Skip to main content
Log in

Ring oscillators based on monolayer Graphene FET

  • Mixed Signal Letter
  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A ring oscillator is an important circuit used to evaluate the performance limits of any digital technology. The advantages of Graphene field effect transistor (GFET) over current CMOS technologies make it a prominent candidate for future high-performance electronics. In this paper, a GFET model is implemented in Verilog-A, and GFET design and analysis of a ring oscillator are performed using advanced design system (ADS) tool. By using GFET ring oscillator, the designed circuit is simulated using a 0.18 µm GFET process in ADS environment. The results show that the power consumption is 9.98 mW, while the VCO generates 24.12 GHz at 1 V. The effect of Graphene channel length variations on the frequency span, power dissipation and phase noise of GFET ring oscillators are studied. The main performance characteristics of the ring oscillator are compared with CMOS technology. It is shown that a GFET ring oscillator gives a higher oscillation frequency and has more power dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Rezayee, A., & Martin, K. (2001). A three-stage coupled ring oscillator with quadrature outputs. In The 2001 IEEE international symposium on circuits and systems (ISCAS) (Vol. 1, pp. 484–487).

  2. Hajimiri, A., & Lce, T. H. (1999). The design of low noise oscillators. Berlin: Kluwer Academic Publishers.

    Google Scholar 

  3. Kim, G., Ueda, K., Cha, S., Ida, T., Shimizu, Y., Matsuoka, T., & Taniguchi, K. (2007). Process variation compensation technique for voltage-controlled ring oscillator. IEEJ Transaction on Electrical Electronic Engineering, 2, 189–191.

    Article  Google Scholar 

  4. Marzaki, A., Bidal, V., Laffont, R., Rahajandraibe, W., Portal, J. -M., Bergeret, E., & Bouchakour, R. (2013). On the investigation of a novel dual-control-gate floating gate transistor for VCO applications. Buletin Teknik Elektro dan Informatika, 2, 212–217.

    Google Scholar 

  5. Mandal, M. K., & Sarkar, B. C. (2010). Ring oscillators: Characteristics and applications. Indian Journal of Pure & Applied Physics, 48, 136–145.

    Google Scholar 

  6. Minhad, K. N. (2014). Design of a current starved ring oscillator based VCO for phase-locked loop. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12, 6667–6672.

    Google Scholar 

  7. Young, I. A., Greason, J. K., Smith, J. E., & Wong, K. L. (1992). A PLL clock generator with 5–110 MHz lock range for microprocessors. In ISSCC digital technic papers (pp. 50–51).

  8. Horowitz, M., Chen, A., Cobrunson, J., Gasbarro, J., Lee, T., Leung, W., et al. (1993). PLL design for a 500 Mb/sinterface. In ISSCC digital technic papers (pp. 160–161).

  9. Johnson, M. G., & Hudson, E. L. (1998). A variable delay line PLL for CPU-coprocessor synchronization. IEEE Journal of Solid-State Circuits, 23, 1218–1223.

    Article  Google Scholar 

  10. Young, I. A., Greason, J. K., & Wong, K. L. (1992). A PLL clock generator with 5–110 MHz of lock range for microprocessors. IEEE Journal of Solid-State Circuits, 27, 1599–1607.

    Article  Google Scholar 

  11. Alvarez, J., Sanchez, H., Gerosa, G., & Countryman, R. (1995). A wide-bandwidth low-voltage PLL for Power PCTM microprocessors. IEEE Journal of Solid-State Circuits, 30, 383–391.

    Article  Google Scholar 

  12. Wu, L., & Black, W. C. Jr. (2001). A low-jitter skew-calibrated multi-phase clock generator for time-interleaved applications. In Solid-state circuits conference, digest of technical papers (ISSCC) (pp. 396–397).

  13. Tan, A. H.-Y., & Wei, G.-Y. (2006). Adaptive-bandwidth mixing pll/dll based multi-phase clock generator for optimal jitter performance. In Custom integrated circuits conference (CICC) (pp. 749–752).

  14. Nor Hashim, N. A., Han Loong, J. T., Ghazali, A., & Hamid, F. A. (2019). Memristor based ring oscillators true random number generator with different window functions for applications in cryptography. Indonesian Journal of Electrical Engineering and Computer Science, 14, 201–209.

    Article  Google Scholar 

  15. Rodwell, M. J. W. (Ed.) (2001). High speed integrated circuit technology: Towards 100 GHz logic. Singapore: World Scientific Publishing.

    Book  Google Scholar 

  16. Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., et al. (2009). Large-area synthesis of high-quality and uniform Graphene films on copper foils. Science, 324, 1312–1314.

    Article  Google Scholar 

  17. Wu, Y., Jenkins, K. A., Valdes-Garcia, A., Farmer, D. B., Zhu, Y., Bol, A. A., et al. (2012), State-of-the-Art Graphene high-frequency electronics. Nano Lett.ers, 3062–3067.

  18. Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., et al. (2010). High-speed Graphene transistors with a self-aligned nanowire gate. Nature, 467, 305–308.

    Article  Google Scholar 

  19. Champlain, J. G. (2011). A first principles theoretical examination of Graphene based field effect transistors. Journal of Applied Physics, 109, 084515.

    Article  Google Scholar 

  20. Griffith, Z., Urteaga, M., Pierson, R., Rowell, P., Rodwell, M., & Brar, B. (2010). A 204.8 GHz static divide-by-8 frequency divider in 250 nm. In P. HBT, Proceedings of the 32nd IEEE compound semiconductor integrated circuit symposium (CSICS) (pp. 1–4).

  21. Cheli, M., Fiori, G., & Iannaccone, G. (2009). A semianalytical model of bilayer Graphene field effect transistor. IEEE Transactions on Electron Devices, 56, 2979–2986.

    Article  Google Scholar 

  22. Thiele, S., & Schwierz, F. (2011). Modeling of the steady state characteristics of large-area Graphene field-effect transistors. Journal of Applied Physics, 110, 034506.

    Article  Google Scholar 

  23. Champlain, J. G. (2011). A first principles theoretical examination of Graphene-based field effect transistors. Journal of Applied Physics, 109, 084515.

    Article  Google Scholar 

  24. Koswatta, S. O., Valdes-Garcia, A., Steiner, M. B., Yu-Ming Lin, L., & Avouris, P. (2011). Ultimate RF performance potential of carbon electronics. IEEE Transactions on Microwave Theory and Techniques, 59, 2739–2750.

    Article  Google Scholar 

  25. Wang, H., Hsu, A., Kong, J., Antoniadis, D. A., & Palacios, T. (2011). Compact virtual-source current–voltage model for top-and back-gated Graphene field-effect transistors. IEEE Transactions on Electron Devices, 58, 1523–1533.

    Article  Google Scholar 

  26. Jimenez, D. (2011). Explicit drain current, charge and capacitance model of Graphene field-effect transistors. IEEE Transactions on Electron Devices, 58, 4377–4383.

    Article  Google Scholar 

  27. Habibpour, O., Vukusic, J., & Stake, J. (2012). A large-signal Graphene FET model. EEE Transactions on Electron Devices, 59, 968–975.

    Article  Google Scholar 

  28. Henry, M. B., & Das, S. (2012). SPICE-compatible compact model for Graphene field-effect transistors. In IEEE international symposium on circuits and systems (pp. 2521–2524).

  29. Parrish, K. N., & Akinwande, D. (2012). An exactly solvable model for the Graphene transistor in the quantum capacitance limit. Applied Physics Letters, 101, 53501.

    Article  Google Scholar 

  30. Frégonèse, S., Magallo, M., Maneux, C., Happy, H., & Zimmer, T. (2013). Scalable electrical compact modeling for Graphene FET transistors. IEEE Transactions on Nanotechnology, 12, 539–546.

    Article  Google Scholar 

  31. Rodriguez, S., Vaziri, S., Smith, A., Frégonése, S., Ostling, M., Lemme, M. C., et al. (2014). A comprehensive Graphene FET model for circuit design. IEEE Transactions on Electron Devices, 61, 1199–1206.

    Article  Google Scholar 

  32. Umoh, I. J., Kazmierski, T. J., & Al-Hashimi, B. M. (2014). Multilayer Graphene FET compact circuit-level model with temperature effects. IEEE Transactions on Nanotechnology, 13, 805–813.

    Article  Google Scholar 

  33. Rakheja, S., Wu, Y., Wang, H., Palacios, T., Avouris, P., & Antoniadis, D. A. (2014). An ambipolar virtual-source-based charge-current compact model for nanoscale Graphene transistors. IEEE Transactions on Nanotechnology, 13, 1005–1013.

    Article  Google Scholar 

  34. Landauer, G. M., Jiménez, D., & González, J. L. (2014). An accurate and Verilog-A compatible compact model for Graphene field-effect transistors. IEEE Transactions on Nanotechnology, 13, 895–904.

    Article  Google Scholar 

  35. Mukherjee, C., Aguirre-Morales, J. D., Frégonèse, S., Zimmer, T., & Maneux, C. (2015). Versatile compact model for Graphene FET targeting reliability-aware circuit design. IEEE Transactions on Electron Devices, 62, 757–763.

    Article  Google Scholar 

  36. Li, S.-L., Miyazaki, H., Kumatan, A., Kanda, A., & Tsukagoshi, K. (2010). Low operating bias and matched input–output characteristics in Graphene logic inverters. Nano Letters, 10(7), 2357–2362.

    Article  Google Scholar 

  37. Traversi, F., Russo, V., & Sordan, R. (2009). Integrated complementary Graphene inverter. Applied Physics Letters, 94, 223312.

    Article  Google Scholar 

  38. Li, S.-L., Miyazaki, H., Kumatani, A., Kanda, A., & Tsukagoshi, K. (2010). Low operating bias and matched input-output characteristics in Graphene logic inverters. Nano Letters, 10, 2357–2362.

    Article  Google Scholar 

  39. Razavi, B. (2001). Design of analog CMOS integrated circuits. Boston: McGraw-Hill.

    Google Scholar 

  40. Kumar, M., Arya, S.-K., & Pandey, S. (2011). Voltage controlled ring oscillator design with novel 3 transistors XNOR/XOR gates. Scientific Research Journal of Circuits and Systems, 2, 190–195.

    Article  Google Scholar 

  41. Ramiah, H., Keat, C. W., & Kanesan, J. (2012). Design of low-phase, low-power ring oscillator for OC48 application. IETE Journal of Research, 58, 425.

    Article  Google Scholar 

  42. Grözing, M., & Berroth, M. (2004). Derivation of single-ended CMOS inverter ring oscillator close-in phase noise from basic circuit and device properties. In Radio frequency integrated circuits (RFIC) symposium, Ft. Worth, TX (pp. 277–280).

  43. Eken, A. Y., & Uyemura, J. P. (2004). A 5.9 GHz voltage-controlled ring oscillator in 0.18-mm CMOS. IEEE Journal of Solid-State Circuits, 39, 203–233.

    Article  Google Scholar 

  44. Bistritskii, S. A., Klyukin, V. I., & Bormontov, E. N. (2014). Ring voltage controlled oscillator for high speed PLL systems. Russian Microelectronics, 43(7), 472–476.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Safari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, A., Dousti, M. Ring oscillators based on monolayer Graphene FET . Analog Integr Circ Sig Process 102, 637–644 (2020). https://doi.org/10.1007/s10470-020-01624-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01624-x

Keywords

Navigation