD, the output

signals from XNOR?NOR-based latch stuck at the pre-

charge value VSS, as shown in Fig. 3. Similarly, the out-

puts of the XOR?NAND-based latch are stuck at the

precharge value VDD when VCM is closer to VSS, which

will be inverted to VSS, ensuring the multi-input SR latch

operates correctly. In both cases, only one of the two lat-

ches (XOR?NAND-based or XNOR?NOR-based) works

correctly. Hence, a multi-input SR latch, with two groups

‘‘set’’ and ‘‘reset’’ inputs (S1, R1) and (S2, R2), is required

to handle the output signals (OUT1, OUT1B) and (OUT2,

OUT2B) from our proposed XOR?NAND-based and

XNOR?NOR-based latches, respectively. Since the SR

latch is a three-input NOR logic gate, the additional devices

led to an increase in device mismatch, which is beneficial

for stochastic circuit design.

Circuit analysis The implementation of XOR/XNOR

logic gate can be done in multiple ways (e.g. comple-

mentary CMOS, complementary/double pass-transistor,

and rail input logic design) and typically it requires up to

fourteen (14) transistors [22]. In the complementary CMOS

standard cell design, the XOR/XNOR logic gates require

twelve (12) transistors. The increased number of transistors

in these logic gates increases the variability in the design

[21]. As shown in Fig. 1(c), since the feedback signals, Q1

and Q1B, are now connected to the complementary inverter

logic gate (INV) instead of the NAND/NOR logic gates, the

logic effort has reduced from 4/3 (NAND) and 5/3 (NOR) to

1 (INV). These feedback signals are amplified after XOR/

XNOR logic, resulting in signals’ amplitude connecting to

NAND/NOR logic and reducing the overall delay. From our

analysis, our proposed architecture is expected to achieve a

higher input voltage offset and speed compared to the

NAND&NOR-based comparator.

4 Design verification and discussion

In this work, we have designed and verified the NAND-

based comparator [1], the NAND&NOR-based comparator

[8], and our proposed comparator using the 45nm CMOS

technology. The performance of these comparators is

summarized in Table 2. These comparators are evaluated

at three different supply voltages, VDD of 0.25 V (sub-

threshold voltage), 0.6 V (near-threshold voltage), and 1.0

V (operating near nominal supply voltage).

Delay/speed The clock-to-output propagation delay and

power consumption are compared by varying the common-

mode input voltage from VSS to VDD with a differential

input voltage (vdiff) of 5 mV. Figures 4(a–c) and 5(a–c)
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show the comparators’ propagation delay and power con-

sumption against the common-mode input voltage at a

supply voltage VDD of 0.25 V, 0.6 V, and 1.0 V, respec-

tively. Similar to the reported results in [8], we have

observed that the largest delay occurs when the common-

mode input voltage is near half of the supply voltage.

However, our proposed circuit reduces the delay by 0:72�
(VDD ¼ 0:25 V), 0:82� (VDD ¼ 0:6 V), and 0:70�
(VDD ¼ 1:0 V) compared to NAND&NOR-based com-

parator [8].

Voltage offset The standard deviation of the input offset

voltage for the two designs is compared using Monte Carlo

simulations with 500 runs each. The results are shown in

Fig. 6. The standard deviation of our comparator’s input offset

voltages are 7.9 mV atVCM ¼ 175 mV (VDD ¼ 0:25 V), 5.9

mV at VCM ¼ 420 mV (VDD ¼ 0:6 V), and 7.2 mV at

VCM ¼ 700 mV (VDD ¼ 1:0 V), which are 1:65�, 1:28�,

and 1.47� compared to NAND&NOR-based comparator,

respectively. Therefore, the increased offset voltage in our

proposed comparator is highly preferable for use in the syn-

thesizable stochastic circuits (i.e. ADC [1, 2, 8], TDC [9] and

PUF circuits [12, 13]).

Power consumption Even with the additional logic gates

used in our proposed circuit, the power consumption is still

comparable to the NAND&NOR-based comparator for

VDD ¼ 0:6 V and 1.0 V. However, at the sub-threshold

region (VDD ¼ 0:25 V), the slew rate in the feedback

signals has been severely degraded due to the transistors

operating in the sub-threshold region, resulting in increased

power consumption by 1:24�.

Area To allow the comparators to operate at the mini-

mum supply voltage (VDD ¼ 0:25 V), we have selected a

drive strength of 8�, which is the maximum available logic

gate in the standard cell library, for the second stage:

NAND&NOR-based regenerative latch. The INV/XOR/

XNOR and multi-input SR latch have a drive strength of

1�. Note that the circuit variations become smaller with

the increased drive strength of the logic gate; however, our

proposed comparator has enabled us to achieve up to

1:65� offset improvement compared to the NAND&NOR-

based comparator. The layout area of NAND-based com-

parator, NAND&NOR-based comparator and our proposed

comparator are shown in Fig. 7. Our comparator requires a

total of 12 logic gates with the layout area of 51:69 lm2.
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Table 2 Comparison with state-of-the-art comparators

Specifications
Supply NAND NAND

Our work
Best Case

Voltage (mV) [1] & NOR[8] Differences
Technology - CMOS 45nm -

Max. Delay (ns)
250 6,889 17,760 12,860 ↓ 0.72×
600 138 112 92 ↓ 0.82×
1,000 0.459 1.81 1.23 ↓ 0.70×

Offset (mV)
250 - 4.8 7.9 ↑ 1.65×
600 - 4.6 5.9 ↑ 1.28×
1000 - 4.9 7.2 ↑ 1.47×

Max. Power
250 42.62 pW 130.29 pW 161.39 pW ↑ 1.24×
600 27.49 nW 54.21 nW 51.14 nW ↓ 0.94×
1000 2.40 µW 11.98 µW 12.54 µW ↑ 1.05×

PDP (fJ) @25◦C, VCM=VDD/2

- 2.16 (ss) 2.20 (ss) ↑ 1.02×
250 - 2.38 (tt) 2.16 (tt) ↓ 0.91×

- 2.86 (ff) 2.77 (ff) ↓ 0.97×
- 4.83 (ss) 3.26 (ss) ↓ 0.67×

600 - 6.10 (tt) 4.97 (tt) ↓ 0.81×
- 7.21 (ff) 5.74 (ff) ↓ 0.80×
- 16.98 (ss) 12.69 (ss) ↓ 0.75×

1000 - 21.47 (tt) 15.30(tt) ↓ 0.71×
- 24.73 (ff) 17.90 (ff) ↓ 0.67×

Area (µm2) - 21.0752 41.0112 51.6912 ↑ 1.26 ×
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Although our proposed circuit requires an additional area

of four logic gates, it has significantly outperformed the

state-of-the-art synthesizable comparators [1, 8]. With the

continuous scaling of the standard cell in advanced CMOS

technology, the improved performance of our proposed

circuit outweighs the area penalty.

Power delay product (PDP) analysis across process,

voltage, and temperature (PVT) corners PDP is a common

figure of merit (FoM) to evaluate the performance of cir-

cuits. Since the VCM of comparators typically operates

near mid of the supply voltage and it has been proven that

the circuit achieves an optimum speed and yield when

VCM is 70% of the supply voltage [23]. Therefore, we have

evaluated the PDP of the comparators at different process,

voltage, temperature (PVT) conditions. i.e., five process

corners: tt, ss, sf, fs, ff, three supply voltages:

VDD ¼ 0:25 V, 0.6 V, 1.0 V, and three temperatures:

�40 �C, 25 �C, 125 �C with a VCM of VDD/2. The PDP

simulation result is shown in Fig. 8. Our proposed com-

parator has reduced the PDP by 0:84� (fs), 0:67� (ss) and

0:67� (ff) when VDD ¼ 0:25 V, 0.6 V and 1.0 V, respec-

tively compared to NAND&NOR-based comparator. Note
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versus common-mode input
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NAND&NOR-based comparator

and XOR&XNOR-based

comparator for vdiff ¼ 5 mV at

a VDD ¼ 0:25 V, b VDD ¼
0:6 V and c VDD ¼ 1:0 V
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that when at a supply voltage of VDD ¼ 0:25 V and

VCM ¼ VDD=2, both NAND&NOR-based comparator and

the proposed comparator are unable to function correctly at

the process of ss with a temperature of � 40 �C.

5 Conclusion

In this work, we have proposed and presented a new type

three-stage rail-to-rail fully synthesizable dynamic voltage

comparator, where XOR and XNOR logic gates are placed

in the first stage. A comparison between our comparator

and the state-of-the-art works have been analyzed and

discussed in detail. These designs are implemented on

CMOS 45nm technology, operating with a supply voltage

of 250 mV–1.0 V. The comparator has reduced the delay

by 0.70-to-0:82�, increased the standard deviation of off-

set by 1.28-to-1:65�, and reduced the PDP down to 0:67�
compared to NAND&NOR-based comparator. This work

will lay a good foundation to design more complex

stochastic based circuits in the near future.
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