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Abstract

We provide identities of inverse Chevalley type for the graded characters of level-zero
Demazure submodules of extremal weight modules over a quantum affine algebra of type
C. These identities express the product e#gch V(L) of the (one-dimensional) character
e, where w is a (not necessarily dominant) minuscule weight, with the graded char-
acter gchV,~ (1) of the level-zero Demazure submodule V" (X) over the quantum affine
algebra Uq(g,¢) as an explicit finite linear combination of the graded characters of level-
zero Demazure submodules. These identities immediately imply the corresponding inverse
Chevalley formulas for the torus-equivariant K -group of the semi-infinite flag manifold Q¢
associated to a connected, simply-connected and simple algebraic group G of type C. Also,
we derive cancellation-free identities from the identities above of inverse Chevalley type in
the case that p is a standard basis element &4 in the weight lattice P of G.
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1 Introduction

The purpose of this paper is to prove identities (of inverse Chevalley type) for the graded
characters of Demazure submodules (level-zero Demazure submodules) of extremal weight
modules with level-zero extremal weight over a quantum affine algebra of type C.

Let Uq(g,¢) be the quantum affine algebra associated to the (untwisted) affine Lie algebra
g.r Whose underlying simple finite-dimensional Lie algebra is g. Let us denote by Wyt (resp.,
W) the Weyl group, by b, (resp., ) the Cartan subalgebra, and by Py,r (resp., P) the weight
lattice of g,¢ (resp., g), where P = > ._; Zw; and Py = P + 78 + ZAo. For x € Wyt
and A € P*, with PT C P the set of dominant weights for g, let V(1) denote the
Demazure submodule (level-zero Demazure submodule) of the extremal weight module
V(A) with extremal weight A over Uq(g,s), where A € P is regarded as an element of
Py in a canonical way. In recent years, the graded characters gch V.~ (1) of the level-zero
Demazure submodules for x € Wy, A € P, have been studied in several works. Among
them, Kato-Naito-Sagaki [7] obtained an explicit description of the expansion of the graded
character gch V" (A + ) for A, € P as an infinite linear combination with coefficients in
Z[q’l][P] of graded characters gch Vy’ (v) for y € Wyr and v € P. Also, Naito-Orr-Sagaki
[14] obtained a similar description of the graded character gch V,” (A— ) for A, o € P such
that A — . € PT; note that in this case, the expansion is, in fact, a finite linear combination
with coefficients in Z[gq, q’l][P]. Recently, Kouno-Lenart-Naito [5] (cf. [13]) obtained an
explicit description of the expansion, as an infinite linear combination with coefficients in
Zlgq, q_l][P], of the graded character gch V" (A 4+ u) for A € P T and an arbitrary u € P
such that A + o € PT . This identity is of the following form:

gehVy o+ = Y clpe’gch Vi (), (1.1)

yEWut, veP

where ¢y, € Zlg,q 1 fory € Wy and v € P, and e’ for v € P denotes the (one-
dimensional) character of H with weight v. Here we should mention that the coefficients
cx.y, are independent of the weight A € P; also, for each y € Wy, the sum Y, p cy/pe” is
an element of Z[q, ¢~ ][ P]. This explicit identity is called an identity of Chevalley type.

Our main interest lies in an explicit description of the expansion of the product
e gch V7 (2) as a finite linear combination of the graded characters geh V™ (A + ) for
y € Wyr and u € P; that is, an explicit description of the coefficients dgff in the identity of
the following form:

e’gch Vo)=Y dlllgch V(4 pw). (1.2)
YEWar, ueP

where the coefficients dy.} € Z[q, g '] are independent of the weight A € P. In types A,
D, E¢, E7, Kouno-Naito-Orr-Sagaki [6] (for minuscule weights v) and Lenart-Naito-Orr-
Sagaki [12] (for arbitrary weights v) gave an explicit description of the coefficients di{f
in the identity above; strictly speaking, the identities obtained in these works are ones in
the equivariant K -group of the semi-infinite flag manifold Q¢ associated to the connected,
simply-connected and simple algebraic group G over C whose Lie algebra is g. In particular,
these identities imply the following finiteness result: (i) the right-hand side of the identity
(1.2) is a finite sum, and (i) di}' € Z[q,q '] for all y € Wy and u € P. Note that this
finiteness result was obtained in simply-laced types by Orr [15], but the argument therein
does not seem to work in non-simply-laced types. Since the identity (1.2) can be thought
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Identities of Inverse Chevalley Type for Graded Characters 431

of as an “inverse expansion” of the identity (1.1), we call it an identity of inverse Chevalley
ype.

In this paper, we study identities of inverse Chevalley type in type C,. We give an explicit
description of the coefficients d;]’f in the case that v = ver| for v € W, where @ is the

first fundamental weight. Note that the W-orbit of @ is {+e; | k € {1,...,n}}, where
{e1, ..., en} is the standard basis of the weight lattice P = Z"; for any v, w € W, there
exists m =1, ..., n such that vio; = we,, or v = —wey,.

Now we are ready to state the main results of this paper; for the notation used in the
following theorems, see Section 4.1. First, we state the “first half” of the desired identities
of inverse Chevalley type.

Theorem 1.1 (= Corollary4.2) Forx = wtg € Wyr withw € Wand& € Q¥,m=1,...,n,
and » € PT suchthat A +¢&, € PT forallk =1, ..., m, there holds the following identity:

ewam gCh VX* (}»)
— lem®) IBI o
=q" Z (=)' gch Vend(B)Idown(B)+E
Be A,y (m))
m—1

I=L G i) €S are Ayt A e AL
—

x Z (-D)'Blgech v

nd(B)ldown(B)-+down(A 1 )+--+down(Ay)+&
BeA(end(4,).T; ()

(A +em)

(A +egj).

Note that x and w in Theorem 1.1 are related as x = wtg, but m is arbitrary. Next, we
state the “second half” of the desired identities of inverse Chevalley type.

Theorem 1.2 (= Corollary4.4) Forx = wt; € Wyrwithw € Wand& € Q¥,m=1,...,n,
and\ € PT suchthat A\+e, € Pt forallk =1,...,nand\—s; € P fork =m+1,...,n,
there holds the following identity:

e Y gch V" (1)

—(&m, B —
=gy D e Vi
BeAw,0,,)

n
+ Z Z Z Z (=1)lAtHHArl=r o —(ej.down(Ap)+-~+down(Ar)+£)
JEH i€ are AT A e Al
x > (—D!Blgeh v

nd(B)down(B)-+down(A | )+-—+down(Ay)+&
BeA(end(4,),0))

n
_ 1 Atl++lAr =1 (ej,down(A})+-+down(A,)+E)
DD YU R D e

i=1(; i . m,j jr—1-Jr
I i eSay me AL ae Al

x Z (—D'Blgch v

nd(B)tdown(3)+down(A D+-+down(Ay)+&
BEA(eﬂd(Ar)wrj )

A —éem)

)

)

(A +¢)).

Note that the proofs of Theorems 1.1 and 1.2 begin with auxiliary identities (Proposi-
tions 5.1 and 5.2) derived directly from a special case of the Chevalley formula given by
Proposition 3.5. Also, observe that from the description of these identities, the finiteness
result (i), (ii) mentioned above immediately follows, since every weight A € P can be writ-
ten as a Z-linear combination of €1, ..., &,.
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432 T.Kouno et al.

Furthermore, we give cancellation-free identities of inverse Chevalley type in the “first-
half” case, i.e., in the case v = vor; = wey, ..., we,. The precise statement is as follows;
in the following theorem, p,,, j(w) denotes a suitable directed path in the quantum Bruhat
graph (for the definitions, see Section 4.2).

Theorem 1.3 (= Corollary4.6) Forx = wts € Wy withw € W and& € OV,m=1,...,n,
and & € P7T such that » + &, € PT forall k = 1,...,m, there holds the following
cancellation-free identity:

eV gch V" (1)

s B -
= q(s ? Z (_1)‘ | gCh Vend(B)tdown(B)+5 (A + Em)
BeAw.Ty(m)

m—1

+ Z g () Z (=)' geh ve;d(B)dewn(BHWl(Pm.j(w))+$ * +¢)).
j=1 BeAlend(py,j ()).T; ()

As for the “second-half” case, i.e., the case v = vy = —wey, ..., —we,, we provide

conjectural cancellation-free identities of inverse Chevalley type in Section 4.3.

As an application of our identities of inverse Chevalley type, we can prove a formula
for equivariant scalar multiplication (i.e., multiplication with the one-dimensional character
e',v € P,of H) in the (H x C*)-equivariant K-group K gxc*(Qg) of the semi-infinite
flag manifold Q¢ associated to G. To be more precise, let QrGat denote the semi-infinite
flag manifold associated to G, that is, a reduced ind-scheme of infinite type whose set of
C-valued points is G(C((2))/(H(C) - N(C((2)))) (see [8] for details), where H C G is
a maximal torus with Lie algebra h and N is the unipotent radical of a Borel subgroup
B D H. For A € P, there exists a line bundle on Qré“ associated to A; we denote by
O(A) the sheaf corresponding to this line bundle. Also, there exist semi-infinite Schubert
varieties Qg (x) for x € Wy, which are subvarieties of Q''; note that Qg = Qg(e),
with e € Wy the identity element. The equivariant K-group K gxc*(Qg) is defined to
be the Z[g, ¢~ '][ P]-submodule of (the Laurent series, in ¢~', extension of) the Iwahori-
equivariant K -group K fx(c* (Qg), introduced in [7], consisting of all “convergent” (possibly
infinite) linear combinations with coefficients in Z[g, q‘l][P] of the semi-infinite Schubert
classes [OqQg )], X € Wazfo ={wte € Wyr |w e W, € € QV-*}, where “convergence”
holds in the sense of [7, Proposition 5.11]; here, Q¥-F := Y ier Z=oa;” denotes the positive
part of the coroot lattice Q¥ = >, .; Za,”.

Now, following [14, Sect. 9], we recall how the graded characters of level-zero Demazure
submodules over the quantum affine algebra Uq(g,¢) are related to the equivariant K -group
Kpxc+(Qg) of the semi-infinite flag manifold Qg. Let us define Clg, q_l][P]—modules
Funp(C(g~")[P]), Fun,*(C((g~")[P]). and Fun*(C((¢~")[P]) by

Funp(C(g~")IP)) = {f : P — Clg~")[P},
there exists y € P such
Fun,®(C(g~")[P)) = {f € Funp(C((g~")[P]) | that f(n) = 0 forall s e} :
y + Pt

Fun$*(C(g~")[P]) := Funp(C(g~ " )[P1)/Fun®(C(g~ " NI PD.

Then there exists an injective Z[q, g~ [ P]-module homomorphism @ : Ky xc+(Qg) —
Funf},ss((C((q_l))[P]) such that for the class [€] € Kg«c+(Qg) of a certain quasi-coherent
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Identities of Inverse Chevalley Type for Graded Characters 433

sheaf £ on Qg, the element ® ([£]) € Fun%s(C((q’l))[P]) is given as:

P — C(g~DIP]. A ) (=1 geh H'(Qg. £®, O(M)):
i=0

here, gch H (Qg, £ ®OQG O(A)) for i > 0 is the graded character of the i-th cohomology
group H' (Qg, 8®OQG O(A)), which is regarded as an (H x C*)-module. Also, it is proved
in [7] that we can take £ = O, (x) forx € W= and that

af »

gch V. (—wor) ifA € PTandi =0,

h H'(Qg, Oqq (x om) =
geh H'(Qa. Ogs ) ®0,, O4) {() otherwise;

where w, denotes the longest element of W. By making use of these results, we can translate an
identity for graded characters of level-zero Demazure submodules into one for the (H x C*)-
equivariant K-group K g xc+(Qg). Namely, if we have a finite sum of the form (1.2), then
we obtain the following identity in K g xc*(Qg):

¢ [0l = ) dF10s() ®0q, O(—wo)].
yEWar, uepP

In particular, our identities for graded characters of inverse Chevalley type yield explicit
identities for the (H x C*)-equivariant K -group K g «c+*(Qg), which we call inverse Cheval-
ley forumlas.

In addition, by the specialization at g = 1 (of the coefficients d; '), we obtain correspond-
ing inverse Chevalley formulas for equivariant scalar multiplication in the H-equivariant
K-group K i (Qg) of the semi-infinite flag manifold Q¢. Here we mention that in [4], Kato
established a Z[ P ]-module isomorphism from K g (Q) onto the (small) H-equivariant quan-
tum K -theory QK5 (G/B) = Ky (G/B) Q@z1p) Z[P][Q" "] of the finite-dimensional flag
manifold G /B which sends each semi-infinite Schubert class to the corresponding (opposite)
Schubert class, where Z[ P][ Q"] denotes the ring of formal power series with coefficients
in Z[ P]in the Novikov variables Q; = Q"‘iv ,i € 1. Through this Z[ P]-module isomorphism,
we obtain inverse Chevalley formulas for equivariant scalar multiplication in QK (G/B).

This paper is organized as follows. In Section 2, we fix our basic notation, and recall the
definitions of the quantum Bruhat graph and quantum alcove model. In Section 3, we briefly
recall the definition of level-zero Demazure submodules, and review identities of Chevalley
type for their graded characters. In Section 4, we state identities of inverse Chevalley type.
Also, we give the cancellation-free form of the first half of these identities. In Section 5, we
prove our identities of inverse Chevalley type. In Section 6, we derive the cancellation-free
form of our identities of inverse Chevalley type in the first-half case.

2 Basic setting

In this section, we fix basic notation, and review the definitions of the quantum Bruhat graph
and quantum alcove model.
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434 T.Kouno et al.

2.1 Lie algebras and root systems

Let g be a simple Lie algebra over C with Cartan subalgebra h. Let A C b* := Homc (h, C)
be the root system of g, A* C A the set of positive roots, and {@; };c; C A7 the simple roots.
We denote by (-, -) the canonical pairing h* x ) — C.Fora € A, we define sgn(a) € {1, —1}
as
) 1 ifaeAT,
=0 g e —at
and set || := sgn(a)a € AT,

Fora € A, wedenotebya” € hthe coroot corresponding to ., and define the fundamental
weights @w;,i € I, by (w;, onY) =¢; jfori, j € I.Let P := ), ; Zw; be the weight lattice,
Q := ) ;c; Za; the root lattice, and Q¥ := ), ; Za;’ the coroot lattice. Elements of
Pt =Y, , Z>ow;(C P) are called dominant weights. We denote by Z[P] := Y, _p Ze"
the group algebra of P, where {e* | A € P}isaformal basis withrelations e*e# = ¢*** Note
that if G is the connected, simply-connected and simple algebraic group over C whose Lie
algebra is g, then the element ¢* for A € P also denotes the one-dimensional representation
(character) of the maximal torus H of G of weight A. In particular, Z[ P] is isomorphic to
the representation ring R(H) of the torus H.

For a € A, we define the reflection s, € GL(h*) by s4 (1) := A — (A, a¥)a, L € b*. In
particular, the reflection s; := sq, for i € I is called a simple reflection. The Weyl group W
is defined as the subgroup of GL(h*) generated by {s;}ics,i.e.,, W = (s; | i € I} C GL(h").

2.2 Type Croot system

We review the standard realization of the root system of type C. Let {e1, ..., &,} be the
standard basis of R”. Then, the set

A={t—g) |l =i<j=nfu{xe+e)ll=i<j=nfu{f2e |1l =k =n}
forms the root system of type C,,, and
At ={e—¢j|1<i<j<niulei+e|1<i<j<nfu{2e]|]1<k<n}
is the set of all positive roots. In particular, «;, i = 1, ..., n, defined by
o =& —¢&iy1, 1 <i<n—1, a,:=2¢

are the simple roots.
Forl <i < j <n, we set

i, Jj)=c¢e —¢j, (i,f)::ai—i—sj, G,1) = 2¢.

The Weyl group W of type C, is realized as a subgroup of the group of permutations of the

set [n] == {1,2,...,n,n,n—1,..., 1} by identifying simple reflections s1, ..., Sy—1, Sp
with transpositions (1 2), ..., (n — 1 n), (n n), respectively.

2.3 The quantum Bruhat graph

The quantum Bruhat graph is a labeled directed graph on the Weyl group W, introduced by
Brenti-Fomin-Postnikov [1].
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Identities of Inverse Chevalley Type for Graded Characters 435

Definition 2.1 ([1, Definition 6.1]) The quantum Bruhat graph QBG(W) is the AT -labeled
directed graph whose vertex set is W, and whose edges are given as follows. For x,y € W
and @ € AT, we have a directed edge x % y if y = xs4, and either of the following holds:
(B) £(y) = £(x) + 1, 0r (Q) £(y) = £(x) — 2(p,a”) + 1, where p := (1/2) Y, cp+ @. If
the condition (B) (resp., (Q)) holds, then the corresponding edge x =z y is called a Bruhat
edge (resp., quantum edge).

For a directed path p : wo LAY w1 n.o.n w, in QBG(W), we define wt(p) € Q" by

wt(p) = > Ve -
1<k<r

E .
Wg—1 — Wy is a quantum edge

2.4 The quantum alcove model

We briefly review the theory of quantum alcove model, first introduced by Lenart-Lubovsky
[10], and then generalized by [13]. We set f)]’f@ = P ®z R.Fora € A and k € Z, we define
a hyperplane Hy x in b by

Hyp:={§ ebp | (£, ") =k);

we denote by s, x the reflection for the hyperplane H, ;. Connected components of the space
bk \ Usea rez Hok are called alcoves. Two alcoves A, B are said to be adjacent if the
closures of A and B have an intersection, called a common wall.

Definition 2.2 ([11, Definition 5.2]) A sequence (Ag, A1, ..., A,) of alcoves Ao, ..., A, is
called an alcove path if A;_1 and A; are adjacent for each i = 1,...,r. An alcove path
I' = (Ao, ..., Ay)iscalled reduced if I" has a minimal length r among all alcove paths from
Apgto A,.

For adjacent alcoves A, B, and aroot o € A, we write A % B if the common wall of A
and B is contained in the hyperplane H, x for some k € Z, and « points in a direction from
A to B (as a direction vector). We take a special alcove A,, called the fundamental alcove,
defined by

Ao:=1{Eebhh|0<(£,a) < lforalla € AT}

For A € P, we define A, by
Ay =Ac+r={+1]|& €A}

Definition 2.3 ([11, Definition 5.4]) Let A € P. A sequence I' = (y1,..., ¥») of roots
Y1, ..., ¥r € Ais called a A-chain if there exists an alcove path (A, = Ag, Ay, ..., A, =
A_;) such that
Ae=A0 5 A 5 ... 5 4, =4,
We say that I is reduced if the corresponding alcove path (Ao, ..., A,) is reduced.
Let I" be a sequence of roots, i.e., ' = (y1, ..., ¥ ), withyy €e Ak =1,...,r.

Definition 2.4 ([13, Definition 17]) Let w € W. Asubset A = {i; < --- <ig} C{l,...,r}
is said to be w-admissible if

Vi | Vi | [Vig |
W=wy —> W —> -+ —> Wy
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436 T.Kouno et al.

is a directed path in QBG(W). In this case, we define end(A) by end(A) := w;. Also, we set

A7 :={k € A | the edge wi_ M—L wy is a quantum edge},

and then define down(A) by
down(A) := Z [yl
keA™
Also, we set
n(A) :=#keAlpye—AT)

We denote by A(w, I') the set of all w-admissible subsets.

LetT'y, ..., I'; be sequences of roots, and w € W. For atuple (Af, Az ..., A,) of admis-
sible subsets A} € A(w, '), Ay € A(end(A1),T2),..., A, € A(end(A,_1), T}), we set

down(Ay, Ay, ..., A;) :=down(A;) + down(Aj) + - -- 4+ down(A,).

If T is a A-chain for some A € P, then we can consider additional statistics denoted by
wt and height. For a A-chain " = (y, ..., y) with A € P,let (A, = Ao, ..., A, = A_))
be the alcove path corresponding to I', and take integers [y € Z, k = 1, ..., r, such that the
common wall of adjacent alcoves Ay and Ay is contained in the hyperplane H,, ;.. Then,
we define wt(A) and height(A) for A = {i; < --- < is} by

Wt(A) = _wsy,'l ’_lil e sy,'_Y,—l,'S (_)\-)7 helght(A) = Z Sgn()/k)«)\, yk\/> - lk)
keA~

2.5 Specific chains of roots

In this subsection, we deal with the root system of type C,,. We choose specific (—wy—1 +@y)-
chain and (@wy_1 — @y )-chain, which will play a crucial role in this paper; we understand
that @y = 0. Note that —my_| + @ = &. We set

Te(k) == (—(1,k), ..., —(k —1,k),
—(k,k+1),...,—(k,7n),
—(k, k),
—(k,n), ..., —(k, k+1)),
Titk) == ((k,k+1),..., (k n),
(k. k),

k,7m), ..., (k,k+1),

k —1,k),...,(1,k)),
O == (—(L, k), ..., —(k —1,k)),
Of := ((k — L,k), ..., (1,k)).

For sequences I' = (y1,..., %), & = (£1,...,&) of roots, we denote by I' x E the
concatenation of I' and E,i.e., [« E := (y1, ..., ¥, &1, ..., &).

Lemma 2.5 The concatenation T'ix_1 j := F,’f (k) % O is a reduced (—wy_1 + wy)-chain.
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Identities of Inverse Chevalley Type for Graded Characters 437

Proof We set x := SgSk41- SuSu—1---81, Y ‘= S1---Sk—1, and u := wy. Then, x is a
minimal-length representative for the coset xW,, where W, = {w € W | wu = u},
yx is the minimal-length representative for the coset {w € W | wu = wou}, and xpu =
—(—@k—1 + @y). Now, following [12, Lemma 4.1], we define I" as follows. Let us write
X =S, 8j,Y =Si - 58i,and set

Be :=Sj, Sjep ¥, 1=c=a,

8a = Siy -+ Sig ®ig» 1 =d <b.
Then we define " as " := (B1, ..., Bas —V1, - - - » —Vp); NOte that the convention for the sign
of roots in alcove paths in this paper is different from that of [12]. By direct calculation, we
see that this I" is identical to I'y_1 . Since p is a minuscule fundamental weight, the argument

in the proof of [12, Lemma 4.1] still works in our setting of the type C root system, and hence
we obtain the following reduced alcove path IT from A, to Ao +xu = Ao — (—Dj—1 + @) =

A (oo

I—[:Ao:AO_ﬂl Al__ﬁZ>..._—'Ba>Aa:BO
¢ ¢ ‘
_1) B, _2) —h) B, = A_(—wk,l-ﬁ-wk)'

Thus we have shown that I'x_1  is areduced (—w@y—_1 + @ )-chain corresponding to IT. This
proves the lemma.

Remark 2.6 The proof of [12, Lemma4.1] also shows thatfort =1, ..., a, the common wall
of the adjacent alcoves A; 1 and A; in the above path IT is contained in the hyperplane Hpg, o,
while for r = 1, ..., b, the common wall of the adjacent alcoves B;_1 and B; is contained
in the hyperplane H, ;.

By reversing the order of roots in I and negating all roots, we obtain a specific (@y—1 —
w}, )-chain.

Corollary 2.7 The concatenation l",ffl,k = OF * [ (k) is a reduced (w1 — wy)-chain.

3 Level-zero Demazure submodules over quantum affine algebras

We recall the definition of level-zero Demazure submodules over quantum affine algebras
and their graded characters.

3.1 Notation for affine Lie algebras and quantum affine algebras

Let g, := (g ®c Clz, 1) @ Ce & Cd be the (untwisted) affine Lie algebra associated
to g, where ¢ is the canonical central element and d is the scaling element. We denote
by b, its Cartan subalgebra. Let (-, -) be the canonical pairing b} x bh,r — C, where
b = Homc(hye, C). We set Ior := I U {0}. Then, the simple roots «;, i € I C Iy, of g
can be regarded as simple roots of g,¢. Let s;, i € I, be the simple reflection corresponding
to ;. Let Wyr 1= (s; | i € Iy) denote the (affine) Weyl group of g,;. We know that
Wa ={wtz |w e W, £ € QY)W x QY, where tz, § € 0V, is the translation element
[2, Chapter 6].

Let Uq(g,) be the quantum affine algebra associated to g,¢, and denote by E;, F;, i €
Ip = I1{0}, the Chevalley generators of Uq(g,¢). Then, we define Uy (gyr) as the subalgebra
of Uq(g,s) generated by {F; | i € Iy}, ie., Uq_(gaf) = (F; | i € Iy).
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438 T.Kouno et al.

3.2 Extremal weight submodules and level-zero Demazure submodules

Definition 3.1 ([3, Definition 8.1.1]) Let M be an integrable Uq(g,¢)-module, and A € Pys.
An element v € M is called an extremal weight vector of weight A if v is a weight vector of
A, and there exists a family {vy | x € Wy} C M of vectors such that

1) ve =,

. . v ((xr,0)
(2) fori € Iy and x € Wy, if (xA, ") > 0, then Ejv, = 0 and F; Uy = Uy, x, and
(3) fori € Iy and x € Wy, if (xA, @) < 0, then F;v, = 0 and Ei(_(xx’a" >)vx = Vg xs

1

where Fi(k) and E i(k), k > 0, denote the divided powers.

For A € Py, the extremal weight module of weight A, denoted by V (1), is the integrable
weight module over Uq(g,s) Whose generator is a single element v;, and whose defining
relation is that “vj is an extremal weight vector of weight A”’; for the precise definition of
extremal weight modules, see [3, Proposition 8.2.2].

Leti € PT C Py, and x € Wye. By the definition of extremal weight vectors, there exists
a family {v, | x € Wy} C V(1) of vectors satisfying the conditions in Definition 3.1, with
ve = vy. The level-zero Demazure submodule V(1) for x € Wyrisa Uq’ (gaf)-submodule
of V(A) generated by vy, i.e,, V. (1) = Uq_(gaf)vx. For v € Py, we denote by V" (4),
the weight space of V" (1) of weight v € Py. Then we have the following weight space
decomposition with respect to ,¢:

Vi = @ Vi 0aryrkss
yeQ, keZ

where each weight space V" (M)i1y1ks, ¥ € O, k € Z, is a finite-dimensional C(q)-vector
space; here, § denotes the (primitive) null root of g,;. Now we define the graded character
of V(1) by

geh Vo) = Y dim(V; (asyrre)g* e € ZIPI(g ™),
yeQ, kel

where ¢ is an indeterminate (not to be confused with q).
The following identity is useful to compute the graded characters of level-zero Demazure
submodules.

Proposition 3.2 ([7, Proposition D.1]) Let x € Wy and . € PT. For £ € QV, we have
geh Vi ) = ¢~ %% gech V().

3.3 Identities of Chevalley type

Let A € P™ and x € W,s. We consider the graded character gch Vo (A+ ), where u € Pis
such that A 4+ € P, For this, we need to introduce more notation. A partition is a weakly
decreasing sequence x = (x; > --- > x) of positive integers xi, ..., xi € Z=o; we call
[ the length of x. Also, we set |x| := x1 + -+ + xi, the size of x. If x = ¢, the empty
partition, then we set £(x) := 0, and x| := 0. Let u € P, and write u = ), .; m;w;. We
define a set Par(u) as follows:

Par(u) = {x = (X(i))iel | X(i),i € I, are partitions such thatﬁ()((i)) < max{m;, 0}}.
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(@)

0> > Xl(,-i))’ where Xl(i), Xy €

For x = (x);es € Par(p), we write x ) = (x;
Zo, with [; = £(x@). We set
xXI=Y_IxPL 0 =) x"a) € 0V,

iel iel

where, if x @ = ¢, then we set X(l) = 0.
Lenart-Naito-Sagaki [13] and Kouno-Lenart-Naito [5] proved the following identity,
called the identity of Chevalley type.

Theorem 3.3 ([13, Theorem 33] and [5, Theorem 5.16]) Let .. € PT, u € P, and x =
witg € Wor withw € W and & € QY. Assume that A + | € P Take a reduced p-chain T.
Then, there holds the following identity:

gch V. (A + )

_ _1)n(A) ,—height(A)—(A,&)—[x| ,wt(A)
- Z Z (=D q e geh Ve“d(A)t§+down(A)+t(x)
AeAw.I) X €Par(u)

).
3.1)

Remark 3.4 Strictly speaking, Lenart-Naito-Sagaki proved an identity, called the Chevalley
formula, in the equivariant K-group of semi-infinite flag manifolds, which is essentially
equivalent to (3.1).

Now, we consider the root system of type C,, and apply the identity of Chevalley type
above to the case that u = —wy_1 + @y = €, k = 1, ..., n, to obtain the following.

Proposition 3.5 Let2 < k < nand u := ¢y = —wy—1 + wy. Take an arbitrary reduced
u-chain T. Let w € W. For A € PT such that > + n € P, we have

1 Z (- l)n(A)q—height(A)ewt(A) gCh

geh V,, O+ p) = — ey
AcAw,T)

end(A)tdovm(A) ).

Proof Since u = —wy_| + @y, we have

Par(u) = {iy :=@,....0,0),9,...,%) |i >0},
k

where ¢} denotes the empty partition (of length 0), which is also regard as (0). For i > 0, we
have |ix| =i, and ((i;) = iakv. Therefore, by Theorem 3.3, we compute:

_ _ _ 1 \n(A) ,—height(A)—|x| ,wt(A)
gCh Vw A+np = J42: ; (=D q e gCh Vend(A)tdown (A)+i(x )()L)
Ae A(w,T) x€Par(n)

o0
Z Z(*l)n(A)‘f height(4)— ,Wi(A) gy v

nd(A)tdnwn(A)+m

AeAw,r) i=0
A) — height(A A~
— Z Z( l)n( ) eight(A)—i wl( )q ( tak gch Ve"d(A)fdown(A)()L)
AeAw,T) i=0
o0
Ly .
= g Z (= 1) g Mgt vt geh end(A)ldown(A)(A)
i=0 AeAw.T)

o

Il
=}

—i(Aop,)) (A) —h ht(A) t(A)
q i oy N Z (- 1)" eig| w gch Vend(A)tdown(,\) )
AeAw,I)
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1

— (o)

A)  —height(A A .
Yo ()TN A geh VL @),
AeAw.I)

_1_q

as desired; for the third equality, we have used Proposition 3.2. This proves the proposition.

4 Main Results

In this section, we give the precise statements of our identities of inverse Chevalley type in
type C,. First, we give identities in which some terms may cancel. Next, we describe the
cancellations in the “first half” of these identities to obtain cancellation-free ones. Also, we
propose a conjecture for the cancellations in the “second half” of these identities. In the rest
of this paper, we assume that g is of type C,.

4.1 Identities of inverse Chevalley type

To give precise statements of our main results, we prepare additional notation. Let us define
atotal order < ontheset[n]byl <2 <..-<n<n<n—1<-.- < 1.For j,m e [n]
with j < m, we define S, ; to be the set of all strictly decreasing sequences of integers
starting from m and ending at j, that is,

’Sm,j :={(.j1’-~-’jr)|r215 jlv"'vjre[ﬁ]’ m>j1 >>.]r=-]}
Forwe Wand1 <[ < k <n, we set
ARL = (A e Aw, Op) \ (B} | end(A) " wey = &1},
Also, forw € W, k € {1,...,n},and [ < k, we set

AED = (A € A(w, T () \ 19} | end(A) w(—e1) = &1},

where for simplicity, we write e;; = —&,, form € {1, ..., n}.
The following is the “first half” of identities of inverse Chevalley type (in which cancel-
lations may occur).

Theorem4.1 Forw e W, x € PY,m=1,...,n, and A € PT such that > + g € P for
allk =1, ..., m, there holds the following identity:

eV gch V, (1)

B —
= Z (— 1)‘ | gech Vend(B)tdown(B) (A + &m)
BeA(w. Ty (m))

= (oo i) €S .y Jr—1dr
(1 Jr) m, j A|€Aw A’E‘Ae;d(Ar_])

B —
X Z (=D'* gch VCnd(B)ldown(Al ..... Ar.B) O +e)).
BeA(end(A,),T; ()
“4.1)

We give a proof of Theorem 4.1 in Section 5. By Proposition 3.2, we obtain the following
identities for an arbitrary x € Wy (not only for x € W).
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Corollary 4.2 For x = wtz € Wy withw € Wandé € Q¥V,m =1,...,n, and » € P*
such that . + e, € P forallk =1, ..., m, there holds the following identity:

e’ gch V. (1)

p— ‘Iﬂa$
- q<F ) Z (—l)| gchV end(B)tdome>+s A+ &m)
Be A(w,T'y (m))

+ Z Z Z Z (_1)\A1|+4,.+\Ar|—rq<aj,down(A1 ,,,,, Ap)+E)

Jj=1 (J1seees ]r)ESm J A]EAm 1 A E‘Ae]:'nd(lAh_l)

X Z (=Dl geh v, end(B)tdowu<A1 ..... Ar B)+E & +ej).
BeA(end(A,),T;(j))

The following theorem is the “second half” of identities of inverse Chevalley type.

Theorem4.3 Forw € W, m = 1,...,n, and A € PT such that . + g, € P for all
k=1,...,nand A — g € P fork =m + 1, ..., n, there holds the following identity:

e W ach V, (M)

= D D Vi G em)
BeAw,0,,)

+ Z Z Z Z (_1)\A1|+...+|ArI—rq—(s_,-,down(Al ,,,,, Ar))

J=m+1 (..., eS . j Jr—1-Jr
(e Jr)€S5 5 A1 AT Are ALl

X Z (= l)l lgCh end(B)tdnwn(Al Ar,B)(A_Sj)
BeA(end(A,),0))

; —_)lAtl+Fl A=y (e, down(Ay .., Ap))
20X X > D g

=1 (; i — . m.j J Ji
J (J1seees JV)ESWI.j A]EAw ! Ay e‘Ae;d(lA "

X Z (= 1)‘ | geh'V, end(B)tdown(A| ..... ) + 5J')'
BeA(end(A,).T;(j))

4.2)

We give a proof of Theorem 4.3 in Section 5. Again, by Proposition 3.2, we obtain the
following identities for an arbitrary x € Wys (not only for x € W).

Corollary 4.4 For x = wiz € Wy withw € Wandé € Q¥V,m = 1,...,n, and » € P*
such that . + e, € Pt forallk =1,...,nand . — e, € PT fork =m + 1, ..., n, there
holds the following identity:

e Yomgch V. (L)
= q—<5m,%‘> Z (_1)| gCh end(B)tdnwn(B)+$ ()\’ - Em)

BeAw,0,,)

+ Z Z Z Z (_1)|A1|+~--+\ArI—rq—(ej,down(Al ..... Ap)+E€)

J=mHL (i, jreSy 5 Aje A Ar EAZ;E(IAJ}
—
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|B| - .
x Z (=1 geh vend(B)tdown(Al ..... Ar B)+E (A —£))
BeA(end(A,),0))

” —)lAl AL =y e down(AL,..., Ap) )
DD DD > D g

J=V G €S A e AT A,eAiQd’(lf{jr "
|B| - i
X > D7 eeh Vera s ytgouna ..o pyve P+ E0)-
BeA(end(A,),T; ()

Here we should mention that all the sums on the right-hand side of Theorems 4.1 and 4.3,
together with Corollaries 4.2 and 4.4, are indeed finite sums.

4.2 Cancellation-free identities of inverse Chevalley type in the first-half case

We consider cancellations of terms in the first-half identities of inverse Chevalley type. Let
w e W.Take I,m € {l,...,n} such that [ > m. We define a directed path p; ,,(w) in
QBG(W) inductively as follows:

(1) ifl —m =1, then p; (W) : w ﬂ) wsj—1;

(2) ifl—m > 1, then assume that py ,, (v) is defined forv € W and!’, m’ € {1, ..., n} such
k,l
that0 < I’"—m’ < [—m. Take minimalk € {m, ..., [—1} suchthatw u> ws(k,1)- Then,

since k —m < I —m, pg,m (ws(,)) is defined. Let p; ,, (w) be the directed path obtained
k.l . .
as the concatenation of the edge w Q) ws k1) With the directed path pi (WS 1))-

The following theorem gives the cancellation-free identities of inverse Chevalley type in
the first-half case.

Theorem4.5 Forw € W, m = 1,...,n, and A € PT such that . + g, € P for all
k=1, ..., m, there holds the following cancellation-free identity:

e”®m gch V, (1)

_ |B] -
- Z (=D geh Vend(B)tdown(B) (A +&m)
BeAw.T,,(m))

m—1
(e} Wt(pm, j (w))) _1\Bl - 4
+ Z q™ ! Z (=1 gch Vend(B)tdown(Ber(pmJ(w)) (*+ 8/)'
j=1 BeA(end(pm,j ()),I';(j)

We give a proof of this theorem in Section 6. Again, by using Proposition 3.2, we obtain
the following cancellation-free identities for an arbitrary x € Wys (not only for x € W).

Corollary 4.6 For x = wte € Wys withw € Wand& € Q¥, m =1,...,n, and A € Pt
such that » + e € PV forallk = 1,...,m, there holds the following cancellation-free
identity:

eV gch V.,” (1)

— (em.§) |B| -
=q" : Z (=™ gch Vend(B)tdown(B)+s (A +em)
BeAw,T,(m))

m—1
(e Wt(Pm, j (w))+E) _1)/Bl - .
+ Z q g / Z ( l) gCh veﬂd(B)fdown(B)+wl(pm_j(w))+§ ()L + 8]).
j=1 BeAlend(py,j(w),T;(j))
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4.3 Conjectural cancellation-free identities of inverse Chevalley type in the
second-half case

We propose a conjecture for the cancellations of terms in the second-half identities of inverse
Chevalley type. We define a distance function d (-, -) on [11] as follows:

(1) fork € [n], setd(k, k) := 0;
(2) fork,l € [n] with k > [, set

k—1 ifl <l <k<n,

dk,l):=32n+1—p)—1 ifl=pforsomel <p<nandl <[ <n,
q—7p ifk=pand/ =g forsomel < p <q <n;

3) fork,l e [n]withk < [,setd(k,l) :=d(,k).
Also, for 1 <l <nand 1 <k < I, we define Yik € AT by

k,) ifk=1,...,1,
Vi =310k ifk=I14+1,...n,
(l,p) ifk=pforsomep=I[1+1,...,n.

Now, we define a directed path pi’m(w) in QBG(W) forw € W, 1 <[ < n, and
1 <m <1+ 1 by induction on d(l, m) as follows; we understand that n + 1 := n.

(1) Ifd(l,m) = 1 (in this case, Yim is a simple root), then pi,m(w) Tw ﬂ wsy, .

(2) If d(I, m) > 1, then assume that Py, m (v) is defined for v € W and ¢, m’ € [n], with
g > m’, such that 0 < d(q,m’) < d(I,m); note that for | < ¢ < n, Py, (V) is
already defined in Section 4.2. Take minimal k € [n], with m < k < [ + 1, such that

Vi _
w 5 WSy, - Then, since 0 < d(k,m) < d(l, m), pk,m(wsm() is defined. Let Pl (w)

. . . ", .
be the directed path obtained as the concatenation of the edge w MEN wsy, , with the
directed path py, m (wsy, k).

Our conjectural cancellation-free identities in the second-half case are as follows.

Conjecture4.7 Forw € W, m = 1,...,n,and A € PT such that A + g, € P for all
k=1,...,nandsuchthatA — e, € PTfork =m+1,...,n, thereexistssomem <[ <n
for which the following cancellation-free identity holds:

e W ach V, (M)

B —
= Y DPgeh Vg O )

BeAw.0)
n
+ Z q—(ek,dOWD(Pﬁz(w)))
k=m+1
—_18l - —
X Z ( 1) gCh Vend(B)tdnwn(B)+d0wn(pm.z(w))()\4 gk)

BeA(end(py; (), O1)
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1
+ 3 glendownterm )
k=1

x > (—DBlgeh v

nd(B)tdOWh(B)Hiown(pﬁk(u,-)) (A + &x).
BeA(end(pa x (w)). Tk (k)

Conjecture 4.8 For x = witz € Wy withw € Wandé € OV, m=1,...,n,and A € P*
suchthat A +¢&; € Pt forallk =1,...,nandsuchthat A —g, € Pt fork=m+1,...,n,
there exists some m < [ < n for which the following cancellation-free identity holds:

e " ach V(1)

— ,—{em.& B —
=4 ‘ > Z (_1)‘ | gCh Vend(B)tdown(B)+§ ()\‘ - 8m)

BeAw,0,)
+ Zn: q—<5k,d0W“(ij(w))+§)
k=m+1
x > (—DBlgeh v (n — &)

nd(B)ldown(B)erown(pm Tw)+E
BeA(end(pﬁ;(w)),@k)

l
+ Z q(ak,down(m_k(w))Jré)
k=1
—_Bl -
x Z ( 1) gCh Vend(B)ldown(B)+d0wn(pm’k(w))+E ()\' + Sk).
BeAend (pr x (w)), Tk (k)

We expect that the / in the above conjectures is either m or n.

4.4 Examples of identities of inverse Chevalley type

We give an example of the identities given by Theorem 4.5, and also give two examples of the
conjectural identities proposed by Conjecture 4.7; in these examples, we assume that n = 3.
We used SageMath [17] for calculations in these examples.

Example 4.9 We consider the product 3 gch V7 (). Let w = 515251, and take A € Pt
such that A + &, € P fork = 1, 2, 3. We see that

S ={(1), 2, D}, S2={2}

and that the admissible subsets which appear on the right-hand side of (4.1) are as follows:

Aih = (10020 A = (@) A = (1)),
=:A] =:Ay =:A3 =:A4

Table 1 is the list of end(-) and down(-) for admisible subsets A, A>, A3, A4.
Therefore, by Theorem 4.1, we compute:

eI geh Vi (1)

B _
= Z (_l)l ! gCh Vend(B)tdnwn(B) ()\ + 83)
BeA(s15251.T'3(3))
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Table 1 The list of end(A) and Admissible subsets end(-) down(-)

down(A) for

A=Ay, A2, 43, A4 Ay e ay +ay
Ay 5 o) +ay
A3 5281 012v
Ay 52 Oti/

+glre " (—)!Plgeh v,

0d(B)youn(B) +a

BeA(s2s51,T2(2))

2

LA+ e2)

A3

+q<sl,alv+azv) Z (—l)lBlgch Ve_

nd(B)tdown(B)Jrot}/Jra

BeA(e, T (1)

Al
_ q(SI,OtIVJrO!zv) Z (_])IBI gch

BeA(s;,T1(1)

end(B)tdcwn(B)+wY+a

LA +ern)
2

Az
+q(81,alv+a2v) Z (—l)lBlgch

BeA(s2.T'1(1)

end(B)tdown(B)+ut}/-*—012v

(A +e1)

(A3,A4)
- Z (-D)!Blgch v
end(B)tdown(B)

BeA(s15251,T3(3))

+q<ez,azv> Z (_I)IBI gch v,

nd(B)tdown(B)Jroti/

BeA(s251,12(2))

tglererte 3 (—1)lBlgeh

BeA(e,I'i (1)

The above result agrees with Theorem 4.5, since we have

(2,3)
P3,2(515281) : 518281 — 5251,

A+ €3)

end(B)tdown(B)+alv+a%/

(1,3)
p3,1(sls2s1) 818281 — e.

(h +

Example 4.10 We consider the product e™"*2 gch V7 (1). Let w = s352, and take A € Pt
such that A + & € Pt fork = 1, 2,3 and such that . — gy € P for k = 2, 3. We see that

the sets S5, fork = 1,2, 3,3 are:

S =1, 2, D, G, D, 3,1),3,2,1),3,2,1),3,3,1),3,3,2, D},

S5, =12),3,2),(3.,2),3,3,2)},
S5 =1{3). 3.3},
S35 =10},
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and that the admissible subsets which appear on the right-hand side of (4.2) are as follows:

AL =, AZ2 =((2,4), 2.3.4)), AZ3=((2). (23], AR =(4}),
—— —— S~ e~ —~
=:A =:A> =:A3 =A4 =:As
A=, A2 = (12). 2.3)). A3 = (B
=Ag =:A7 =:Ag
Al =g, A2 =({2}},
——
=:Ag

Al =01 (L2 A, = (12))
=:Ajp =:An =:A1n

AL ={ {1} ),

——
=:A13
ASt = ({1} )
—
=:A14

Table 2 is the list of end(-) and down(-) for admissible subsets given above.
Therefore, by Theorem 4.3, we see that

e 22 gch V. (A)

$352

B —
= Z (_l)l | gch Vend(B)fdown(B> (A —e2)
B€.A(33s2,®2)

v
gl 3 (=D)Plgeh vy T (h —€3)
BeA(s3,03)
As
sgsJ;el(ZfUTf};er lfi‘st :Of:]n’d(A? Zrij Admissible subset end() down(-)
Al 5283 ay
Ay 5 ay +af
A3 525352 0
Ay e ai’ + a3v
As $3 azv
Ag 5253 0
A7 52 a3V
Ag e ag/
Ag 52 0
A1o 52535152 0
Ann 525351 oy
Ar2 $283 azv
A3 25381 0
A4 52581 0
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B _
+ Z (_1)‘ I gCh Vend(B)tdown(B> ()L + 83)
BeA(s25352,T3(3))

Az

Vv B —
+ q("’"Z!"z : Z (_1)| ! gCh Vend(B)ldown(B)-#ozv (k + 82)
BeA(5253,12(2)) :

(A3,A12)

|B| - R
+ Z (_ 1) gCh Vend(B)tdown(B) ()\ + 81)’
BeA(sas3s152,T1 (1))

(A3,A10)

here, the other terms cancel out. The above result agrees with Conjecture 4.7 if we take [ = 3,
since we have

@3) @3)
P33(5352) 1 5352 —> 53, P7,3(5352) © 5382 — 528352,

2.3) (2,3) (2.3) (1,3)
p§,2(5‘3S2) 185380 —> §28385) —> $283, le(Sj;SQ) 185380 —> §2535) —> $28535152.

Example 4.11 We consider the product e™"! gch V7 (1). Let w = 5152535251, and take
L € PTsuchthat A + & € PT fork = 1,2,3 and such that A — & € PT fork = 1,2, 3.
We see that the sets ST,k fork=1,2,3,3,2 are:

Spi=1{, 2, 1,3, 1,3, D, 2,1,3,2,1),3,2,1),2,2,1),3,3,1),(2,3,1),2,3,1),
(3,3,2,1),(2,3,2,1),(2,3,2,1),(2,3,3,1), (2,3,3,2, 1)},

S1,=1{2),(3,2).3,2),(2,2),3,3,2),(2,3,2),2,3,2),2,3,3,2)},

S13=13),(3,3),(2,3),2,3,3)},

S13=1{3), 2,3)},

S5 ={Q),

and that the admissible subsets which appear on the right-hand side of (4.2) are as follows:

1,1 12 _ 13 _
ASISZS_?SZSI = { {3} }’ Asls23352s| - {{3’ 5}}a ASISZSSSQSI = Q),
=:Aj =:A>
13 _ 12 _
AS]SZSBSZSI - @’ AS]SQS}.YZSI - { {5} }a
=:A3
2,1 _ 2.2 _ 3.3 _
‘A315253s2 =9 ASIJ'2533‘2 ={B}} ‘As1523352 = {{3,4}},
=:A4 =2A5
2,3
Asls2s3sz ={{4}}
=:A¢
31 _ 32 33
Asisny =0 Asinsy = 0. Al =13} ),

::A7
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3,1 3,2
AYIXZ = @ ‘ATISZ = {ﬂ}’

=:Ag
A=)

=:A9

Table 3 is the list of end(-) and down(-) for admissible subsets given above.
Therefore, by Theorem 4.3, we see that

—S152835251€1

e gchV " Q)

5152535251

= Z (_1)| gCh end(B)Idown(B)()L_Sl)
BeA(s152535251,01)

_ Vv
+4q 2. Z (_l)l gehV, end(B)tdown(B)+Dtv % —#)
BeA(s1525352,07) 1
A3
+geeiten N (lBlgeh v L —e3)

nd(B)tdown(B)-Hx oy
BeA(s15253,03)

(A3,A6)

+q(£1,alv+a2v+a§/) Z (_1)| och
BeA(e,T1 (1))

(A ten);

e“d(B>tclown(B)+ot +a2 +ot

Ay

here, the other terms cancel out. The above result agrees with Conjecture 4.7 if we take / = 1,
since we have

(1,2)
P71 7(8152535281) : 5152835281 ——> 1528382,
(1,2) (2,3)
P71 3(51525385281) : 5152835281 —> $1828382 ——> $15253,

(1,1
[rl’l(slszgszsl) 15152838281 — e.

Table 3 The list of end(A) and

down(A) for A = Ay, ..., Ag A end(A) down(A)
Al e af ) +af
A2 51 af ) +oy
Az 51528382 a?/
A4 s1 ay +ay
As S152 azv + a3v
Ag 515283 ay
A7 152 0‘3/
A 51 ay
Ag e ay

@ Springer



Identities of Inverse Chevalley Type for Graded Characters 449

5 Proofs of Theorems 4.1 and 4.3

We give proofs of our identities of inverse Chevalley type.

5.1 First-half case

First, we consider the first-half case. The following proposition is a key to the proof of the
identities.

Proposition 5.1 Let w € W and . € P be such that . + g, € P*. Then we have

B —
D D eeh Vi O+ 80
Be A(w,Ty (k)

s _
— Z (—DMAlever geh Vend(A)tdown<A) @)-
AcAw,0y)

(5.1)

Proof In this proof,
(1) the sequence 'y (k) is of the form:
Cek) =By go -+ B Brat -+« B Br o Beons - -5 Brk+1),
(2) admissible subsets B € A(v, I'k(k)) for v € W are subsets of the (totally ordered) index
set
IL'={(Lh<---<k-1Lk <k, k+1)<---<a(k,n) <k k) <(k,n) <<k, k+D};

here, <1 defines a total order.
Similarly,
(1) the sequence 'y_1  is of the form:

Ck—tk = Whkt15 o Yions Vi o Vi -+ Vel Ye—1 50 -+ 0 VLB Yiks -« s Vh=1,k),
(2) admissible subsets A € I'(v, ['r—1 &) for v € W are subsets of the (totally ordered) index
set
L= {k,k+1)<---<(k,n) <k, k)< (k)<< kk+1)
<k=-1k) << k)< k)<---<k—=1,k};
here, < defines a total order. Note that I; C I, and that if 8 < y, then y < B for

B.y € 1.
By Proposition 3.5 and Lemma 2.5, we deduce that

(LHS of (5.1))

_ |B| -
- Z (=D geh Veﬂd(B)Idnwn(B) ( + &)
BeAw,Tk (k)

Z (—1)|Blg=(terdown(B) ooy Vo O+ &0
BeAw.Ty (k)

Z (,1)|B\q*<k+sk,down(3))
BeAw,T (k)

1 n ;
_1y7(4) —height(4) wi(A) -
1o g~ o) > =D""q e 2eh Vg Aygoumny A)-

AeA(end(B),Tk—14)

(5.2)
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Let us take the alcove path

(Ao = Ap, A1,..., Ay =By, B1,..., By =A_¢)

T¥ (k) O

corresponding to 'y x = I'; (k) * @. Then, the hyperplane containing the common wall
of A,y and A;, t = 1,...,a, is of the form Hgo with B € AT. Also, the hyperplane
containing the common wall of B,_j and B;,t =1, ..., b, is of the form Hg 1 with 8 € AT
(see Remark 2.6). This implies that if we divide A € A(v, I'k—1 ) into the two parts: AD =
AN{k,k+1),.... (1,5} (€ Aw, T{(k) and A® = AN{(1L,k),...,(k—1,k)} (e
A(end(AD), ©;)), then we have

height(A) = Y (& 7))
aeA—NAD

o,

acA—NAM
= (&g, down(A(l))).

In addition, we have wt(A) = end(AM)gy. Also, since all the roots in F,’: (k) are positive
roots and those in ® are negative roots, it follows that n(A) = |A@)|. Therefore, we see that

5.2)

= Z (—1)!Blg=(tex.down(B))
BeA(w,Ty (k)

1 n 1 (1) —
I _1y1(A)  —(ex,down(A)) end(AM)ey
Xl— — (o)) Z =D""q ¢ geh Vend(A)fdown(m(M
q AcA(end(B),Tk-11)
1 6)
- _NIBl_1HA¥]
= T D > > (=DFl=1)
BeA(w,Ty (k) AeA(end(B),Tk—1x)
—{pter,down(B)) jend(ADV)e; —(h+er.down(AD)) -
xq e q gch Vend(A)tdown( Aa))(k)

1 )
- m Z Z (_1)|B|(_l)\A |

q BeA@w. Tk (k) AcAend(B).Tk1 )
Xffwrak’down(BHdown(A(l)»eend(A(l))Ek ch Ve;d(A(Z))l‘down(A(Z))
_ W Z Z * (_l)\B\qf()\+sk,d0wn(3)+down(A“)))
BeA(w. T (k) AV e A(end(B),T} (k)
x eend(AD)ex Z (—DlA? geh Ve;d(A(”)tdown(A(Z)) ). (5.3)

ADeA(end(AD),0)

Now, we define an involution on the set

P:={(B,AD) | B € A(w, Tk (k)), AV € A(end(B), T} (k))}.
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There are the following six cases:

(1) [max B < min AV]or [B # @ and AV = ¢],
(2) [max B > min AV or [B =@ and AV # 01,
(3) max B = min AV = (k, k + 1), and one of the following holds:

e max(B\ {(k, k+ 1)}) < min(AD\ {(k, k + 1)}) or
o B\{(k,k+ 1)} #@and AD = {(k, k + 1)},

(4) max B = min A1) = (k, k + 1), and one of the following holds:

e max(B\ {(k, k+ 1)}) > min(AD\ {(k, k + 1)}) or
o B={(k,k+ D}and AD\ {(k, k + 1)} # ¥,

(5) B=AD = {(k, k+ 1)},
6) B=AW =g,

Here we remark that, if we have a directed path v 5 USy % vin QBG(W) forv e W
and @ € AT, then @ must be a simple root. Conversely, for v € W and a simple root o,

v 5 vsy = v is a directed path in QBG(W). For (B, A1) € P, we define (B, AD) =
(B', A’MD)y e P as follows:

o if (B, AW) satisfies (1) above, then set
B := B\ {max B}, AV :=AD | {max B});
if (B, A(l)) satisfies (2) above, then set
B :=Bu{minADV}, A’V .= AW\ {min AD};

if (B, A!D) satisfies (3) above, then set

B’ := B\ {max(B\ {(k, k + D))}, AV := A" U{max(B\ {(k,k + D}
o if (B, AD) satisfies (4) above, then set

B := Bu{min(A'V\ {(k, k + 1)}, A'D = A"\ {min(A’D\ {(k, k + D})};
o if (B, AD) satisfies (5) or (6) above, then set

B :=B, AW .=aAD,

It is clear that ¢ defines an involution on P. Moreover, in cases (1) and (3) (resp., (2) and (4)),
we have

o |B'| =|B|—1(resp., |B'| = |B| + 1),
e down(B’) + down(A’D) = down(B) + down(AD), and
e end(A’'M) = end(AD).

This implies that
Z (_1)|B\q—()~+sk,down(B)+down(A<”))eend(A(”)ak

(B.AMeP
(B, AW) satisfies one of (1)~(4)

X Z (—1)|A(2)| gch Ve;d(Am)[ o A) =0.
A@ e Aend(AD),0)) down(A@))
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Therefore, we conclude that

_ _ o —(teray) swer _1H)lA? -

S — (At 4 e Z =D geh Vend(A(z))de n(A(z))()L)
-9 A Aw,0p) "
B=AD=({(k,k+1)}
weg [A@]
+e Z (=D gchv end(A(z))’down(AO))
A@ e Aw,0r)
B=AM=0

1— q_(}‘+€ks0‘/<v) e )
1 " L we |AY]
= T _<A+w‘“a;/)€ Z ( 1) gCh end(A(Z))fduwn(A(Z))

q AQ e Aw,0y)

K A® —
= e Z (=" T geh Vend(a@);
A@ e A(w,0p)
= (RHS of (5.1)),

down(A(2))

as desired; for the third equality, we have used that (&g, ozkv) = (g, Olkv) = 1. This completes
the proof of the proposition.

Proof of Theorem 4.1 We prove the assertion of the theorem by inductiononm =1, ..., n.If
m = 1, then the assertion immediately follows from Proposition 5.1 since A(w, ®) = {#}.
Let 1 <[ < n, and assume the assertion form = 1, ...,/ — 1. We will prove the assertion

for m = [. Note that for A € A(w, ©) \ {#}, if the index k satisfies end(A) " lwe; = &, then
we have 1 < k <[ — 1. Therefore, by Proposition 5.1, we see that

elUEI gCh Vl; ()")
— Z (—l)l gCh end(B)ldown(B)( +81)
BGA(w,Fl(l))
A
- 3 (=nMleve gen Vend(A)taoncy M)
Ae Aw,0)\ {4}
B _
— Z (—l)l lgCh Vend(B)tdown(B)()\_i_gl)
BeAw.T'y(1))
- > (=plAlgT o) e gy ()
en
Ae A(w,0)\ {4}

= Z (_l)l gCh end(B)[down(B)( +81)
BeA(w.I(1)

-1
+Z Z (—1)lAI=1 = Gdown(A)) ywer ooy Viraon @)
[ ——

k=1 Ac A(w,®)\ (%}

end(A)~ we =gy induction hypothesis
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_ |B| -
= Z (=)™ gch Vend(B)tdown(B) (A +e)
BeAw,Ty(1))

-1
+ Z Z (_l)lA\—lq—M,down(A))

k=1 AeAlu',k

X Z (_1)‘3‘ gCh Ve;d(B)tdown(B) ()\' + gk)
BeA(end(A),Tk (k)

+k§ ) T Y (iAo dovn(Ar... D)

i . . . k.j fr_1.Ji
=1 ],)GS/{'_, AleAenﬁl(A) A;-EAé;d(lA:il)
} : _ 1Bl - i
X (=D gch Vend(B)ldown(Al ..... Ar,B) A+ 8/)

BeA(end(4,),T;(j)

B _
= Z (_1)| ! gCh Vend(B)tdgwn(B) ()\ + El)
BeA(w.Iy(1)

-1
+y D, (=pAt

k=1 ge Al

w

A x comme ot oo

Cnd(B)ldown(B)+down(A)
BeA(end(A), Ty (k)

+1§ > Yoo YD (mpM AT e dovn(Ar . A)

IS G €St Are Ay Are Al
X Z (—1)|B|C]<8j'down(A)> gCh Ve;d(B)tdown(A,A] ..... Ar,B) (}L + Sj)

BeA(end(4,),T;(j)

B _
= Z (_1)| ! gCh Vend(B)tdown(B) (A + 81)
BeA(w,Ty (1)

=1 GenineSiy me it a e Al
-

|B] - ;
X Z (_ 1) gCh VCﬂd(B)ldown(A1 ----- Ar,B) ()\‘ + 81)’
BeA(end(A,),T';(j))

as desired. Thus, the assertion also holds for m = [. This proves the theorem.

5.2 Second-half case

The following proposition is a key to the proof of the second half of our identities of inverse
Chevalley type.
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Proposition 5.2 Let w € W, A € P such that .. — g, € P*. Then we have

2 : |B| -
(_1) gCh Vend(B)ldown(B) ()L - Sk)
BeA(w,0)

_ _1\I|A] ,—we -
_ AZ (=D e 2eh Ve aygouniay @)
Ae A(w, I (k)

Proof By replacing A in equation (5.1) with A — &; and multiplying both sides of equation
(5.1) by e~"#F, we obtain the desired identity.

Proof of Theorem 4.3 We prove the assertion of the theorem by downward induction on m =
n,n —1,..., 1. First, assume that m = n. Then, by Proposition 5.2 and Corollary 4.2, we
see that

e Y gch V, (L)

B _
= Z (_l)l ‘ gCh Vend(B)tdow“(B) (* —&n)
BeAw,0,)

_ _ 1Al —wey, -
A Z ( 1) e gCh Vend(A)ldown(A) ()\‘)
Ae A(w. Ty (m)\{9}

B _

Z (—l)l ! gCh Vend(B)ldown(B) ()“ - «9;1)
BeA(w,@M)

n

[A|—=1 ,—we, n
+ Z Z (=D e " gch Vend(A)tdnwn(A) @
k=1 k
Ae.Aw

— 1B n
— Z (=D | gch Vend(B)fduwn(B) (A = én)
BeAw,0,)

n
Al—1 jend(A —
+ E E (_l)‘ | " (Aex gCh Vend(A)fdown(A) ()")

k=1 AEAZ,']‘
B _
= Z (_l)l ‘ gCh Vend(B)tdown(B) ()L - 8,,)
BeAw.0,)
n
Al-1 e, down (A B -
" Z Z (=l q(sk own(A)) Z (=D |gch Vend(B)tdown(B) A+ &)
k=1 4 AT BeA(end(A), Ty (k)
k—1
+Z Z Z o Z (_1)\/\1H““+|Ar|7rq(8/"down(A'Al"""A"))
= GnineSey medGl, e Al
_1)!Bl - ;
X Z (=1D'""gch Vend(B)tdown(A.A]‘....Ar.B) (A +ej)

BeA(end(4,).T;(j))

B _
= Z (_l)l | gCh Vend(B)fdnwn(B) ()L - En)
BeAw.0,)
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+ Xn: Z Z . Z (_1)|A1I+~~+\Ar\—rq(€j,down(A| ,,,,, Ar))

I=1 Gt j)eSh ;A e AT A AL
"

5 _
x > (="l gch Vend(B)taownay....ar.y * €10
BeA(end(A,).T; ()

asdesired. Let 1 </ < n, and assume the assertion form =n,n—1,...,[/+1. We prove the
assertion form = [.For A € A(w, I';(1))\{¢}, if the index k satisfies end(A)_lw(—el) = &,
then we have k = 1,...,n — 1,n,n,n —1,...,1 + 1. Therefore, by Proposition 5.2 (and
Proposition 3.2), we compute:

e " gch V, (1)
B _
= Z (_1)‘ ! gCh Vend(B)tdown(B) ()" - 81)
BeAw,o))
_ Z (— 1)|A|e—w51 gCh Ve;d(A)Idown(A) ()L)
AeAw, TN\ (#)

Bl
Do D e Vi O = D)
BeAw,0)

n
Al=1 ,—we .
+ Y Y (=DMITle e geh Vend(4)taomncay )

k=I+1 %
thaeA

n
Al—1 —we -
+ Z Z (— 1)‘ ‘ e W gCh Vend(A)fdown(A) ()L)

K=l g Al
B _
= Z (=1)!Bl gch Vend(B)tdown<B) x—e)
BeAw.0)
n
Al—-1_—(x A — A -
+ Z Z (_1)| | q (%, down(A)) ,—end(A)ex gch Vend(A)()”)
k=l+1 Lk
AEA;k induction hypothesis
n
Al—-1 d(A -
+ Z Z (_1)\ |=1 pend(A)ey gch Vend(A)tdown(A) (A)
k=1 1.k
aeA, Corollary 4.2

_ |B| -
= Z (=D gch Veﬂd(B)tdown(B) O —en)
BeAw,o))

n
—1_—(nd =
+ D D (Mg 2 D eeh Vi O — )
K=+l AL BeA(end(A).0p)

+ i Z Z R Z (_1)\A1\+-~+|A,—I—rq—<ej,down(A1,.4.,A,))

F=KAL G eSes 4 e AR o
(s vJV)ESE,j Ale‘Aend](A) AeAe;Id(Arfl)

|B| - ;
x Z (=D gch Veﬂd(B)fdnwn(Al ..... Ar.B) (*—e))
BeA(end(A,),0))
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+ Xn: Z Z L. Z (_1)‘AlH’"‘+|Ar|_rq(5j~,down(A],»...Ar))

j=1(; Jr—1-Jr
J=LGns s ”)ESkJAIEAend(A A,EAC;MFI)

_ 1Bl i
X y Z (=D gCh Vend(B)Tdown(A] ..... Ar.B) O+ ej)
BeA(end(A,).I' ()
n
Al-1 ,down(A)
+ Z Z (_1)‘ | q<8k own(A) Z ( l)l ‘gCh end(3>tdown(6)+down(A ()L + 8k)
=1 AE.AT',k BeA(end(A), T (k)

+ % Z Z . Z (_1)\A1 \+-~+|A,<|—rq(5j,down(A,A1,...,A,))

F=1 (Gt jir) €Sk, AleAend(A A,eAé;‘E(lA']r D
.

|B] i
X Z (=D gCh Vend(B)tdown(A Aj,....Ar.B) O+ 8'/)
BeA(end(4,).T; ()

Z =n'* IgCh end(B)tdown(B) (*—e)
BeAw,0)

+ 2”: Z Z Z (_1)|AlH’""HAr\—rq_(5j~d0WH(Al ----- Ar))

I G D€y g e AL ae Al

x Z = 1)| ‘gCh end(B)tduwn(Al AAAAA Ay,B)(}"isj)
BeA(end(A,),0))

n
+y > o 3 (=)l HFIAL = g (e, down(Ar ..., A)
I= Gt i€y Ale.AZ,',jl Ar—IEAigg(lA;fi])

|B i
X Z (=D | gCh Vend(B)Tdown(A] ..... Ar.B) O+ 8'1)’
BeA(end(A,),T;(j))

as desired. By downward induction, this completes the proof of the theorem.

6 Proof of Theorem 4.5

We will derive the cancellation-free form of the first-half identities of inverse Chevalley type
(Theorem 4.5). For this purpose, we need the following lemmas on edges of the quantum
Bruhat graph. We continue to assume that g is of type C,. Recall that a total order < on [7]
isdefinedby: 1 <2 <---<n<n<n—1<---<1;foreach 1 <k < n, we define an
order < (resp., <g)on [n] by: k < k+1 <¢ -+ < n < n <gn—1=<¢ -+ < 1 <k
1< 2 <p - <k k—1(respk <ghk—1<g <l <gl <p2=<g - <gn=<gh <g
n—1<g- - <gk+1).Foray,...,a €[] withr > 2, wewritea; < a» < -+ < a
if a; <4, a2 <4y -+ <q ar (the order < is different from that introduced in the proof of
Proposition 5.1). Also, on the set [1], we define the sign function sgn(-): for a € [n], we set

ifa=1,2,...,n,

fa=n,n—-1,...,

—|

1
sgn(a) := {_1
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We know the following useful criterion.
Lemma 6.1 (/9, Proposition 5.7]) Let w € W.
k,l
(1) Let 1 <k <1 < n. Then, w u) wsk,1) is an edge in QBG(W) if and only if there
does not exist k < j <l such that w(k) < w(j) < w(l).
()
2) Let 1 <k <1 < n. Then, w Q) WS 7y is an edge in QBG(W) if and only if the
following hold:

o wk) < w(l);
e sgn(w(k)) = sgn(w(l)); andﬁ -
e there does not exist k < j < I such that w(k) < w(j) < w(l).

k.k
(3) Let1 <k < n. Then, w u) WS 5y is an edge in QBG(W) if and only if there does
notexistk < j < k such that w(k) < w(j) < w(k).

By using this criterion, we can show the following three lemmas.

Lemma6.2 Letw € W, and 1 <k <1 < m < n. Then, the following are equivalent:

(k,m) (I,m) (k,l)
1) w —— wsg,m and w — WSl m) —> WS m)Sk,I);

k, [
2) w ﬂ) WS(k,m) and w ﬂ) WS, m);

(k,m) (I,m)
3) W —— WSk, m) —> WS(k,m)S{U,m)-

Lemma6.3 Letw € W. Take 1 < k; <) <nand1 < ky < Iy < n such that {ky,[1} N
{ka, [} = 0. Then, the following are equivalent:

ky,l kol
(1) we have the directed path w Gt WS(ky 1) Lol WS(ky 1) S (ko la)s

kol ki,l
(2) we have the directed path w k), WS (ky 1) B, WS(ky, o) S (k1 ,11)-

k,
Lemma6.4 Letw € W, m = 1,...,n, and take ay, ...,a; € (k e [1,m —1] | w —(—r—rg
WS(k,m)} such that ay < - -- < as; by Lemma 6.2, we have the directed path
(ar,m) (az,m) (ag,m)
w =)o Y1 T Vs
in QBG(W). Let us take ¢ < ay such that
° Vg ﬂ VsS(e,a;) =: 2 is an edge in QBG(W), and
o w M) WS(c,m) IS an edge in QBG(W).
For p < ay, ifw M WS(p,m) is an edge in QBG(W), then we have p < c.
Corollary 6.5 Let w € W, m = 1,...,n, and let {a1 < --- < a5} = {k € [I,m — 1] |
k, .

w m WS(k,m)} With s > 2; by Lemma 6.4, for2 = by < --- < b, < s, we have the
directed path

(ap, ,m) (apy,m) (ap, ,m)

w = 7o Z1 e Zu
(c.ap))

in QBG(W). Then, ay is equal to the minimal c with 1 < ¢ < ayp, for which z, ——
ZuS(e.ap,) is an edge in QBG(W).
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(c.ap;)
Proof Let us take the minimal ¢ for which z,, i1 ZuS(c,ap,) is an edge in QBG(W). Note

(ar,ap,)
that such a ¢ exists since z;, % ZuS(ay,ap,) is an edge in QBG(W) by Lemmas 6.2 and

6.3. This also implies that ¢ < aj. Assume, for a contradiction, that ¢ < a;. Then, since a;
is the minimum of the set {k € [1,m — 1] | w ﬂ) WS(k,m))> W w) WS(c,m) 1S NOt an

edge in QBG(W). Also, we see that a; < ap < ap,, and that w M WS(q;,m) 1S an edge in

QBG(W). Therefore, by Lemma 6.4, we obtain a; < ¢, which is a contradiction. Hence we
conclude that ¢ = ay, as desired. This proves the corollary.

Theorem 4.5 follows immediately from Theorem 4.1 and the following key proposition.
Let Z[g~'][W] denote the group algebra of W with coefficients in Z[g~']; the elements of
Z[q_l][W] are of the form Zvew cv(q_l)v, with cv(q_l) € Z[q_l].

Proposition 6.6 Letw € W, m = 1,...,n,and j = 1,...,m — 1. Then, there holds the
following equality in Z[g~ ' 1[W]:

Z Z .. Z (_1)\A1 |+-~-+|Ar|—rq—()»-,d0Wﬂ(A1 ----- Ar)) end(A,)

j j i m,j Jr—1+Ji
(V/EE /r)ESm’/ AIEAw : AVEAe:‘nd(]Ari])

— q—Q»Wt(Prn,_/(w))) end(pm,j(w)).

Proof We prove the assertion of the proposition by induction onm — j.If m — j = 1, then the
assertion is clear since Sy —1 = {(m—1)}and A7"~! = {{m—1}}. Assume thatm —j > 1.

k
By Lemma 6.2, we can verify that if {ay < -~ < ay} = (k € [1,m — 11| w "% wsem)
(note that ag = m — 1), then

m,j {{j,ac,,....ac,} 1l <c1<---<c, <s} if j=a forsomel=1,...,s,
Ay = e
] if j #ay,...,as.

Therefore, we compute:

Z Z Z (_1)\A|\+-~+|A,I—)'q—(A,down(Al,..A,A,)) end(A,)

i i . m,jy Jr—1-J
(1 J)€Smj Aje A™ are AL

> Y ¥ Y ¥

k=1 (; : . m.ag ag.j1 Jr—1-Ji
(100 Jr)€S0. A A A A% A"EAelr]d(Ayil)
. (— 1)JAFHAL A =41 = down(A. A1) end (A,)

N

= Z (—1)lAI=1 4= down(4))
k=1 e A7

X Z Z . Z (_])\Al|+“‘+\Ar\*rq*(hd0Wﬂ(Al yyyyy Ar)) end(A,)

; P . . J1 Jr—1.Jr
(1 J)€Say.j Ay e Akl A"EAc;d(/\r—l)

induction hypothesis

s
— Z Z (_1)|A|*1q—(k»dOWH(A)+Wl(pu;\..j(eﬂd(A)))) end(pg,. j (end(A))). 6.1)
Py
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If s = 1, then the assertion is clear since Aj*" = {{m — 1}}. Now, assume that s > 2.

For A € A := (A \ {{a1}) U (Lj 5 A% ™), we define t(A) by

Ae| JAp® — 1(A) = Aufa) e AP (),
k=2

N
Ae A\ {{a}} — w(A):=A\{a} e Apminhad o | | amax
k=2

We see that this ¢ defines an involution on the set .4 such that [¢(A)| = |A|x1for A € A.For

A e Apy® withk =2, ..., s, it follows from Corollary 6.5 that the first edge in the directed
(ar,ar)

path p,, . j(end(A)) in QBG(W) is end(A) —— end(A)s(4,,q) = end(t(A)). Hence we
have end(py,, j(end(A))) = end(py,,;(end(¢(A)))). Also, the directed path w — --- —
end(¢t(A)) in QBG (W) corresponding to ¢ (A) is a shortest one of length |¢(A)| = |A|+1, since
the order < given by (1, m) < --- < (m — 1, m) forms a part of a reflection order on the set

A of positive roots. Hence, the concatenation w — - -- — end(A) M end(A)S (., ap)

of the directed path corresponding to A with the edge end(A) w‘—“”) end(A)s(q,,q) 1S also

a shortest one. Here we know that for any v, u € W, all shortest directed paths from v to u
in QBG(W) have the same weight wt(-) (see [16, Lemma 1 (2)]). It follows that

down(A) + wt(pg,, j(end(A))) = down(t(A)) + wt(pq,, j (end(t(A)))).
Therefore, for A € Ay withk =2, ..., s, we deduce that

(_1)|A\—1q—<k,down(A)+wt(pgk,_,-(end(A)))) end(pa,{,j(end(A)))
+ (_])\l(A)IJrlq*(l,dOWH(l(A)HWI(pal,j(end(t(A))))) end(pq,, j (end(t(A)))) = 0.

This implies that

6.1) = q—<)»~d0WH([al})+Wl(pu1.j(end({a1])))) end(py,,j(end({a}))) = q—<)»«13m.j(w» end(py, j (w)),

k=1land A = {a;} € A"

w

as desired. This proves the proposition.
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