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Abstract
Demazure crystals are subcrystals of highest weight irreducible g-crystals. In this article,
we study tensor products of a larger class of subcrystals, called extremal, and give a local
characterization for exactly when the tensor product of Demazure crystals is extremal. We
then show that tensor products ofDemazure crystals decompose into direct sums ofDemazure
crystals if and only if the tensor product is extremal, thus providing a sufficient and necessary
local criterion for when the tensor product of Demazure crystals is itself Demazure. As an
application, we show that the primary component in the tensor square of any Demazure
crystal is always Demazure.

Keywords Crystal bases · Demazure crystals · Demazure modules · Extremal crystals ·
Tensor products · Excellent filtrations
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1 Introduction

For G a connected, simply-connected, semi-simple Lie group, the finite dimensional simple
G-modules V (λ) are indexed by λ ∈ P+ the set of dominant weights. For w an element
of the Weyl group W and B ⊂ G a Borel subgroup, the Demazure module Vw(λ) is the
B-submodule of V (λ) generated by the one-dimensional extremal weight space of Vw(λ)

with weight wλ [4].
Mathieu [20] proved a conjecture of Polo [23] stating that if one twists a Demazuremodule

by an anti-dominant character, then the resulting B-module can be filtered with successive
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628 S. Assaf et al.

quotients given by Demazure modules. Such a filtration is called an excellent filtration.
Excellent filtrations for B-modules generalize the notion of good filtrations for G-modules,
where successive quotients are Weyl modules. We identify simple modules and their Weyl
modules. The tensor product of two G-modules with good filtrations has a good filtration,
but having excellent filtrations is not, in general, preserved by tensor products for B-modules
[24].

Kashiwara [11] introduced crystal bases as set-theoretic abstractions of Lusztig’s geo-
metric canonical bases [19] of representations of quantized universal enveloping algebras,
at q = 0. In particular, Weyl modules admit crystals bases. Let B(λ) denote the crystal of
V (λ).

Important information about the module can be read directly from the corresponding
crystal. For example, the character of amodule is the character of its crystal, and the connected
components of the crystal correspond to irreducible components of the module. Moreover,
there is a simple combinatorial rule for defining the tensor product crystal B(λ) ⊗ B(μ)

as a disjoint union of crystals which exactly matches the representations appearing in the
decomposition of V (λ)⊗V (μ). Note this gives a crystal-theoretic proof that tensor products
of modules with good filtrations once again have good filtrations.

The Demazure character formula [5] was proved by Joseph [9] and generalized by Ishii
[8]. For w ∈ W , Littelmann [17] conjectured, and proved for classical types, the existence
of a subset Bw(λ) ⊆ B(λ) whose character corresponds to that of the Demazure module
Vw(λ). Kashiwara [12] extended the definition of Demazure crystals and gave an explicit
construction for Bw(λ).

For u, v ∈ W andμ, ν ∈ P+, the subsetBu(μ)⊗Bv(ν) ofB(μ)⊗B(ν) is not, in general, a
direct sum of Demazure crystals. In part, this reflects the fact that the tensor product module
Vu(μ) ⊗ Vv(ν) does not, in general, admit an excellent filtration. On the other hand, this
reflects the fact that the tensor product crystal Bu(μ) ⊗ Bv(ν) is not, in general, the crystal
of Vu(μ) ⊗ Vv(ν).

For e ∈ W the identity element, Be(μ) consists of the single highest weight element.
Lakshmibai, Littelmann and Magyar [15] and independently Joseph [10] proved Be(μ) ⊗
Bv(ν) is a direct sum ofDemazure crystals, giving a combinatorial version ofMathieu’s result
[20]. There are other special cases of tensors of Demazure crystals studied using Kirillov–
Reshetikhin crystals [6, 16, 21, 22]. Kouno [14] recently gave a complete characterization for
when Bu(μ) ⊗ Bv(ν) is a direct sum of Demazure crystals. This characterization, however,
considers certain combinatorial properties that depend on knowing exactly whichWeyl group
elements and dominant weights index the Demazure crystals being tensored.

In this paper, we replace Kouno’s global condition with a local criterion that does not
require knowledge of the combinatorial properties above and hence is more generally appli-
cable.More specifically,we study abroader class of subsets of crystalswhichwecall extremal.
These are subsets X ⊆ B(λ) characterized by the so-call string property: for any i-string
S ⊂ B(λ) with highest weight element b, the intersection S∩ X is either ∅, {b}, or S. Kashi-
wara [12] notes extremality is one of the remarkable properties enjoyed by the Demazure
crystals Bw(λ). Thus, while all Demazure crystals are extremal, not all extremal subsets are
Demazure.

As with the Demazure property, the extremal property is not preserved by tensor products.
Our firstmain result is a local characterization forwhen the tensor product of extremal subsets
is extremal. Here the ei and fi are the raising and lowering operators, respectively, on the
crystals.

123



Extremal Tensor Products of Demazure Crystals 629

Theorem 1.1 For X ⊂ B(λ) and Y ⊂ B(μ) extremal subsets, the tensor product X ⊗ Y
is an extremal subset of B(λ) ⊗ B(μ) if and only if for every x ⊗ y ∈ X ⊗ Y for which
ei (x ⊗ y) = ei (x) ⊗ y �= 0 and fi (x ⊗ y) = x ⊗ fi (y) �= 0, we have fi (y) ∈ Y .

Any tensor product of Demazure crystals which decomposes as a direct sum of Demazure
crystals is also extremal, since Demazure crystals are extremal. Our second main result is
that, remarkably, the converse is true as well.

Theorem 1.2 For λ,μ ∈ P+ and w, u ∈ W, we have Bw(λ) ⊗ Bu(μ) is a direct sum of
Demazure crystals if and only if it is extremal.

Theorems 1.1 and 1.2 give a new, local characterization to determine when a tensor
product retains its Demazure structure. We apply this characterization to show the connected
component of Bw(λ)⊗m containing bλ ⊗ · · · ⊗ bλ is Demazure, even when the full product
is not.

We conclude with some evidence suggesting the existence of a modified definition of the
tensor product rule for crystals which preserves the extremal property. Such a rule might
lead to a characterization for which tensor products of Demazure modules admit excellent
filtrations.

2 Normal Crystals

Let g be the complex reductive Lie algebra associated with the Lie group G. Let I be the
set of vertices of the Dynkin diagram of g, and let P be the weight lattice of g. For each
i ∈ I , we have the simple root αi ∈ P and its coroot α∨ ∈ P∨ = HomZ(P, Z). We review
Kashiwara’s theory of g-crystal, restricting to the category of highest weight crystals. For
further details, see [13].

A (normal) g-crystal B consists of a (finite) set B together with maps

wt : B → P, εi , ϕi : B → Z, ei , fi : B → B 
 {0}
subject to the following axioms for all i ∈ I and all b, b′ ∈ B,
(C1) ϕi (b) − εi (b) = 〈α∨

i ,wt(b)〉;
(C2) if ei (b) ∈ B, then wt(ei (b)) = wt(b) + αi ;

if fi (b) ∈ B, then wt( fi (b)) = wt(b) − αi ;
(C3) b′ = ei (b) if and only if b = fi (b′);
(C4) εi (b) = max{k ≥ 0 | eki (b) ∈ B}, and ϕi (b) = max{k ≥ 0 | f ki (b) ∈ B}.
The crystal operators {ei , fi }i∈I are the q = 0 limits of the Chevalley generators of the
quantum group Uq(g).

Let P+ = {λ ∈ P | 〈α∨
i , λ〉 ≥ 0 ∀i} be the set of dominant weights. This set naturally

indexes the finite dimensional irreducible integrableUq(g)-modules. For λ ∈ P+, letB(λ) be
the normal crystal associated with the crystal base of the simple Uq(g)-module with highest
weight λ.

Following [10] we introduce the monoids E and F generated by {ei }i∈I and { fi }i∈I ,
respectively. For bλ the unique element of B(λ) with weight λ, we have

E{bλ} = 0, and F{bλ} = B(λ) 
 {0}.
In general, we say an element b ∈ B is highest weight if E{b} = 0.

123



630 S. Assaf et al.

A connected crystal B is a highest weight crystal with highest weight λ if there exists a
highest weight element bλ ∈ B of weight λ such that B = F{bλ}.

Given two g-crystals B,B′, a morphism from B to B′ is a map which commutes with the
structure maps. Note not every highest weight crystal with highest weight λ is isomorphic to
B(λ). Henceforth, we consider only those g-crystals B for which every connected component
is isomorphic to B(λ) for some λ ∈ P+.

3 Demazure Crystals

Let W denote the Weyl group of g which, as a Coxeter group, is equipped with a length
function � : W → N and Bruhat partial order given by transitive closure of relations u ≺ ut
for t a reflection with �(u) ≤ �(ut). Equivalently, u ≺ w if and only if a(ny) reduced
expression for w contains as a subword a reduced expression for u. We refer the reader to
[3] for classical results on Coxeter groups.

Littelmann [17] conjectured, and proved for classical types, the existence of a subset
Bw(λ) ⊆ B(λ) for any w ∈ W whose character equals that of the Demazure module Vw(λ)

computed by Demazure’s character formula [4, 9]. Kashiwara [12] generalized Littelmann’s
construction as follows.

For w ∈ W and si1 · · · si� a reduced expression for w, define

Fw =
⋃

mi∈N

{
f m1
i1

f m2
i2

· · · f m�

i�

}
⊂ F (3.1)

and define Ew similarly.
Given any X ⊆ B(λ) and w ∈ W , the set Fw(X) is independent of the choice of reduced

expression for w [10]. Hence, the following construction is well-defined.

Definition 3.1 ([12]) For λ ∈ P+ and w ∈ W , the Demazure crystal Bw(λ) is

Bw(λ) = Fw{bλ}. (3.2)

Notice that while Bw(λ) is closed under E it is not closed under F .
The following is a restatement of the fact that Bw(λ) is well-defined.

Proposition 3.2 ([12]) For λ ∈ P+ and w ∈ W, if si1 · · · si� is any reduced expression for
w, then for any b ∈ Bw(λ), there exist m j ≥ 0 such that

b = f m1
i1

f m2
i2

· · · f m�

i�
(bλ).

The following converse will be useful in identifying Demazure crystals.

Proposition 3.3 For λ ∈ P+, if b = f m1
i1

f m2
i2

· · · f mk
ik

(bλ) with m j ≥ 0 and k minimal, then
si1 · · · sik is a reduced expression for some w ∈ W.

Proof We proceed by induction on k, noting the base case k = 1 is trivial since si is always
reduced. Now assume the result for k, and let b ∈ B(λ) be written

b = f mi f m1
i1

· · · f mk
ik

(bλ)

with k+1minimal. Set b0 = f m1
i1

· · · f mk
ik

(bλ). Note k is minimal among all such expansions,
since otherwise the expansion for b could be shortened as well. Therefore, by induction,
si1 · · · sik is a reduced expression for some u ∈ W . In particular, b0 ∈ Fu{bλ} and �(u) = k.
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Extremal Tensor Products of Demazure Crystals 631

We claim u ≺ si u. If not, then si u ≺ u. Thus there exists a reduced expression for u, say
si s j2 · · · s jk , and, by Proposition 3.2, b0 = f ni f n2j2 · · · f nkjk (bλ). However, applying f mi then
gives a strictly shorter expansion

b = f mi (b0) = f m+n
i f n2j2 · · · f nkjk (bλ),

contradicting the minimality of k + 1. Thus u ≺ si u as claimed. In particular, si si1 · · · sik is
a reduced expression for si u. �


For λ ∈ P+, let Wλ be the stabilizer subgroup of λ in W , and denote by �w�λ and
�w�λ the minimal and maximal length coset representatives of wWλ, respectively. Note
Bw(λ) = B�w�λ (λ) = B�w�λ(λ).

Proposition 3.4 Let v, w ∈ W and λ ∈ P+. Then Bv(λ) ⊆ Bw(λ) if and only if �v�λ � w

if and only if v � �w�λ. In particular, Bv(λ) = Bw(λ) only when v ∈ wWλ.

Proof If �v�λ � w, then by [12, Prop. 3.2.4], we haveBv(λ) = B�v�λ (λ) ⊆ Bw(λ). Similarly,

if v � �w�λ, the same result implies Bv(λ) ⊆ Bw(λ) = B�w�λ (λ).

Suppose Bv(λ) ⊆ Bw(λ). Then �v�λ(λ) is a weight that occurs in B�v�λ (λ) = Bv(λ) ⊆
Bw(λ) = B�w�λ (λ), and so �v�λ � �w�λ � w and v � �v�λ � �w�λ. �


4 Extremal Crystals

Kashiwara [12] showed Bw(λ) satisfies the following properties.

(D1) E (Bw(λ)) ⊂ Bw(λ) 
 {0};
(D2) if siw ≺ w, then Bw(λ) = { f mi (b) | m ≥ 0, b ∈ Bsiw(λ), ei (b) = 0} \ {0};
(D3) for any i-string S, S ∩ Bw(λ) is either ∅ or S or {b}, where ei (b) = 0.

Here an i -string is a connected subset of a crystal closed under both Ei and Fi , where these
denote the monoids generated by ei and fi , respectively.

Joseph [10] considered subsets of B(λ) satisfying (D1) and (D3). Following recent work
of the extremal authors [1], we refer to such subsets as extremal.

Definition 4.1 A subset X ⊆ B(λ) is extremal if X is nonempty and for any i-string S of
B(λ), S ∩ X is either ∅ or S or {b}, where ei (b) = 0.

Notice for X extremal, we have EX ⊂ X 
 {0}. In particular, since X is nonempty, it
must contain a highest weight element of B. However, not all extremal subsets are Demazure
crystals. For example, take g = A2 and λ = ω1 + ω2. Then X = {bλ, f1(bλ), f2(bλ)} is
extremal, but not Demazure.

5 Tensor Products of Normal Crystals

The direct sum B1 ⊕B2 of two g-crystals is their disjoint union with the obvious maps. Thus
every crystal decomposes as a direct sum of highest weight crystals.

The tensor product B1 ⊗ B2 is the set {b1 ⊗ b2 | b1 ∈ B1 and b2 ∈ B2} with maps

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi (b1 ⊗ b2) = max(εi (b1), εi (b2) − wti (b1)),

ϕi (b1 ⊗ b2) = max(ϕi (b2), ϕi (b1) + wti (b2)),
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where wti (b) = 〈α∨
i ,wt(b)〉. The crystal operators ei , fi are defined by

ei (b1 ⊗ b2) =
{
ei (b1) ⊗ b2 if εi (b2) ≤ ϕi (b1),

b1 ⊗ ei (b2) if εi (b2) > ϕi (b1);

fi (b1 ⊗ b2) =
{
fi (b1) ⊗ b2 if εi (b2) < ϕi (b1),

b1 ⊗ fi (b2) if εi (b2) ≥ ϕi (b1).

The tensor product is associative but not commutative, though it is functorial.

Theorem 5.1 ([11]) For λ,μ ∈ P+, B(λ) ⊗ B(μ) is a crystal for V (λ) ⊗ V (μ).

6 Tensor Products of Demazure Crystals

Given Demazure crystals Bw(λ),Bu(μ), it is not the case that Bw(λ) ⊗ Bu(μ) is always a
direct sum of Demazure crystals. For example, when g = A2, the product Bs2(ω2)⊗Bs1(ω1)

is not direct sum ofDemazure crystals, which is expected since themodule Vs2(ω2)⊗Vs1(ω1)

does not admit an excellent filtration.
The issue here is more fundamental, however, as there is no analog of Theorem 5.1 for

Demazure crystals. For example, take g = A2 with λ = ω1 + ω2 and w = s1s2. Then
Vw(λ) ⊗ Vw(λ) admits an excellent filtration, but Bw(λ) ⊗ Bw(λ) is not a direct sum of
Demazure crystals and so is not a crystal for Vw(λ) ⊗ Vw(λ).

Kouno [14] characterized when Bu(μ) ⊗Bv(ν) is a direct sum of Demazure crystals. For
any σ ∈ W let Wσ ⊆ W denote the parabolic subgroup. Note, despite similar notation, Wσ

is not related to the stabilizer subgroup Wλ for λ ∈ P+.

Wσ = 〈 si ∈ W | siσ ≺ σ 〉.
Theorem 6.1 ([14]) Let λ,μ ∈ P+ and u, w ∈ W. Then Bw(λ) ⊗ Bu(μ) is a direct sum of
Demazure crystals if and only if �w�λ ∈ W�u�μ .

Kouno’s proof is quite technical, making detailed use Lakshmibai-Seshadri paths for
crystals [15, 18]. One of Kouno’s main applications is to the key positivity problem, where
he notes in [14, Thm 8.2] the following special case of Theorem 6.1 for which we give a
direct proof.

Proposition 6.2 For λ,μ ∈ P+ and w ∈ W, we have Bw(λ) ⊗ B(μ) is a direct sum of
Demazure crystals.

Proof By definition, Bw(λ) admits a filtration by Demazure crystals,

{bλ} ⊂ Xi1 ⊂ · · · ⊂ Xi�−1 ⊂ Xi� = Bw(λ)

where si� . . . si1 is a reduced expression for w and Fir (Xir−1) = Xir . Consequently, we have
a filtration on X ⊗ B(μ) with k minimal such that

{bλ} ⊗ B(μ) ⊂ Xi1 ⊗ B(μ) ⊂ · · · ⊂ Xik−1 ⊗ B(μ) ⊂ Xik ⊗ B(μ) = X ⊗ B(μ).

By [10, Thm. 2.11], {bλ}⊗B(μ) is a direct sum of Demazure crystals. So let Xik−1 = Bw(λ)

and i = ik so that X = Bsiw(λ). For induction, assume Bw(λ) ⊗ B(μ) is a direct sum of
Demazure crystals, and let x ⊗ b ∈ X ⊗ B(μ) such that x /∈ Bw(λ) but emi (x) ∈ Bw(λ) for
some m > 0. If ei (x ⊗ b) = 0 then necessarily εi (x) = 0, a contradiction. Thus we have

123



Extremal Tensor Products of Demazure Crystals 633

two possibilities. If ei (x ⊗ b) = ei (x) ⊗ b then εi (b) ≤ ϕi (x). However ϕi (x) < ϕi (emi (x))
and thus emi (x ⊗ b) = emi (x) ⊗ b ∈ Bw(λ) ⊗ B(μ). If instead ei (x ⊗ b) = x ⊗ ei (b) then
εi (b) > ϕi (x). So let t = εi (b)−ϕi (x) so that εi (eti (b)) = ϕi (x) and eti (x ⊗b) = x ⊗ eti (b).
From this and the fact that εi (x) > 0 we see that ei (x ⊗ eti (b)) = ei (x) ⊗ eti (b). Iterating
as in the previous case we obtain em+t

i (x ⊗ b) = emi (x ⊗ eti (b)) = emi (x) ⊗ eti (b) and thus
X ⊗B(μ) ⊂ Fi (Bw(λ) ⊗B(μ)). The reverse inclusion follows from the fact that f ki (x ⊗ b)
will always be contained in X ⊗ B(λ) for any x ⊗ b ∈ Bw(λ) ⊗ B(μ) and any k ≥ 0. �


In order to apply Kouno’s theorem, it is necessary to have the exact values of λ,μ ∈ P+
and w, u ∈ W that index the Demazure crystals. Sometimes, this information is not readily
available. It is possible to know the crystals in question are Demazure without knowing
exactly which Demazure crystals they are. In the following section we remove this constraint
by using extremal crystals to give an alternative local characterization for when a product of
Demazure crystals is a direct sum of Demazure crystals.

7 Tensor Products of Extremal Crystals

As with Demazure crystals, tensor products of extremal crystals are not always extremal. For
example, take g = A1, thenBs1(ω1)⊗{bω1} is 2-dimensionalwith unique highestweight 2ω1,
and so is neither extremal nor Demazure. Below, we characterize when the tensor product of
extremal crystals remains extremal.

Definition 7.1 An element x ⊗ y ∈ B(λ) ⊗ B(μ) is called an i -hinge if

(1) εi (x) > 0, ϕi (x) = 0,
(2) εi (y) = 0, ϕi (y) > 0.

In terms of the crystal structure, an i-hinge is an element with the property that ei acts on
the left factor and fi acts on that right factor.

Proposition 7.2 For x ⊗ y ∈ B(λ) ⊗ B(μ) an i-hinge, we have

• ei (x ⊗ y) = ei (x) ⊗ y ∈ B(λ) ⊗ B(μ), and
• fi (x ⊗ y) = x ⊗ fi (y) ∈ B(λ) ⊗ B(μ).

Proof Since ϕi (x) = 0 = εi (y), the tensor product rules give ei (x ⊗ y) = ei (x) ⊗ y and
fi (x ⊗ y) = x ⊗ fi (y). Since εi (x) > 0, we have ei (x) ∈ B(λ), and since ϕi (y) > 0, we
have fi (y) ∈ B(μ). �


Thus, we say an i-hinge x⊗y ∈ X⊗Y is broken if fi (y) /∈ Y . Determiningwhether X⊗Y
contains a broken i-hinge is a local, easily checked property which precisely characterizes
when tensor products of extremal crystals are extremal.

Theorem 7.3 Let X ⊂ B(λ) and Y ⊂ B(μ) be extremal subsets. Then X ⊗ Y is an extremal
subset of B(λ) ⊗ B(μ) if and only if X ⊗ Y does not contain a broken i-hinge for any i .

Proof Suppose x⊗y ∈ X⊗Y is an i-hinge and fi (y) /∈ Y . By Proposition 7.2, so ei (x⊗y) =
ei (x) ⊗ y ∈ X ⊗ Y , since X is extremal. Thus x ⊗ y is not the top of its i-string. Similarly,
fi (x ⊗ y) = x ⊗ fi (y) ∈ X ⊗B(μ). However, since fi (y) /∈ Y , we have x ⊗ fi (y) /∈ X ⊗Y .
Thus the i-string through x ⊗ y violates the extremal criteria for X ⊗ Y .

Now suppose X ⊗ Y is not extremal. Since both X and Y are extremal, we must have
E(X ⊗ Y ) ⊂ X ⊗ Y 
 {0} since EX ⊂ X 
 {0} and EY ⊂ Y 
 {0}. Thus there exists
x0 ⊗ y0 ∈ X ⊗ Y and i ∈ I such that
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• εi (x0 ⊗ y0) = 0,
• fi (x0 ⊗ y0) ∈ X ⊗ Y , and
• for some m > 1, we have f mi (x0 ⊗ y0) /∈ X ⊗ Y 
 {0}.

Taking m > 1 above to be minimal, define x ⊗ y = f m−1
i (x0 ⊗ y0) ∈ X ⊗ Y . We will show

x ⊗ y is an i-hinge with fi (y) /∈ Y .
We claim ei (x ⊗ y) = ei (x) ⊗ y. Indeed, if ei (x ⊗ y) = x ⊗ ei (y), then εi (y) > ϕi (x),

and so fi (x ⊗ y) = x ⊗ fi (y) as well. But since εi (y) > ϕi (x) ≥ 0 and Y is extremal,
fi (y) ∈ Y 
{0}, contradicting that fi (x⊗ y) /∈ X ⊗Y 
{0}. Thus ei (x⊗ y) = ei (x)⊗ y and,
in particular, εi (y) ≤ ϕi (x). Moreover, since m > 1, we have ei (x) ⊗ y = ei (x ⊗ y) �= 0,
and so εi (x) > 0.

By the crystal axioms, it follows as well that eki (x ⊗ y) = eki (x) ⊗ y for k < m. In
particular, y = y0, and so εi (y) = 0.

Furthermore, since X is extremal and ei (x), x ∈ X , we must have fi (x) ∈ X 
 {0} and
so fi (x) ⊗ y ∈ X ⊗ Y 
 {0}. Thus we must have fi (x ⊗ y) = x ⊗ fi (y). In particular,
εi (y) ≥ ϕi (x). By the previous inequality, we have ϕi (x) = εi (y) = 0.

Finally, since x ⊗ fi (y) = fi (x ⊗ y) /∈ X ⊗ Y 
 {0}, we have fi (y) /∈ Y 
 {0} and so
ϕi (y) > 0. Therefore x ⊗ y is an i-hinge with fi (y) /∈ Y as claimed. �


Thus Theorem 1.1 follows fromTheorem 7.3 and Proposition 7.2. Notice, if X ⊂ B(λ) has
only the highest weight element or if Y ⊂ B(μ) contains all possible elements, then X ⊗ Y
contains no hinges. That is, both {bλ} ⊗ Bu(μ) and Bw(λ) ⊗ B(μ) are extremal subsets of
B(λ)⊗B(μ). Of course, this follows by Theorem 6.1 since both are direct sums of Demazure
crystals.

8 Extremal Tensor Products

Our interest in extremal crystals lies not exclusively in their implicit structure, but rather
in the structure imposed on the factors when a tensor product of two subsets of crystals is
extremal. We begin with the following.

Proposition 8.1 If X⊗Y ⊂ B(λ)⊗B(μ) is an extremal subset, thenE(X) ⊂ X. If additionally
E(Y ) ⊂ Y , then X ⊂ B(λ) is an extremal subset.

Proof Suppose X⊗Y ⊂ B(λ)⊗B(μ) is an extremal subset. Take y ∈ Y such that ei (y) /∈ Y .
We claim ei (x ⊗ y) = ei (x) ⊗ y for any x ∈ X . In particular, when X ⊗ Y is extremal, this
implies ei (x) ∈ X . To see the claim, notice if ei (y) = 0, then εi (y) = 0 and so ϕi (x) ≥ εi (y)
showing ei (x ⊗ y) = ei (x) ⊗ y. Alternatively, if ei (y) �= 0 and ei (x ⊗ y) = x ⊗ ei (y),
then since X ⊗ Y is extremal, this implies ei (y) ∈ Y contradicting the choice of y. Thus
E(X) ⊂ X 
 {0}.

Now suppose, in addition, that E(Y ) ⊂ Y 
 {0}. Then we may take y ∈ Y such that
ei (y) = 0. Consider x ∈ X for which ei (x), fi (x) �= 0. By the prior argument, ei (x) ∈ X ,
and so ei (x ⊗ y) = ei (x) ⊗ y �= 0 since ϕi (y) = 0. We must show fi (x) ∈ X . Since X ⊗ Y
is extremal and ei (x ⊗ y) �= 0, we have fi (x ⊗ y) ∈ X ⊗ Y 
 {0}. Since fi (x) �= 0, we
have ϕi (x) > 0 = εi (y), and so fi (x ⊗ y) = fi (x) ⊗ y, which ensure fi (x) ∈ X . Thus X is
extremal. �


Notice that in Proposition 8.1, Y need not be extremal, even when EY ⊂ Y 
 {0}. For
example, forg = A2 withλ = 2ω1+2ω2 andμ = 2ω1, take X = {bλ} andY = {bμ, f1(bμ)}.
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Then X ⊗ Y ∼= Bid(λ + μ) ⊕ Bid(λ + ω2) is a direct sum of Demazure crystals, and hence
extremal, but Y is not even extremal.

Any subset Bw(λ) ⊗ Bu(μ) ⊂ B(λ) ⊗ B(μ) which is a direct sum of Demazure crystals
is also an extremal subset, since Demazure crystals are extremal. Amazingly, the converse is
also true.

Theorem 8.2 For λ,μ ∈ P+ and w, u ∈ W, we have Bw(λ) ⊗ Bu(μ) is an extremal subset
of B(λ) ⊗ B(μ) if and only if �w�λ ∈ W�u�μ .

Proof Suppose that �w�λ /∈ W�u�μ . Then there exists si ≺ �w�λ such that si�u�μ � �u�μ.
Since �u�μ is maximal length in uWμ then si�u�μ(μ) �= �u�μ(μ). Thus Bu(μ) =
B�u�μ(μ) � Bsi �u�μ(μ) = Bsi u(μ) and we can find y ∈ Bu(μ) for which ϕi (y) > 0
but fi (y) /∈ Bu(μ). On the other hand, since si ≺ �w�λ and �w�λ is the shortest
coset representative, by Proposition 3.2, there exists an element x ∈ Bw(λ) given by
x = f mi f mk

jk
. . . f m1

j1
(bλ) with all m′s maximal for which εi (x) > 0 and ϕi (x) = 0. So if we

consider x⊗ y ∈ B(λ)⊗B(μ)we can see that emi (x⊗ y) = emi (x)⊗ y ∈ Bw(λ)⊗Bu(μ) but
fi (x ⊗ y) = x ⊗ fi (y) /∈ Bw(λ) ⊗ Bu(μ). Thus Bw(λ) ⊗ Bu(μ) contains a broken i-hinge
and by Theorem 7.3 cannot be extremal.

Now suppose Bw(λ) ⊗ Bu(μ) is not an extremal subset. Then by Theorem 7.3 there
exists a broken i-hinge x ⊗ y ∈ Bw(λ) ⊗ Bu(μ). In particular, 0 �= fi (y) /∈ Bu(μ) so
B�u�μ(μ) = Bu(μ) � Bsi u(μ) = Bsi �u�μ(μ) and hence si�u�μ /∈ uWμ. Since �u�μ has
maximal length then si�u�μ � �u�μ, thus si /∈ W�u�μ . Moreover, since x ∈ Bw(λ) with
εi (x) > 0 then si ≺ �w�λ which implies �w�λ /∈ W�u�μ . �


Combining this with Theorem 6.1 yields Theorem 1.2, giving a local characterization for
which tensor products of Demazure crystals remain Demazure.

Notice Theorem 1.2 is false for tensor products of extremal subsets. For example, take
g = A2 with λ = ω3 and μ = ω1 + ω2. Then both X = {bλ} and Y = {bμ, f1(bμ), f2(bμ)}
are extremal, but X ⊗ Y ∼= Y is extremal and not Demazure.

9 Application to Tensor Squares

Even when Bw(λ) ⊗ Bu(μ) is not a direct sum of Demazure crystals, some connected com-
ponents of it may be. For example, take g = A2 with λ = ω1 + ω2 and w = s1s2. Then
Bw(λ) ⊗ Bw(λ) has four connected components, two of which are Demazure crystals and
two of which are not even extremal.

Generalizing this example, we show the connected component of the tensor square
Bw(λ)⊗Bw(λ) containing bλ ⊗bλ is always a Demazure crystal, even when Bw(λ)⊗Bw(λ)

is not a direct sum of Demazure crystals.

Lemma 9.1 For λ,μ ∈ P+ such that 〈α∨
i , μ〉 = 0 whenever 〈α∨

i , λ〉 = 0, if x ⊗ y ∈
F({bλ ⊗ bμ}) ⊆ B(λ) ⊗ B(μ) and x ∈ Bw(λ) for some w ∈ W, then y ∈ Bw(μ).

Proof We claim if bλ ⊗ y ∈ F({bλ ⊗bμ}), then y = bμ. Since bμ is highest weight, εi (bμ) =
0. Therefore, ifϕi (bλ) > 0, then fi (bλ⊗bμ) = fi (bλ)⊗bμ; otherwiseϕi (bλ) = 0 = ϕi (bμ),
and so fi (bλ ⊗ bλ) = bλ ⊗ fi (bμ) = 0. The claim follows.

Now consider x ⊗ y ∈ F({bλ ⊗ bμ}) with x ∈ Bw(λ). By Proposition 3.2, there exist
i1, . . . , ik and m1, . . . ,mk ≥ 0 such that x ⊗ y = f m1

i1
· · · f mk

ik
(bλ) ⊗ y, where si1 · · · sik is
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a reduced expression for w. If εi (b2) = 0, then ei (b1 ⊗ b2) = ei (b1) ⊗ b2. Therefore there
exist integers n1, . . . , nk with ni ≥ mi ≥ 0 such that

enkik · · · en1i1 (x ⊗ y) = bλ ⊗ y0

for some y0 ∈ Ew{y}. By the opening claim, this means y0 = bμ. Reversing the relationship
y0 ∈ Ew{y} gives y ∈ Fw{y0} = Fw{bμ} = Bw(μ). �


Using this and Theorem 1.2, we have the following application.

Theorem 9.2 For λ,μ ∈ P+ such that 〈α∨
i , μ〉 = 0whenever 〈α∨

i , λ〉 = 0, and for u, v ∈ W
such that u � v, we have

F ({bλ ⊗ bμ

}
) ∩ Bu(λ) ⊗ Bv(μ) ∼= Bu(λ + μ).

Proof Suppose x ⊗ y ∈ F({bλ ⊗bμ})∩Bu(λ)⊗Bv(μ) is an i-hinge. Letw be minimal such
that x ∈ Bw(λ). Then w � u by Proposition 3.4. Furthermore, since εi (x) > 0, we can write
x = f m1

i f m2
i2

· · · f mk
ik

(bλ) such that mi ≥ 0, m1 > 0 and k is minimal. By Proposition 3.3
then Fi (Bw(λ)) = Bw(λ). By Lemma 9.1, y ∈ Bw(μ). Therefore fi (y) ∈ Fi (Bw(μ)) =
Bw(μ) ⊆ Bv(μ) by Proposition 3.4 and transitivity ofw � u � v. In particular x ⊗ y cannot
be a broken i-hinge in Bu(λ) ⊗ Bv(μ). Thus it is extremal, and so by Theorem 1.2, it is
Demazure. The result follows from that fact that Fu

({bλ ⊗ bμ}) is isomorphic to Bu(λ + μ)

[10]. �

The associativity of the tensor product gives the following consequence.

Corollary 9.3 For λ ∈ P+ and w ∈ W, for any m ≥ 1 we have

F({bλ ⊗ · · · ⊗ bλ}) ∩ Bw(λ)⊗m ∼= Bw(mλ).

10 Concluding Remarks

Interestingly, in the example above for g = A2 with λ = ω1 + ω2 and w = s1s2, even
though the tensor product of Demazure crystals Bw(λ) ⊗ Bw(λ) is not a direct sum of
Demazure crystals, the corresponding tensor product of Demazure modules Vw(λ) ⊗ Vw(λ)

does admit an excellent filtration. Indeed, if one removes from Bw(λ)⊗Bw(λ) the two edges
ending in broken i-hinges, namely the f2 edges from bλ ⊗ f1(bλ) and bλ ⊗ f 21 f2(bλ), then
the resulting structure becomes extremal and, moreover, is isomorphic to a direct sum of
Demazure crystals.

As Kouno notes, Proposition 6.2 implies the positivity for type A Demazure characters
proven combinatorially byHaglund, Luoto,Mason and vanWilligenberg [7]. Recently, Assaf
[2, Thm 5.2.2] gave a larger class of type A Demazure modules for which the product of
the characters expands nonnegatively into Demazure characters. Yet this positivity does not
follow from Theorem 6.1.

In fact, in many instances, though the characters exhibit the necessary positivity and the
tensor product of the modules admits an excellent filtration, the tensor product of Demazure
crystals does not decompose into a direct sum of Demazure crystals. This leads naturally
to question the existence of a new tensor product for Demazure crystals, different from
Kashiwara’s tensor rule, that preserves the extremal property of subsets. Such a rule might
lead to a characterization of when tensor products of Demazure modules admit excellent
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filtrations, fully generalizing the conjecture of Polo proved by Mathieu and solving the key
positivity problem.
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