
Algebras and Representation Theory (2024) 27:1513–1535
https://doi.org/10.1007/s10468-024-10267-9

RESEARCH

Decompositions of Infinite-Dimensional A∞,∞ Quiver
Representations

Nathaniel Gallup1 · Stephen Sawin2

Received: 21 January 2023 / Accepted: 18 March 2024 / Published online: 19 April 2024

Abstract
Gabriel’s Theorem states that the quivers which have finitely many isomorphism classes of
indecomposable representations are exactly those with underlying graph one of the ADE
Dynkin diagrams and that the indecomposables are in bijection with the positive roots of
this graph. When the underlying graph is An, these indecomposable representations are thin
(either 0 or 1 dimensional at every vertex) and in bijection with the connected subquivers.
Using linear algebraic methods we show that every (possibly infinite-dimensional) repre-
sentation of a quiver with underlying graph A∞,∞ is infinite Krull-Schmidt, i.e. a direct
sum of indecomposables, as long as the arrows in the quiver eventually point outward. We
furthermore prove that these indecomposable are again thin and in bijection with both the
connected subquivers and the limits of the positive roots of A∞,∞ with respect to a certain
uniform topology on the root space. Finally we give an example of an A∞,∞ quiver which
is not infinite Krull-Schmidt and hence necessarily is not eventually-outward.

Keywords Quiver representations · Krull-Schmidt · Dynkin diagram · Infinite-dimensional
representations

Mathematics Subject Classification (2010) Primary: 16G20 · 16G60 · 06A06 · 17B22 ·
16D70

1 Introduction

Most early techniques in the study of representations of quivers (e.g.Auslander-Reiten theory,
the Euler form, etc.) assume that the quiver has finitely many vertices and that the vector
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1514 N. Gallup, S. Sawin

spaces of these representations are finite-dimensional. In particular, Gabriel’s Theorem [1]
characterizes the quivers of finite-type as exactly those with underlying graph the ADE
Dynkin diagrams. A nice survey of Gabriel’s Theorem can be found in [2], and we adopt
most of Brion’s notation in this paper. More recently there have been several results which
weaken these finiteness hypotheses.

In [3], Bautista, Liu, and Paquette observed that any locally finite-dimensional represen-
tation (meaning each vector space is finite-dimensional) of various infinite quivers including
an eventually outward A∞,∞ quiver is infinite Krull-Schmidt (a unique direct sum of inde-
composables) and identified the indecomposables as being in bijection with the connected
full subquivers.

In [4], Ringel was able to remove the finite-dimensional hypothesis from one direction
of Gabriel’s Theorem. There he proved that infinite-dimensional representations of (finite)
ADE Dynkin quivers are infinite Krull-Schmidt, and showed that these indecomposables are
the same as those given in Gabriel’s Theorem which correspond to the positive roots of the
corresponding root system.

In [5], Enochs, Estrada, and Rozas studied injective quiver representations over a general
(not necessarily commutative) ring R. They proved that the indecomposable injective repre-
sentations of certain infinite quivers (which include eventually outward A∞,∞ quivers) called
transfinite tree quivers are in bijection with a subset of the connected full subquivers. Note
that as they are working over a general ring, there is no locally finite-dimensional hypothesis.
Here the term “injective” refers to injective objects in the category of representations and in
fact (see Prop. 2.1 in [5]) the linear maps in these representations are necessarily surjective.

More recently, Igusa, Rock, and Todorov proved in [6] that pointwise finite-dimensional
representations of certain continuous generalizations AR of A∞,∞ quivers are infinite Krull-
Schmidt and classified the indecomposable representations for these quivers, which, similarly
to all aforementioned generalizations, are thin and in bijection with the connected subquivers
of AR.

Even more recently, Botnan and Crawley-Boevey [7, 8] prove that locally finite-
dimensional representations of any quiver are infinite Krull-Schmidt, and further that the
indecomposables in the case of A∞,∞ with any orientation are “interval representations”,
which are exactly those corresponding to a connected subquiver.

In this paper, we simultaneously weaken the two finiteness conditions (those requiring
finite quivers and locally finite-dimensional representations) as well as the injective repre-
sentation requirement in the type-A case over a field. More specifically we show that every
(possibly infinite-dimensional) representation of an eventually outward quiver with under-
lying graph A∞,∞ is infinite Krull-Schmidt. This eventually outward condition is in fact
necessary: there exist representations of a not eventually outward A∞,∞ quiver which are
not infinite Krull-Schmidt, an example of which is given at the end of the paper in Section 8.
We furthermore give a description of the indecomposables in this case, which are in bijection
with the connected full subquivers. These can be thought of as limits of the classical positive
roots of An . These match those from [8] and [3], and also those from [5] if we restrict to
injective representations. Our proof furthermore gives an algorithm for decomposing a given
quiver representation into indecomposables.

In Sections 2 we review the necessary quiver representation theory background. The
remainder of the paper can be divided into two parts.

In the first part we discuss representations of a general quiver � which is an eventually
outward finitely branched tree, i.e. a union of finitely many journeys, the arrows of which
eventually point away from its start. More specifically, in Section 3 we define a certain partial
order on the set C of connected full subquivers of� by taking the poset closure of two “moves”
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Decompositions of Infinite-Dimensional A∞,∞ Quiver Representations 1515

which we call reduction and enhancement. Using the eventually outward condition we prove
that this is in fact a well-founded poset.

In Section 4 we then define a poset filtration of any representation V of �, i.e. an order-
preserving function F from C to the poset of subrepresentations of V . We will show that the
successive quotients Fα/

∑
β<α Fβ of this poset filtration are isotypic, meaning a direct sum

of indecomposables all of which are isomorphic.
In Section 5 we prove that for any connected full subquiver α ∈ C, the succes-

sive quotient Fα/
∑

β<α Fβ is supported on α and under mild conditions the morphism

Fα → Fα/
∑

β<α Fβ lifts, i.e. that the subrepresentation
∑

β<α Fβ is complemented,
say by Wα , inside of Fα . Thus we obtain an almost gradation W of F , i.e. a function
W : C → Sub(V ) such that for all α ∈ C we have Fα = Wα ⊕ ∑

β<α Fβ . We then
prove that each Wα is an isotypic subrepresentation. Finally, using the fact that C is a well-
founded poset, we use induction to prove that our poset filtration spans V . This means that
V = ∑

α∈C Wα .
In the second part of the paper, we specialize to the case where� is an eventually outward

quiver of type A∞,∞, and prove that any representation of such a quiver is infinite Krull-
Schmidt. We furthermore classify the indecomposables. Specifically, in Section 6 we show
that if � is eventually outward and of type A∞,∞, then the partial order on the set C of
connected subquivers of � is actually the product of two total orders on the set �1 of arrows
of�. It follows that, if V is any representation of�, then the poset filtration F : C → Sub(V )

is the intersection of two linear filtrations L, R : �1 → Sub(V ). We then prove the general
theorem that any almost gradation of a poset filtration which is the intersection of two linear
filtrations is independent. All together this proves our main result that V = ⊕

α∈C Wα and
thus every (possibly infinite dimensional) representation of an eventually outward type A∞,∞
quiver � is infinite Krull-Schmidt.

In Section 7 we describe the isomorphism classes of the indecomposable subrepresenta-
tions of an eventually outward type A∞,∞ quiver. As for any finite quiver of type An , they are
in bijection with the connected subquivers, and are thin, meaning one-dimensional at every
vertex in their support. Note that this means as long as the quiver is eventually outward,
the indecomposables are independent of the directions of the arrows. This agrees with the
indecomposables found in [3] for a locally finite-dimensional representation of an eventually
outward type A∞,∞ quiver, and with those found in [5] for a (possibly infinite-dimensional)
injective representation of an eventually outward type A∞,∞ quiver. Note the dimensions of
these are 1 at each vertex contained in the subquiver and 0 otherwise. The finite subquivers
correspond to what are normally called positive roots, which are finite roots of Tits length 1,
or equivalently the image of simple roots under finitely many Weyl reflections. The infinite
quivers are naturally limits of these in the appropriate topology.

Finally in Section 8 we give an example of a representation of an A∞,∞ quiver which is
not infinite Krull-Schmidt. This quiver is not eventually outward, as is required by the results
of Section 6. The example is closely related to a construction in [6].

The authors would like to thank the referee for careful reading and numerous helpful
suggestions.

2 Background

In this section we review the standard definitions in the theory of quivers and their represen-
tations and fix the notation that will be used throughout the paper.
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1516 N. Gallup, S. Sawin

2.1 Quivers

A quiver, denoted by�, consists of a set�0 of vertices, a set�1 of arrows, a source function
s : �1 → �0, and a target function t : �1 → �0. We assume that all quivers have no
multiple arrows and no loops, and then we say that the underlying graph of � is the graph
with a vertex for each vertex of � and an undirected edge for each arrow of �. The quiver is
a tree if the underlying graph is a tree.

A vertex x ∈ �0 is a source if it is not the target of any arrow, and a sink if it is not the
source of any arrow.

2.2 Subquivers

A subquiver of a quiver � is a quiver �′ such that �′
0 ⊆ �0, �′

1 ⊆ �1, s′ = s |�′
1
, and

t ′ = t |�′
1
. A full subquiver is one that contains every arrow whose source and target are

contained in it.
From now on, we will assume that the underlying graphs of all quivers in this paper are

trees. Notice that means the removal of any arrow e of a quiver divides the quiver into two
connected subquivers, the one including t(e) which we call the subquiver in front of e and
the one containing s(e) which we call the subquiver behind e. In general, any vertex, arrow,
or subquiver contained in the former will be said to be in front of e and e will be said to point
towards it, while any in the latter will be said to be behind e, and e will be said to point away
from it.

2.3 Walks and Paths

A (finite or infinite) walk w in a quiver with an underlying graph is a map from a connected
(finite or infinite) interval of the integers to�0 so that if i and i +1 are in the interval, there is
an arrow whose source and target are wi and wi+1. We then say w contains that arrow e. We
say that e is oriented consistently if s(e) = wi and t(e) = wi+1, and oriented inconsistently
if s(e) = wi+1 and t(e) = wi . Adding an integer to every element of the interval results in a
newmap we will consider the same walk. If the interval has a minimal i we define s(w) = wi

and call the walk a journey, if the interval has a maximal j we define t(e) = w j . If w has a
target andw′ has a source and these two vertices are the samewe can define the concatenation
walk w′w in the obvious way. An injective walk is one where the map is injective.

2.4 Types of Quivers andWalks

Since� is a tree then every two vertices are connected by a unique minimal walk.We say that
� is a finitely-branched tree if it is a union of finitely many injective paths, or equivalently
for any vertex x it is the union of finitely many injective journeys starting at x . Finally, if
every injective journey contains at most finitely many arrows oriented inconsistently, we say
that � is eventually outward.

Example 1 By the mountain we refer to the quiver � (Fig. 1) which has underlying graph
A∞,∞ and in which all arrows point away from the vertex x0. It is clear that� is an eventually
outward finitely branching tree.
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Fig. 1 The Quiver �

These two types of quivers can be helpfully redefined in terms of a strict partial order ≺
on the set �1 of arrows of � defined by f ≺ e if and only if f is behind e and e is in front
of f .

Lemma 2.1 � is eventually outward if and only if its≺ is well-founded (no infinite descending
chains). If � is a tree, then it is finitely branched if and only if its ≺ has no infinite antichains
(subsets in in which no two elements are related).

Proof If � contains an injective journey with infinitely many arrows inconsistently oriented,
the set of inconsistently oriented arrows in that journey is an infinite descending chain. If
· · · ≺ e3 ≺ e2 ≺ e1 is an infinite downward chain, there is a unique injective journey pi from
the target of each ei to the source of each ei+1, and these are all distinct because if j > i
then p j is behind ei+1 and pi is in front. Concatenating · · · p2e−1

2 p1e
−1
1 gives a journey with

each ei oriented inconsistently.
If � is finitely branched, let p1, . . . , pn be a set of injective paths covering it. If E is an

antichain, there can be at most two elements of E contained in any given path, or else one
would be in front of the other. Thus E is finite. On the other hand if� is not finitely branched,
then for some x there is an infinite sequence p1, p2, . . . of injective journeys from x such
that each journey pi contains a first arrow ei not in any of the previous journeys, and after
that all the arrows are not in any other journeys. Of those infinitely many arrows, either an
infinite set of them point away from x or an infinite set point towards x . Each of these sets
separately forms an antichain, because the path connecting ei to e j will follow the reverse
of pi to the final point of shared intersection with p j , then out p j . Thus there is an infinite
antichain. 	

Example 2 The partial order� on�1 is given by a1 ≺ a2 ≺ . . . and a−1 ≺ a−2 ≺ . . . but an
and am are unrelated to each other if n > 0 andm < 0. Note that this is in fact a well-founded
order in which every antichain has at most two elements, as required by Lemma 2.1.

Lemma 2.2 If α is a connected full nonempty subquiver of an eventually outward finitely
branching tree, then there are only finitely many arrows that point towards α.

Proof Being finitely branching, the quiver is a union of finitely many journeys from an x ∈ α.
Since α is connected all arrows that point towards α point towards x , therefore the result
follows from the property of being eventually outward. 	


2.5 Quiver Representations

A representation (V , f ) of a quiver� over a field F consists of an F-vector space Vi at every
vertex i ∈ �0 and a linear map fe : Vs(e) → Vt(e) for every arrow e ∈ �1. If (V , f ) and
(W , g) are representations of �, a morphism of representations T : V → W consists of a
linear map Ti : Vi → Wi for all vertices i ∈ �0 such that for all arrows e ∈ �1, we have
Tt(e) ◦ fe = ge ◦Ts(e). This is equivalent to requiring that the appropriate diagrams commute.

Example 3 We give two examples of representations of the mountain quiver � which we
will carry throughout the paper.
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1518 N. Gallup, S. Sawin

1. Define a representation M of � by setting M(xn) = F
(N) = ⊕

i∈N
F for all n ∈ Z and

letting M(an) be the projection map which sends (c1, c2, . . .) → (c2, c3, . . .) also for all
n ∈ N. Note that M is not locally finite-dimensional.

2. Now define a representation N of � by setting N (xn) = F
|n|+2 for all n ∈ Z and

for all n �= 0 letting N (an) be the inclusion map which sends (c1, c2, . . . c|n|+1) →
(c1, c2, . . . c|n|+1, 0).

Direct sums of representations of� are defined in the obviousway.A quiver representation
is called indecomposable if it is nonzero and is not a direct sum of two proper, non-zero
subrepresentations, and is called infinite Krull-Schmidt if it is a direct sum of indecomposable
subrepresentations in a unique way, up to ordering and isomorphism.

2.6 The Transport of a Subspace

Let � be a quiver, V a representation of �, w a finite injective walk in �, and W ⊆ Vs(w) a
subspace. We define the transport of W via w to t(w) recursively as follows:

• If w contains a single arrow e oriented consistently then the transport of W is fe[W ] ⊆
Vt(w).

• Ifw contains a single arrow e oriented inconsistently then the transport ofW is f −1
e [W ] ⊆

Vt(w).
• If w is the concatenation of path w1 and w2 then the transport of w is the transport via

w2 of the transport via w1 of W .

Notice that if W ′ ⊆ W ⊆ Vs(w) then the transport of W ′ is contained in the transport of
W .

Example 4
1. Consider the representation M of the mountain quiver � from Example 3 (1). The trans-

port of the zero subspace in M(xn) to xm for |m| ≥ |n| is simply zero, and the transport to
xm for |m| < |n| is Span(e1, . . . , e|n|−|m|) where ei denotes the i th standard basis vector
in F

(N).
2. Now consider the representation N of the mountain quiver � from Example 3 (2). Given

n > 0, the transport of N (xn) to xm for m > n is the subspace Span(e1, . . . , en+2), for
0 < m < n is N (xm), and for m ≤ 0 is Span(e1, e2). An analogous description holds for
negative n.

Lemma 2.3 Let � be a quiver which is a tree, V a representation of �, i ∈ �0 a vertex, and
Wi ⊆ Vi a subspace. For each vertex j ∈ �0, defineWj to be the transport ofWi to j along the
unique injective walk starting at i and ending at j . Then W is the maximal subrepresentation
of V whose value at i is Wi and such that for each arrow e pointing away from i, fe restricted
to W is onto. It is the minimal subrepresentation W of V whose value at i is Wi and such
that for each arrow e pointing towards i , the map from (V /W )s(e) → (V /W )t(e) induced by
fe is injective.

Proof Elementary. 	


3 The Partial Order of Connected Components

Let � be an eventually outward finitely branched tree quiver. Let C be the set of non-empty
connected full subquivers of �. If α ∈ C, the complement of α in �, denoted by α′, is the
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full subquiver of � containing the vertices which are not in α. Then α′ is a disjoint union
of finitely many components, with each component connected to α by a single arrow, which
we call a boundary arrow of α. If e connects one of the components of α′ to α, we denote
this component by α′

e. Let ba(α) denote the set of boundary arrows of α. Thus we have the
following:

α′ =
⊔

e∈ba(α)

α′
e

Furthermore, we denote the subquiver of � which includes α′
e and e and both the source

and target of e (one of which is already in α′
e) by α′′

e .
If e is any arrow not contained in α, then α is contained entirely in one of the two

components of� created by the removal of e, and therefore e either points towards it or away
from it, i.e. α is either in front of e or behind it. Let the set of boundary arrows of α which
point towards α be iba(α) and the set pointing away be oba(α).

Define a relation on the set C of connected subquivers of � by letting α > β if one can
get from α to β by a sequence of the following moves:

1. We say that β is a reduction of α if there exists an arrow e in α such that β is the portion
of α behind e (in terms of its orientation in �). Thus e is a boundary arrow of β pointing
away.

2. We say that β is an enhancement of α if there exists an arrow e in β such that α is the
portion of β in front of e. Thus e is a boundary arrow of α pointing towards it.

Proposition 3.1 There is no infinite sequence α1, α2, ... such that each αn+1 is a nontrivial
reduction or enhancement of αn.

Proof Suppose for contradiction that such a sequence exists. For each n ∈ N, let Sn be the
set of arrows e not in αn which point towards αn and such that the journey from e to αn goes
through a boundary arrowofαn that also points towardsαn . ByLemma2.2, Sn is finite. Notice
first that if αn+1 is a reduction or enhancement of αn and e ∈ Sn+1, then e ∈ Sn , because
in the case of reduction the same journey works, and in the case of enhancement the same
journey works perhaps extended to go through the arrow of enhancement. So Sn+1 ⊆ Sn ,
and in the case of an enhancement Sn+1 ⊆ Sn because if we enhanced on boundary arrow
e of αn then e ∈ Sn − Sn+1. Therefore there can be only finitely many enhancements, and
there exists some N ∈ N such that for all n ≥ N , αn+1 < αn is a reduction. For each n ≥ N
let en−N be the arrow in αn along which the reduction αn+1 < αn occurs. Then we obtain a
sequence of arrows e1, e2, . . . such that for all m > n, em is behind en .

Since � is finitely branched, it is the union of finitely many injective journeys, and each
en must be on one of these journeys, so infinitely many en1 , en2 , . . . lie on a single journey.
If any eni is oriented consistently with the journey, then only finitely many other en j can be
behind it, which contradicts the fact that it was an infinite sequence. But if all the eni are
oriented inconsistently, this contradicts the fact that � was eventually outward. 	

Corollary 3.1 The relation > on C defined above is a well-founded strict partial order.

Proof Transitivity of the relation is trivially satisfied. To show asymmetry, if α < β < α

then we obtain an infinite decreasing sequence of moves, contradicting Proposition 3.1.
Irreflexivity follows from asymmetry. Now that we know < is a strict partial order, the
aforementioned proposition also implies that it is well-founded as it shows there are no
infinite strictly decreasing chains. 	
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Example 5 We now describe the partial order induced by reduction and enhancement on the
mountain quiver � explicitly. For this quiver, a nonempty connected subquiver α ∈ C can be
described by specifying the first arrow �(α) ∈ {−∞, an | n ∈ Z � {0}} to the left of α which
is not contained in α and the first arrow r(α) ∈ {+∞, an | n ∈ Z � {0}} to the right which
is not in α. We define total orders ≤L on �1 ∪ {−∞} and ≤R on �1 ∪ {+∞} as follows.

a−1 <L a−2 <L . . . <L −∞ <L a1 <L a2 <L . . .

a1 <R a2 <R . . . <R +∞ <R a−1 <R a−2 <R . . .

Note that these total orders are clearly well-founded. Then α > β in the reduc-
tion/enhancement partial order if and only if �(α) >L �(β) and r(α) >R r(β), i.e. if and
only if (�(α), r(α)) >L×R (�(β), r(β)) in the product order. And since the product of two
well-founded orders is again well-founded, C is well-founded as well. We will extend this
analysis to a general eventually outward A∞,∞ quiver in Section 6.

We now break down the different connected full subquivers of � into five different types
and describe how the reduction/enhancement order behaves with respect to this categoriza-
tion. Every subquiver considered will be full and therefore can be specified by listing the
vertices it contains.

• (Type 1): Let n,m ∈ Z≥0 and supposewithout loss of generality thatm ≤ n. Letα consist
of the vertices x−n, x−n+1, . . . , xm−1, xm so that �(α) = a−n−1 and r(α) = am+1. The
elements β of C with β ≤ α are those with vertices x−i , . . . , x j for i, j ∈ Z≥0 and i ≤ n,
j ≤ m.

• (Type 2): Let n,m ∈ Z≥0 be such that 0 < m ≤ n, and let α consist of the vertices
xm, xm+1, . . . , xn so that �(α) = am and r(α) = an+1. The elements β of C with β ≤ α

are those with vertices xi , xi+1 . . . , x j for −∞ < i ≤ m, 0 ≤ j ≤ n, along with the
infinite subquivers with vertices . . . , x j−1, x j for 0 ≤ j ≤ n.

• (Type 3): Let n ∈ Z>0 and let α consist of the vertices xn, xn+1, . . . so that �(α) = an and
r(α) = +∞. The elements β of C with β ≤ α are those with vertices xi , xi+1 . . . , x j for
i ≤ j and 0 ≤ j < ∞, the infinite subquivers with vertices . . . , x j−1, x j for 0 ≤ j < ∞,
the infinite subquivers with vertices xi , xi+1, . . . for i ≤ n, and the entire quiver �.

• (Type 4): Let n ∈ Z≥0 and let α be the full subquiver containing the vertices
x−n, x−n+1, . . . , x0, . . . so that �(α) = a−n−1 and r(α) = +∞. The elements β of
C with β ≤ α are those with vertices x−i , . . . , x j where i ≤ n and 0 ≤ j , as well as the
infinite subquivers with vertices x−i , x−i+1, . . . where i ≤ n.

• (Type 5): Let α = � so that �(α) = −∞ and r(α) = +∞. The elements β of C
with β ≤ α are those with vertices x−i , . . . , x j where 0 ≤ i, j , as well as the infinite
subquivers with vertices x−i , x−i+1, . . . for i ≥ 0 and those with vertices . . . , x j−1, x j
for j ≥ 0.

4 Poset Filtrations of Subrepresentations

Let � be a quiver which is a tree, and V a representation of �. If e is any arrow of �, define
two subrepresentations of V as follows. Define the subrepresentation V e,+ ⊆ V by

V e,+
i =

{
Vi if i is behind e

transport of Vt(e) else.
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Define V e,− ⊆ V by

V e,−
i =

{
{0}i ⊆ Vi if i is in front of e

transport of {0}t(e) else.

It is easy to check that each of these is indeed a subrepresentation.
Define a virtual arrow E to be an equivalence class of paths (oriented injective journeys)

that are either infinite or end in a leaf. Two such paths are equivalent if they are cofinal in the
sense that their intersection is again such a path. Thus if E ends in a leaf we may just think
of it as the leaf itself (the trivial path consisting of that vertex). If α ∈ C is a full connected
subquiver and some representative of E lies entirely within α we say E is a virtual boundary
arrow of α, and denote by vba(α) the set of all virtual boundary arrows of α. Note that while
boundary arrows of α are not contained in α, virtual boundary arrows of α are contained in
α. We think of a virtual boundary arrow of � as oriented journey which cannot be extended
past its tip. From now on, when referring to boundary arrows in the sense of Section 3 we’ll
call them literal boundary arrows to contrast with the virtual boundary arrows defined above.

Example 6

1. There are twovirtual arrowsof themountain�, namely the equivalence classes containing
the oriented injective journeys x0, x1, . . . and x0, x−1, . . .. We call these ER and EL

respectively. For every finite subquiver α of �, vba(α) is empty, but if α is the full
subquiver with vertices xn, xn+1, . . . for n > 0 then vba(α) = {ER} and similarly for
n < 0.

2. The An quiver� in Fig. 2 has two virtual arrows, namely the equivalence class containing
the leaf x1 and the equivalence class containing the leaf xn (notice that in the latter case
this equivalence class also contains the journey x1, x2, . . . , xn . If α is a full connected
subquiver of� then vba(α) is empty unless α contains either x1 or xn . In the former case
vba(α)will contain the virtual boundary arrow defined by the journey x1 and in the latter
case it will contain the virtual boundary arrow defined by the journey xn .

If E is a virtual arrow, define a subrepresentation V E,+ ⊆ V by

V E,+
i =

{
Vi if i ∈ ω

transport of Vj else

where ω is any representative of E , and j is the closest vertex in ω to i , in the sense that the
unique injective walk from j to i does not contain any other vertices of ω.

Remark 4.1 Notice that V E,+ is a subrepresentation which does not depend on the represen-
tative ω of E , so it is in fact well-defined.

Example 7

1. Consider the representation M of the mountain quiver� from Example 3 (1). Let n ∈ N.
Then Man ,+ is simply M since all maps are surjective. Furthermore, if E denotes either

Fig. 2 The Unidirectional An Quiver �
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1522 N. Gallup, S. Sawin

ER or EL then ME,+ = M as well. On the other hand, Man ,−(xm) is the transport of
{0} ⊆ M(xn) to xm which is given in Example 4. Explicitly we have

Man ,−(xm) =
{

0 if |m| ≥ |n|
Span(e1, . . . , e|n|−|m|) if |m| < |n|

For example Ma2,− is given below, where the nonzero maps send e1 → 0 and e2 → e1.

. . . 0 Span(e1) Span(e1, e2) Span(e1) 0 . . .

2. Now consider the representation N of the mountain quiver � from Example 3 (2). Let
n ∈ N. Then if xm is in front of an we have that Nan ,+(xm) is just the transport of
N (xn) to xm which is given in Example 4, and if xm is behind an Nan ,+(xm) = N (xm).
Furthermore NER ,+(xm) is the entire vector space N (xm) for m ≥ 0, and is equal to
Span(e1, e2) ⊆ N (xm) for m < 0 (a similar result holds for EL ). On the other hand,
Nan ,− is simply the zero representation since all maps are injective.

If α ∈ C is a connected subquiver and e ∈ ba(α), define V e,α to be V e,+ if e ∈ iba(α)

and V e,− if e ∈ oba(α), and if E ∈ vba(α) define V E,α = V E,+. Finally, let b(α) =
ba(α) ∪ vba(α).

Define a function F : C → Sub(V ), denoted α → Fα , by

Fα =
⋂

d∈b(α)

V d,α. (1)

In general a poset filtration of an RmoduleM consists of a partially ordered set (P,≤), and
a function F : P → Sub(M) which is order-preserving, meaning p ≤ q implies F p ⊆ Fq .

Proposition 4.1 F is a poset filtration of V , i.e. if β ≤ α are connected subquivers then
Fβ ⊆ Fα .

Proof It suffices to check this if β is obtained from α by a single reduction or enhancement.
First consider a reduction, with e an arrow contained in α and β the portion of α behind
e. Then β and α share all the same literal boundary arrows except that β has one outward
pointing literal boundary arrow e which α does not share and α has some number of literal
boundary arrows which β does not share, all of which are in front of e. Furthermore, every
virtual boundary arrow of β is also a virtual boundary arrow of α but α has some number
of virtual boundary arrows which are not contained in β, and hence by Remark 4.1 we can
assume are entirely contained in β ′

e.
Therefore for any vertex i in � we have the following:

Fα
i =

⎡

⎣
⋂

d∈b(α)∩b(β)

V d,α
i

⎤

⎦ ∩
⎡

⎣
⋂

d∈b(α)�b(β)

V d,α
i

⎤

⎦ (2)

Fβ
i =

⎡

⎣
⋂

d∈b(α)∩b(β)

V d,β
i

⎤

⎦ ∩ V e,β
i . (3)

First notice that because β ⊆ α, for any d ∈ ba(α) ∩ ba(β), d is outward pointing with
respect to α if and only if it is outward pointing with respect to β, and hence V d,α

i = V d,β
i .

Hence the first terms of the intersections in Eqs. 2 and 3 are equal. Now we consider two
cases.
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Case 1: If i is in front of e, then V e,β
i = {0} hence Fβ

i = {0} so trivially we have Fβ
i ⊆ Fα

i .

Case 2: If i is behind e, then V e,β
i is the transport of {0}t(e) to i . But notice that for

d ∈ b(α) � b(β), V d,α
i is the transport of V d,α

t(e) to i . Since {0}t(e) ⊆ V d,α
t(e) and transport of

subspaces preserves inclusion, it follows that V e,β
i ⊆ V d,α

i for all d ∈ b(α) � b(β), and
therefore the second term Eq. 3 is contained in the second term of Eq. 2.

Now consider an enhancement from α to β along an inward literal boundary arrow e of
α contained in β. Then α and β share all the same literal/ virtual boundary arrows except
that α has one arrow e pointing towards it which β does not share and β has literal/virtual
boundary arrows all behind e which α does not share. Therefore for a vertex i in � we have
the following:

Fβ
i =

⎡

⎣
⋂

d∈b(α)∩b(β)

V d,β
i

⎤

⎦ ∩
⎡

⎣
⋂

d∈b(β)�b(α)

V d,β
i

⎤

⎦ (4)

Fα
i =

⎡

⎣
⋂

d∈b(α)∩b(β)

V d,α
i

⎤

⎦ ∩ V e,α
i (5)

As before, the first terms of the intersections in Eqs. 4 and 5 are equal and the third terms
in Eqs. 4 and 5 are equal. Now we consider two cases.

Case 1: If i is behind e, then V e,α
i = Vi , hence the second term of Eq. 4 is trivially

contained in the second term of Eq. 5, yielding Fβ
i ⊆ Fα

i .

Case 2: If i is in front of e, then V e,β
i is the transport of Vt(e) to i . But notice that for

d ∈ b(β) � b(α), V d,β
i is the transport of V d,β

t(e) to i . Since V d,β

t(e) ⊆ Vt(e) and transport of

subspaces preserves inclusion, it follows that V e,β
i ⊆ V d,α

i for all d ∈ b(α) � b(β), and

therefore the second term in Eq. 4 is contained in the second term of Eq. 5. So Fβ
i ⊆ Fα

i . 	

Example 8 Let V be any representation of the mountain quiver �. We compute Fα for the
different types of α ∈ C discussed in Example 5, and then specialize to the representations
M and N from Example 3 using Example 7.

• (Type 1): For this type, oba(α) = {a−n−1, am+1}, and iba(α) = vba(α) = ∅. Hence
Fα = V a−n−1,α ∩ V am+1,α = V a−n−1,− ∩ V am+1,−. Therefore if V = M we have Fα =
Mam+1,− and if V = N we have Fα = 0.

• (Type 2): For this type, oba(α) = {an+1}, iba(α) = {am}, and vba(α) = ∅. Hence
Fα = V an+1,α ∩ V am ,α = V an+1,− ∩ V am ,+. Hence if V = M we have Fα = Man+1,−
and if V = N we have Fα = 0.

• (Type 3): For this type, oba(α) = ∅, iba(α) = {an}, and vba(α) = {ER}. Hence Fα =
V an ,α ∩ V ER ,α = V an ,+ ∩ V ER ,+. On the one hand, if V = M we have Fα = Man ,+ ∩
ME,+ = M . On the other hand, if V = N we have that Nan ,+ is the entire vector space
N (xm) for xm behind an and Span(e1, . . . , en+2) for m ≥ n. Additionally, NER ,α =
NER ,+ which is equal to the entire vector space N (xm) for m ≥ 0, and is equal to
Span(e1, e2) ⊆ N (xm) for m < 0. Therefore Fα = Nan ,+ ∩ NER ,+ is given by the
following formula:

Fα(xm) =
⎧
⎨

⎩

Span(e1, e2) if m ≤ 0
Span(e1, . . . , em+2) if 0 ≤ m < n
Span(e1, . . . , en+2) if n ≤ m
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• (Type 4): Here oba(α) = {a−n−1}, iba(α) = ∅, and vba(α) = {ER}. Hence Fα =
V a−n−1,α ∩ V E,α = V a−n−1,− ∩ V E,+, so if V = M we have Fα = Ma−n−1,− and if
V = N we have Fα = 0.

• (Type 5): For this case, oba(α) = iba(α) = ∅, and vba(α) = {ER, EL }. We therefore
have that Fα = V ER ,α ∩ V EL ,α = V ER ,+ ∩ V EL ,+. If V = M we have Fα = M and if
V = N we have:

NER ,+(xi ) =
{

Span(e1, e2) if i ≤ 0
Span(e1, . . . , ei+2) if 0 ≤ i

N EL ,+(xi ) =
{

Span(e1, e2) if 0 ≤ i
Span(e1, . . . , e|i |+2) if i ≤ 0

Hence Fα(xi ) = Span(e1, e2) for all i .

Lemma 4.1 If e is an arrow in α with exactly one literal or virtual boundary arrow of α

behind it, then fe is onto when restricted to Fα .

Proof Let b be the boundary behind e, and let X = V b,α
s(e) . For each literal or virtual boundary

bi of α other than b, let Yi = V bi ,α
t(e) . Then we have

Fα
s(e) = X ∩

⋂

i

f −1
e [Yi ] Fα

t(e) = fe[X ] ∩
⋂

i

Yi .

If y ∈ fe[X ] ∩ ⋂
i Yi then y = fe(x) where x ∈ X , and since y ∈ ⋂

i Yi necessarily
x ∈ ⋂

i f −1
e [Yi ]. So fe is onto on Fα . 	


5 Quotient and Lift

For each connected subgraph α ∈ C define

Wα = Fα/
∑

β<α

Fβ . (6)

Example 9 Consider the representationsM and N of themountain quiver� fromExample 3.
We compute Fα/F<α for the different types of connected full subquivers α from Example 5.

• (Type 1): Suppose V = M . Ifm < n and we define β to be the element of C with vertices
x−n+1, . . . , xm−1, xm , then Fβ = Mam+1,− = Fα , hence Fα/F<α = 0. However if
m = n then F<α = Mam ,− and so Fα/F<α has dimension 1 at xi for −m ≤ i ≤ m and
is zero everywhere else.
On the other hand, if V = N , since Fα = 0 we have Fα/F<α = 0 also.

• (Type 2): For V = M , if β has vertices x−n, . . . , xn , then Fβ = Man+1,− = Fα so
Fα/F<α = 0.
For V = N we have Fα = 0 which implies Fα/F<α = 0.

• (Type 3): If V = M , let β be the connected full subquiver containing every vertex, i.e.
�. Then β < α but Fβ = M = Fα , hence Fα/F<α = 0.
For V = N , if β is the full subquvier with vertices xn−1, xn, . . ., then we see that
F<α = Fβ , and hence Fα/F<α has dimension 1 on the support of α and dimension 0
elsewhere.
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• (Type 4): For V = M , if β is the full subquiver with vertices x−n, . . . , xn+1 then β < α

and Fβ = Ma−n−1,− = Fα so that Fα/F<α = 0.
For V = N we have Fα = 0 which implies Fα/F<α = 0.

• (Type 5): For V = M , if β is the full subquiver with vertices x0, x1, . . ., then β < α but
Fβ = M = Fα , hence Fα/F<α = 0.
Suppose that V = N . Notice that for every β with β < α we have Fβ = 0. Therefore
Fα/F<α = Fα which is 2-dimensional at each vertex.

Proposition 5.1 For each arrow e in α, if there is exactly one virtual boundary arrow of �

behind e, then fe is bijective on Wα . For each vertex i not in α, Wα
i = {0}.

Proof Suppose e is in α and there is exactly one virtual boundary arrow of � behind it. Then
either that virtual boundary is a virtual boundary of α as well, or there is a literal boundary
arrow of α behind e, so by Lemma 4.1, fe is onto when restricted to Fα , and similarly when
restricted to

∑
β<α Fβ . Thus it suffices to show that the kernel of fe in Fα is contained in

∑
β<α Fβ (because that shows that the image of fe on the quotient is injective). Let β be the

reduction of α by the arrow e. This is nonempty, and Fβ

s(e) = f −1
e [0] ∩ Fα

s(e). This implies
the first sentence.

Suppose i ∈ α′
e for some boundary e. If α is behind e then Fα

i = V e,−
i = 0 and the second

sentence follows. If α is in front of e then Fα
i is Fα

t(e) transported to i . We will enhance α

as follows. Take β to contain all the vertices of α, and since there is a unique injective walk
from i to t(e), add all the vertices in that path to β. For any vertex you add to β, if it is the
source of an arrow, add the target to β. The resulting β is an enhancement of α by e, and has
the following properties. 1) It contains i . 2) All the literal boundary arrows of β which are not
in α are inward. 3) The injective journey from i to any of those literal boundary arrows, or to
the virtual boundary arrow in β but not α agree in orientation with all its component arrows.
The intersection of all the representations associated to literal and virtual boundary that β

shares with α at the vertex i will be Fα
i . The representation associated to a new boundary

e′ or a new virtual boundary E will be V e′,+ or V E,+, and because there is a consistently
oriented injective journey from i to this boundary the value of that representation at i is Vi .
Thus Fβ

i = Fα
i , and thus

∑
β<α Fβ

i = Fα
i , and the quotient is trivial. 	


Example 10 The following diagram shows an example of a quiver �, an edge e of �, and
a full subquiver α containing the vertices s(e) and t(e) which satisfy the conditions of
Proposition 5.1.

•

• • • • · · ·e

In general we define an almost gradation of a poset filtration (F, P) of an R module M to
be a functionC : P → Sub(M) satisfying the condition that for all p ∈ P , F p = F<p⊕C p ,
where we define F<p = ∑

q<p F
q .

Proposition 5.2 For each connected subquiver α ∈ C, if every edge e in α has exactly one
virtual boundary of� behind it, the map Fα → Wα lifts, i.e. there exists an almost gradation
of the poset filtration F.

Proof We need to lift each Wα
i to Fα

i consistently with the maps fe. Since all Fα
i outside

of α are 0, this is trivial except for vertices and arrows in α. So it suffices to choose lifts for
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each i in α, in such a way that for each arrow e in α between i and j the following diagram
commutes (using Lemma 4.1 and Proposition 5.1)

0 Xα
j Fα

j Wα
j 0

0 Xα
i Fα

i Wα
i 0

fe fe (7)

where Xα = ∑
β<α Fβ . In the category of vector spaces we can lift one particular Wα

i to
Fα
i . We will extend this lift recursively to each other vertex across each arrow as follows. If

the lift li : Wα
i → Fα

i is chosen in the above diagram, then onWα
j define the lift fe ◦ li ◦ f −1

e
(the inverse exists by Proposition 5.1). If on the other hand the lift l j : Wα

j → Fα
j is chosen

in the above diagram, the lift in i is f −1
e ◦ l j ◦ fe, where f −1

e is any lift of fe. 	

In general we say that an almost gradation C : P → Sub(M) of a poset filtration F :

P → Sub(M) of an R module M spans if M = ∑
p∈P C p .

Proposition 5.3 The sum of the subrepresentations Fα equals V .

Proof Let i be a vertex. Define α recursively by including i in α, and including the target of
every arrow whose source is in α. Then α has the property that every literal boundary arrow
necessarily has α in front of it and for every vertex j ∈ α, there is a path from i to j . Then Fα

i
is the intersection of the transport of Vj for various j in α, which is then Vi . Thus Fα

i = Vi .
	


Proposition 5.4 For each connected subquiver α ∈ C, if every edge e in α has exactly one
virtual boundary of � behind it, then Wα is an isotypic �-representation.

Proof If α satisfies the assumptions of the proposition then by Proposition 5.1 every fe is
an isomorphism if e is in α and 0 otherwise. Choose a vertex i for which Wi is nonempty,
and for each j the sequence of isomorphisms fe associated to a path from i to j induces
an isomorphism Wi ∼= Wj . Choose a basis S of Wi , and for each s and each j let Ws

j be
the image in Wj under this isomorphism of the span of s in Wi . Then for each arrow e the
isomorphism fe from j to k restricts to a rank 1 isomorphism f se from Ws

j to Ws
k . Then the

collection Ws of these restricted isomorphisms and subspaces is a subrepresentation of W ,
clearly indecomposable, and it is immediate thatW = ⊕

s∈S Ws . Finally, note that the vector
space isomorphism Ws

i to Wt
i extends to a representation isomorphism Ws to Wt , and thus

W is isotypic. 	

Example 11

1. Consider the representation M of the mountain quiver� from Example 3 (1). According
to Example 9, Fα/F<α = 0 except if α is a full subquiver containing x−n, . . . , xn for
n ≥ 0. If we define Wα ⊆ M to be Span(en+1) at all vertices in the support of α and
zero elsewhere, then Fα = Wα ⊕ F<α .

2. Consider the representation N of the mountain quiver � from Example 3 (2). According
to Example 9, Fα/F<α = 0 except if α is either a subquiver with vertices xn, xn+1, . . .

for n > 0, a subquiver with vertices . . . , x−n−1, x−n for n > 0, or α = �. In the first
two cases we define Wα(xi ) to be Span(en+2) for all xi in the support of α and zero
elsewhere, and in the third case we define Wα(xi ) to be Span(e1, e2) for all i . Note that
in the latter case, Wα is non-trivially isotypic, i.e. it is a direct sum of two isomorphic
subrepresentations each of which has a single dimension at each vertex.
For all such α we have Fα = Wα ⊕ F<α .
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Fig. 3 The Graph A∞,∞

In either case, α → Wα is an almost gradation of the poset filtration F . The existence of
Wα is guaranteed by Propositions 5.2 and 5.3 implies that M = ∑

α∈C Fα = ∑
α∈C Wα .

6 Complete Decomposition of A∞,∞

Let A∞,∞ be the graph shown in Fig. 3 with a vertex for each integer i and an edge between
each two adjacent integers, and let � be an eventually outward quiver with underlying graph
A∞,∞.

Notice that every connected subquiver α of � has exactly two literal/virtual boundary
arrows, a left boundary which is either the literal left boundary arrow or the left virtual arrow
of �, and a right boundary which is either the literal right boundary arrow or the right virtual
arrow of �.

We will define two total orderings, one <L on the set of all arrows of A∞,∞ together with
a symbol −∞ (representing the left virtual boundary of �), and the other <R on the set of
all arrows in A∞,∞ together with the symbol ∞ representing the right virtual arrow. If e and
e′ are two arrows oriented the same way, then e <L e′ and e <R e′ if e is behind e′. If they
are oriented oppositely then e <L −∞ <L e′ and e′ <R ∞ <R e if e is pointing to the left
and e′ to the right. Note that the restriction of either <R or <L to the set of arrows �1 is a
total order extension of the partial order ≺ from Section 2.4, in the sense that for any pair of
edges e, e′ if e ≺ e′ then we have that e <R e′ and e <L e′.

Recall that if (P,≤P ) and (Q,≤Q) are two partially ordered sets, their product (P,≤P )

×(Q,≤Q) is the partially ordered set (P × Q,≤P×Q) where (p, q) ≤P×Q (p′, q ′) if and
only if p ≤P p′ and q ≤Q q ′.

Lemma 6.1 There is an order-embedding ι (i.e. order-preserving, injective, and order-
reflecting) of the poset C of connected subquivers of � with the reduction/enhancement
partial order into the product poset ((�1 ∪ {−∞}) × (�1 ∪ {∞}),<L×R) given by sending
a connected subquiver α to the ordered pair consisting of its left and right literal or virtual
boundary arrows respectively.

Proof The map is clearly injective since a connected subgraph of A∞,∞ is uniquely deter-
mined by its literal/virtual boundary arrows. To prove it is order-preserving, it suffices to show
that if α, β ∈ C are connected components and α > β with β a reduction or enhancement of
α then the left/right literal or virtual boundary arrow of α is larger than the left/right literal
or virtual boundary arrow of β.

If β is a reduction of α along an arrow e in α then α and β agree behind e, so each
has a literal or virtual boundary arrow behind e and these arrows are equal. The remaining
boundary arrow a of α is in front of e which is the remaining boundary arrow of β. If e is
pointing to the right, then e <R a, while if e is pointing to the left, then e <L a. The desired
result follows. The case when β is an enhancement of α is similar.

To see that it is order-reflecting, assume ι(α) >L×R ι(β) and show α > β. If ι(α) = (i, j)
and ι(β) = (k, �), then k ≤L i and � ≤R j . Let γ be the unique connected subset such that
ι(γ ) = (k, j). Then by the definition of <L , γ is an enhancement of α if k is to the left of i
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and an reduction if k is to the right, in either case γ < α (or equal if k = i). Similarly we
see by the definition of <R that β < γ . 	


Associate to any arrow e a subrepresentation of V called Le which is V e,+ if e points to the
right and V e,− if e points to the left, and a subrepresentation of V called Re which is V e,+ if e
points to the left andV e,− if e points to the right.Associate to−∞ a subrepresentation L−∞ =
V E,+ where E is the left virtual arrow of A∞,∞ and associate to ∞ a subrepresentation
R∞ = V E,+ where E is the right virtual arrow of A∞,∞.

Lemma 6.2 L is a poset filtration of V with respect to the<L order and R is a poset filtration
of V with respect to the <R order. For each connected subquiver α the subrepresentation Fα

is the intersection of Le and Re′
, where e and e′ are respectively the left and right virtual or

literal boundary arrows of α.

Proof We check the first sentence only for the L , the argument for R is the same. If e is a
literal arrow oriented to the right then Le = V e,+, and thus Le

i is Vi to its left and a transport
of Vt(e) to its right. L−∞

i is the transport of Vj for j sufficiently far to the left of it. If e is
oriented to the left, Le = V e,−, hence Le

i is 0 to its left and a transport of {0}t(e) to its right.
Thus if e is oriented to the right, Le

i is bigger than any Le′
i to its left (behind it), including

the left virtual arrow L−∞. Similarly, if e is oriented to the left, Le
i is smaller than any arrow

to its left (in front of it), and smaller than L−∞.
That Fα is the intersection of L and R is just a restatement of the definition of Fα in the

case when there are always two literal or virtual boundary arrows. 	

Let M be an R module. We say that a poset filtration (F, P) of M is distributive if for all

finite subsets Q ⊆ P and all p ∈ Q which is maximal in Q we have Fp ∩ ∑
q∈Q�{p} Fq ⊆

F<p .
Furthermore, we say that an almost gradation C : P → Sub(M) of a poset filtration F :

P → Sub(M) of an R module M is independent if the family of submodules (C p | p ∈ P)

is independent, in the sense that whenever we have cp1 + . . . + cpn = 0 for cpi ∈ C pi and
p1, . . . , pn distinct elements of P , then cpi = 0 for all 1 ≤ i ≤ n.

Proposition 6.1 Let R be a ring and M an R module. If (F, P) is a distributive poset filtration
of M then every almost gradation of F is independent.

Proof LetC : P → Sub(M) be an almost gradation of F , and suppose that Q ⊆ P is a finite
subset and for each q ∈ Q we have cq ∈ Cq such that

∑
q∈Q cq = 0. Since Q is finite, there

exists a maximal element p ∈ Q of Q (i.e. if p ≤ q for some q ∈ Q then p = q). Then we
write

cp = −
∑

q∈Q�{p}
cq .

Note that the LHS is contained in Fp , and the RHS is contained in
∑

q∈Q−{p} Fq , so both
sides are contained in Fp ∩∑

q∈Q�{p} Fq ⊆ F<p by distributivity. Thus cp ∈ F<p and since
cp ∈ Cp and Vp = Cp ⊕ F<p , it follows cp = 0, and then by induction on the size of Q, all
cq = 0 as desired. 	


We define the intersection of two poset filtrations (E, P), and (F, Q) of an R-module M ,
to be the poset filtration (E ∩ F, P × Q) (where P × Q is given the product order) defined
by [E ∩ F](p,q) = Ep ∩ Fq . One can easily check that E ∩ F : P × Q → Sub(M) is an
order-preserving function, so this does indeed define a poset filtration of M .
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Proposition 6.2 If (E, I ), and (F, J ) are linear filtrations of M then for each (i, j) ∈ I × J ,
we have that

[E ∩ F]<(i, j) = Ei ∩ F< j + E<i ∩ Fj . (8)

and therefore their intersection (E ∩ F, I × J ) is distributive.

Proof By definition, we have that [E∩F]<(i, j) = ∑
(k,�)<(i, j) Ek∩F�.We now showmutual

inclusion of the desired equality.
For the containment (⊆), suppose that (k, �) < (i, j), and thus either k < i and � ≤ j ,

or k ≤ i and � < j . Without loss of generality, suppose that k < i and � ≤ j . Then we have
that Ek ⊆ E<i , and F� ⊆ Fj . Therefore Ek ∩ F� ⊆ E<i ∩ Fj .

To show the containment (⊇), we prove only that Ei ∩ F< j ⊆ [E ∩ F]<(i, j), the other
case being similar. Consider v ∈ Ei ∩ F< j ⊆ ∑

�< j F�. In particular we have that v ∈
F< j = ∑

�< j F�. Since (J ,≤) is totally ordered and the sum is manifestly nonempty,∑
�< j F� = ⋃

�< j F�. Therefore there exists some �′ < j such that v ∈ F�′ . Hence v ∈
Ei ∩ F�′ ⊆ [E ∩ F]<(i, j).

We now check that (E ∩ F, I × J ) is distributive. Let Q ⊆ I × J be finite and let
p = (i, j) ∈ Q be maximal. If x ∈ [E ∩ F]p ∩ ∑

Q�{p}[E ∩ F]q , then we can write
x = ∑

(�,m)∈Q�{p} x�,m where x�,m ∈ E� ∩ Fm . Because p is maximal either � < i or
m < j . Since each of the latter lie in F< j we have

x −
∑

(�,m)∈Q
�<i

x�,m ∈ F< j .

But of course every term in the left hand side is in Ei so

x −
∑

(�,m)∈Q
�<i

x�,m ∈ Ei ∩ F< j .

On the other hand each x�,m ∈ E<i , so

x ∈ E<i + Ei ∩ F< j .

and noting that x ∈ Fj and Ei ∩ F< j ⊆ Fj gives

x ∈ E<i ∩ Fj + Ei ∩ F< j ⊆ [E ∩ F]<(i, j)

by Eq. 8 	

A morphism of poset filtrations ϕ : (E, P) → (F, Q) of an R module V is an order-

preserving map ϕ : P → Q such that F ◦ ϕ = E .

Lemma 6.3 Suppose that ϕ : (E, P) → (F, Q) is a morphism of poset filtrations which
is an order-embedding, that (F, Q) is distributive, and that for all p ∈ P we have that
F<ϕ(p) ⊆ E<p. Then (E, P) is distributive as well.

Proof Let S ⊆ P be a finite subset and p ∈ S be maximal. Then ϕ(S) ⊆ Q is finite and
ϕ(p) ∈ ϕ(S) is maximal because ϕ is order-reflecting. Then

Ep ∩
∑

s∈S�{p}
Es

(1)= Fϕ(p) ∩
∑

s∈S�{p}
Fϕ(s)

(2)= Fϕ(p) ∩
∑

q∈ϕ(S)�{ϕ(p)}
Fq

(3)⊆ F<ϕ(p)
(4)⊆ E<p
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where (1) follows because ϕ is a poset filtration morphism, (2) follows because order-
embeddings are injective, (3) follows because (F, Q) is distributive, and (4) follows by
hypothesis. 	

Lemma 6.4 The order-embedding ι : C → (�1 ∪ {−∞},<L ) × (�1 ∪ {∞},<R) defined in
Lemma 6.1 satisfies the condition that for all α ∈ C, [L ∩ R]<ι(α) ⊆ F<α .

Proof Suppose that ι(α) = (eL , eR), and by Proposition 6.2, [L ∩ R]<ι(α) = LeL ∩ R<eR +
L<eL ∩ ReR . It suffices to show that LeL ∩ R<eR and L<eL ∩ ReR are contained in F<α , and
we only show the former, the latter being similar.

Note that R<eR = ∑
e<ReR Re = ⋃

e<ReR Re, the last equality holding because�1 ∪{∞}
is linearly ordered and some Re is nonempty. Therefore LeL ∩ R<eR = LeL ∩ ⋃

e<ReR Re =
⋃

e<ReR LeL ∩Re. Defineβ = ι−1(eL , e) since ι is injective and noteβ < α since ι(β) < ι(α)

and ι is order-reflecting. So Fβ ⊆ F<α and hence LeL ∩ R<eR ⊆ F<α . 	

Corollary 6.1 Let V be an A∞,∞-representation. Every almost gradation of the poset filtra-
tion (F, C) is independent.

Proof By Lemmas 6.1 and 6.2 ι : (F, C) → (L ∩ R,�1 ∪ {−∞} × �1 ∪ {∞}) is an order-
embedding morphism. By Proposition 6.2 (L ∩ R,�1 ∪ {−∞} × �1 ∪ {∞}) is distributive.
By Lemma 6.4, ι satisfies the necessary conditions to apply Lemma 6.3, which implies that
(F, C) is also distributive. Hence Proposition 6.1 gives the desired result. 	

Theorem 1 The category of representations of an eventually outward A∞,∞ quiver is infinite
Krull Schmidt.

Proof We first show that a representation V of an eventually outward A∞,∞ quiver can be
written as a direct sum of representations, each of which is isomorphic to Wα for some
connected subquiver α, and each Wα is an isotypic.

By Proposition 4.1, (F, C) is a poset filtration of subrepresentations of V . By
Proposition 5.2 Wα is an almost gradation of (F, C), by Corollary 6.1 Wα is independent,
and by Proposition 5.3, Wα spans V . Therefore V = ⊕

α Wα . By Proposition 5.4 each Wα

is an isotypic.
To show this decomposition is unique up to reordering and isomorphism, assume that we

have another decomposition V = ⊕
α Xα where Xα is a direct sum of representations all

isomorphic the the thin representation with support exactly α. We will show inductively that
for each α if Fα is the subrepresentation of V defined in Eq. 1, then Fα = ⊕

β≤α Xβ . If this
is true then the quotient map Xα → Fα/

∑
β<α = Wα is an isomorphism and the sum of

all these isomorphisms gives an isomorphism of the two direct sum decompositions.
To see that isomorphism, note first from the definition of Fα we have that Xα ⊂ Fα and

therefore
∑

β≤α Xα ⊂ Fα. But the injection of Fα into V projects onto a map Fα → Xβ

for each β, and this map is clearly 0 unless β ≤ α, so Fα ⊂ ∑
β≤α Xα . 	


Example 12 Let V be one of the representations M of N of the mountain quiver � from
Example 3. According to Example 11, α → Wα is an almost gradation of the poset filtra-
tion F , and because � has type A∞,∞, Corollary 6.1 implies that this almost gradation is
independent too. Whence we have V = ⊕

α∈C Wα in accordance with Theorem 1.

7 Description of the Indecomposables

In this section we continue to restrict to the case where � is eventually outward and has
underlying graph A∞,∞.
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Proposition 7.1 For each full connected subquiver α ∈ C the isomorphism class of represen-
tations Xα with Xα

i being zero dimensional if i is not in α and 1-dimensional if i is in α and
with fe a bijection for each arrow in α is indecomposable, and thus every representation of
an eventually outward A∞,∞ quiver is a direct sum of indecomposables Xα .

Proof Each Xα is clearly indecomposable, because if it were a sum of two subrepresentations
then each is either one or zero dimensional at each vertex, and thus each is the sum of the Xα

i
for some subset of the vertices and the other is the sum for the complementary set of vertices.
If each is a nonempty set, since α is connected there must be a pair of vertices connected by
an arrow from different subrepresentations. Since the morphism associated to that edge is a
bijection, this is impossible.

By Propositions 5.1 and 5.4, each Wα is a sum of copies of Xα , and by Theorem 1 any
representation is a sum of Xα . 	


Note that the indecomposables in Proposition 7.1 are exactly the indecomposable repre-
sentations found by Bautista et al. [3] in their Prop. 5.9, although they deal only with locally
finite representations.

There is a useful interpretation of this with the Euler form. Let us define the root space of
the quiver to be the space of functions from �0 to the real numbers which are zero on all but
finitely many vertices. If n and m are two such functions define the Euler form to be

〈n,m〉� =
∑

i∈�0

nimi − 1

2

∑

e∈�1

(
ns(e)mt(e) + nt(e)ms(e)

)
(9)

where of course ni is the value of n at i .
Observe that the Euler form is positive definite because the corresponding Tits quadratic

form satisfies

〈n, n〉� = 1

2

∑

i∈�0

(ni + ni+1)
2 > 0

unless every ni = −ni+1, which contradicts the finiteness. The number 〈n, n〉� is called the
length of the vector n. We define a root to be an element of the root space which has integer
entries and Tits form 1. Define also a positive root to be a root with nonnegative entries.

Define the weight space of the quiver to be the space of functions from �0 to the real
numbers, with no restriction on the values. Observe that if n is in the weight space and m
is in the root space then Eq. 9 still makes sense and thus the weight space can be thought
of as functionals on the root space. Define a uniform topology on the weight space with an
entourage for each finite subset S of the vertices, the open neighborhood of each n being the
weights that assign the same value as n to every vertex in S. Equivalently, Cauchy sequences
are those that for each such S are eventually constant on each vertex of S. It is easy to check
that theweight space is the completion of the root space in this topology and that each element
of the root space gives through the Euler form a continuous map from the weight space to
the real numbers (the reals are given the discrete topology).

Observe that every representation of a quiver which is locally finite-dimensional (that is
the vector space at each vertex is finite-dimensional) determines a natural number-valued
weight called its dimension vector that assigns to each vertex the dimension of the associated
vector space.

Proposition 7.2 For the quiver A∞,∞ aweight valued in the natural numbers is the dimension
of an indecomposable representation if and only if it is in the closure of the set of all positive
roots.
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Proof By Proposition 7.1 the representations Xα are the only indecomposables. One checks
that if α consists of finitely many vertices its dimension is of length 1. It is also clear that if
α is infinite it is in the closure of the set of all finite connected subquivers α′ contained in it.

Suppose first n is in the root space and valued in the natural numbers, and the support α

(vertices i with ni > 0) of n is connected. Then if i and j are its left and right endpoints

〈n, n〉� = 1

2
(n2i + n2j ) +

∑

e∈α

1

2

(
ns(e) − nt(e)

)2
.

The first term is at least 1 and only 1 if ni = n j = 1. The second term is at least 0 and
only 0 if all nk values in between are equal. Therefore 〈n, n〉� = 1 if n is all 1s on α and
〈n, n〉� ≥ 2 otherwise. If n has disconnected support 〈n, n〉� is the sum of the values of each
connected component, and therefore at least 2. So if n is in the root space and valued in N it
is a positive root only when it corresponds to α.

If n is in the closure of the set of all positive roots, it cannot assign a number bigger than
1 to any vertex, because an open set around it based on a finite set of vertices containing that
vertex would include no positive roots. So it is the indicator function of a set of vertices. If
that set were not connected it has a finite gap, and a finite set of vertices containing that gap
and the points on either side would give an open set that includes no positive roots. So every
weight in the closure is of the desired form.

The dimensions of course determine the indecomposable representation, because if a
representation has the same dimensions as Xα but is not isomorphic, then for one edge
e ∈ α we must have fe = 0. In that case the representation decomposes as the sum of the
subrepresentations supported respectively behind and in front of e. 	


8 A Representation which is not Krull-Schmidt

In this section we give an example of a representation of a type A∞,∞ quiver which is not
infinite Krull-Schmidt. It follows from Theorem 1 that this quiver is not eventually outward.

Let � be the A∞,∞ quiver in Fig. 4 with all arrows pointing towards the vertex x0, and
note that this quiver is not eventually outward. Let V be the representation of � with Vn = 0
for all n < 0 and for n ≥ 0, Vn is the vector space of all sequences (b0, b1, . . .) with entries
in F and bm = 0 for all m < n. Let fn : Vn+1 → Vn be the inclusion map for all n ≥ 0.

Suppose that V is infinite Krull-Schmidt, i.e. that V = ⊕
i∈I V i where for each i ∈ I ,

V i is an indecomposable representation of �.

Lemma 8.1 For all k ≥ 0 there exists ik ∈ I and nonzero x ∈ V ik
k such that x ∈ Vk �

fk(Vk+1).

Proof Consider the standard basis vector ek+1 = (0, . . . , 0, 1, 0, . . .) ∈ Vk � fk(Vk+1).
Since V = ⊕

i∈I V i , we can write ek+1 = v1 + . . . + vn where vm ∈ V im
k and im ∈ I . It is

not possible that vm ∈ fk(Vk+1) for all 1 ≤ m ≤ n because then ek+1 ∈ fk(Vk+1), which is
false. Hence there must be some vm ∈ Vk � fk(Vk+1), and taking x = vm and ik = im yields
the desired result. 	


Fig. 4 The Quiver �
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Lemma 8.2 If there exists i ∈ I and nonzero x ∈ V i
k such that x ∈ Vk � fk(Vk+1) then

V i
m = 0 if m < 0 or m > k and V i

m = Span(x) for all 0 ≤ m ≤ k.

Proof We prove this by induction on k. Suppose k ≥ 0 and assume the result holds for all
0 ≤ n < k.

First prove that given n < k, fn : V i
n+1 → V i

n is surjective. Given v ∈ V i
n , if v ∈

Vn � fn(Vn+1), then by induction V i
m is 0 for m > n and in particular V i

k = 0 contradicting
that x �= 0. Therefore it must be that v ∈ fn(Vn+1), and we call its preimage v′. Then by
our direct sum decomposition of V we can write v′ = ∑k

t=1 vit where vit ∈ V it
n+1. But then

v = fn(v′) = ∑k
t=1 fn(vit ) and fn(vit ) ∈ V it

n . Since v ∈ V i
n it must be that there is some

s such that is = i and v = fn(vis ) but fn(vit ) = 0 for all t �= s. Since fn is injective, it
follows that v′ = vis ∈ V i

n+1 and vit = 0 for all t �= s, hence v ∈ fn(V i
n+1) as desired.

Given x ∈ V i
k such that x ∈ Vk � fk(Vk+1) let C and D be the subrepresentations of V

given respectively below.

. . . → 0 → f (Span(x))
f0←− . . .

fk−1←− Span(x)
fk←− 0 . . .

. . . → 0 → f fk(Vk+1)
f0←− . . .

fk−1←− fk(Vk+1)
fk←− Vk+1

fk+1←− . . .

Here f = f0 ◦ . . . ◦ fk−1. Note that C is a subrepresentation of V i and thus C ⊕ [D ∩
V i ] ⊆ Vi (since x /∈ fk(Vk+1), it follows that Ck and Dk ∩ V i

k are independent). In fact
V i = C ⊕ [D ∩ V i ]. For n > k it is obvious that V i

n = Cn ⊕ [D ∩ V i ]n . If v ∈ V i
k ⊆ Vk

then v = αx + w where α ∈ F and w ∈ fk+1 (Vk+1), but in fact w = v − αx ∈ V i and thus
w ∈ V i

k ∩ fk+1 (Vk+1), and so v ∈ C ⊕ (D ∩ V i ). Thus V i
k = Ck ⊕ (Dk ∩ V i

k ). Since fn is
injective and surjective on V i for 0 ≤ n < k the same is true for every n ≥ 0, and both sides
of the last equation are 0 for n < 0, so V i = C ⊕ (D ∩ V i ).

Since V i is indecomposable, this implies that D ∩ V i is zero and V i = C . 	

Corollary 8.1 All V i are of the form

. . . → 0 → Span(x)
f0←− . . .

fk−1←− Span(x)
fk←− 0 . . .

for some k ≥ 0.

Proof Given i ∈ I , since V i is indecomposable, it is nonzero. Therefore there exists a
nonzero vector x in V i

� for some �,≥ 0. If x ∈ V� � f�(V�+1) then by Lemma 8.2 we are
done. If x = f�(y) for y ∈ V�+1 write y = ∑

yt for yt ∈ V it and thus f�(yt ) ∈ V it and by
independence of the direct summands one it must equal i and y ∈ V i . Repeating this process
we must come to a z ∈ V i

k � fk (Vk), since every nonzero sequence has a first nonzero entry.
	


Lemma 8.3 For each k ≥ 0 there is at most one i ∈ I such that V i
k ∩ [Vk � fk(Vk+1)] is

nonempty.

Proof Suppose that i, j ∈ I are such that there exists x ∈ V i
k , y ∈ V j

k and x, y ∈ Vk �

fk(Vk+1). By Lemma 8.2, we have that V i and V j are equal, respectively, to the following
subrepresentations.

. . . → 0 →Span(x)
f0←− . . .

fk−1←− Span(x)
fk←− 0 . . .

. . . → 0 →Span(y)
f0←− . . .

fk−1←− Span(y)
fk←− 0 . . .
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Now by hypothesis, Vk+1 = ⊕
�∈I V �

k+1, and then because fk is injective, we have
fk(Vk+1) = ⊕

�∈I fk(V �
k+1). By Corollary 8.1, either V �

k+1 = 0 or fk is an isomorphism
when restricted to V �

k+1, hence we can write fk(Vk+1) = ⊕
�∈L V �

k+1 with L = {� ∈ I :
V �
k+1 �= 0}.
Again by hypothesis, Vk = ⊕

�∈I V �
k and hence the family (V i

k , V j
k , V �

k : � ∈ L) of Vk is
independent. But this contradicts the fact that Vk/Vk+1 is 1-dimensional. 	

Corollary 8.2 V is not infinite Krull-Schmidt.

Proof If V were a direct sum of indecomposable subrepresentations, say V = ⊕
i∈I V i ,

then by Corollary 8.1, each of the indecomposables is of the form described in said corollary,
which means for all i ∈ I there exists k ≥ 0 such that V i

k ∩[Vk � fk(Vk+1)] is nonempty. But
by Lemma 8.3 there is at most one such i for each k, hence I must be countable. However V i

0
is one-dimensional for each i and V0 has uncountable dimension, yielding a contradiction. 	

Remark 8.1 The example above seems closely related to Example 2.5.1 in [6], which is a
locally countable-dimensional representation that cannot be written as a sum of thin inde-
composables. It seems likely that similar arguments as the above example would prove that
it cannot in fact be written as a sum of indecomposables at all.
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