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Abstract
We provide identities of inverse Chevalley type for the graded characters of level-zero
Demazure submodules of extremal weight modules over a quantum affine algebra of type
C . These identities express the product eμgch V−

x (λ) of the (one-dimensional) character
eμ, where μ is a (not necessarily dominant) minuscule weight, with the graded char-
acter gchV−

x (λ) of the level-zero Demazure submodule V−
x (λ) over the quantum affine

algebra Uq(gaf ) as an explicit finite linear combination of the graded characters of level-
zero Demazure submodules. These identities immediately imply the corresponding inverse
Chevalley formulas for the torus-equivariant K -group of the semi-infinite flag manifold QG

associated to a connected, simply-connected and simple algebraic group G of type C . Also,
we derive cancellation-free identities from the identities above of inverse Chevalley type in
the case that μ is a standard basis element εk in the weight lattice P of G.
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1 Introduction

The purpose of this paper is to prove identities (of inverse Chevalley type) for the graded
characters of Demazure submodules (level-zero Demazure submodules) of extremal weight
modules with level-zero extremal weight over a quantum affine algebra of type C .

LetUq(gaf ) be the quantum affine algebra associated to the (untwisted) affine Lie algebra
gaf whose underlying simple finite-dimensional Lie algebra is g. Let us denote byWaf (resp.,
W ) the Weyl group, by haf (resp., h) the Cartan subalgebra, and by Paf (resp., P) the weight
lattice of gaf (resp., g), where P = ∑

i∈I Z�i and Paf = P + Zδ + Z�0. For x ∈ Waf

and λ ∈ P+, with P+ ⊂ P the set of dominant weights for g, let V−
x (λ) denote the

Demazure submodule (level-zero Demazure submodule) of the extremal weight module
V (λ) with extremal weight λ over Uq(gaf ), where λ ∈ P is regarded as an element of
Paf in a canonical way. In recent years, the graded characters gch V−

x (λ) of the level-zero
Demazure submodules for x ∈ Waf , λ ∈ P , have been studied in several works. Among
them, Kato-Naito-Sagaki [7] obtained an explicit description of the expansion of the graded
character gch V−

x (λ+μ) for λ,μ ∈ P+ as an infinite linear combination with coefficients in
Z[q−1][P] of graded characters gch V−

y (ν) for y ∈ Waf and ν ∈ P . Also, Naito-Orr-Sagaki
[14] obtained a similar description of the graded character gch V−

x (λ−μ) for λ,μ ∈ P+ such
that λ − μ ∈ P+; note that in this case, the expansion is, in fact, a finite linear combination
with coefficients in Z[q, q−1][P]. Recently, Kouno-Lenart-Naito [5] (cf. [13]) obtained an
explicit description of the expansion, as an infinite linear combination with coefficients in
Z[q, q−1][P], of the graded character gch V−

x (λ + μ) for λ ∈ P+ and an arbitrary μ ∈ P
such that λ + μ ∈ P+.This identity is of the following form:

gch V−
x (λ + μ) =

∑

y∈Waf , ν∈P

cy,νx,μe
ν gch V−

y (λ), (1.1)

where cy,νx,μ ∈ Z[q, q−1] for y ∈ Waf and ν ∈ P , and eν for ν ∈ P denotes the (one-
dimensional) character of H with weight ν. Here we should mention that the coefficients
cy,νx,μ are independent of the weight λ ∈ P; also, for each y ∈ Waf , the sum

∑
ν∈P cy,νx,μeν is

an element of Z[q, q−1][P]. This explicit identity is called an identity of Chevalley type.
Our main interest lies in an explicit description of the expansion of the product

eν gch V−
x (λ) as a finite linear combination of the graded characters gch V−

y (λ + μ) for
y ∈ Waf and μ ∈ P; that is, an explicit description of the coefficients dy,μ

x,ν in the identity of
the following form:

eν gch V−
x (λ) =

∑

y∈Waf , μ∈P

d y,μ
x,ν gch V−

y (λ + μ), (1.2)

where the coefficients dy,μ
x,ν ∈ Z[q, q−1] are independent of the weight λ ∈ P . In types A,

D, E6, E7, Kouno-Naito-Orr-Sagaki [6] (for minuscule weights ν) and Lenart-Naito-Orr-
Sagaki [12] (for arbitrary weights ν) gave an explicit description of the coefficients dy,μ

x,ν

in the identity above; strictly speaking, the identities obtained in these works are ones in
the equivariant K -group of the semi-infinite flag manifold QG associated to the connected,
simply-connected and simple algebraic group G over C whose Lie algebra is g. In particular,
these identities imply the following finiteness result: (i) the right-hand side of the identity
(1.2) is a finite sum, and (ii) dy,μ

x,ν ∈ Z[q, q−1] for all y ∈ Waf and μ ∈ P . Note that this
finiteness result was obtained in simply-laced types by Orr [15], but the argument therein
does not seem to work in non-simply-laced types. Since the identity (1.2) can be thought
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Identities of Inverse Chevalley Type for Graded Characters 431

of as an “inverse expansion” of the identity (1.1), we call it an identity of inverse Chevalley
type.

In this paper, we study identities of inverse Chevalley type in type Cn . We give an explicit
description of the coefficients dy,μ

x,ν in the case that ν = v�1 for v ∈ W , where �1 is the
first fundamental weight. Note that the W -orbit of �1 is {±εk | k ∈ {1, . . . , n}}, where
{ε1, . . . , εn} is the standard basis of the weight lattice P ∼= Z

n ; for any v,w ∈ W , there
exists m = 1, . . . , n such that v�1 = wεm or v�1 = −wεm .

Now we are ready to state the main results of this paper; for the notation used in the
following theorems, see Section 4.1. First, we state the “first half” of the desired identities
of inverse Chevalley type.

Theorem 1.1 (=Corollary 4.2) For x = wtξ ∈ Waf withw ∈ W and ξ ∈ Q∨, m = 1, . . . , n,
and λ ∈ P+ such that λ + εk ∈ P+ for all k = 1, . . . ,m, there holds the following identity:

ewεm gch V−
x (λ)

= q〈εm ,ξ 〉 ∑

B∈A(w,	m (m))

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ + εm)

+
m−1∑

j=1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1)+···+down(Ar )+ξ 〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(B)+down(A1)+···+down(Ar )+ξ

(λ + ε j ).

Note that x and w in Theorem 1.1 are related as x = wtξ , but m is arbitrary. Next, we
state the “second half” of the desired identities of inverse Chevalley type.

Theorem 1.2 (=Corollary 4.4) For x = wtξ ∈ Waf withw ∈ W and ξ ∈ Q∨, m = 1, . . . , n,
andλ ∈ P+ such thatλ+εk ∈ P+ for all k = 1, . . . , n andλ−εk ∈ P+ for k = m+1, . . . , n,
there holds the following identity:

e−wεm gch V−
x (λ)

= q−〈εm ,ξ 〉 ∑

B∈A(w,
m )

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ − εm)

+
n∑

j=m+1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈ε j ,down(A1)+···+down(Ar )+ξ 〉

×
∑

B∈A(end(Ar ),
 j )

(−1)|B| gch V−
end(B)tdown(B)+down(A1)+···+down(Ar )+ξ

(λ − ε j )

+
n∑

j=1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1)+···+down(Ar )+ξ 〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(B)+down(A1)+···+down(Ar )+ξ

(λ + ε j ).

Note that the proofs of Theorems 1.1 and 1.2 begin with auxiliary identities (Proposi-
tions 5.1 and 5.2) derived directly from a special case of the Chevalley formula given by
Proposition 3.5. Also, observe that from the description of these identities, the finiteness
result (i), (ii) mentioned above immediately follows, since every weight λ ∈ P can be writ-
ten as a Z-linear combination of ε1, . . . , εn .
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432 T. Kouno et al.

Furthermore, we give cancellation-free identities of inverse Chevalley type in the “first-
half” case, i.e., in the case ν = v�1 = wε1, . . . , wεn . The precise statement is as follows;
in the following theorem, pm, j (w) denotes a suitable directed path in the quantum Bruhat
graph (for the definitions, see Section 4.2).

Theorem 1.3 (=Corollary 4.6) For x = wtξ ∈ Waf withw ∈ W and ξ ∈ Q∨, m = 1, . . . , n,
and λ ∈ P+ such that λ + εk ∈ P+ for all k = 1, . . . ,m, there holds the following
cancellation-free identity:

ewεm gch V−
x (λ)

= q〈εm ,ξ 〉 ∑

B∈A(w,	m (m))

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ + εm)

+
m−1∑

j=1

q〈ε j ,wt(pm, j (w))+ξ 〉 ∑

B∈A(end(pm, j (w)),	 j ( j))

(−1)|B| gch V−
end(B)tdown(B)+wt(pm, j (w))+ξ

(λ + ε j ).

As for the “second-half” case, i.e., the case ν = v�1 = −wε1, . . . ,−wεn , we provide
conjectural cancellation-free identities of inverse Chevalley type in Section 4.3.

As an application of our identities of inverse Chevalley type, we can prove a formula
for equivariant scalar multiplication (i.e., multiplication with the one-dimensional character
eν , ν ∈ P , of H ) in the (H × C

∗)-equivariant K -group KH×C∗(QG) of the semi-infinite
flag manifold QG associated to G. To be more precise, let Qrat

G denote the semi-infinite
flag manifold associated to G, that is, a reduced ind-scheme of infinite type whose set of
C-valued points is G(C((z)))/(H(C) · N (C((z)))) (see [8] for details), where H ⊂ G is
a maximal torus with Lie algebra h and N is the unipotent radical of a Borel subgroup
B ⊃ H . For λ ∈ P , there exists a line bundle on Qrat

G associated to λ; we denote by
O(λ) the sheaf corresponding to this line bundle. Also, there exist semi-infinite Schubert
varieties QG(x) for x ∈ Waf , which are subvarieties of Qrat

G ; note that QG = QG(e),
with e ∈ Waf the identity element. The equivariant K -group KH×C∗(QG) is defined to
be the Z[q, q−1][P]-submodule of (the Laurent series, in q−1, extension of) the Iwahori-
equivariant K -group K ′

I�C∗(QG), introduced in [7], consisting of all “convergent” (possibly

infinite) linear combinations with coefficients in Z[q, q−1][P] of the semi-infinite Schubert
classes [OQG (x)], x ∈ W≥0

af := {wtξ ∈ Waf | w ∈ W , ξ ∈ Q∨,+}, where “convergence”
holds in the sense of [7, Proposition 5.11]; here, Q∨,+ := ∑

i∈I Z≥0α
∨
i denotes the positive

part of the coroot lattice Q∨ = ∑
i∈I Zα∨

i .
Now, following [14, Sect. 9], we recall how the graded characters of level-zero Demazure

submodules over the quantum affine algebra Uq(gaf ) are related to the equivariant K -group
KH×C∗(QG) of the semi-infinite flag manifold QG . Let us define C[q, q−1][P]-modules
FunP (C((q−1))[P]), FunnegP (C((q−1))[P]), and FunessP (C((q−1))[P]) by

FunP (C((q−1))[P]) := { f : P → C((q−1))[P]},

FunnegP (C((q−1))[P]) :=
{

f ∈ FunP (C((q−1))[P])
∣
∣
∣
∣
∣

there exists γ ∈ P such
that f (μ) = 0 for all μ ∈
γ + P+

}

,

FunessP (C((q−1))[P]) := FunP (C((q−1))[P])/FunnegP (C((q−1))[P]).

Then there exists an injectiveZ[q, q−1][P]-module homomorphism : KH×C∗(QG) →
FunessP (C((q−1))[P]) such that for the class [E] ∈ KH×C∗(QG) of a certain quasi-coherent

123



Identities of Inverse Chevalley Type for Graded Characters 433

sheaf E on QG , the element ([E]) ∈ FunessP (C((q−1))[P]) is given as:

P → C((q−1))[P], λ →
∞∑

i=0

(−1)i gch Hi (QG , E ⊗OQG
O(λ));

here, gch Hi (QG , E ⊗OQG
O(λ)) for i ≥ 0 is the graded character of the i-th cohomology

group Hi (QG , E⊗OQG
O(λ)), which is regarded as an (H × C

∗)-module. Also, it is proved

in [7] that we can take E = OQG (x) for x ∈ W≥0
af , and that

gch Hi (QG ,OQG (x) ⊗OQG
O(λ)) =

{
gch V−

x (−w◦λ) if λ ∈ P+ and i = 0,

0 otherwise;

wherew◦ denotes the longest element ofW . Bymakinguseof these results,we can translate an
identity for graded characters of level-zero Demazure submodules into one for the (H ×C

∗)-
equivariant K -group KH×C∗(QG). Namely, if we have a finite sum of the form (1.2), then
we obtain the following identity in KH×C∗(QG):

eν · [OQG (x)] =
∑

y∈Waf , μ∈P

d y,μ
x,ν [OQG (y) ⊗OQG

O(−w◦μ)].

In particular, our identities for graded characters of inverse Chevalley type yield explicit
identities for the (H×C

∗)-equivariant K -group KH×C∗(QG), which we call inverse Cheval-
ley forumlas.

In addition, by the specialization at q = 1 (of the coefficients dy,μ
x,ν ), we obtain correspond-

ing inverse Chevalley formulas for equivariant scalar multiplication in the H -equivariant
K -group KH (QG) of the semi-infinite flag manifold QG . Here we mention that in [4], Kato
established aZ[P]-module isomorphism from KH (QG) onto the (small) H -equivariant quan-
tum K -theory QKH (G/B) = KH (G/B) ⊗Z[P] Z[P][[Q∨,+]] of the finite-dimensional flag
manifoldG/B which sends each semi-infinite Schubert class to the corresponding (opposite)
Schubert class, where Z[P][[Q∨,+]] denotes the ring of formal power series with coefficients
inZ[P] in theNovikov variables Qi = Qα∨

i , i ∈ I . Through thisZ[P]-module isomorphism,
we obtain inverse Chevalley formulas for equivariant scalar multiplication in QKH (G/B).

This paper is organized as follows. In Section 2, we fix our basic notation, and recall the
definitions of the quantum Bruhat graph and quantum alcove model. In Section 3, we briefly
recall the definition of level-zero Demazure submodules, and review identities of Chevalley
type for their graded characters. In Section 4, we state identities of inverse Chevalley type.
Also, we give the cancellation-free form of the first half of these identities. In Section 5, we
prove our identities of inverse Chevalley type. In Section 6, we derive the cancellation-free
form of our identities of inverse Chevalley type in the first-half case.

2 Basic setting

In this section, we fix basic notation, and review the definitions of the quantum Bruhat graph
and quantum alcove model.
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434 T. Kouno et al.

2.1 Lie algebras and root systems

Let g be a simple Lie algebra over C with Cartan subalgebra h. Let � ⊂ h∗ := HomC(h, C)

be the root system of g,�+ ⊂ � the set of positive roots, and {αi }i∈I ⊂ �+ the simple roots.
We denote by 〈·, ·〉 the canonical pairing h∗×h → C. Forα ∈ �, we define sgn(α) ∈ {1,−1}
as

sgn(α) :=
{
1 if α ∈ �+,
−1 if α ∈ −�+,

and set |α| := sgn(α)α ∈ �+.
Forα ∈ �, we denote byα∨ ∈ h the coroot corresponding toα, and define the fundamental

weights�i , i ∈ I , by 〈�i , α
∨
j 〉 = δi, j for i, j ∈ I . Let P := ∑

i∈I Z�i be the weight lattice,
Q := ∑

i∈I Zαi the root lattice, and Q∨ := ∑
i∈I Zα∨

i the coroot lattice. Elements of
P+ := ∑

i∈I Z≥0�i (⊂ P) are called dominant weights. We denote by Z[P] := ∑
λ∈P Zeλ

the group algebra of P , where {eλ | λ ∈ P} is a formal basiswith relations eλeμ = eλ+μ. Note
that if G is the connected, simply-connected and simple algebraic group over C whose Lie
algebra is g, then the element eλ for λ ∈ P also denotes the one-dimensional representation
(character) of the maximal torus H of G of weight λ. In particular, Z[P] is isomorphic to
the representation ring R(H) of the torus H .

For α ∈ �, we define the reflection sα ∈ GL(h∗) by sα(λ) := λ − 〈λ, α∨〉α, λ ∈ h∗. In
particular, the reflection si := sαi for i ∈ I is called a simple reflection. The Weyl group W
is defined as the subgroup of GL(h∗) generated by {si }i∈I , i.e.,W = 〈si | i ∈ I 〉 ⊂ GL(h∗).

2.2 Type C root system

We review the standard realization of the root system of type C . Let {ε1, . . . , εn} be the
standard basis of R

n . Then, the set

� = {±(εi − ε j ) | 1 ≤ i < j ≤ n} � {±(εi + ε j ) | 1 ≤ i < j ≤ n} � {±2εk | 1 ≤ k ≤ n}
forms the root system of type Cn , and

�+ = {εi − ε j | 1 ≤ i < j ≤ n} � {εi + ε j | 1 ≤ i < j ≤ n} � {2εk | 1 ≤ k ≤ n}
is the set of all positive roots. In particular, αi , i = 1, . . . , n, defined by

αi := εi − εi+1, 1 ≤ i ≤ n − 1, αn := 2εn

are the simple roots.
For 1 ≤ i < j ≤ n, we set

(i, j) := εi − ε j , (i, j) := εi + ε j , (i, i) := 2εi .

The Weyl group W of type Cn is realized as a subgroup of the group of permutations of the
set [n] := {1, 2, . . . , n, n, n − 1, . . . , 1} by identifying simple reflections s1, . . . , sn−1, sn
with transpositions (1 2), . . . , (n − 1 n), (n n), respectively.

2.3 The quantum Bruhat graph

The quantum Bruhat graph is a labeled directed graph on the Weyl group W , introduced by
Brenti-Fomin-Postnikov [1].
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Definition 2.1 ([1, Definition 6.1]) The quantum Bruhat graph QBG(W ) is the �+-labeled
directed graph whose vertex set is W , and whose edges are given as follows. For x, y ∈ W

and α ∈ �+, we have a directed edge x
α−→ y if y = xsα , and either of the following holds:

(B) �(y) = �(x) + 1, or (Q) �(y) = �(x) − 2〈ρ, α∨〉 + 1, where ρ := (1/2)
∑

α∈�+ α. If

the condition (B) (resp., (Q)) holds, then the corresponding edge x
α−→ y is called a Bruhat

edge (resp., quantum edge).

For a directed path p : w0
γ1−→ w1

γ2−→ · · · γr−→ wr in QBG(W ), we define wt(p) ∈ Q∨ by

wt(p) :=
∑

1≤k≤r

wk−1
γk−→ wk is a quantum edge

γ ∨
k .

2.4 The quantum alcovemodel

We briefly review the theory of quantum alcove model, first introduced by Lenart-Lubovsky
[10], and then generalized by [13]. We set h∗

R
:= P ⊗Z R. For α ∈ � and k ∈ Z, we define

a hyperplane Hα,k in h∗
R
by

Hα,k := {ξ ∈ h∗
R

| 〈ξ, α∨〉 = k};
we denote by sα,k the reflection for the hyperplane Hα,k . Connected components of the space
h∗

R
\ ⋃

α∈�, k∈Z
Hα,k are called alcoves. Two alcoves A, B are said to be adjacent if the

closures of A and B have an intersection, called a common wall.

Definition 2.2 ([11, Definition 5.2]) A sequence (A0, A1, . . . , Ar ) of alcoves A0, . . . , Ar is
called an alcove path if Ai−1 and Ai are adjacent for each i = 1, . . . , r . An alcove path
	 = (A0, . . . , Ar ) is called reduced if 	 has a minimal length r among all alcove paths from
A0 to Ar .

For adjacent alcoves A, B, and a root α ∈ �, we write A
α−→ B if the common wall of A

and B is contained in the hyperplane Hα,k for some k ∈ Z, and α points in a direction from
A to B (as a direction vector). We take a special alcove A◦, called the fundamental alcove,
defined by

A◦ := {ξ ∈ h∗
R

| 0 < 〈ξ, α∨〉 < 1 for all α ∈ �+}.
For λ ∈ P , we define Aλ by

Aλ := A◦ + λ = {ξ + λ | ξ ∈ A◦}.
Definition 2.3 ([11, Definition 5.4]) Let λ ∈ P . A sequence 	 = (γ1, . . . , γr ) of roots
γ1, . . . , γr ∈ � is called a λ-chain if there exists an alcove path (A◦ = A0, A1, . . . , Ar =
A−λ) such that

A◦ = A0
−γ1−−→ A1

−γ2−−→ · · · −γr−−→ Ar = A−λ.

We say that 	 is reduced if the corresponding alcove path (A0, . . . , Ar ) is reduced.

Let 	 be a sequence of roots, i.e., 	 = (γ1, . . . , γr ), with γk ∈ �, k = 1, . . . , r .

Definition 2.4 ([13, Definition 17]) Let w ∈ W . A subset A = {i1 < · · · < is} ⊂ {1, . . . , r}
is said to be w-admissible if

w = w0
|γi1 |−−→ w1

|γi2 |−−→ · · · |γis |−−→ ws
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436 T. Kouno et al.

is a directed path in QBG(W ). In this case, we define end(A) by end(A) := ws . Also, we set

A− := {k ∈ A | the edge wk−1
|γk |−−→ wk is a quantum edge},

and then define down(A) by
down(A) :=

∑

k∈A−
|γk |∨.

Also, we set
n(A) := #{k ∈ A | γk ∈ −�+}.

We denote by A(w, 	) the set of all w-admissible subsets.

Let 	1, . . . , 	r be sequences of roots, and w ∈ W . For a tuple (A1, A2 . . . , Ar ) of admis-
sible subsets A1 ∈ A(w, 	1), A2 ∈ A(end(A1), 	2), . . . , Ar ∈ A(end(Ar−1), 	r ), we set

down(A1, A2, . . . , Ar ) := down(A1) + down(A2) + · · · + down(Ar ).

If 	 is a λ-chain for some λ ∈ P , then we can consider additional statistics denoted by
wt and height. For a λ-chain 	 = (γ1, . . . , γr ) with λ ∈ P , let (A◦ = A0, . . . , Ar = A−λ)

be the alcove path corresponding to 	, and take integers lk ∈ Z, k = 1, . . . , r , such that the
common wall of adjacent alcoves Ak−1 and Ak is contained in the hyperplane Hγk ,−lk . Then,
we define wt(A) and height(A) for A = {i1 < · · · < is} by

wt(A) := −wsγi1 ,−li1
· · · sγis ,−lis (−λ), height(A) :=

∑

k∈A−
sgn(γk)(〈λ, γ ∨

k 〉 − lk).

2.5 Specific chains of roots

In this subsection,we dealwith the root systemof typeCn .We choose specific (−�k−1+�k)-
chain and (�k−1 − �k)-chain, which will play a crucial role in this paper; we understand
that �0 = 0. Note that −�k−1 + �k = εk . We set

	k(k) := (−(1, k), . . . , −(k − 1, k),

−(k, k + 1), . . . , −(k, n),

−(k, k),

−(k, n), . . . , −(k, k + 1)),

	∗
k (k) := ((k, k + 1), . . . , (k, n),

(k, k),

(k, n), . . . , (k, k + 1),

(k − 1, k), . . . , (1, k)),


k := (−(1, k), . . . ,−(k − 1, k)),


∗
k := ((k − 1, k), . . . , (1, k)).

For sequences 	 = (γ1, . . . , γr ),� = (ξ1, . . . , ξs) of roots, we denote by 	 ∗ � the
concatenation of 	 and �, i.e., 	 ∗ � := (γ1, . . . , γr , ξ1, . . . , ξs).

Lemma 2.5 The concatenation 	k−1,k := 	∗
k (k) ∗ 
k is a reduced (−�k−1 + �k)-chain.
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Proof We set x := sksk+1 · · · snsn−1 · · · s1, y := s1 · · · sk−1, and μ := �1. Then, x is a
minimal-length representative for the coset xWμ, where Wμ := {w ∈ W | wμ = μ},
yx is the minimal-length representative for the coset {w ∈ W | wμ = w◦μ}, and xμ =
−(−�k−1 + �k). Now, following [12, Lemma 4.1], we define 	 as follows. Let us write
x = s ja · · · s j1 , y = si1 · · · sib , and set

βc := s ja · · · s jc+1α jc , 1 ≤ c ≤ a,

ζd := sib · · · sid+1αid , 1 ≤ d ≤ b.

Then we define 	 as 	 := (β1, . . . , βa,−γ1, . . . ,−γb); note that the convention for the sign
of roots in alcove paths in this paper is different from that of [12]. By direct calculation, we
see that this	 is identical to	k−1,k . Sinceμ is aminuscule fundamental weight, the argument
in the proof of [12, Lemma 4.1] still works in our setting of the typeC root system, and hence
we obtain the following reduced alcove path� from A◦ to A◦+xμ = A◦−(−�k−1+�k) =
A−(−�k−1+�k ):

� : A◦ = A0
−β1−−→ A1

−β2−−→ · · · −βa−−→ Aa = B0

ζ1−→ B1
ζ2−→ · · · ζb−→ Bb = A−(−�k−1+�k ).

Thus we have shown that 	k−1,k is a reduced (−�k−1+�k)-chain corresponding to�. This
proves the lemma.

Remark 2.6 The proof of [12, Lemma 4.1] also shows that for t = 1, . . . , a, the commonwall
of the adjacent alcoves At−1 and At in the above path� is contained in the hyperplane Hβt ,0,
while for t = 1, . . . , b, the common wall of the adjacent alcoves Bt−1 and Bt is contained
in the hyperplane Hζt ,1.

By reversing the order of roots in 	 and negating all roots, we obtain a specific (�k−1 −
�k)-chain.

Corollary 2.7 The concatenation 	∗
k−1,k := 
∗

k ∗ 	k(k) is a reduced (�k−1 − �k)-chain.

3 Level-zero Demazure submodules over quantum affine algebras

We recall the definition of level-zero Demazure submodules over quantum affine algebras
and their graded characters.

3.1 Notation for affine Lie algebras and quantum affine algebras

Let gaf := (g ⊗C C[t, t−1]) ⊕ Cc ⊕ Cd be the (untwisted) affine Lie algebra associated
to g, where c is the canonical central element and d is the scaling element. We denote
by haf its Cartan subalgebra. Let 〈·, ·〉 be the canonical pairing h∗

af × haf → C, where
h∗
af = HomC(haf , C). We set Iaf := I � {0}. Then, the simple roots αi , i ∈ I � Iaf , of g

can be regarded as simple roots of gaf . Let si , i ∈ Iaf , be the simple reflection corresponding
to αi . Let Waf := 〈si | i ∈ Iaf 〉 denote the (affine) Weyl group of gaf . We know that
Waf = {wtξ | w ∈ W , ξ ∈ Q∨} � W � Q∨, where tξ , ξ ∈ Q∨, is the translation element
[2, Chapter 6].

Let Uq(gaf ) be the quantum affine algebra associated to gaf , and denote by Ei , Fi , i ∈
Iaf = I�{0}, the Chevalley generators ofUq(gaf ). Then, we defineU

−
q (gaf ) as the subalgebra

of Uq(gaf ) generated by {Fi | i ∈ Iaf }, i.e., U−
q (gaf ) = 〈Fi | i ∈ Iaf 〉.

123



438 T. Kouno et al.

3.2 Extremal weight submodules and level-zero Demazure submodules

Definition 3.1 ([3, Definition 8.1.1]) Let M be an integrable Uq(gaf )-module, and λ ∈ Paf .
An element v ∈ M is called an extremal weight vector of weight λ if v is a weight vector of
λ, and there exists a family {vx | x ∈ Waf } ⊂ M of vectors such that

(1) ve = v,

(2) for i ∈ Iaf and x ∈ Waf , if 〈xλ, α∨
i 〉 ≥ 0, then Eivx = 0 and F

(〈xλ,α∨
i 〉)

i vx = vsi x , and

(3) for i ∈ Iaf and x ∈ Waf , if 〈xλ, α∨
i 〉 ≤ 0, then Fivx = 0 and E

(−〈xλ,α∨
i 〉)

i vx = vsi x ,

where F (k)
i and E (k)

i , k ≥ 0, denote the divided powers.

For λ ∈ Paf , the extremal weight module of weight λ, denoted by V (λ), is the integrable
weight module over Uq(gaf ) whose generator is a single element vλ, and whose defining
relation is that “vλ is an extremal weight vector of weight λ”; for the precise definition of
extremal weight modules, see [3, Proposition 8.2.2].

Let λ ∈ P+ ⊂ Paf , and x ∈ Waf . By the definition of extremal weight vectors, there exists
a family {vx | x ∈ Waf } ⊂ V (λ) of vectors satisfying the conditions in Definition 3.1, with
ve = vλ. The level-zero Demazure submodule V−

x (λ) for x ∈ Waf is a U−
q (gaf )-submodule

of V (λ) generated by vx , i.e., V−
x (λ) = U−

q (gaf )vx . For ν ∈ Paf , we denote by V−
x (λ)ν

the weight space of V−
x (λ) of weight ν ∈ Paf . Then we have the following weight space

decomposition with respect to haf :

V−
x (λ) =

⊕

γ∈Q, k∈Z

V−
x (λ)λ+γ+kδ,

where each weight space V−
x (λ)λ+γ+kδ , γ ∈ Q, k ∈ Z, is a finite-dimensional C(q)-vector

space; here, δ denotes the (primitive) null root of gaf . Now we define the graded character
of V−

x (λ) by

gch V−
x (λ) :=

∑

γ∈Q, k∈Z

dim(V−
x (λ)λ+γ+kδ)q

keλ+γ ∈ Z[P]((q−1)),

where q is an indeterminate (not to be confused with q).
The following identity is useful to compute the graded characters of level-zero Demazure

submodules.

Proposition 3.2 ([7, Proposition D.1]) Let x ∈ Waf and λ ∈ P+. For ξ ∈ Q∨, we have

gch V−
xtξ (λ) = q−〈λ,ξ〉 gch V−

x (λ).

3.3 Identities of Chevalley type

Let λ ∈ P+ and x ∈ Waf . We consider the graded character gch V−
x (λ+μ), where μ ∈ P is

such that λ + μ ∈ P+. For this, we need to introduce more notation. A partition is a weakly
decreasing sequence χ = (χ1 ≥ · · · ≥ χl) of positive integers χ1, . . . , χl ∈ Z>0; we call
l the length of χ . Also, we set |χ | := χ1 + · · · + χl , the size of χ . If χ = ∅, the empty
partition, then we set �(χ) := 0, and |χ | := 0. Let μ ∈ P , and write μ = ∑

i∈I mi�i . We
define a set Par(μ) as follows:

Par(μ) := {χ = (χ(i))i∈I | χ(i), i ∈ I , are partitions such that �(χ(i)) ≤ max{mi , 0}}.
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For χ = (χ(i))i∈I ∈ Par(μ), we write χ(i) = (χ
(i)
1 ≥ · · · ≥ χ

(i)
li

), where χ
(i)
1 , . . . , χ

(i)
li

∈
Z>0, with li = �(χ(i)). We set

|χ | :=
∑

i∈I
|χ(i)|, ι(χ) :=

∑

i∈I
χ

(i)
1 α∨

i ∈ Q∨,+,

where, if χ(i) = ∅, then we set χ(i)
1 := 0.

Lenart-Naito-Sagaki [13] and Kouno-Lenart-Naito [5] proved the following identity,
called the identity of Chevalley type.

Theorem 3.3 ([13, Theorem 33] and [5, Theorem 5.16]) Let λ ∈ P+, μ ∈ P, and x =
wtξ ∈ Waf with w ∈ W and ξ ∈ Q∨. Assume that λ + μ ∈ P+. Take a reduced μ-chain 	.
Then, there holds the following identity:

gch V−
x (λ + μ)

=
∑

A∈A(w,	)

∑

χ∈Par(μ)

(−1)n(A)q− height(A)−〈λ,ξ〉−|χ |ewt(A) gch V−
end(A)tξ+down(A)+ι(χ)

(λ).

(3.1)

Remark 3.4 Strictly speaking, Lenart-Naito-Sagaki proved an identity, called the Chevalley
formula, in the equivariant K -group of semi-infinite flag manifolds, which is essentially
equivalent to (3.1).

Now, we consider the root system of type Cn , and apply the identity of Chevalley type
above to the case that μ = −�k−1 + �k = εk , k = 1, . . . , n, to obtain the following.

Proposition 3.5 Let 2 ≤ k ≤ n and μ := εk = −�k−1 + �k . Take an arbitrary reduced
μ-chain 	. Let w ∈ W. For λ ∈ P+ such that λ + μ ∈ P+, we have

gch V−
w (λ + μ) = 1

1 − q−〈λ+�k ,α
∨
k 〉

∑

A∈A(w,	)

(−1)n(A)q− height(A)ewt(A) gch V−
end(A)tdown(A)

(λ).

Proof Since μ = −�k−1 + �k , we have

Par(μ) = {ik := (∅, . . . ,∅, (i)
k

,∅, . . . ,∅) | i ≥ 0},

where ∅ denotes the empty partition (of length 0), which is also regard as (0). For i ≥ 0, we
have |ik | = i , and ι(ik) = iα∨

k . Therefore, by Theorem 3.3, we compute:

gch V−
w (λ + μ) =

∑

A∈A(w,	)

∑

χ∈Par(μ)

(−1)n(A)q− height(A)−|χ |ewt(A) gch V−
end(A)tdown(A)+ι(χ)

(λ)

=
∑

A∈A(w,	)

∞∑

i=0

(−1)n(A)q− height(A)−i ewt(A) gch V−
end(A)tdown(A)+iα∨

k

(λ)

=
∑

A∈A(w,	)

∞∑

i=0

(−1)n(A)q− height(A)−i ewt(A)q−〈λ,iα∨
k 〉 gch V−

end(A)tdown(A)
(λ)

=
∞∑

i=0

q−i−〈λ,iα∨
k 〉 ∑

A∈A(w,	)

(−1)n(A)q− height(A)ewt(A) gch V−
end(A)tdown(A)

(λ)

=
∞∑

i=0

q−i〈λ+�k ,α
∨
k 〉 ∑

A∈A(w,	)

(−1)n(A)q− height(A)ewt(A) gch V−
end(A)tdown(A)

(λ)
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= 1

1 − q−〈λ+�k ,α
∨
k 〉

∑

A∈A(w,	)

(−1)n(A)q− height(A)ewt(A) gch V−
end(A)tdown(A)

(λ),

as desired; for the third equality, we have used Proposition 3.2. This proves the proposition.

4 Main Results

In this section, we give the precise statements of our identities of inverse Chevalley type in
type Cn . First, we give identities in which some terms may cancel. Next, we describe the
cancellations in the “first half” of these identities to obtain cancellation-free ones. Also, we
propose a conjecture for the cancellations in the “second half” of these identities. In the rest
of this paper, we assume that g is of type Cn .

4.1 Identities of inverse Chevalley type

To give precise statements of our main results, we prepare additional notation. Let us define
a total order < on the set [n] by 1 < 2 < · · · < n < n < n − 1 < · · · < 1. For j,m ∈ [n]
with j < m, we define Sm, j to be the set of all strictly decreasing sequences of integers
starting from m and ending at j , that is,

Sm, j := {( j1, . . . , jr ) | r ≥ 1, j1, . . . , jr ∈ [n], m > j1 > · · · > jr = j}.
For w ∈ W and 1 ≤ l < k ≤ n, we set

Ak,l
w := {A ∈ A(w,
k) \ {∅} | end(A)−1wεk = εl}.

Also, for w ∈ W , k ∈ {1, . . . , n}, and l < k, we set

Ak,l
w := {A ∈ A(w, 	k(k)) \ {∅} | end(A)−1w(−εk) = εl},

where for simplicity, we write εm = −εm for m ∈ {1, . . . , n}.
The following is the “first half” of identities of inverse Chevalley type (in which cancel-

lations may occur).

Theorem 4.1 For w ∈ W, λ ∈ P+, m = 1, . . . , n, and λ ∈ P+ such that λ + εk ∈ P+ for
all k = 1, . . . ,m, there holds the following identity:

ewεm gch V−
w (λ)

=
∑

B∈A(w,	m (m))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εm)

+
m−1∑

j=1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j ).

(4.1)

We give a proof of Theorem 4.1 in Section 5. By Proposition 3.2, we obtain the following
identities for an arbitrary x ∈ Waf (not only for x ∈ W ).
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Corollary 4.2 For x = wtξ ∈ Waf with w ∈ W and ξ ∈ Q∨, m = 1, . . . , n, and λ ∈ P+
such that λ + εk ∈ P+ for all k = 1, . . . ,m, there holds the following identity:

ewεm gch V−
x (λ)

= q〈εm ,ξ〉 ∑

B∈A(w,	m (m))

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ + εm)

+
m−1∑

j=1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )+ξ〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)+ξ

(λ + ε j ).

The following theorem is the “second half” of identities of inverse Chevalley type.

Theorem 4.3 For w ∈ W, m = 1, . . . , n, and λ ∈ P+ such that λ + εk ∈ P+ for all
k = 1, . . . , n and λ − εk ∈ P+ for k = m + 1, . . . , n, there holds the following identity:

e−wεm gch V−
w (λ)

=
∑

B∈A(w,
m )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εm)

+
n∑

j=m+1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),
 j )

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ − ε j )

+
n∑

j=1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j ).

(4.2)

We give a proof of Theorem 4.3 in Section 5. Again, by Proposition 3.2, we obtain the
following identities for an arbitrary x ∈ Waf (not only for x ∈ W ).

Corollary 4.4 For x = wtξ ∈ Waf with w ∈ W and ξ ∈ Q∨, m = 1, . . . , n, and λ ∈ P+
such that λ + εk ∈ P+ for all k = 1, . . . , n and λ − εk ∈ P+ for k = m + 1, . . . , n, there
holds the following identity:

e−wεm gch V−
x (λ)

= q−〈εm ,ξ〉 ∑

B∈A(w,
m )

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ − εm)

+
n∑

j=m+1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈ε j ,down(A1,...,Ar )+ξ〉
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×
∑

B∈A(end(Ar ),
 j )

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)+ξ

(λ − ε j )

+
n∑

j=1

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )+ξ〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)+ξ

(λ + ε j ).

Here we should mention that all the sums on the right-hand side of Theorems 4.1 and 4.3,
together with Corollaries 4.2 and 4.4, are indeed finite sums.

4.2 Cancellation-free identities of inverse Chevalley type in the first-half case

We consider cancellations of terms in the first-half identities of inverse Chevalley type. Let
w ∈ W . Take l,m ∈ {1, . . . , n} such that l > m. We define a directed path pl,m(w) in
QBG(W ) inductively as follows:

(1) if l − m = 1, then pl,m(w) : w
(l−1,l)−−−−→ wsl−1;

(2) if l−m > 1, then assume that pl ′,m′(v) is defined for v ∈ W and l ′,m′ ∈ {1, . . . , n} such
that 0 < l ′−m′ < l−m. Takeminimal k ∈ {m, . . . , l−1} such thatw (k,l)−−→ ws(k,l). Then,
since k −m < l −m, pk,m(ws(k,l)) is defined. Let pl,m(w) be the directed path obtained

as the concatenation of the edge w
(k,l)−−→ ws(k,l) with the directed path pk,m(ws(k,l)).

The following theorem gives the cancellation-free identities of inverse Chevalley type in
the first-half case.

Theorem 4.5 For w ∈ W, m = 1, . . . , n, and λ ∈ P+ such that λ + εk ∈ P+ for all
k = 1, . . . ,m, there holds the following cancellation-free identity:

ewεm gch V−
w (λ)

=
∑

B∈A(w,	m (m))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εm)

+
m−1∑

j=1

q〈ε j ,wt(pm, j (w))〉 ∑

B∈A(end(pm, j (w)),	 j ( j))

(−1)|B| gch V−
end(B)tdown(B)+wt(pm, j (w))

(λ + ε j ).

We give a proof of this theorem in Section 6. Again, by using Proposition 3.2, we obtain
the following cancellation-free identities for an arbitrary x ∈ Waf (not only for x ∈ W ).

Corollary 4.6 For x = wtξ ∈ Waf with w ∈ W and ξ ∈ Q∨, m = 1, . . . , n, and λ ∈ P+
such that λ + εk ∈ P+ for all k = 1, . . . ,m, there holds the following cancellation-free
identity:

ewεm gch V−
x (λ)

= q〈εm ,ξ 〉 ∑

B∈A(w,	m (m))

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ + εm)

+
m−1∑

j=1

q〈ε j ,wt(pm, j (w))+ξ 〉 ∑

B∈A(end(pm, j (w)),	 j ( j))

(−1)|B| gch V−
end(B)tdown(B)+wt(pm, j (w))+ξ

(λ + ε j ).
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4.3 Conjectural cancellation-free identities of inverse Chevalley type in the
second-half case

We propose a conjecture for the cancellations of terms in the second-half identities of inverse
Chevalley type. We define a distance function d(·, ·) on [n] as follows:
(1) for k ∈ [n], set d(k, k) := 0;
(2) for k, l ∈ [n] with k > l, set

d(k, l) :=

⎧
⎪⎨

⎪⎩

k − l if 1 ≤ l < k ≤ n,

(2n + 1 − p) − l if l = p for some 1 ≤ p ≤ n and 1 ≤ l ≤ n,

q − p if k = p and l = q for some 1 ≤ p ≤ q ≤ n;

(3) for k, l ∈ [n] with k < l, set d(k, l) := d(l, k).

Also, for 1 ≤ l ≤ n and 1 ≤ k < l, we define γl,k ∈ �+ by

γl,k :=

⎧
⎪⎨

⎪⎩

(k, l) if k = 1, . . . , l,

(l, k) if k = l + 1, . . . , n,

(l, p) if k = p for some p = l + 1, . . . , n.

Now, we define a directed path pl,m(w) in QBG(W ) for w ∈ W , 1 ≤ l ≤ n, and

1 ≤ m ≤ l + 1 by induction on d(l,m) as follows; we understand that n + 1 := n.

(1) If d(l,m) = 1 (in this case, γl,m is a simple root), then pl,m(w) : w
γl,m−−→ wsγl,m .

(2) If d(l,m) > 1, then assume that pq,m′(v) is defined for v ∈ W and q,m′ ∈ [n], with
q > m′, such that 0 < d(q,m′) < d(l,m); note that for 1 ≤ q ≤ n, pq,m′(v) is
already defined in Section 4.2. Take minimal k ∈ [n], with m ≤ k ≤ l + 1, such that

w
γl,k−−→ wsγl,k . Then, since 0 < d(k,m) < d(l,m), pk,m(wsγl,k ) is defined. Let pl,m(w)

be the directed path obtained as the concatenation of the edge w
γl,k−−→ wsγl,k with the

directed path pk,m(wsγl,k ).

Our conjectural cancellation-free identities in the second-half case are as follows.

Conjecture 4.7 For w ∈ W , m = 1, . . . , n, and λ ∈ P+ such that λ + εk ∈ P+ for all
k = 1, . . . , n and such that λ − εk ∈ P+ for k = m + 1, . . . , n, there exists some m ≤ l ≤ n
for which the following cancellation-free identity holds:

e−wεm gch V−
w (λ)

=
∑

B∈A(w,
m )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εm)

+
n∑

k=m+1

q−〈εk ,down(pm,k (w))〉

×
∑

B∈A(end(pm,k (w)),
k )

(−1)|B| gch V−
end(B)tdown(B)+down(pm,k (w))

(λ − εk)
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+
l∑

k=1

q〈εk ,down(pm,k (w))〉

×
∑

B∈A(end(pm,k (w)),	k (k))

(−1)|B| gch V−
end(B)tdown(B)+down(pm,k (w))

(λ + εk).

Conjecture 4.8 For x = wtξ ∈ Waf with w ∈ W and ξ ∈ Q∨, m = 1, . . . , n, and λ ∈ P+
such that λ+ εk ∈ P+ for all k = 1, . . . , n and such that λ− εk ∈ P+ for k = m+1, . . . , n,
there exists some m ≤ l ≤ n for which the following cancellation-free identity holds:

e−wεm gch V−
x (λ)

= q−〈εm ,ξ〉 ∑

B∈A(w,
m )

(−1)|B| gch V−
end(B)tdown(B)+ξ

(λ − εm)

+
n∑

k=m+1

q−〈εk ,down(pm,k (w))+ξ〉

×
∑

B∈A(end(pm,k (w)),
k )

(−1)|B| gch V−
end(B)tdown(B)+down(pm,k (w))+ξ

(λ − εk)

+
l∑

k=1

q〈εk ,down(pm,k (w))+ξ〉

×
∑

B∈A(end(pm,k (w)),	k (k))

(−1)|B| gch V−
end(B)tdown(B)+down(pm,k (w))+ξ

(λ + εk).

We expect that the l in the above conjectures is either m or n.

4.4 Examples of identities of inverse Chevalley type

We give an example of the identities given by Theorem 4.5, and also give two examples of the
conjectural identities proposed by Conjecture 4.7; in these examples, we assume that n = 3.
We used SageMath [17] for calculations in these examples.

Example 4.9 We consider the product ewε3 gch V−
w (λ). Let w = s1s2s1, and take λ ∈ P+

such that λ + εk ∈ P+ for k = 1, 2, 3. We see that

S3,1 = {(1), (2, 1)}, S3,2 = {(2)},
and that the admissible subsets which appear on the right-hand side of (4.1) are as follows:

A3,1
s1s2s1 = { {1}

︸︷︷︸
=:A1

, {1, 2}
︸ ︷︷ ︸
=:A2

}, A3,2
s1s2s1 = { {2}

︸︷︷︸
=:A3

}, A2,1
s2s1 = { {1}

︸︷︷︸
=:A4

}.

Table 1 is the list of end(·) and down(·) for admisible subsets A1, A2, A3, A4.
Therefore, by Theorem 4.1, we compute:

es1s2s1ε3 gch V−
s1s2s1(λ)

=
∑

B∈A(s1s2s1,	3(3))

(−1)|B| gch V−
end(B)tdown(B)

(λ + ε3)
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Table 1 The list of end(A) and
down(A) for
A = A1, A2, A3, A4

Admissible subsets end(·) down(·)
A1 e α∨

1 + α∨
2

A2 s2 α∨
1 + α∨

2

A3 s2s1 α∨
2

A4 s2 α∨
1

+ q〈ε2,α∨
2 〉 ∑

B∈A(s2s1,	2(2))

(−1)|B| gch V−
end(B)tdown(B)+α∨

2

(λ + ε2)

︸ ︷︷ ︸
A3

+ q〈ε1,α∨
1 +α∨

2 〉 ∑

B∈A(e,	1(1))

(−1)|B| gch V−
end(B)tdown(B)+α∨

1 +α∨
2

(λ + ε1)

︸ ︷︷ ︸
A1

− q〈ε1,α∨
1 +α∨

2 〉 ∑

B∈A(s2,	1(1))

(−1)|B| gch V−
end(B)tdown(B)+α∨

1 +α∨
2

(λ + ε1)

︸ ︷︷ ︸
A2

+ q〈ε1,α∨
1 +α∨

2 〉 ∑

B∈A(s2,	1(1))

(−1)|B| gch V−
end(B)tdown(B)+α∨

1 +α∨
2

(λ + ε1)

︸ ︷︷ ︸
(A3,A4)

=
∑

B∈A(s1s2s1,	3(3))

(−1)|B| gch V−
end(B)tdown(B)

(λ + ε3)

+q〈ε2,α∨
2 〉 ∑

B∈A(s2s1,	2(2))

(−1)|B| gch V−
end(B)tdown(B)+α∨

2

(λ + ε2)

+q〈ε1,α∨
1 +α∨

2 〉 ∑

B∈A(e,	1(1))

(−1)|B| gch V−
end(B)tdown(B)+α∨

1 +α∨
2

(λ + ε1).

The above result agrees with Theorem 4.5, since we have

p3,2(s1s2s1) : s1s2s1 (2,3)−−→ s2s1, p3,1(s1s2s1) : s1s2s1 (1,3)−−→ e.

Example 4.10 We consider the product e−wε2 gch V−
w (λ). Let w = s3s2, and take λ ∈ P+

such that λ + εk ∈ P+ for k = 1, 2, 3 and such that λ − εk ∈ P+ for k = 2, 3. We see that
the sets S2,k for k = 1, 2, 3, 3 are:

S2,1 = {(1), (2, 1), (3, 1), (3, 1), (3, 2, 1), (3, 2, 1), (3, 3, 1), (3, 3, 2, 1)},
S2,2 = {(2), (3, 2), (3, 2), (3, 3, 2)},
S2,3 = {(3), (3, 3)},
S2,3 = {(3)},
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and that the admissible subsets which appear on the right-hand side of (4.2) are as follows:

A2,1
s3s2 =∅, A2,2

s3s2 ={{2, 4}
︸ ︷︷ ︸
=:A1

, {2, 3, 4}
︸ ︷︷ ︸

=:A2

}, A2,3
s3s2 ={ {2}

︸︷︷︸
=:A3

, {2, 3}
︸ ︷︷ ︸
=:A4

}, A2,3
s3s2 ={ {4}

︸︷︷︸
=:A5

},

A3,1
s3 =∅, A3,2

s3 = { {2}
︸︷︷︸
=:A6

, {2, 3}
︸ ︷︷ ︸
=:A7

}, A3,3
s3 = { {3}

︸︷︷︸
=:A8

},

A3,1
e =∅, A3,2

e = { {2}
︸︷︷︸
=:A9

},

A3,1
s2s3s2 ={ {1}

︸︷︷︸
=:A10

, {1, 2}
︸ ︷︷ ︸
=:A11

}, A3,2
s2s3s2 = { {2}

︸︷︷︸
=:A12

},

A2,1
s2s3 = { {1}

︸︷︷︸
=:A13

},

A2,1
s2 = { {1}

︸︷︷︸
=:A14

}.

Table 2 is the list of end(·) and down(·) for admissible subsets given above.
Therefore, by Theorem 4.3, we see that

e−s3s2ε2 gch V−
s3s2(λ)

=
∑

B∈A(s3s2,
2)

(−1)|B| gch V−
end(B)tdown(B)

(λ − ε2)

+ q−〈ε3,α∨
2 〉 ∑

B∈A(s3,
3)

(−1)|B| gch V−
end(B)tdown(B)+α∨

2

(λ − ε3)

︸ ︷︷ ︸
A5

Table 2 The list of end(A) and
down(A) for A = A1, . . . , A14

Admissible subset end(·) down(·)
A1 s2s3 α∨

2

A2 s2 α∨
2 + α∨

3
A3 s2s3s2 0

A4 e α∨
2 + α∨

3

A5 s3 α∨
2

A6 s2s3 0

A7 s2 α∨
3

A8 e α∨
3

A9 s2 0

A10 s2s3s1s2 0

A11 s2s3s1 α∨
2

A12 s2s3 α∨
2

A13 s2s3s1 0

A14 s2s1 0
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+
∑

B∈A(s2s3s2,	3(3))

(−1)|B| gch V−
end(B)tdown(B)

(λ + ε3)

︸ ︷︷ ︸
A3

+ q〈ε2,α∨
2 〉 ∑

B∈A(s2s3,	2(2))

(−1)|B| gch V−
end(B)tdown(B)+α∨

2

(λ + ε2)

︸ ︷︷ ︸
(A3,A12)

+
∑

B∈A(s2s3s1s2,	1(1))

(−1)|B| gch V−
end(B)tdown(B)

(λ + ε1)

︸ ︷︷ ︸
(A3,A10)

;

here, the other terms cancel out. The above result agrees with Conjecture 4.7 if we take l = 3,
since we have

p2,3(s3s2) : s3s2 (2,3)−−→ s3, p2,3(s3s2) : s3s2 (2,3)−−→ s2s3s2,

p2,2(s3s2) : s3s2 (2,3)−−→ s2s3s2
(2,3)−−→ s2s3, p2,1(s3s2) : s3s2 (2,3)−−→ s2s3s2

(1,3)−−→ s2s3s1s2.

Example 4.11 We consider the product e−wε1 gch V−
w (λ). Let w = s1s2s3s2s1, and take

λ ∈ P+ such that λ + εk ∈ P+ for k = 1, 2, 3 and such that λ − εk ∈ P+ for k = 1, 2, 3.
We see that the sets S1,k for k = 1, 2, 3, 3, 2 are:

S1,1 = {(1), (2, 1), (3, 1), (3, 1), (2, 1), (3, 2, 1), (3, 2, 1), (2, 2, 1), (3, 3, 1), (2, 3, 1), (2, 3, 1),
(3, 3, 2, 1), (2, 3, 2, 1), (2, 3, 2, 1), (2, 3, 3, 1), (2, 3, 3, 2, 1)},

S1,2 = {(2), (3, 2), (3, 2), (2, 2), (3, 3, 2), (2, 3, 2), (2, 3, 2), (2, 3, 3, 2)},
S1,3 = {(3), (3, 3), (2, 3), (2, 3, 3)},
S1,3 = {(3), (2, 3)},
S1,2 = {(2)},

and that the admissible subsets which appear on the right-hand side of (4.2) are as follows:

A1,1
s1s2s3s2s1 = { {3}

︸︷︷︸
=:A1

}, A1,2
s1s2s3s2s1 = {{3, 5}

︸ ︷︷ ︸
=:A2

}, A1,3
s1s2s3s2s1 = ∅,

A1,3
s1s2s3s2s1 = ∅, A1,2

s1s2s3s2s1 = { {5}
︸︷︷︸
=:A3

},

A2,1
s1s2s3s2 = ∅, A2,2

s1s2s3s2 = { {3}
︸︷︷︸
=:A4

}, A2,3
s1s2s3s2 = {{3, 4}

︸ ︷︷ ︸
=:A5

},

A2,3
s1s2s3s2 = { {4}

︸︷︷︸
=:A6

},

A3,1
s1s2s3 = ∅, A3,2

s1s2s3 = ∅, A3,3
s1s2s3 = { {3}

︸︷︷︸
=:A7

},
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A3,1
s1s2 = ∅, A3,2

s1s2 = { {2}
︸︷︷︸
=:A8

},

A2,1
s1 = { {1}

︸︷︷︸
=:A9

}.

Table 3 is the list of end(·) and down(·) for admissible subsets given above.
Therefore, by Theorem 4.3, we see that

e−s1s2s3s2s1ε1 gch V−
s1s2s3s2s1(λ)

=
∑

B∈A(s1s2s3s2s1,
1)

(−1)|B| gch V−
end(B)tdown(B)

(λ − ε1)

+ q−〈ε2,α∨
1 〉 ∑

B∈A(s1s2s3s2,
2)

(−1)|B| gch V−
end(B)tdown(B)+α∨

1

(λ − ε2)

︸ ︷︷ ︸
A3

+ q−〈ε3,α∨
1 +α∨

2 〉 ∑

B∈A(s1s2s3,
3)

(−1)|B| gch V−
end(B)tdown(B)+α∨

1 +α∨
2

(λ − ε3)

︸ ︷︷ ︸
(A3,A6)

+ q〈ε1,α∨
1 +α∨

2 +α∨
3 〉 ∑

B∈A(e,	1(1))

(−1)|B| gch V−
end(B)tdown(B)+α∨

1 +α∨
2 +α∨

3

(λ + ε1)

︸ ︷︷ ︸
A1

;

here, the other terms cancel out. The above result agrees with Conjecture 4.7 if we take l = 1,
since we have

p1,2(s1s2s3s2s1) : s1s2s3s2s1 (1,2)−−→ s1s2s3s2,

p1,3(s1s2s3s2s1) : s1s2s3s2s1 (1,2)−−→ s1s2s3s2
(2,3)−−→ s1s2s3,

p1,1(s1s2s3s2s1) : s1s2s3s2s1 (1,1)−−→ e.

Table 3 The list of end(A) and
down(A) for A = A1, . . . , A9

A end(A) down(A)

A1 e α∨
1 + α∨

2 + α∨
3

A2 s1 α∨
1 + α∨

2 + α∨
3

A3 s1s2s3s2 α∨
1

A4 s1 α∨
2 + α∨

3

A5 s1s2 α∨
2 + α∨

3

A6 s1s2s3 α∨
2

A7 s1s2 α∨
3

A8 s1 α∨
2

A9 e α∨
1
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5 Proofs of Theorems 4.1 and 4.3

We give proofs of our identities of inverse Chevalley type.

5.1 First-half case

First, we consider the first-half case. The following proposition is a key to the proof of the
identities.

Proposition 5.1 Let w ∈ W and λ ∈ P+ be such that λ + εk ∈ P+. Then we have
∑

B∈A(w,	k (k))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εk)

=
∑

A∈A(w,
k )

(−1)|A|ewεk gch V−
end(A)tdown(A)

(λ).
(5.1)

Proof In this proof,

(1) the sequence 	k(k) is of the form:

	k(k) = (β1,k, . . . , βk−1,k, βk,k+1, . . . , βk,n, βk,k, βk,n, . . . , βk,k+1),

(2) admissible subsets B ∈ A(v, 	k(k)) for v ∈ W are subsets of the (totally ordered) index
set

I1 := {(1, k) � · · · � (k−1, k) � (k, k + 1) � · · · � (k, n) � (k, k) � (k, n) � · · · � (k, k+1)};
here, � defines a total order.

Similarly,

(1) the sequence 	k−1,k is of the form:

	k−1,k = (γk,k+1, . . . , γk,n, γk,k, γk,n, . . . , γk,k+1, γk−1,k, . . . , γ1,k, γ1,k, . . . , γk−1,k),

(2) admissible subsets A ∈ 	(v, 	k−1,k) for v ∈ W are subsets of the (totally ordered) index
set

I2 := {(k, k + 1) ≺ · · · ≺ (k, n) ≺ (k, k) ≺ (k, n) ≺ · · · ≺ (k, k + 1)

≺ (k − 1, k) ≺ · · · ≺ (1, k) ≺ (1, k) ≺ · · · ≺ (k − 1, k)};
here, ≺ defines a total order. Note that I1 ⊂ I2, and that if β � γ , then γ ≺ β for
β, γ ∈ I1.
By Proposition 3.5 and Lemma 2.5, we deduce that

(LHS of (5.1))

=
∑

B∈A(w,	k (k))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εk)

=
∑

B∈A(w,	k (k))

(−1)|B|q−〈λ+εk ,down(B)〉 gch V−
end(B)(λ + εk)

=
∑

B∈A(w,	k (k))

(−1)|B|q−〈λ+εk ,down(B)〉

× 1

1 − q−〈λ+�k ,α
∨
k 〉

∑

A∈A(end(B),	k−1,k )

(−1)n(A)q− height(A)ewt(A) gch V−
end(A)tdown(A)

(λ).

(5.2)
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Let us take the alcove path

(A◦ = A0, A1, . . . , Aa︸ ︷︷ ︸
	∗
k (k)

= B0, B1, . . . , Bb︸ ︷︷ ︸

k

= A−εk )

corresponding to 	k−1,k = 	∗
k (k) ∗ 
k . Then, the hyperplane containing the common wall

of At−1 and At , t = 1, . . . , a, is of the form Hβ,0 with β ∈ �+. Also, the hyperplane
containing the common wall of Bt−1 and Bt , t = 1, . . . , b, is of the form Hβ,1 with β ∈ �+
(see Remark 2.6). This implies that if we divide A ∈ A(v, 	k−1,k) into the two parts: A(1) :=
A ∩ {(k, k + 1), . . . , (1, k)} (∈ A(v, 	∗

k (k))) and A(2) := A ∩ {(1, k), . . . , (k − 1, k)} (∈
A(end(A(1)),
k)), then we have

height(A) =
∑

a∈A−∩A(1)

〈εk, γ ∨
a 〉

=
〈

εk,
∑

a∈A−∩A(1)

γ ∨
a

〉

= 〈εk, down(A(1))〉.
In addition, we have wt(A) = end(A(1))εk . Also, since all the roots in 	∗

k (k) are positive
roots and those in
k are negative roots, it follows that n(A) = |A(2)|. Therefore, we see that

(5.2)

=
∑

B∈A(w,	k (k))

(−1)|B|q−〈λ+εk ,down(B)〉

× 1

1−q−〈λ+�k ,α
∨
k 〉

∑

A∈A(end(B),	k−1,k )

(−1)n(A)q−〈εk ,down(A(1))〉eend(A(1))εk gch V−
end(A)tdown(A)

(λ)

= 1

1 − q−〈λ+�k ,α
∨
k 〉

∑

B∈A(w,	k (k))

∑

A∈A(end(B),	k−1,k )

(−1)|B|(−1)|A(2)|

×q−〈λ+εk ,down(B)〉eend(A(1))εk q−〈λ+εk ,down(A(1))〉 gch V−
end(A)tdown(A(2))

(λ)

= 1

1 − q−〈λ+�k ,α
∨
k 〉

∑

B∈A(w,	k (k))

∑

A∈A(end(B),	k−1,k )

(−1)|B|(−1)|A(2)|

×q−〈λ+εk ,down(B)+down(A(1))〉eend(A(1))εk gch V−
end(A(2))tdown(A(2))

(λ)

= 1

1 − q−〈λ+�k ,α
∨
k 〉

∑

B∈A(w,	k (k))

∑

A(1)∈A(end(B),	∗
k (k))

(−1)|B|q−〈λ+εk ,down(B)+down(A(1))〉

×eend(A
(1))εk

∑

A(2)∈A(end(A(1)),
k )

(−1)|A(2)| gch V−
end(A(2))tdown(A(2))

(λ). (5.3)

Now, we define an involution on the set

P := {(B, A(1)) | B ∈ A(w, 	k(k)), A(1) ∈ A(end(B), 	∗
k (k))}.
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There are the following six cases:

(1) [max B ≺ min A(1)] or [B �= ∅ and A(1) = ∅],
(2) [max B � min A(1)] or [B = ∅ and A(1) �= ∅],
(3) max B = min A(1) = (k, k + 1), and one of the following holds:

• max(B \ {(k, k + 1)}) ≺ min(A(1) \ {(k, k + 1)}) or
• B \ {(k, k + 1)} �= ∅ and A(1) = {(k, k + 1)},

(4) max B = min A(1) = (k, k + 1), and one of the following holds:

• max(B \ {(k, k + 1)}) � min(A(1) \ {(k, k + 1)}) or
• B = {(k, k + 1)} and A(1) \ {(k, k + 1)} �= ∅,

(5) B = A(1) = {(k, k + 1)},
(6) B = A(1) = ∅.
Here we remark that, if we have a directed path v

α−→ vsα
α−→ v in QBG(W ) for v ∈ W

and α ∈ �+, then α must be a simple root. Conversely, for v ∈ W and a simple root α,
v

α−→ vsα
α−→ v is a directed path in QBG(W ). For (B, A(1)) ∈ P, we define ι(B, A(1)) =

(B ′, A′(1)) ∈ P as follows:

• if (B, A(1)) satisfies (1) above, then set

B ′ := B \ {max B}, A′(1) := A(1) � {max B};
• if (B, A(1)) satisfies (2) above, then set

B ′ := B � {min A(1)}, A′(1) := A(1) \ {min A(1)};
• if (B, A(1)) satisfies (3) above, then set

B ′ := B \ {max(B \ {(k, k + 1)})}, A′(1) := A′ � {max(B \ {(k, k + 1)};
• if (B, A(1)) satisfies (4) above, then set

B ′ := B � {min(A′(1) \ {(k, k + 1)}, A′(1) := A′ \ {min(A′(1) \ {(k, k + 1)})};
• if (B, A(1)) satisfies (5) or (6) above, then set

B ′ := B, A′(1) := A(1).

It is clear that ι defines an involution on P. Moreover, in cases (1) and (3) (resp., (2) and (4)),
we have

• |B ′| = |B| − 1 (resp., |B ′| = |B| + 1),
• down(B ′) + down(A′(1)) = down(B) + down(A(1)), and
• end(A′(1)) = end(A(1)).

This implies that
∑

(B,A(1))∈P
(B, A(1)) satisfies one of (1)–(4)

(−1)|B|q−〈λ+εk ,down(B)+down(A(1))〉eend(A(1))εk

×
∑

A(2)∈A(end(A(1)),
k )

(−1)|A(2)| gch V−
end(A(2))tdown(A(2))

(λ) = 0.
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Therefore, we conclude that

(5.3) = 1

1 − q−〈λ+�k ,α
∨
k 〉

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−q−〈λ+εk ,α
∨
k 〉ewεk

∑

A(2)∈A(w,
k )

(−1)|A(2)| gch V−
end(A(2))tdown(A(2))

(λ)

︸ ︷︷ ︸
B=A(1)={(k,k+1)}

+ ewεk
∑

A(2)∈A(w,
k )

(−1)|A(2)| gch V−
end(A(2))tdown(A(2))

(λ)

︸ ︷︷ ︸
B=A(1)=∅

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1 − q−〈λ+εk ,α
∨
k 〉

1 − q−〈λ+�k ,α
∨
k 〉 e

wεk
∑

A(2)∈A(w,
k )

(−1)|A(2)| gch V−
end(A(2))tdown(A(2))

(λ)

= ewεk
∑

A(2)∈A(w,
k )

(−1)|A(2)| gch V−
end(A(2))tdown(A(2))

(λ)

= (RHS of (5.1)),

as desired; for the third equality, we have used that 〈εk, α∨
k 〉 = 〈�k, α

∨
k 〉 = 1. This completes

the proof of the proposition.

Proof of Theorem 4.1 We prove the assertion of the theorem by induction onm = 1, . . . , n. If
m = 1, then the assertion immediately follows from Proposition 5.1 since A(w,
1) = {∅}.
Let 1 < l ≤ n, and assume the assertion for m = 1, . . . , l − 1. We will prove the assertion
form = l. Note that for A ∈ A(w,
l) \ {∅}, if the index k satisfies end(A)−1wεl = εk , then
we have 1 ≤ k ≤ l − 1. Therefore, by Proposition 5.1, we see that

ewεl gch V−
w (λ)

=
∑

B∈A(w,	l (l))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εl)

−
∑

A∈A(w,
l )\{∅}
(−1)|A|ewεl gch V−

end(A)tdown(A)
(λ)

=
∑

B∈A(w,	l (l))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εl)

−
∑

A∈A(w,
l )\{∅}
(−1)|A|q−〈λ,down(A)〉ewεl gch V−

end(A)(λ)

=
∑

B∈A(w,	l (l))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εl)

+
l−1∑

k=1

∑

A∈A(w,
l )\{∅}
end(A)−1wεl=εk

(−1)|A|−1q−〈λ,down(A)〉 ewεl gch V−
end(A)(λ)

︸ ︷︷ ︸
induction hypothesis
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=
∑

B∈A(w,	l (l))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εl)

+
l−1∑

k=1

∑

A∈Al,k
w

(−1)|A|−1q−〈λ,down(A)〉

×
⎛

⎝
∑

B∈A(end(A),	k (k))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εk)

+
k−1∑

j=1

∑

( j1,..., jr )∈Sk, j

∑

A1∈Ak, j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j )

⎞

⎠

=
∑

B∈A(w,	l (l))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εl)

+
l−1∑

k=1

∑

A∈Al,k
w

(−1)|A|−1

×
⎛

⎝
∑

B∈A(end(A),	k (k))

(−1)|B|q〈εk ,down(A)〉 gch V−
end(B)tdown(B)+down(A)

(λ + εk)

+
k−1∑

j=1

∑

( j1,..., jr )∈Sk, j

∑

A1∈Ak, j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B|q〈ε j ,down(A)〉 gch V−
end(B)tdown(A,A1,...,Ar ,B)

(λ + ε j )

⎞

⎠

=
∑

B∈A(w,	l (l))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εl)

+
l−1∑

k=1

∑

( j1,..., jr )∈Sl, j

∑

A1∈Al, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j ),

as desired. Thus, the assertion also holds for m = l. This proves the theorem.

5.2 Second-half case

The following proposition is a key to the proof of the second half of our identities of inverse
Chevalley type.
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Proposition 5.2 Let w ∈ W, λ ∈ P+ such that λ − εk ∈ P+. Then we have

∑

B∈A(w,
k )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εk)

=
∑

A∈A(w,	k (k))

(−1)|A|e−wεk gch V−
end(A)tdown(A)

(λ).

Proof By replacing λ in equation (5.1) with λ − εk and multiplying both sides of equation
(5.1) by e−wεk , we obtain the desired identity.

Proof of Theorem 4.3 We prove the assertion of the theorem by downward induction on m =
n, n − 1, . . . , 1. First, assume that m = n. Then, by Proposition 5.2 and Corollary 4.2, we
see that

e−wεm gch V−
w (λ)

=
∑

B∈A(w,
n )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εn)

−
∑

A∈A(w,	n (n))\{∅}
(−1)|A|e−wεn gch V−

end(A)tdown(A)
(λ)

=
∑

B∈A(w,
n )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εn)

+
n∑

k=1

∑

A∈An,k
w

(−1)|A|−1e−wεn gch V−
end(A)tdown(A)

(λ)

=
∑

B∈A(w,
n )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εn)

+
n∑

k=1

∑

A∈An,k
w

(−1)|A|−1eend(A)εk gch V−
end(A)tdown(A)

(λ)

=
∑

B∈A(w,
n )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εn)

+
n∑

k=1

∑

A∈An,k
w

(−1)|A|−1

⎛

⎝q〈εk ,down(A)〉 ∑

B∈A(end(A),	k (k))

(−1)|B| gch V−
end(B)tdown(B)

(λ + εk)

+
k−1∑

j=1

∑

( j1,..., jr )∈Sk, j

∑

A1∈Ak, j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A,A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A,A1,...,Ar ,B)

(λ + ε j )

⎞

⎟
⎠

=
∑

B∈A(w,
n )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εn)
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+
n∑

j=1

∑

( j1,..., jr )∈Sn, j

∑

A1∈An, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j ),

as desired. Let 1 ≤ l < n, and assume the assertion form = n, n−1, . . . , l+1.We prove the
assertion form = l. For A ∈ A(w, 	l(l))\{∅}, if the index k satisfies end(A)−1w(−εl) = εk ,
then we have k = 1, . . . , n − 1, n, n, n − 1, . . . , l + 1. Therefore, by Proposition 5.2 (and
Proposition 3.2), we compute:

e−wεl gch V−
w (λ)

=
∑

B∈A(w,
l )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εl)

−
∑

A∈A(w,	l (l))\{∅}
(−1)|A|e−wεl gch V−

end(A)tdown(A)
(λ)

=
∑

B∈A(w,
l )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εl)

+
n∑

k=l+1

∑

A∈Al,k
w

(−1)|A|−1e−wεl gch V−
end(A)tdown(A)

(λ)

+
n∑

k=1

∑

A∈Al,k
w

(−1)|A|−1e−wεl gch V−
end(A)tdown(A)

(λ)

=
∑

B∈A(w,
l )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εl)

+
n∑

k=l+1

∑

A∈Al,k
w

(−1)|A|−1q−〈λ,down(A)〉 e− end(A)εk gch V−
end(A)(λ)

︸ ︷︷ ︸
induction hypothesis

+
n∑

k=1

∑

A∈Al,k
w

(−1)|A|−1 eend(A)εk gch V−
end(A)tdown(A)

(λ)
︸ ︷︷ ︸

Corollary 4.2

=
∑

B∈A(w,
l )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εl)

+
n∑

k=l+1

∑

A∈Al,k
w

(−1)|A|−1q−〈λ,down(A)〉
⎛

⎝
∑

B∈A(end(A),
k )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εk)

+
n∑

j=k+1

∑

( j1,..., jr )∈Sk, j

∑

A1∈Ak, j1
end(A)

· · ·
∑

A∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),
 j )

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ − ε j )
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+
n∑

j=1

∑

( j1,..., jr )∈Sk, j

∑

A1∈Ak, j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j )

⎞

⎟
⎠

+
n∑

k=1

∑

A∈Al,k
w

(−1)|A|−1

⎛

⎝q〈εk ,down(A)〉 ∑

B∈A(end(A),	k (k))

(−1)|B| gch V−
end(B)tdown(B)+down(A)

(λ + εk)

+
k−1∑

j=1

∑

( j1,..., jr )∈Sk, j

∑

A1∈Ak, j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A,A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A,A1,...,Ar ,B)

(λ + ε j )

⎞

⎟
⎠

=
∑

B∈A(w,
l )

(−1)|B| gch V−
end(B)tdown(B)

(λ − εl)

+
n∑

j=l+1

∑

( j1,..., jr )∈Sl, j

∑

A1∈Al, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),
 j )

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ − ε j )

+
n∑

j=1

∑

( j1,..., jr )∈Sl, j

∑

A1∈Al, j1
w

· · ·
∑

Ar−1∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q〈ε j ,down(A1,...,Ar )〉

×
∑

B∈A(end(Ar ),	 j ( j))

(−1)|B| gch V−
end(B)tdown(A1,...,Ar ,B)

(λ + ε j ),

as desired. By downward induction, this completes the proof of the theorem.

6 Proof of Theorem 4.5

We will derive the cancellation-free form of the first-half identities of inverse Chevalley type
(Theorem 4.5). For this purpose, we need the following lemmas on edges of the quantum
Bruhat graph. We continue to assume that g is of type Cn . Recall that a total order < on [n]
is defined by: 1 < 2 < · · · < n < n < n − 1 < · · · < 1; for each 1 ≤ k ≤ n, we define an
order ≺k (resp., ≺k) on [n] by: k ≺k k + 1 ≺k · · · ≺k n ≺k n ≺k n − 1 ≺k · · · ≺k 1 ≺k

1 ≺k 2 ≺k · · · ≺k k − 1 (resp., k ≺k k − 1 ≺k · · · ≺k 1 ≺k 1 ≺k 2 ≺k · · · ≺k n ≺k n ≺k
n − 1 ≺k · · · ≺k k + 1). For a1, . . . , ar ∈ [n] with r ≥ 2, we write a1 ≺ a2 ≺ · · · ≺ ar
if a1 ≺a1 a2 ≺a1 · · · ≺a1 ar (the order ≺ is different from that introduced in the proof of
Proposition 5.1). Also, on the set [n], we define the sign function sgn(·): for a ∈ [n], we set

sgn(a) :=
{
1 if a = 1, 2, . . . , n,

−1 if a = n, n − 1, . . . , 1.
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We know the following useful criterion.

Lemma 6.1 ([9, Proposition 5.7]) Let w ∈ W.

(1) Let 1 ≤ k < l ≤ n. Then, w
(k,l)−−→ ws(k,l) is an edge in QBG(W ) if and only if there

does not exist k < j < l such that w(k) ≺ w( j) ≺ w(l).

(2) Let 1 ≤ k < l ≤ n. Then, w
(k,l)−−→ ws(k,l) is an edge in QBG(W ) if and only if the

following hold:

• w(k) < w(l);
• sgn(w(k)) = sgn(w(l)); and
• there does not exist k < j < l such that w(k) < w( j) < w(l).

(3) Let 1 ≤ k ≤ n. Then, w
(k,k)−−→ ws(k,k) is an edge in QBG(W ) if and only if there does

not exist k < j < k such that w(k) ≺ w( j) ≺ w(k).

By using this criterion, we can show the following three lemmas.

Lemma 6.2 Let w ∈ W, and 1 ≤ k < l < m ≤ n. Then, the following are equivalent:

(1) w
(k,m)−−−→ ws(k,m) and w

(l,m)−−−→ ws(l,m)
(k,l)−−→ ws(l,m)s(k,l);

(2) w
(k,m)−−−→ ws(k,m) and w

(l,m)−−−→ ws(l,m);

(3) w
(k,m)−−−→ ws(k,m)

(l,m)−−−→ ws(k,m)s(l,m).

Lemma 6.3 Let w ∈ W. Take 1 ≤ k1 < l1 ≤ n and 1 ≤ k2 < l2 ≤ n such that {k1, l1} ∩
{k2, l2} = ∅. Then, the following are equivalent:

(1) we have the directed path w
(k1,l1)−−−→ ws(k1,l1)

(k2,l2)−−−→ ws(k1,l1)s(k2,l2);

(2) we have the directed path w
(k2,l2)−−−→ ws(k2,l2)

(k1,l1)−−−→ ws(k2,l2)s(k1,l1).

Lemma 6.4 Let w ∈ W, m = 1, . . . , n, and take a1, . . . , as ∈ {k ∈ [1,m − 1] | w
(k,m)−−−→

ws(k,m)} such that a1 < · · · < as; by Lemma 6.2, we have the directed path

w = y0
(a1,m)−−−→ y1

(a2,m)−−−→ · · · (as ,m)−−−→ ys

in QBG(W ). Let us take c < a1 such that

• ys
(c,a1)−−−→ yss(c,a1) =: z is an edge in QBG(W ), and

• w
(c,m)−−−→ ws(c,m) is an edge in QBG(W ).

For p < a1, if w
(p,m)−−−→ ws(p,m) is an edge in QBG(W ), then we have p < c.

Corollary 6.5 Let w ∈ W, m = 1, . . . , n, and let {a1 < · · · < as} = {k ∈ [1,m − 1] |
w

(k,m)−−−→ ws(k,m)} with s ≥ 2; by Lemma 6.4, for 2 = b1 < · · · < bu ≤ s, we have the
directed path

w = z0
(ab1 ,m)−−−−→ z1

(ab2 ,m)−−−−→ · · · (abu ,m)−−−−→ zu

in QBG(W ). Then, a1 is equal to the minimal c with 1 ≤ c < ab1 for which zu
(c,ab1 )−−−−→

zus(c,ab1 ) is an edge in QBG(W ).
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Proof Let us take the minimal c for which zu
(c,ab1 )−−−−→ zus(c,ab1 ) is an edge in QBG(W ). Note

that such a c exists since zu
(a1,ab1 )−−−−→ zus(a1,ab1 ) is an edge in QBG(W ) by Lemmas 6.2 and

6.3. This also implies that c ≤ a1. Assume, for a contradiction, that c < a1. Then, since a1

is the minimum of the set {k ∈ [1,m − 1] | w
(k,m)−−−→ ws(k,m)}, w

(c,m)−−−→ ws(c,m) is not an

edge in QBG(W ). Also, we see that a1 < a2 ≤ ab1 and that w
(a1,m)−−−→ ws(a1,m) is an edge in

QBG(W ). Therefore, by Lemma 6.4, we obtain a1 < c, which is a contradiction. Hence we
conclude that c = a1, as desired. This proves the corollary.

Theorem 4.5 follows immediately from Theorem 4.1 and the following key proposition.
Let Z[q−1][W ] denote the group algebra of W with coefficients in Z[q−1]; the elements of
Z[q−1][W ] are of the form ∑

v∈W cv(q−1)v, with cv(q−1) ∈ Z[q−1].
Proposition 6.6 Let w ∈ W, m = 1, . . . , n, and j = 1, . . . ,m − 1. Then, there holds the
following equality in Z[q−1][W ]:

∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈λ,down(A1,...,Ar )〉 end(Ar )

= q−〈λ,wt(pm, j (w))〉 end(pm, j (w)).

Proof We prove the assertion of the proposition by induction onm− j . Ifm− j = 1, then the
assertion is clear sinceSm,m−1 = {(m−1)} andAm,m−1

w = {{m−1}}. Assume thatm− j > 1.

By Lemma 6.2, we can verify that if {a1 < · · · < as} = {k ∈ [1,m − 1] | w
(k,m)−−−→ ws(k,m)}

(note that as = m − 1), then

Am, j
w =

{
{{ j, ac1 , . . . , acu } | l < c1 < · · · < cu ≤ s} if j = al for some l = 1, . . . , s,

∅ if j �= a1, . . . , as .

Therefore, we compute:
∑

( j1,..., jr )∈Sm, j

∑

A1∈Am, j1
w

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈λ,down(A1,...,Ar )〉 end(Ar )

=
s∑

k=1

∑

( j1,..., jr )∈Sak , j

∑

A∈Am,ak
w

∑

A1∈Aak , j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

× (−1)|A|+|A1|+···+|Ar |−(r+1)q−〈λ,down(A,A1,...,Ar )〉 end(Ar )

=
s∑

k=1

∑

A∈Am,ak
w

(−1)|A|−1q−〈λ,down(A)〉

×
∑

( j1,..., jr )∈Sak , j

∑

A1∈Aak , j1
end(A)

· · ·
∑

Ar∈A jr−1, jr
end(Ar−1)

(−1)|A1|+···+|Ar |−r q−〈λ,down(A1,...,Ar )〉 end(Ar )

︸ ︷︷ ︸
induction hypothesis

=
s∑

k=1

∑

A∈Am,ak
w

(−1)|A|−1q−〈λ,down(A)+wt(pak , j (end(A)))〉 end(pak , j (end(A))). (6.1)
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If s = 1, then the assertion is clear since Am,a1
w = {{m − 1}}. Now, assume that s ≥ 2.

For A ∈ A := (Am,a1
w \ {{a1}}) � (

⊔s
k=2 Am,ak

w ), we define ι(A) by

A ∈
s⊔

k=2

Am,ak
w → ι(A) := A � {a1} ∈ Am,a1

w \ {{a1}},

A ∈ Am,a1
w \ {{a1}} → ι(A) := A \ {a1} ∈ Am,min(A\{a1})

w ⊂
s⊔

k=2

Am,ak
w .

Wesee that this ιdefines an involution on the setA such that |ι(A)| = |A|±1 for A ∈ A. For
A ∈ Am,ak

w with k = 2, . . . , s, it follows from Corollary 6.5 that the first edge in the directed

path pak , j (end(A)) in QBG(W ) is end(A)
(a1,ak )−−−−→ end(A)s(a1,ak ) = end(ι(A)). Hence we

have end(pak , j (end(A))) = end(pa1, j (end(ι(A)))). Also, the directed path w → · · · →
end(ι(A)) inQBG(W ) corresponding to ι(A) is a shortest one of length |ι(A)| = |A|+1, since
the order ≺ given by (1,m) ≺ · · · ≺ (m − 1,m) forms a part of a reflection order on the set

�+ of positive roots. Hence, the concatenation w → · · · → end(A)
(a1,ak )−−−−→ end(A)s(a1,ak )

of the directed path corresponding to A with the edge end(A)
(a1,ak )−−−−→ end(A)s(a1,ak ) is also

a shortest one. Here we know that for any v, u ∈ W , all shortest directed paths from v to u
in QBG(W ) have the same weight wt(·) (see [16, Lemma 1(2)]). It follows that

down(A) + wt(pak , j (end(A))) = down(ι(A)) + wt(pa1, j (end(ι(A)))).

Therefore, for A ∈ Am,ak
w with k = 2, . . . , s, we deduce that

(−1)|A|−1q−〈λ,down(A)+wt(pak , j (end(A)))〉 end(pak , j (end(A)))

+ (−1)|ι(A)|+1q−〈λ,down(ι(A))+wt(pa1, j (end(ι(A))))〉 end(pa1, j (end(ι(A)))) = 0.

This implies that

(6.1) = q−〈λ,down({a1})+wt(pa1, j (end({a1})))〉 end(pa1, j (end({a1})))︸ ︷︷ ︸
k = 1 and A = {a1} ∈ Am,a1

w

= q−〈λ,pm, j (w)〉 end(pm, j (w)),

as desired. This proves the proposition.
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