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Abstract
We show that for the family of complex reflection groups G = G(m,p, 2) appearing in the
Shephard–Todd classification, the endomorphism ring of the reduced hyperplane arrange-
ment A(G) is a non-commutative resolution for the coordinate ring of the discriminant �

of G. This furthers the work of Buchweitz, Faber and Ingalls who showed that this result
holds for any true reflection group. In particular, we construct a matrix factorization for
� from A(G) and decompose it using data from the irreducible representations of G. For
G(m, p, 2) we give a full decomposition of this matrix factorization, including for each
irreducible representation a corresponding maximal Cohen–Macaulay module. The decom-
position concludes that the endomorphism ring of the reduced hyperplane arrangement
A(G) will be a non-commutative resolution. For the groups G(m, 1, 2), the coordinate rings
of their respective discriminants are all isomorphic to each other. We also calculate and
compare the Lusztig algebra for these groups.

Keywords Complex reflection groups · Hyperplane arrangements ·
Cohen-Macaulay modules · Matrix factorizations · Noncommutative desingularization

Mathematics Subject Classification (2010) 13C14 · 14A22 (Primary); 14E16 (Secondary)

1 Introduction

LetG ⊆ GL(n,C) be a finite group acting onCn1. The Chevalley–Shephard–Todd theorem
shows that the quotient Cn/G is smooth if and only if G is a complex reflection group,
that is G is generated by complex reflections. The group G also acts on S :=SymC(Cn)

and if G is a complex reflection group, the invariant ring R := SG is isomorphic to a

1The results also hold for a algebraically closed field k such that char(k) does not divide the order of G.
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polynomial ring. The discriminant � is the image of the arrangement of complex reflection
hyperplanes A(G) in C

n/G under the natural projection C
n → C

n/G. In particular V (�)

is a singular hypersurface in Cn/G. The discriminant is given by a polynomial � ∈ R, with
coordinate ring R/(�). The reduced hyperplane arrangement is defined by a polynomial
z ∈ S and we will decompose the coordinate ring S/(z) as a module over R/(�). Shephard
and Todd classified all the complex reflection groups into two cases: an infinite family,
G(m, p, n) with 1 ≤ m, p|m, 1 ≤ n, and 34 exceptional groups. In the 2 dimensional
case, Bannai in [5], calculated all discriminants of the complex reflection groups. These are
shown to be singular curves of type ADE. In particular the coordinate rings of these curve
singularities all have a finite amount of (non-isomorphic) indecomposable Cohen-Macaulay
(CM) modules, which are listed in [26].

The main theorem of this paper is:

Theorem 1.1 (Theorems 6.18, 8.3, 8.5 and 8.10) Let G = G(m, p, 2), then all non-
isomorphic CM modules of R/(�) appear at least once in the decomposition of S/(z) as
CM modules over R/(�). We also determine a precise decomposition of S/(z) into CM

modules over R/(�).

This result is of particular interest because an immediate corollary is that EndR/(�)S/(z)

is a non-commutative resolution for R/(�). That is:

Definition 1.2 [13] Let A be a commutative noetherian ring. Let M be a finitely generated
module which is faithful, then EndA(M) is called a non-commutative resolution (NCR) of
A if gldim EndA(M) < ∞.

The module S/(z) giving a NCR is an application of a result of Auslander, which
was presented in the context of artin algebras, see [18, Section P] for a useful survey on
NCRs. Recall that a CM local ring A is of finite CM type if it has a finite number of
non-isomorphic indecomposable CM modules.

Theorem 1.3 [3] Let A be a CM local ring which is of finite CM type then a NCR arises as
follows: Let M0, ...,Mn be a list of all non-isomorphic CM modules. Let P = M0 ⊕ · · · ⊕
Mn, then � = EndA(P ) has finite global dimension and in particular is a NCR for A.

Theorem 1.1 is an extension of [10] where, for a complex reflection group generated
by reflections of order 2, it is shown that EndR/(�)S/(z) is a NCR for R/(�). The groups
G(2k, k, 2) are generated by order 2 reflections. We first introduce the main objects of
study; the discriminant, � and the matrix factorization coming from z. Then we will detail
how we can use the irreducible representations to decompose the matrix factorization using
isotypical components. After this, we first tackle the 1 dimensional representations - for any
complex reflection group, these give matrix factorizations corresponding to the irreducible
components of the discriminant by considering certain orbits of hyperplanes. For the higher
dimensional representations we need to find basis elements for the isotypical components
for the coinvariant algebra, which in the case of G(m, p, 2) are given by higher Specht poly-
nomials, see [2]. For the groups G(m,p, 2) we give a full description of the decomposition
of S/(z) asR/(�) CM modules, in particular we describe which irreducible representations
correspond to which CM module.
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This result aims to be a next step into a version of the McKay correspondence for com-
plex reflection groups: McKay first explained in 1979 that if one considers a finite subgroup
G of SL(2,C) and constructs the McKay quiver, from only the data of the irreducible rep-
resentations of G, then this quiver, after collapsing double arrows and forgetting direction,
yields an affine simply laced ADE Dynkin diagram. The classical McKay correspondence
is then the observation that these graphs are the same as the desingularisation graph of the
orbit singularities C2/G, see e.g. [16].

The correspondence was then explained algebraically by Auslander in [4]: we call a
subgroup G ⊂ GL(n,C) small if it contains no complex reflections. Auslander proved that
for a small subgroup G ⊂ GL(2,C), the Auslander-Reiten (AR) quiver of CM modules
over the invariant ring R, under the action of G on C2, coincides with the McKay quiver of
G. Furthermore, if G ⊂ GL(n,C) is small and S the polynomial ring in n variables then
the skew-group ring S ∗ G is isomorphic to the endomorphism ring EndR(S). In particular
S ∗ G has finite global dimension.

Auslander’s version of the McKay correspondence can translated into a statement about
NCRs: If G ⊂ GL(n,C) contains no complex reflections, then S ∗G is a NCR for R = SG.
If G contains complex reflections the skew-group ring fails to be a NCR. This result was
then was extended in [10] for finite true reflection groups, i.e complex reflection groups
generated by order 2 reflections, where EndR/(�)(S/(z)) is a NCR for R/(�). Our result
extends this to the case of G(m,p, 2). Here we note that the G(m,m, 2) (m 
= 2) and
G(2p, p, 2) are true reflection groups and so the result overlaps with that of [10].

We will also compare skew group rings of complex reflection groups G(m, 1, 2) for
m > 2 which all have isomorphic discriminants. This will be done by calculating a Morita
equivalent algebra to the skew group ring called the Lusztig algebra, see [11], of G(m, 1, 2).
Theorem 9.13 shows that the Lusztig algebras of G(m, 1, 2) and G(m′, 1, 2) for m 
= m′ are
not Morita equivalent. This is achieved by calculating the Lusztig algebra as a path algebra
of the McKay quiver of G(m, 1, 2). There is also another method of calculating the Morita
equivalent path algebra of S ∗ G using superpotentials, see [7].

The decomposition of S/(z) for the exceptional groups case of rank 2 is still open, but
the method would be the same as the G(m, p, 2) case, if basis elements for the coinvariant
algebra are calculated. Furthermore for G of higher rank the decomposition of S/(z) into
CM modules is unclear, since R/(�) is of not of finite CM type.

We start with some preliminaries and fix some conventions and notation. Section 3 will
introduce the main object of study, then Section 4 will use linear characters to calculate
the corresponding modules of the decomposition. We then recap the representation theory
of the groups G(m,p, n) and in Section 6 we calculate the decomposition of G(m, 1, 2).
After covering higher Specht polynomials for G(m, p, 2), in Section 8 we calculate the
decomposition in the different cases. An example of a true reflection group is detailed
which illustrates the result from [10]. We finish off in Section 9 with calculating the Lusztig
algebra of the groups G(m, 1, 2).

2 Preliminaries

2.1 Reflection Groups and Invariant Rings

The main context of this paper is in invariant theory over C, see [17] for a general reference.
Let V be a finite dimensional vector space over C. Recall that the symmetric algebra of
V denoted S(V ), has the structure of a (graded) commutative C-algebra where S(V ) =
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⊕∞
j=0 Sj (V ) and if {x1, ..., xn} is a basis for V then S(V ) is a polynomial ring of the form

S(V ) = C[x1, ..., xn]. Let G be a finite subgroup of GLn(V ). The action of G on V is
extended to S(V ) in the usual way. The invariant ring is S(V )G = {f ∈ S(V ) : φ · f =
f for all φ ∈ G}. We will from now on denote S(V ) as S.

Definition 2.1 Let V be a C-vector space, then a complex reflection is a (diagonalisable)
linear isomorphism s : V → V , which is not the identity such that it fixes a hyperplane
pointwise. A group generated by complex reflections is called a complex reflection group.

Theorem 2.2 (Chevalley-Shephard-Todd). [12]
Let V be a C-vector space and let G be a finite subgroup of GL(V ) then SG =

R ∼= C[f1, . . . , fn], where fi are algebraically independent homogeneous polynomials of
positive degree if and only if G is a finite complex refection group.

A set of polynomials {f1, ..., fn} which satisfy the above are called a set of basic invari-
ants for G. A classification of finite irreducible complex reflection groups is given by
Shephard-Todd:

Theorem 2.3 (Shephard-Todd) [23]
All irreducible complex reflection groups fall into one of the following families:

• The infinite family G(m,p, n), where m,p, n ∈ N \ {0}, p|m and (m, p, n) 
= (2, 2, 2)
• The exceptional complex reflection groups G4, ...,G37.

For the rest of the paper the following notation will be reserved: G a complex reflection
group of rank n, S the polynomial ring C[x1, ..., xn] on which G acts and R is the invariant
ring SG under this action.

2.2 Isotypical decomposition

Recall that S = C[x1, ..., xn] can be viewed as a graded vector space overC. SinceG acts on
S, it is a representation of G and thus it has an isotypical (or canonical) decomposition. The
following can be found in more detail in [22] Section 2.6. Stanley also studied the Isotypical
decomposition of S in [24], with more of a view towards the structure of the components as
modules over R.

Since G is a finite group, it has finitely many irreducible representations (up to iso-
morphism) and finite distinct characters corresponding to these irreducible representations.
Let χ1, ..., χr be the list of characters that correspond to the irreducible representations
W1, ...,Wr respectively. Consider a decomposition of S = ⊕

j∈N Tj into irreducible rep-
resentations. Then let Vi be the direct sum of those Tj which are isomorphic to Wi .
Then:

S = V1 ⊕ · · · ⊕ Vr

S has been decomposed into its canonical decomposition, and is a unique decomposition
as shown in [22] Theorem 8.We call the V ′

i s the isotypical components of the corresponding
character χi . We will normally denote them by SG

χ . Note that if triv denotes the trivial

character, then SG
triv = SG. The elements of SG

χ are called the relative invariants of χ .
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2.3 The discriminant of the group action

The following is based on [20], where a more detailed account can be found. Let G be a
finite complex reflection group acting on V , denote by A(G) the set of reflecting hyper-
planes of G. If G is obvious in context, this is denoted by A. Given a hyperplane H ∈ A

the set of all elements that fix H pointwise is a cyclic group. Let eH denote the order of the
cyclic subgroup fixing H and αH be the defining linear equation for H in S. We define two
important polynomials for our study, which are obtained from the certain relative invariants
of the linear characters of G. Fix G as a finite complex reflection group and define:

z =
∏

H∈A

αH

and

j =
∏

H∈A

α
eH −1
H ,

z and j are the relative invariants of the linear characters det and det−1 respectively. Note
that this means they are a basis for the isotypical components of det and det−1 respectively,
See Section 3 for discussion on isotypical components.

Definition 2.4 Let G be a complex reflection group acting on V with basis {x1, ..., xn},
then the discriminant δ of the group action is given by:

δ(x1, ..., xn) = jz =
∏

H∈A

α
eH

H

Lemma 2.5 [20] Lemma 6.44. The discriminant of the group action is an invariant under
the action of G, i.e δ ∈ R.

Remark 2.6 Since the discriminant is an invariant it can be expressed as a polynomial in a
set of basic invariants. Fixing F = {f1, ..., fn} a set of basic invariants, δ is also a polyno-
mial in F . We define a polynomial also called the discriminant �F (X1, ..., Xn) such that
�F (f1, ..., fn) = δ(x1, ..., xn). If the basic set of invariants is obvious then we just write �.

Remark 2.7 Since the polynomial z is a relative invariant for det, if w ∈ Vi , then zw ∈
SG

χi
⊗ det.

2.4 Matrix factorizations and Cohen-Macaulaymodules

The main tool used to study S/(z) is Eisenbud’s matrix factorization theorem, which
formalises the connection between CM modules and matrix factorizations.

In particular the ring of invariants of a complex reflection group, SG is isomorphic to a
polynomial ring and thus is a finitely generated CM ring. The context for this section is as
follows: Let A be a ring of the form A = B/I in which B is a regular local ring and I is a
principal ideal generated by an element f 
= 0. Let CM(A) be the category of CM modules
over the ring A.

Let φ, ψ be n × n matrices with entries in B such that,

ψ · φ = f · 1Bn and φ · ψ = f · 1Bn
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Definition 2.8 A pair (φ, ψ) with entries in B, which satisfy the above properties is called
a matrix factorization of f .

To build the category of matrix factorizations of a hypersurface, we require the notation
of morphisms between matrix factorizations.

Definition 2.9 Let (φ1, ψ1) and (φ2, ψ2) be matrix factorizations of f . Then a morphism
between them is a pair of matrices (α, β) such that the following diagram commutes:

Bn1 Bn1 Bn1

Bn2 Bn2 Bn2

α

φ1

β

ψ1

α

φ2 ψ2

Denote by MFB(f ) the category of matrix factorizations. With the following definition
of a direct sum MFB(f ) is an additive category.

Definition 2.10 Let (φ1, ψ1) and (φ2, ψ2) be matrix factorizations in MFB(f ) then:

(φ1, ψ1) ⊕ (φ2, ψ2) =
([

φ1 0
0 φ2

]

,

[
ψ1 0
0 ψ2

])

Definition 2.11 Two matrix factorizations are equivalent if there is a morphism (α, β) in
which α, β are isomorphisms.

Theorem 2.12 (Eisenbud’s matrix factorization theorem) [14]
If A = B/(f ) is a hypersurface ring where B is a regular local ring and f 
= 0, then

the functor Coker(φ,ψ) = Coker(φ) induces an equivalence of categories MFB(f ) :=
MFB(f )/{(1, f )} � CM(A).

Remark 2.13 Eisenbud defined matrix factorizations for a complete local hypersurface ring.
Instead we can alter the definition to graded hypersurface rings. Chapter 15 of [26] discusses
the case where B is a graded local ring.

3 Structure of S/(z) as an R/(�) Module

Recall that a complex reflection group G ⊆ GL(n,C) acts on S = C[x1, ..., xn]. Let
f1, ..., fn be a set of basic invariants under this action on S and R be the invariant ring.
Let (R+) = (f1, ..., fn) and let S/(R+) be the coinvariant algebra S/(f1, ..., fn). During
the proof of Theorem 2.2 in [12] Chevalley shows that as a graded R module S can be
decomposed as:

S ∼= R ⊗C S/(R+),

and that as CG modules:
S ∼= R ⊗C CG.

In particular S is a free R module. Since S is a free R module the matrix representing
multiplication by z in S will have entries in R. Let d (resp e) be the degree of z (resp j ).

As a short exact sequence over R, multiplication by z can be expressed as:

0 S(−d) S S/(z) 0
z
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Remark 3.1 Since S is a free R module this can be written as:
0 R|G|(−d) R|G| R|G|/(z) 0

z

where (−) denotes the degree shift.

Then using the decomposition into isotypical components:

0
⊕

χ SG
χ(−d)

⊕
χ SG

χ (
⊕

SG
χ )/(z) 0

z

and so for each χ ∈ irrep(G) we get:

0 SG
χ(−d) SG

χ⊗det (SG
χ⊗det)/zS

G
χ(−d) 0

z|χ

Where z|χ is the restriction of z on SG
χ . Then we consider on which of the different com-

ponents the restriction map of z are defined. This gives us, for every χ ∈ irrep(G) the
following matrix factorization of �:

SG
χ⊗det(−d − e) SG

χ (−d) SG
χ⊗det

j |χ⊗det z|χ

Remark 3.2 As a representation S/(R+) is isomorphic to the regular representation. That is

S/(R+) ∼=
⊕

0≤i≤r

V
⊕ dimVi

i

Denote by eχ the dimension of χ , and note that eχ⊗det = eχ , then SG
χ

∼= Re2χ .

Re2χ (−d − e) Re2χ (−d) Re2χ
j |χ⊗det z|χ

On the component SG
χ let Mχ :=Coker(z|χ ) = SG

χ⊗det/zS
G
χ . Then we have S/(z) ∼=

⊕
χ∈irrep(G) Mχ . The Mχ are CM over R/(�) since they are Cokernels of matrix

factorizations.
Since (z|χ , j |χ⊗det) are matrix factorizations for all χ ∈ irrep(G), defining

Nχ :=Coker(jχ ) = SG

χ⊗det−1/jSG
χ , we get the exact sequence:

0 Coker(j |χ⊗det, z|χ ) Re2χ Coker(z|χ , j |χ⊗det) 0

Thus syz1RMχ
∼= Nχ⊗det.

Remark 3.3 By Eisenbud’s matrix factorization theorem, the above in terms of matrix fac-
torizations is: We decompose the matrix factorization (z, j) into the matrix factorization⊕

χ∈irrep(G)(z|χ , j |χ⊗det )

Definition 3.4 A CM local ring A is of finite CM type if it has a finite number of non-
isomorphic indecomposable CM modules.

Remark 3.5 In the graded local case, this is finite up to degree shift.

Lemma 3.6 Let R/(�) be of finite CM type, If S/(z) is a representation generator for
R/(�) then S/(j) is also a representation generator.

Proof Let M be an indecomposable CM module over R/(�). Since S/(z) is a representa-
tion generator forCM(R/(�)) and syz1RM isCM , it is in addR/(�) S/(z). In particular there
exists χ ∈ irrep(G) such that syz1RM ∈ add(Mχ). Thus syz1Rsyz

1
RM ∼= M ∈ add(Nχ⊗det).

Hence M ∈ add(S/(j))
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4 Linear Characters of Reflection Groups

Recalling the notation used: V is a n dimensional complex vector space with an action of
G ⊂ GL(V ), Ref(G) the set of reflections of G, S = S(V ) = C[x1, ..., xn] and R = SG.
See [8] for a more in depth review of the following. Recalling from Section 2.3 that αH was
such that, for H ∈ A(G), H = V (αH = 0). Let G(H) be the subgroup of G which fixes
H and eH := |G(H)|. Denote by A/G the set of orbits of hyperplanes under G, let O be
an element of A/G. Define:

jO :=
∏

H∈O
αH

We can then define a linear character θO ∈ Hom(G,C×) such that:

g(jO) = θO(g)(jO) for all g ∈ G

θO then has the following property: Let s ∈ Ref(G) then:

θO(s) =
{
det(s) if s ∈ G(H) for some H ∈ O

1 otherwise.

Note, det(s) is the determinant of the action of s on V . Thus if we take z := ∏
H∈A αH

we get g(z) = det(g)(z), since G is generated by reflections. To describe linear characters
it is enough to restrict to the stabilizer groups of the hyperplanes.

Theorem 4.1 [8, Theorem 4.12] Let θ ∈ Hom(G,Cx) and for a hyperplane H , denote by
O the orbit of H . Then there is a unique integer mO(θ) such that:

ResGG(H)θ = detmO(θ) with the condition 0 ≤ mO(θ) < |G(H)|.
i.e for all g ∈ G(H),ResGG(H)θ(g) = detmO(θ)(g). Then set jθ := ∏

O∈A/G jO, then SG
θ =

Rjθ . We call jθ the relative invariant of θ .

Proof The proof is essentially the fact that det generates Hom(G(H),Cx). The proof for
SG

θ = Rjθ can be found in [20, 6.37].

Consider �O := j
|G(H)|
O

= ∏
H∈O α

|G(H)|
H .

Lemma 4.2 �O is invariant under the action of G.

Proof This follows from the above discussion.

Note that
∏

O∈A/G �O = �. The following shows the isotypical components from
which �O is obtained from. Note that the action − ⊗ det sends linear characters to linear
characters. Let θ ∈ Hom(G,Cx) then mO(θ ⊗ det) = mO(θ)+ 1 mod eH . This is straight-
forward since mO(det) = 1 for all orbits O. We are interested in viewing (z, j) as a matrix
factorization of the discriminant, so we can use this to find the parts of the matrix factoriza-
tion on the isotypical components for the linear characters. Recall that z|θ denotes the map
restricted on the isotypical component of type θ of S.

SG
θ SG

θ⊗det.
z|θ
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Which, since θ ∈ Hom(G,C×), is:

Rjθ Rjθ⊗det.
z|θ

Thus we need to calculate zjθ .

Lemma 4.3 The Cokernel of the map

SG
θ
OeH −1

SG
θ
OeH −1⊗det.

z|θ

is R/�O.

Proof The relative invariants of θ
eH −1
O

and θ
eH −1
O

⊗ det are given by:

j
θ

eH −1
O

= j
eH −1
O

=
∏

H∈O
α

eH −1
H and j

θ
eH −1
O

⊗det
=

∏

q∈(A/G)\{O}
jq.

i.e j
θ

eH −1
O

⊗det
contains all the hyperplanes that are not in the orbit O. Thus the following

holds,

zj
θ

eH −1
O

= j
eH

O

∏

q∈(A/G)\O
jq = �Oj

θ
eH −1
O

⊗det
.

Theorem 4.4 For all orbits O, R/(�O) is a direct summand of S/(z) as a R/(�) module.

Proof Since S ∼= ⊕
χ∈Irr(G) SG

χ and (z, j) is a matrix factorization for �, the discussion

above shows the map z on the isotypical component SG

θ
eH −1
O

gives the component �O.

5 G(m,p,n)

The representation theory of the group G(m,p, n) is an extension of the representation
theory of the symmetric group. In particular we can calculate a basis for the isotypi-
cal components of the coinvariant algebra, which in turn allows calculation of Mχ from
Section 3.

Definition 5.1 As a complex reflection group G(m,p, n), where m, p, n ∈ N \ {0} and
p|m can be described as follows: Let ξm be a primitive m-th root of unity then G(m,p, n) is
the group of matrices of the form PD where P is a permutation matrix and D is a diagonal

matrix which has entries that are powers of ξm and det(D)
m
p = 1.

Generators and relations can be found in [1]. As an abstract group G(m, 1, n), with
m, n ≥ 1, is identified with the wreath product (Z/mZ) � Sn and G(m,p, n) are normal
subgroups of G(m, 1, n), where p must divide m and define q := m

p
.

The generators of the group G(m, 1, 2) are

s1 =
[

ξm 0
0 1

]

, s2 =
[
0 1
1 0

]

.
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Example 5.2 For the group G(m, 1, 2), for m ≥ 2, acting on C[x, y] the invariants are
calculated to be: σ1 = (xy)m and σ2 = xm+ym, see for example [5]. The defining equations
of the hyperplanes of G(m, 1, 2) are [20] Section 6.4:

x, y, (x − ξ i
my) for i ∈ {0, 1, ...,m − 1}.

The hyperplane arrangement for the group G(m, 1, 2) is:

z = xy(xm − ym).

The hyperplanes Hx := ker(x) and Hy := ker(y) are in the same G-orbit, for exam-
ple by applying s2. The other hyperplanes are in another distinct orbit. The Jacobian and
discriminant are given as:

j = (xy)m−1(xm − ym),

� = (xy)m(xm − ym)2 = σ1(σ
2
2 − 4σ1).

Example 5.3 For the subgroups G(m,p, 2), p 
= m and q = m
p
the invariants are σ1 =

(xy)q and σ2 = xm − ym with:

z = xy(xm − ym),

j = (xy)q−1(xm − ym),

� = (xy)q(xm − ym)2 = σ1(σ
2
2 − 4σp

1 ).

Example 5.4 When p = m the invariants are σ1 = xy and σ2 = xm + ym with:

z = (xm − ym)

j = (xm − ym)

� = (xm − ym)2 = σ 2
2 − 4σm

1 .

In these examples the invariant ring is R = C[σ1, σ2]. Using Section 4 we can calculate
the modules corresponding to the isotypical components of the linear characters. G(m, 1, 2)
has 2 orbits of hyperplanes. The hyperplanes given by x, y are in the same orbit, call thisO.
The rest of the hyperplanes are in the other, q. Then, �O = (xy)m and �q = (xm − ym)2.
Since these are invariant, they can be expressed in terms of the basis invariants σ1, σ2.
�O = σ1 and �q = σ 2

2 − 4σ1. From Lemma 4.3 and Theorem 4.4, M
θ

eHx
−1

O

= R/(σ1) and

M
θ

eHx−y
−1

q

= R/(σ 2
2 − 4σ1).

The subgroups G(m,p, 2) ⊆ G(m, 1, 2) fall into 2 cases. When p is odd, it is similar to
the above, there are 2 orbits O and q where �O = (xy)q = σ1 and �q = (xm − ym)2 =
x2m + y2m − 2xmym = σ 2

2 − 4σp

1 . When p is even there are 3 orbits O1,O2,O3, where

�O1 = σ1, �O2 = σ2 − 2σ
p
2
1 , �O3 = σ2 + 2σ

p
2
1 . With the notation from Section 4 we can

combine the different orbits and show

M
θ

eHOi
−1

Oi
⊗θ

eHOj
−1

Oj

= R/(�Oi
�Oj

)

for 1 ≤ i 
= j ≤ 3, is a direct summand of S/(z) over R/(�).
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5.1 Representation Theory of G(m, 1, n)

Since the groups G(m, 1, n) are extensions of the symmetric group, one would expect their
representation theory to look similar. We quickly introduce Young diagrams and describe
how they can be used to build the representation theory of G(m, 1, n). A standard text for
Young Tableau is [15].

Consider n ∈ N \ {0}. Let λ be a partition of n, i.e λ = (λ0, ..., λk−1), such that k ≤ n,
0 < λi+1 ≤ λi and

∑
i λi = n. A partition can also be represented as a Young diagram,

which is constructed in the following way: Given a partition λ of n, the Young diagram
associated to λ is a collection of left justified rows of squares called cells. Enumerate the
rows from 0 to k−1, top to bottom, the number of cells in row i is λi . The partitions uniquely
determine the Young diagram so we use the same notation λ for the partition and the Young
diagram. We call a Young diagram associated to a partition of n, a Young diagram of size n.

Example 5.5 Let n = 5 and λ = (2, 2, 1) then the corresponding Young diagram is:

Definition 5.6 A Young tableau is a Young diagram of size n, where each cell contains a
number from 1 to n such that each number 1 to n appears only once. A Young tableau is
called standard the sequence of entries in the rows and columns are strictly increasing.

Example 5.7 Let n = 5 and consider the Young diagram λ from the previous example. Then
the following are Young Tableaux:

1 2
3 4
5

1 3
2 4
5

These are also both standard Tableaux.

It is widely known that Young diagrams of size n are in bijection with the irreducible
representation of the symmetric group on n letters, Sn up to isomorphism, see [15]. The
representation theory of the symmetric group can be extended to the representation theory
of G(m, 1, n) by instead considering m-tuples of Young diagrams.

Definition 5.8 Let m, n ∈ Z
+.

i) Let Pm,n the set of all m-tuples of Young diagrams λ = (λ(0), ..., λ(m−1)), where λ(i) is
a partition of ni for 0 ≤ ni ≤ n for 0 ≤ i ≤ m − 1 and such that

∑
0≤i≤m−1 ni = n.

Let λ ∈ Pm,n.

ii) An m-tuple of Young Tableaux of shape λ is an m-tuple of Young diagrams with the
numbers 1 to n enumerating the cells. The set of all m-tuples of Young Tableaux of
shape λ is denoted Tab(λ).

iii) An m-tuple of Young Tableaux of shape λ is called standard if the sequence of entries
in the rows and columns of each λ(i) are strictly increasing. The set of all standard
m-tuples of Young Tableaux of shape λ is denoted STab(λ).
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Example 5.9 Let m = 3 and n = 5 then λ =
(

, −,

)

is an element of Pm,n and

λ1 =
(
2
5

,−,
1 4
3

)

is a standard m-tuple of Young Tableaux of shape λ.

Lemma 5.10 Every irreducible representation of G(m, 1, n) corresponds to an element of
Pm,n.

The following is determined in [1]. Take a m-tuple of Young diagrams λ and let Vλ

be the vector space spanned of all linear combination of all possible m-tuples of standard
Young tableau of shape λ. Then the generators of G(m, 1, n) act on the m-tuples of Young
Tableaux as follows. First let ξm be a primitivemth root of unity. Let λ be am-tuple of Young
diagrams, then let tp denote a m-tuple of standard Young Tableaux, i.e a basis vector for the
representation corresponding to λ. Let 2 ≤ k ≤ n − 1, assume that k, k − 1 can be swapped
and still create a m-tuple of standard Young Tableaux. Let tq be the m-tuple of Tableaux
such that k, k − 1 are switched in tp . Then recalling that the generators of G(m, 1, n) are
denoted s1, ..., sn, we define an action on λ:

s1(tp) = ξ i
mtp

when 1 appears in the ith position of the m-tuple of tableau. The action of the remaining
generators are given by

sk(tp) =

⎧
⎪⎨

⎪⎩

tp if k − 1 and k are in the same row

−tp if k − 1 and k are in the same column

tq otherwise

for 2 ≤ k ≤ n.

Example 5.11 Consider G = G(4, 1, 2), the 4-tuple of Young diagrams λ1 =(
,−, −,−) corresponds to a 1 dimensional representation Vλ1 , since there is only one

standard Young tableau of shape λ1:
(
1 2 ,−, −,−). Similarly λ2 = (

, , −,−) is
a 2 dimensional representation since there are two standard Young tableau of shape λ2:(
1 , 2 , −,−) and ( 2 , 1 ,−, −)

While we can describe the representation theory of the general groups G(m, 1, n)

from now on focus will be on the groups G(m, 1, 2), since their discriminants are curve
singularities. Recalling for G(m, 1, 2) the generators are

s1 =
[
ξm 0
0 1

]

, s2 =
[
0 1
1 0

]

.

Example 5.12 Continuing from Example 5.11, let Q = (
1 2 ,−, −, −) then the

generators act as follows

s1(Q) = Q s2(Q) = Q.

Let P = ( 1 , 2 , −,−) and T = ( 2 , 1 ,−, −). The action of the generators s1 and s2 of
G(4, 1, 2) on P an T is as follows:

s1(P ) = P s2(P ) = T

s1(T ) = ξ4T s2(T ) = P
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Lemma 5.13 Let G = G(m, 1, 2), then Vdet is represented by the m- tuple of Young
Tableaux:

α =
{(

−, , −, . . . , −
)}

.

Proof We first note the representation given by α is one dimensional since the only possible

Young tableau is α1 =
(

−,
1
2

, −, . . . , −
)

. Recall that s1, s2 are the generators of the

group, and denote by ξ the mth root of unity. We then have the following actions on the
Young tableau α1:

s1α1 = ξα1

s2α1 = −α1

Thus this is the representation Vdet, since s1 �→ ξ = det(s1), s2 �→ −1 = det(s2).

6 Higher Specht polynomials

Let G = G(m, 1, n), S = C[x1, ..., xn] and (R+) the ideal in S generated by the basic
invariants f1, ..., fn of G. This section will be about calculating bases for components of the
coinvariant algebra SG = S/(R+). In [2] a basis was calculated via defining higher Specht
polynomials for the groups G(m, 1, n) and then later was generalised for the G(m,p, n) in
[19].

Definition 6.1 Fix G(m, 1, 2) and let α be a Young diagram, then let αi =
(α

(0)
i , ..., α(m−1)

i ) be them-tuple of Young diagrams such that α(j)
i = 0 for all 0 ≤ j ≤ m−1

with j 
= i and α
(i)
i = α. i.e αi is the m-tuple of Young diagrams with α in the ith position

and nothing in every other position.

The notation αiβj .... means the m-tuple of Young diagrams with α in position i, β in
position j and so on. We also extend this notation to m-tuples of Young Tableaux.

Example 6.2 Let G = G(4, 1, 2) then Wdet =
1
, and ( , −, ,−) = 0 2.

Example 6.3 Let G = G(m, 1, 2), λ = a b, Q = 1 a 2 b
and T = 2 a 1 b

, then
Q, T ∈ STab(λ).

Let λ ∈ Pm,n and Q ∈ STab(λ). We create a word w(Q) by first reading columns from
bottom to top starting with the left column of Q(0), we then move onto Q(1) and so on,
until we have read all the components. For a word w(Q) we then define the index i(w(Q))

inductively as follows: the number 1 has index i(1) = 0, let the number p have index
i(p) = k, if p + 1 is to the left of p then i(p + 1) = k + 1, if p + 1 is to the right of p then
i(p + 1) = k. We assign to i(w(Q)) a tableau i(Q) of shape λ with the entries of the cells
corresponding to their index.

Example 6.4 Following from Example 6.3, w(Q) = 12, w(T ) = 21, i(w(Q)) = 00 and
i(w(T )) = 10 so i(Q) = 0 a 0 b

and i(T ) = 1 a 0 b
.
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Definition 6.5 Let T be an m-tuple of tableau with shape λ, for each component T (a), the
Young Symmetrizer, eT (a) is defined by:

eT (a) := 1

αT (a)

∑

σ∈R(T (a))τ∈C(T (a))

sgn(τ )τσ,

where αT (a) is the hook length of λ(a) and R(T (a)), C(T (a)) are the row and column
stabilizers of T (a) respectively.

Example 6.6 Continuing from Example 6.3, eQ(a) = eT (a) =id since the the components of
Q and T have at most one cell and thus the row and column stabilizers are the identities.

Definition 6.7 Let λ = (λ(0), ..., λ(m−1)) be a m-tuple of Young diagrams Q ∈ STab(λ),
T ∈ Tab(λ), x = (x1, ..., xn). Define the higher Specht polynomial as:

�Q,T (x) =
m−1∏

a=0

⎛

⎝(eT (a) (x
mi(Q)(a)

T (a) ))(
∏

k∈T (a)

xa
k )

⎞

⎠

Where
x

mi(Q)(a)

T (a) =
∏

C∈λ(a)

x
mi(Q)(a)(C)

T (a)(C)

Example 6.8 Again using Q,T from Example 6.4. x
mi(Q)(a)

T (a) = x0
2 , x

mi(Q)(b)

T (b) = x0
1 so

�Q,T (x) = eT (a) (x0
2 )(x

a
2 )eT (b) (x0

1 )(x
b
1 ) = xa

2xb
1 , �Q,Q(x) = xa

1xb
2 . Then x

mi(T )(a)

T (a) = xm
2

and x
mi(T )(b)

T (b) = xm
1 �T,T (x) = xa+m

2 xb
1 and �T,Q(x) = xa+m

1 xb
2 .

Theorem 6.9 [2] Let λ ∈ Pm,n and Q ∈ STab(λ) then:

• The subspace VQ(λ) = ∑
T ∈Tab(λ) C�Q,T (x) of Q is isomorphic to an irreducible

representation of G(m, 1, n).
• The set {�Q,T : T ∈ STab(λ)} is a basis for VQ(λ).
• The coinvariant algebra SG = S/(R+) has an irreducible decomposition:

SG =
⊕

λ∈Pm,n

⊕

Q∈STab(λ)

(VQ(λ) mod R+).

Continuing from Example 6.8, {�Q,T , �Q,Q} is a basis for VQ(λ) and {�T,T , �T,T } is
a basis for VT (λ) and VQ(λ) ∼= VT (λ).

For the case of G = G(m, 1, 2) we describe the dimension 2 components of SG in the
above decomposition. The following can easily be seen:

Lemma 6.10 The representations of G(m, 1, 2) are of the following form:

• The one dimensional representations corresponds to the m-tuple of diagrams; i

or
i

for 0 ≤ i ≤ m − 1 orientation.

• The two dimensional representations corresponds to the m-tuple of diagrams i j ,
where 0 ≤ i < j ≤ m − 1
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Proof Building representations of G(m, 1, 2) is done by placing two cells in an m-tuple.
There are two cases; the cells are in different positions or they are in the same position.
In the first case these correspond to the 2 dimensional representations. In the second case,
there is the choice of the two cells being in the same column or in the same row - these
correspond to the 1 dimensional representations.

Lemma 6.11 Let α be an m-tuple of Young diagrams corresponding to the representation
Wα of G. The m-tuple of Young diagrams β representing the representation Wα ⊗ Wdet is
obtained by the following:

• If Wα is 1 dimensional then α is of the form; i or
i

for some 0 ≤ i < m. Then

β is;
i+1

or i+1 respectively where i + 1 is taken modulo m.

• If Wα is a 2 dimensional representation, then α is of the form i j where 0 ≤ i <

j < m, then β is of the form i+1 j+1 where i + 1, j + 1 are taken modulo m.

Proof Let α be of the form
i
then s1(α) = ξ iα, where ξ is the mth root of unity. The

corresponding vector space Wα is 1 dimensional as it spanned by the tableau t1 = 1 2 i
,

and by Lemma 5.13, Wα ⊗ det is generated by t1 ⊗ 1
2 1

.

s1(t1 ⊗ 1
2 1

) = s1(t1) ⊗ s1(
1
2 1

) = ξ i t1 ⊗ ξ
1
2 1

= ξ i+1(t1 ⊗ 1
2 1

)

s2(t1 ⊗ 1
2 1

) = s2(t1) ⊗ s2(
1
2 1

) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t1 ⊗ − 1
2 1

if 1 and 2 are in the same row in t1

−t1 ⊗ − 1
2 1

if 1 and 2 are in the same column in t1

t1 ⊗ − 1
2 1

otherwise

= −t1 ⊗ 1
2 1

Thus the Young Tableau associated with α ⊗ det is
i+1

where i + 1 is taken mod m. The

case α =
i

is similar.

Let α be of the form
i j

where 0 ≤ i < j ≤ m − 1, then α is a two dimensional

representation spanned by the tableau t1 = 1 i 2 j
,−t2 = 2 i 1 j

, note that the negative
sign is here for clarity .

s1(t1 ⊗ 1
2 1

) = s1(t1) ⊗ s1(
1
2 1

) = ξ i t1 ⊗ ξ
1
2 1

= ξ i+1(t1 ⊗ 1
2 1

)

s1(−t2 ⊗ 1
2 1

) = s1(−t2) ⊗ s2(
1
2 1

) = −ξj t2 ⊗ ξ
1
2 1

= ξj+1(−t2 ⊗ 1
2 1

)
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s2(t1 ⊗ 1
2 1

) = s2(t1) ⊗ s2(
1
2 1

) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

t1 ⊗ − 1
2 1

if 1 and 2 are in the same row

−t1 ⊗ − 1
2 1

if 1 and 2 are in the same column

t2 ⊗ − 1
2 1

otherwise

= −t2 ⊗ 1
2 1

s2(−t2 ⊗ 1
2 1

) = s2(t2) ⊗ s2(
1
2 1

) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−t2 ⊗ − 1
2 1

if 1 and 2 are in the same row

t2 ⊗ − 1
2 1

if 1 and 2 are in the same column

−t1 ⊗ − 1
2 1

otherwise

= t1 ⊗ 1
2 1

Thus Wα ⊗det is isomorphic to the representation corresponding to the tableau
i+1 j+1

where i + 1, j + 1 are taken modulo m.

Lemma 6.12 Let G = G(m, 1, 2), and let λ = i j . Then using higher
Specht polynomials, a basis for the isotypical component of SG isomorphic to Wλ is{
xiyj , xj yi, xi+myj , xj yi+m

}
.

Proof See Example 6.8.

From now on if λ is a m-tuple of Young diagrams, we will also denote the representation
Vλ corresponding to it as λ.

Lemma 6.13 Let G = G(m, 1, 2) and λ = m−2 m−1 the map of z|λ on the isotypical
component of type λ gives rise to a matrix factorization equivalent to:

SG
λ⊗det SG

λ SG
λ⊗det

j |λ⊗det

[
−2σ1 σ2σ1

σ2 −2σ1

]

⊗I2

Proof From the above, a basis for the isotypical component of S/(R+) corresponding to λ

is: {
xm−2ym−1, xm−1ym−2, x2m−2ym−1, xm−1y2m−2

}
.

Further from Lemma 6.11 and Lemma 6.12 a basis for the isotypical component
corresponding to λ ⊗ det is:

{
xm−1, ym−1, xm−1ym, xmym−1

}
.

Then, multiplication of z on the basis elements can be calculated as follows:

z(xm−2ym−1) = xm−1ym(xm − ym)

= x2m−1ym − xm−1y2m

= −σ2(x
m−1ym) + 2σ1x

m−1

z(xm−1ym−2) = σ2(x
mym−1) − 2σ1y

m−1
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and

z(x2m−2ym−1) = x2m−1ym(xm − ym)

= σ2σ1(x
m−1) − 2σ1(x

m−1ym).

We obtain the matrix:
⎡

⎢
⎢
⎣

−2σ1 0 σ2σ1 0
0 −2σ1 0 σ2σ1
σ2 0 −2σ1 0
0 σ2 0 −2σ1

⎤

⎥
⎥
⎦ =

[−2σ1 σ2σ1
σ2 −2σ1

]

⊗ I2.

Matrix factorizations were used in [26] Chapter 9 to calculate the CM modules over one
dimensional ADE singularities. Note that Yoshino calculated them for the completed case,
but from Remark 2.13 we can instead consider them as graded matrix factorizations over
the graded local ring S.

Definition 6.14 Let � = C[x, y]/(f ), where f = x2 + y4, then Spec(�) is an A3
singularity.

Remark 6.15 Let G = G(m, 1, 2) and recall that � = σ1(σ
2
2 − 4σ1). Then Spec(R/(�)) is

an A3-singularity. This is seen by the graded coordinate change x = σ1 − σ 2
2
8 and y = σ2

2
√
2
.

Theorem 6.16 [26] (9.9) The non-trivial indecomposable CM modules over
C[σ1, σ2]/(�), where� = σ1(σ

2
2 −4σ1) are given as cokernels of the matrix factorizations:

(α, β) = (σ1, σ
2
2 − 4σ1), (β, α) = (σ 2

2 − 4σ1, σ1) and the matrix:

(φ, ψ) =
([

2σ1 σ2σ1
σ2 2σ1

]

,

[−2σ1 σ2σ1
σ2 −2σ1

])

.

Denote the modules: A = Coker(α, β), B = Coker(β, α), X = Coker(φ, ψ). Note
Coker(φ, ψ) = Coker(ψ, φ). These are the indecomposable modules in CM(�).

Thus the matrix factorization from Lemma 6.13 is equivalent (as matrix factorizations)
to φ ⊕ φ (and also ψ ⊕ ψ), and so M

m−2 m−1
∼= X ⊕ X.

Remark 6.17 The graded local case, the category CM(�) is Krull-Schmidt and so direct
sum decompositions are unique. We take the grading of the complete modules and see that
the above list is the complete set of non-isomorphic up to degree shifting indecomposable
objects in CM(R/(�)).

We need to check that the support of S/(z) on R/(�) modules is the entire list of
isomorphism classes of modules in CM(R/(�)).

Theorem 6.18 Let G = G(m, 1, 2) then the following is a decomposition of S/(z) as
R/(�) CM modules:

S/(z) ∼= R/(σ1) ⊕ R/(�) ⊕ (R/(σ 2
2 − 4σ1))

2(m−1
2 )+m−1 ⊕ X2m−2

= A ⊕ B2(m−1
2 )+m−1 ⊕ X2m−2 ⊕ R/(�).
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In particular S/(z) is a representation generator for CM(R/(�)).

Proof From Section 4, the linear characters give rise to the modules M
θm−1
O

= R/(�)O =
R/(σ1) and Mθq = R/(�)q = R/(σ 2

2 − 4σ1). Moreover for the modules Mθi
O

⊗θq
∼=

R/(σ 2
2 −4σ1) for 1 ≤ i ≤ m−2. From calculations similar to those above, the 2 dimensional

characters
i j

for 0 ≤ i < j < m − 1 each give a copy of (R/(4σ1 − σ 2
2 ))2. There are

(
m−1
2

)
of them. Also M

i m−1
∼= X2 for 0 ≤ i < m − 1.

Corollary 6.19 Let G = G(m, 1, 2) then EndR/(�)(S/(z)) is a NCR for R/(�).

7 Irreducible representations ofG(m,p,n)

The irreducible representations of G(m,p, n) were first described by Stembridge, see [25].
Let G = G(m, 1, n) and H = G(m,p, n), q := m

p
, we define a linear character of G by:

δi = (−, . . . , · · · , . . . , −)

It is straightforward to check that the action − ⊗ δi “shifts” the diagrams in a m-tuple
of Young diagrams i places to the right, i.e if λ = (λ(0), . . . , λ(m−1)) then λ ⊗ δi =
(λ(0−i), . . . , λ(m−1−i)) where j − i is considered mod m.

The quotient groupG/H is isomorphic to the cyclic groupC = 〈δq

1 〉. Through this,G/H

acts on the irreducible representations of G. Denote by [λ] the G/H -orbit of the irreducible
G-representation λ. Define an equivalence relation ∼H on Irr(G) such that λ ∼H μ if and
only if λ = μ ⊗ δ for some δ in G/H .

We define some numerology, let b(λ) be the cardinality of the G/H orbit of λ and
u(λ) := p

b(λ)
. Define the stabilizer of λ as the subgroup of G/H :

(G/H)λ := {δ ∈ G/H : λ ⊗ δ = λ}

This is then generated by δ
b(λ)·q
1 with an order of u(λ).

Example 7.1 Let G = G(4, 1, 2) and H = G(4, 2, 2). Let λ1 = (
, ,−, −) , λ2 =(

, −, ,−) λ3 = (−, ,−,
)
and λ4 = (−,−, ,

)
. The quotient groupG/H is

generated by δ21, and for example λ1 ⊗ δ21 = λ4. Then (G/H)λ1 = {1}, (G/H)λ2 = {1, δ21}.[λ1] = {λ1, λ4}, [λ2] = {λ2} and λ3 = {λ3}

Theorem 7.2 (Stembridge [25]) There is a one-one correspondence between the irreducible
representations of H = G(m,p, n) and ordered pairs ([λ], δ) where [λ] is the orbit of an
irreducible representation λ of G and δ ∈ (G/H)λ. Furthermore the following hold:

a) ResGH (λ) = ResGH (μ) for λ ∼H μ.
b) ResGH (λ) = ⊕

δ∈(G/H)λ
([λ], δ).

c) IndG
H ([λ], δ) = ⊕

μ s.t μ∼H λ μ.
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Example 7.3 Following from Example 7.1, ResGH λ1 = ([λ1], 1) = ResGH λ4 and ResGH λ2 =
([λ2], 1) ⊕ ([λ2], δ21)

We can fully describe the irreducible representations of G(m, p, 2) in the following way.
Let G = G(m, 1, 2) and H = G(m,p, 2) where q = m

p
. Recall that the representations of

G(m, 1, 2) are of the following form:

• The one dimensional representations corresponds to the m-tuple of diagrams;
i
or

i

for 0 ≤ i ≤ m − 1.

• The two dimensional representations corresponds to the m-tuple of diagrams; i j ,
where 0 ≤ i < j ≤ m − 1.

The one dimensional representations will again stay irreducible under restriction. By Theo-
rem 7.2(b), the restriction of a two dimensional representation λ is reducible if (G/H)λ is
non-trivial, that means that there exists a δ ∈ G/H , i.e δ = δ

q·c
1 for some c ∈ {0, .., p − 1},

such that λ ⊗ δ = λ. Let λ = i j then λ ⊗ δ
q·c
1 = cq+i cq+j , then for ResGH λ to be

reducible cq + i = j and cq + j = m + i. Thus 2cq = m and cq = m
2 , also since q = m

p
,

c m
p

= m
2 , 2c = p thus 2|p.

Remark 7.4 The discussion above shows that for G = G(m, 1, 2) and H = G(m,p, 2)
with q = m

p
that only when p is even there are then two dimensional representations that

will split under restriction. These were given by i m
2 +i for 0 ≤ i < m

2 .

7.1 Higher Specht Polynomials for G(m, p, 2)

Let G = G(m, 1, n) and H = G(m,p, n), where q = m
p
, Let SH be the coinvariant algebra

for H and ξm is the primitive mth root of unity. Let the operation − ⊗ δ1 on the m-tuples of
tableau defined above, be denoted by sh, for convenience denote by Sh the operation shq .
Note that b(λ) is the smallest integer j such that Shj (λ) = λ.

Definition 7.5 Let λ be an m-tuple of Young diagrams and let 0 ≤ h ≤ m − 1, we define

STab(λ)h =
{
T = (T (0), ..., T (m−1)) ∈ STab(λ) : 1 ∈ T (v) for some 0 ≤ v < h

}
.

Remark 7.6 If T ∈ STab(λ)q then T , Shb(λ)(T ), ..., Sh(u(λ−1))b(λ)(T ) are all distinct.

Definition 7.7 Let λ = (λ(0), ..., λ(m−1)) ∈ Pm,n. Fix Q ∈ STab(λ), let T ∈ STab(λ) and
for 0 ≤ l ≤ u(λ) − 1 define the polynomials

�
(l)
Q,T (x) :=

u(λ)−1∑

r=0

ξ
lrqb(λ)
m �Q,Shrb(λ)(T )(x)

Lemma 7.8 [19] LetQ,T be standardm-tableau of shape λ. Then the polynomial�Q,T (x)

is non-zero in SH if and only Q ∈ STab(λ)q .

Example 7.9 Let λ = i j , where 0 ≤ i < j < q and Q = 1 i 2 j
, T = 2 i 1 j

,
then u(λ) = 1 since the only case with u(λ) 
= 1 is when j = m

2 + i. Moreover this means
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�
(0)
Q,T = �Q,T = xi

2x
j

1 , �(0)
Q,Q = �Q,Q = xi

1x
j

2 , �
(0)
T ,Q = �T,Q = xi+m

1 x
j

2 and �
(0)
T ,T =

�T,T = xi+m
2 x

j

1 . Then since both Q,T are in STab(λ)q , all these Specht polynomials are
non-zero in SH . VQ(x) = C�Q,T ⊕ C�Q,Q and VT (x) = C�T,Q ⊕ C�T,T .

Example 7.10 Let λ = i j , where 0 ≤ i < q ≤ j ≤ m − 1 with ResGH λ irreducible,
i.e j 
= i + m

2 and Q = 1 i 2 j
, T = 2 i 1 j

, then u(λ) = 1. Moreover this means

�
(0)
Q,T = �Q,T = xi

2x
j

1 , �
(0)
Q,Q = �Q,Q = xi

1x
j

2 , �
(0)
T ,Q = �T,Q = xi+m

1 x
j

2 and �
(0)
T ,T =

�T,T = xi+m
2 x

j

1 . Then since Q is in STab(λ)q , �Q,T and �Q,Q are non-zero in SG. Now T

is not in STab(λ)q and thus �
(0)
T ,Q,�

(0)
T ,T are zero in SG. Let j = cq + r then consider μ =

r m+i−cq . Let P = 1 r 2 m+i−cq
and L = 2 r 1 m+i−cq

. Now P ∈ STab(μ)q and
L 
∈ STab(μ)q thus the Specht polynomials �P,P , �P,L are non-zero while �L,P , �L,L

are zero in SG.

Theorem 7.11 (Morita, Yamada [19]) Let λ = (λ(0), ..., λ(m−1)) ∈ Pm,n. For each S ∈
Stab(λ) and 0 ≤ l ≤ u(λ) − 1, put V (l)

S (x) = ⊕
T ∈Stab(λ) C�

(l)
S,T (x). Then:

• The space VS(x) decomposes as VS(x) = ⊕u(λ)−1
l=0 V

(l)
S (x).

• The space V
(l)
S (λ) is isomorphic to an irreducible representation of G(m,p, n).

• The G(m,p, n) module SH is isomorphic the irreducible decomposition:

SH =
⊕

λ

⊕

S∈STab(λ)d

u(λ)−1⊕

l=0

V
(l)
S (λ).

Example 7.12 Continuing Example 7.10, the vector space VP (x) then stays irreducible and
is isomorphic to VQ(x) since λ ∼H μ. Thus a basis for the isotypical component SH

λ of SH

of type λ is:

{�(0)
P,P ,�

(0)
P,L,�

(0)
Q,T ,�

(0)
Q,Q}

8 S/(z) for G(m,p, 2)

As before, let G = G(m, 1, 2), H = G(m,p, 2) with m = pq, S = C[x, y], R =
SH ∼= C[σ1, σ2] where σ1 = xm + ym, σ2 = (xy)q . For the case p 
= m, recall that
z = xy(xm − ym) and � = σ2(σ

2
1 − 4σp

1 ).

Lemma 8.1 The representation detH = ResGH detG.

Proof Obvious, since det is one dimensional and for h ∈ H , ResGH det(h) = det(h).

Lemma 8.2 Let 0 ≤ i < j < m be such that ResGH i j is irreducible then
ResGH i j ⊗ detH = ResGH i+1 j+1 where i + 1, j + 1 are taken mod m and is
irreducible.

Proof ResGH i j ⊗ detH = ResGH i j ⊗ ResGH detG = ResGH ( i j ⊗ detG) =
ResGH i+1 j+1

2860



Non-Commutative Resolutions for the Discriminant...

Bases for the isotypical components of S/(R+) of type ResGH i j can again be
calculated as higher Specht polynomials see [19]. The goal is to show that S/(z) is a rep-
resentation generator for CM(R/(�)). A full list of isomorphism classes of CM modules
can be found in [26]. The rest of this section is dedicated to showing that there is at least
one of each module in that list.

We will breakdown the general case into 3 distinct cases:

(1) m 
= p and p odd,
(2) m 
= p and p even,
(3) m = p.

8.1 m �= p and p odd

Recall for the groups G(m,p, 2) with q = m
p

the invariants are σ1 = (xy)q and σ2 =
xm − ym. The discriminant � = σ1(σ

2
2 − 4σp

1 ) of H defines a Dp+2 singularity. When p is
odd there are 2 matrix factorizations of the form (σ 2

2 − 4σp

1 , σ1), (σ1, σ 2
2 − 4σp

1 ) and thus
the 2 modules A = Coker(σ1, σ 2

2 − 4σp

1 ) and B = Coker(σ 2
2 − 4σp

1 , σ1). Using the results
from Section 4, we can construct one dimensional representations λ1, λ2 of G(m,p, 2)
such that (z|λ1 , j |λ1⊗det) is equivalent to (σ1, σ

2
2 − 4σp

1 ) and (z|λ2 , j |λ2⊗det) is equivalent
to (σ 2

2 − 4σp

1 , σ1).
For R/(�) there are four more families of indecomposable CM modules,

Xj , Yj ,Kj , Nj , where 0 ≤ j ≤ p − 1. Here we note that in [26] the notation for Kj is
Mj , the change is due to clashing notation. These modules are the cokernels of the matrix
factorizations (φj , ψj ) and (ξj , ηj ) for 0 ≤ j ≤ p − 1, where the matrices are:

φj =
[

σ2 2σ j

1

2σp−j

1 σ2

]

ψj =
[

σ2σ1 −2σ j+1
1

−2σp+1−j

1 σ2σ1

]

ξj =
[

σ2 2σ j

1

2σp+1−j

1 σ2σ1

]

ηj =
[

σ2σ1 −2σ j

1

−2σp+1−j

1 σ2

]

For 0 ≤ j ≤ p − 1, we define Xj = Coker(ξj , ηj ), Yj = Coker(ηj , ξj ), Kj =
Coker(φj , ψj ) and Nj = Coker(ψj , φj ). Then one can quickly show the following:

X0 ∼= R/(�) ∼= Y0, K0 ∼= B, N0 ∼= A ⊕ R/(�)

and for 1 ≤ j ≤ p − 1;

Xj
∼= Yp+1−j , Yj

∼= Xp+1−j , Xp+1
2

∼= Yp+1
2

, Nj
∼= Np−j , Kj

∼= Kp−j .

Using these isomorphisms, and noting that every Y module is isomorphic to an X

module, a complete list of non-isomorphic CM modules over R/(�) is given by:

i) Xj for 1 ≤ j ≤ p,
ii) Kj for 1 ≤ j ≤ p−1

2 ,

iii) Nj for 1 ≤ j ≤ p−1
2 ,

iv) A,
v) B,
vi) R/(�).
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Theorem 8.3 Let H = G(m,p, 2), with p odd, m 
= p and q = m
p
. The 2 dimensional

representations of H correspond to the following CM modules in the decomposition of
S/(z):

1) MResGH i jq−1
∼= X2

p+1−j for 0 ≤ i < q − 1, 1 ≤ j ≤ p.

2) MResGH i jq+r

∼= K2
p−j

∼= K2
j for 0 ≤ j ≤ p−1, 0 ≤ i < q −1 and 0 ≤ r < q −1.

3) MResGH q−1 (j+1)q−1
∼= N2

p−j
∼= N2

j for 1 ≤ j ≤ p − 1.

Proof This is proved by calculations of the following form:

1) The module MResGH i jq−1
is X2

p+1−j for 1 ≤ j ≤ p.

Using higher Specht polynomials, a basis for SG

ResGH i jq−1
where 0 ≤ i < q − 1 and

1 ≤ j ≤ p is:

{xjq−1yi, xiyjq−1, xq−1ym−(j−1)q+i , xm−(j−1)q+iyq−1}
and a basis for SG

Res i+1 jq
is:

{xjqyi+1, xi+1yjq, ym+i+1−jq , xm+i+1−jq}
and so by calculation we can express multiplication by z = xy(xm − ym) as the matrix:

z(xjq−1yi) = xjqyi+1(xm − ym)

= σ2(x
jqyi+1) − 2σ j

2 (ym+i+1−jq)

z(xiyjq−1) = xi+1yjq(xm − ym)

= −σ2(x
i+1yjq) + 2σ j

2 (xm+i+1−jq)

z(xq−1ym−(j−1)q+i ) = xqym−(j−1)q+i+1(xm − ym)

= 2σp−(j−1)
1 (xjqyi+1) − σ1σ2(y

m−j+i+1)

z(xm−(j−1)q+iyq−1) = xm−(j−1)q+i+1yq(xm − ym)

= −2σp−(j−1)
1 (xi+1yjq) − σ1σ2(x

m−j+i+1)

Which yields the matrix:
⎡

⎢
⎢
⎢
⎣

σ2 0 2σp−(j−1)
1 0

0 −σ2 0 −2σp−(j−1)
1

−2σ j

1 0 −σ1σ2 0
0 2σ j

1 0 σ1σ2

⎤

⎥
⎥
⎥
⎦

This is then equivalent as matrix factorizations of � to:

SG

ResGH i jq−1
SG

ResGH i+1 jq
SG

ResGH i jq−1

[
σ2 2σ (p+1−j)

1

2σj
1 σ2σ1

]

⊗I2

Thus the module MResGH i jq−1
∼= X2

p+1−j for 1 ≤ j ≤ p and 0 ≤ i < q − 1.

2) The modules MResGH i jq+r

∼= K2
j for 1 ≤ j ≤ p − 1, 0 ≤ i < q − 1 and 0 ≤ r < 0.
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A basis for SG

ResGH i jq
is:

{xjq+ryi , xiyjq+r , xrym−jq+i , xm−jq+iyr }.
and a basis for SG

Res i+1 jq+1
is:

{xjq+r+1yi+1, xi+1yjq+r+1, xr+1ym−jq+i+1, xm−jq+i+1yr+1}.
and so by calculation we can express multiplication by z as the matrix:

⎡

⎢
⎢
⎢
⎣

σ2 0 2σp−j

1 0
0 −σ2 0 −2σp−j

1

−2σ j

1 0 −σ2 0
0 2σ j

1 0 σ2

⎤

⎥
⎥
⎥
⎦

This is then equivalent to the matrix factorization of �:

SG

ResGH i jq
SG

ResGH i+1 jq+1
SG

ResGH i jq

[
σ2 2σ (p−j)

1

2σj
1 σ2

]

⊗I2

Thus for 1 ≤ j ≤ p − 1, MResGH 0 jq

∼= K2
p−j .

3) MResGH q−1 (j+1)q−1
∼= N2

p−j for1 ≤ j ≤ p − 1.

A basis for SG

ResGH q−1 (j+1)q−1
is:

{
xq−1y(j+1)q−1, x(j+1)q−1yq−1xm+q−1−jqyq−1, xq−1ym+q−1−jq

}

and a basis for SG

Res 0 jq
is:

{
xjq, xjq, ym−jq , ym−jq

}

and so by calculation we can express multiplication by z as the matrix:

⎡

⎢
⎢
⎢
⎣

σ1σ2 0 2σp−(j−1)
1 0

0 −σ1σ2 0 −2σp−(j−1)
1

−2σ j+1
1 0 −σ1σ2 0

0 2σ j+1
1 0 σ1σ2

⎤

⎥
⎥
⎥
⎦

This is then equivalent to the matrix factorization:

SG

ResGH q−1 (j+1)q−1
SG

ResGH 0 jq
SG

ResGH q−1 (j+1)q−1

[
σ2σ1 2σp−(j−1)

1

2σj+1
1 σ2σ1

]

⊗I2

Thus for 1 ≤ j ≤ p − 1, MResGH q−1 (j+1)q−1
∼= N2

p−j .

We fully decompose the module S/(z);
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Theorem 8.4 Let H = G(m, p, 2), with p odd, m 
= p and q = m
p
Then:

S/(z) ∼=
p⊕

j=1

X
2(q−1)
j ⊕

p−1
2⊕

j=1

N2
j ⊕

p−1
2⊕

j=1

K
2(q−1)2

j ⊕ K
2(q−1

2 )
0 ⊕ R/(σ1) ⊕ (R/(σ 2

2 − 4σp

1 ))q−1 ⊕ R/(�)

∼=
p⊕

j=1

X
2(q−1)
j ⊕

p−1
2⊕

j=1

N2
j ⊕

p−1
2⊕

j=1

K
2(q−1)2

j ⊕ R/(σ1) ⊕ (R/(σ 2
2 − 4σp

1 ))q−1+2(q−1
2 ) ⊕ R/(�).

Proof Let O be the orbit of hyperplanes that contain ker(x) and ker(y) and q be the other
orbit. The linear characters are given by θi

O
⊗ θ

j
q for 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ 1.

The modules Mθi
O

for 0 ≤ i < q − 1 give the zero module. The module M
θ

q−1
O

is R/(σ1),

Mθi
O

⊗θ1q
∼= R/(σ 2

2 − 4σp

1 ) for 0 ≤ i < q − 1 and M
θ

q−1
O

⊗θ1q
∼= R/(�). These are all of the

modules that correspond to 1 dimensional representations.
All 2 dimensional representations fall into one of the cases of Theorem 8.3, although we

must be careful, since some restricted representations are the same.
The representations ResGH i jq−1, for 0 ≤ i < q −1 case never fall into another case,

since i 
= q − 1. Then for each j there are q − 1 representations of this form, giving rise to
q − 1 copies of X2

p−j in the decomposition of S/(z).

Each representation of the form ResGH q−1 (j+1)q−1, for 1 ≤ j ≤ p − 1, case is iso-
morphic to another one, for example: q−1 (j+1)q−1 ∼= q−1 m−(j−1)q−1. There are
p − 1 m-tuples of Young diagrams of the form q−1 (j+1)q−1 and each one is equiva-
lent, under shifting, to exactly one distinct m-tuple of Young diagrams of the same form.
One can see that all representations ResGH q−1 (j+1)q−1 for 1 ≤ j ≤ p−1

2 are distinct
and are all of the representations appearing from m-tuples of Young diagrams of the form

q−1 (j+1)q−1. Thus one copy of N2
j for 1 ≤ j ≤ p−1

2 appears in the decomposition.

The representations ResGH i jq+r for 0 ≤ j ≤ p−1
2 , 0 ≤ i < q −1 and 0 ≤ r < q −1

are all distinct and for p−1
2 < k < p − 1, i kq+r

∼= r (p−k)q+i where 0 ≤ p − k ≤
p−1
2 . Each ResGH i jq+r for 0 ≤ j ≤ p−1

2 , 0 ≤ i < q − 1 and 0 ≤ r < q − 1, gives

a copy of K2
j in the decomposition, and so by counting we get, for j = 0 there are

(
q−1
2

)

distinct representations - all giving K2
0 . For all 1 ≤ j ≤ p−1

2 we have (q − 1)2 distinct
representations coming from the choice of i and r . These then each give a copy of K2

j .
This then completes the irreducible 2 dimensional representation case, since all irre-

ducible 2 dimensional representations fall into one of the above cases, after shifting by q

and therefore are isomorphic.

8.2 m �= p and p even

For the case when p is even, Spec(R/(�)) is also a Dp+2 singularity. The modules above
are still indecomposable CM modules although, since p + 2 is even, there are more
indecomposable CM modules appearing from splitting. Additionally we have

• C+ = Coker(σ1(σ2 + 2σ
p
2
1 ), σ2 − 2σ

p
2
1 ),

• D+ = Coker(σ2 − 2σ
p
2
1 , σ1(σ2 + 2σ

p
2
1 )),

• C− = Coker(σ1(σ2 − 2σ
p
2
1 ), σ2 + 2σ

p
2
1 ),

• D− = Coker(σ2 + 2σ
p
2
1 , σ1(σ2 − 2σ

p
2
1 )).
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We also have the isomorphisms Kp
2

∼= D+ ⊕ D− and Np
2

∼= C+ ⊕ C−.

Theorem 8.5 Let H = G(m,p, 2), with p even. The discriminant defines a Dp+2 singu-
larity and the 2 dimensional representations correspond to the following CM modules in
the decomposition of S/(z):

• MResGH i jq−1
∼= X2

p+1−j for 1 ≤ j ≤ p − 1 and 0 ≤ i < q − 1.

• MResGH 0 jq

∼= K2
j for 1 ≤ j ≤ p − 1, j 
= p

2 .

• MResGH q−1 (j+1)q−1
∼= N2

j for 1 ≤ j ≤ p − 1, j 
= p
2 .

Proof The calculations are the same as in the odd case.

Remark 8.6 From Section 4, the linear characters give the modules corresponding to the
components of the discriminant.

Theorem 8.7 Let H = G(m, p, 2), with p even, m 
= p and q = m
p
Then:

S/(z) ∼=
p⊕

j=1

X
2(q−1)
j ⊕

p−2
2⊕

j=1

N2
j ⊕

p−2
2⊕

j=1

K
2(q−1)2

j ⊕ K
2(q−1

2 )
p
2

⊕ K
2(q−1

2 )
0

⊕R/ (σ1) ⊕ (R/
(
σ 2
2 − 4σp

1

)
)q−1 ⊕ C+ ⊕ D

q−1
+ ⊕ C− ⊕ D

q−1
− ⊕ R/(�)

∼=
p⊕

j=1

X
2(q−1)
j ⊕

p−2
2⊕

j=1

N2
j ⊕

p−2
2⊕

j=1

K
2(q−1)2

j ⊕ R/ (σ1) ⊕ (R/
(
σ 2
2 − 4σp

1

)
)q−1+2(q−1

2 )

⊕C+ ⊕ D
q−1+2(q−1

2 )
+ ⊕ C− ⊕ D

q−1+2(q−1
2 )

− ⊕ R/(�).

Proof Let O be the orbit of hyperplanes such that jO := ∏
H∈O αH = σ1 and let q+, q−

be the orbit such that jq+ = σ2 + 2σ
p
2
1 , jq− = σ2 − 2σ

p
2
1 . The linear characters are given by

θi
O

⊗θ
j
q+ ⊗θk

q− for 0 ≤ i ≤ q−1, 0 ≤ j ≤ 1 and 0 ≤ k ≤ 1. The modules Mθi
O

for 0 ≤ i <

q − 1 give the zero module. The module M
θ

q−1
O

is R/(σ1), Mθi
O

⊗θ1q+⊗θ1q−
∼= R/σ 2

2 − 4σp

1

for 0 ≤ i < q − 1 and M
θ

q−1
O

⊗θ1q+⊗θ1q−
∼= R/(�). Now we can find the isomorphisms

M
θ

q−1
O

⊗θ1q+
∼= C+ and Mθi

O
⊗θ1q−

∼= D+ for 0 ≤ i < q − 1. Also M
θ

q−1
O

⊗θ1q−
∼= C− and

Mθi
O

⊗θ1q+
∼= D− for 0 ≤ i < q − 1.

All 2 dimensional representations fall into one of the cases of Theorem 8.5, although
we must be careful, since some of the representations considered in the cases above are
isomorphic to each other.

The representations ResGH i jq−1, for 0 ≤ i < q − 1 never fall into another case of
Theorem 8.5, since i 
= q − 1. Then for each 1 ≤ j ≤ p there are q − 1 representations of
this form, giving rise to q − 1 copies of X2

j in the decomposition of S/(z).

Each representation of form ResGH q−1 (j+1)q−1, for 1 ≤ j ≤ p − 1 and j 
= p
2 , is

isomorphic to another representation with a similar form, for example: when we restrict the
representations q−1 (j+1)q−1 ∼= q−1 m−(j−1)q−1, they become isomorphic. When
j = p

2 , Res
G
H q−1 (j+1)q−1 is not an irreducible 2 dimensional representation, it is the

direct sum of two 1 dimensional representations. There are (p − 1) m-tuples of Young dia-
grams of the form q−1 (j+1)q−1 and each one is equivalent, under shifting, to exactly
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one distinct m-tuple of Young diagrams of the same form. One can see that all representa-
tions ResGH q−1 (j+1)q−1 for 1 ≤ j ≤ p−2

2 are distinct and are all of the representations
appearing from m-tuples of Young diagrams of the form ResGH q−1 (j+1)q−1. Thus one

copy of N2
j for 1 ≤ j ≤ p−1

2 appears in the decomposition.

The representations ResGH i jq+r for 0 ≤ j ≤ p−2
2 , 0 ≤ i < q −1 and 0 ≤ r < q −1

are all distinct and for p+2
2 ≤ k < p − 1, i kq+r

∼= r (p−k)q+i where 0 ≤ p − k ≤
p−2
2 . Each ResGH i jq+r for 0 ≤ j ≤ p−2

2 , 0 ≤ i < q−1 and 0 ≤ r < q−1 gives a copy

of K2
j in the decomposition, and so by counting we get, for j = 0 there are

(
q−1
2

)
distinct

representations - all giving a copy of K2
0 . For all 1 ≤ j ≤ p−2

2 we have (q − 1)2 distinct
representations coming from the choice of i and r - each giving a copy of K2

j . Since we are

in the even case if i = r and j = p
2 then the representation ResGH i jq+r splits into two

irreducible 1 dimensional representations, but if i 
= r and j = p
2 then ResGH i jq+r is

an irreducible 2 dimensional representation and gives a copy of K2
p
2
. Note that for i 
= r and

j = p
2 , i jq+r

∼= r jq+i and so the number of distinct representations of this form

are counted by
(
q−1
2

)
.

This then completes the irreducible 2 dimensional representation case, since all irre-
ducible 2 dimensional representations fall into one of the above cases, after shifting.

8.3 m = p

The case of G(m,m, 2) with m > 2 is similar to that of G(2p, p, 2); G(m,m, 2) is also
a true reflection group and thus we already know [10] that S/(z) is an NCR for R/(�).
In loc. cit. it was shown that for a true reflection group in dimension 2 there is a 1 − 1
correspondence between the isomorphism classes of indecomposable CM modules over
the discriminant and the isotypical components. We calculate the correspondence using
[26] for the matrix factorization for the discriminant, which in this case is an Ap−1 sin-
gularity. Let G = G(m, 1, 2) with m > 2 and H = G(m,m, 2), the representations
ResGH i j

∼=ResGH i+1 j+1 where 0 ≤ i < j < m and i + 1 and j + 1 are taken
mod m. From this we see that the action of − ⊗ det is the identity on all irreducible two
dimension representations of H .

Remark 8.8 We avoid the case m = 2 since G(2, 2, 2) is a reducible reflection group and
the case m = 1 is S2.

The 2 dimensional irreducible representations are then distinguished by the distance
between the two boxes in the tuple. In particular the representations ResGH 0 i for
1 ≤ i < m

2 are all distinct and any other irreducible two dimensional representation is iso-
morphic to one of these, this can be seen by shifting the m-tuple of diagrams. Note that if
m is even the representation ResGH 0 m

2
is not irreducible.

Recalling that the discriminant is � = (xm −ym)2 = σ 2
2 −4σm

1 , then Spec(R/(�)) is an
Am−1 singularity. From [26] the CM modules come from the matrix factorizations (φj , ψj )

where:

φj =
[

σ2 2σm−j

1

2σ j

1 σ2

]

, ψj =
[

σ2 −2σm−j

1

−2σ j

1 σ2

]

For 0 ≤ j ≤ p
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Let Xj = Coker(φj , ψj ), then X0 ∼= R, Xj
∼= Xp−j . When m is odd, these are all the

irreducible CM modules over R/(�). When m is even, then (σ2 + 2σ
m
2
1 , σ2 − 2σ

m
2
1 ) and

(σ2 −2σ
m
2
1 , σ2 +2σ

m
2
1 ) are matrix factorizations. Let N+ and N− be the CM modules given

by (σ2 + 2σ
m
2
1 , σ2 − 2σ

m
2
1 ) and (σ2 − 2σ

m
2
1 , σ2 + 2σ

m
2
1 ) respectively, Then Xm

2
∼= N+ ⊕N−.

Lemma 8.9 Let G = G(m, 1, 2) and H = G(m, m, 2) then the modules MResGH 0 i

∼=
X2

i for 0 ≤ i < m
2

Proof A basis for the isotypical components of the coinvariant algebra SH of H , of type
ResGH 0 i for 1 ≤ i < m

2 is {xi, yi, xm−i , ym−i}. Recalling that z = xm−ym, calculating
on this basis, multiplication by z can be expressed as the matrix:

⎡

⎢
⎢
⎣

σ2 0 0 2σm−i
1

0 −σ2 −2σm−i
1 0

0 2σ i
1 σ2 0

−2σ i
1 0 0 −σm−i

2

⎤

⎥
⎥
⎦ .

This is then equivalent as matrix factorizations to:

SG

ResGH 0 i
SG

ResGH 1 i+1
SG

ResGH 0 i

j

[
σ2 2σm−i

1

2σ i
1 σ2

]

⊗I2

So in the odd case we have found all the indecomposable CM modules over R/(�).
In the even case since ResGH 0 m

2
splits into 2 one dimensional representations, from

Section 4 we obtain the modules corresponding to the components of the discriminant.

Theorem 8.10 Let H = G(m,m, 2), with m even, Then:

S/(z) ∼=
m−2
2⊕

j=1

X2
j ⊕ N+ ⊕ N− ⊕ R/(�).

Let H = G(m,m, 2), with m odd, Then:

S/(z) ∼=
m−1
2⊕

j=1

X2
j ⊕ R/(�).

Proof The representations 0 j are distinct for 1 ≤ j ≤ m−1
2 and 0 m−1

2 +i
∼=

0 m−1
2 −i

for 1 ≤ i ≤ m−1
2 . One copy of N+, N− and R/(�) come from the 1

dimensional representations.

8.4 Crossover with True Reflection Groups

The groups G(2p, p, 2) are true reflection groups and so by [10] there is a 1− 1 correspon-
dence between the irreducible representations and isomorphism classes of indecomposable
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CM modules over the discriminant. This section details the 1-1 correspondence using the
notation previous Sections. We only present the p odd case, since the p even case is similar.

Lemma 8.11 The irreducible two dimensional representations of H = G(2p, p, 2) where
p is odd are given by:

1) ResGH 0 2i−1 for 1 ≤ i ≤ p.

2) ResGH 0 2i for 1 ≤ i ≤ p−1
2 .

3) ResGH 1 2i+1 for 1 ≤ i ≤ p−1
2 .

Proof Since for a given 2p-tuple of Young diagrams we can always shift until there is a
box in the first 2 positions, it is enough to consider the 2p-tuples such that there is a box in
position 0 or position 1. This gives us two cases:

1) ResGH 0 i for 1 ≤ i ≤ 2p.
2) ResGH 1 i for 1 ≤ i ≤ 2p.

Then noting that 0 2i−1 ∼= 1 2p−2(i−1) gives us the list above.

Recall that for G(2p, p, 2), the discriminant Spec(R/(�)) is a Dp+2 singularity. We use
the same notation for the modules as in Theorem 8.3

Let p be odd, for the subgroup H = G(2p, p, 2) of G = (2p, 1, 2) the following holds:

1) MResGH 0 2i−1
∼= X2

i for 1 ≤ i ≤ p.

2) MResGH 0 2i
∼= K2

i for 1 ≤ i ≤ p−1
2 .

3) MResGH 1 2i+1
∼= N2

i for 1 ≤ i ≤ p−1
2 .

From this we can see the 1 − 1 correspondence on the 2 dimensional representations, since
for the cases above there is only one representation of each form.

Example 8.12 Consider H = G(6, 3, 2) and G = G(6, 1, 2) then there are the following
equivalence classes of 6-tuples of Young diagrams:

{
0 1, 2 3, 4 5

} {
0 2, 2 4, 0 4

}

{
0 3, 2 5, 1 4

} {
1 2, 3 4, 0 5

}

{
1 3, 3 5, 1 5

}

Then MResGH 0 1
= MResGH 2 3

∼= X2
1, MResGH 0 2

∼= K2
1 , MResGH 0 3

∼= X2
2,

MResGH 1 3
∼= N2

1 , and MResGH 1 2
∼= Y 2

1 (∼= MResGH 0 5
∼= X2

3). The linear char-

acters are of the form ResGH
0
,ResGH

1
, ResGH 0 and ResGH 1. The modules

corresponding to these representations; MResGH M

0

is trivial, MResGH M

1

∼= R/(�),

MResGH M

0

and MResGH M

1

are the two irreducible components of �. This shows the

1-1 correspondence between irreducible representations of G and irreducible CM modules
over the discriminant.
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9 Lusztig Algebras of Complex Reflection Groups

In this section we calculate the Lusztig algebra of G(m, 1, 2), which is a matrix algebra that
encodes the data of irreducible representations of the group G(m, 1, 2). Let A = S ∗ G, in
[11] it was shown for reflection groups that the Lusztig algebra was Morita equivalent to A.
We first define the Lusztig algebra for a complex reflection group and then discuss the case
of G = G(m, 1, 2). In the previous sections we always had a fixed group, so we quickly
add some new notation; let SG, RG, zG,�G be the objects defined in previous chapters for
the group G. We thank Michael Wemyss for pointing out that the method used to calculate
the Lusztig algebra is the same as in [9].

Definition 9.1 Let G and G′ be two reflections groups acting on S, where �G and �G′
are their discriminants respectively. We say that the two groups are isodiscriminantal if
RG/(�G) ∼= RG′/(�G′).

Theorem 9.2 [6, Theorem 2.2] Every complex reflection group G is isodiscriminantal to a
true reflection group.

Theorem 9.3 [5] The groups G(m, 1, 2) for m ≥ 2 are isodiscriminantal.

From the previous section we can automatically state the following result:

Theorem 9.4 Let Gm = G(m, 1, 2) then the endomorphism algebras
EndRGm/(�)(SGm/(zGm)) are all Morita equivalent.

Proof Theorem 1.1 shows that all add(SGm/(zGm)) are the same, since they all contain at
least one copy of every indecomposableCM modules ofRGm/(�Gm), and thus in particular
of RG2/(�G2).

We introduce the Lusztig algebra as in [11]. In particular, details and construction of the
specific group action can be found in loc. cit.

Definition 9.5 Let G be a finite group and {V1, ..., Vr } the complete list of irreducible
representations of G, the basic representation of G is T = ⊕r

i=1 Vi . If T is the basic
representation of G then we define the Lusztig algebra of G as:

Ã(G) = (EndC(T ) ⊗ SymC(Cn))G.

Remark 9.6 In general we can, instead of taking SymC(C), take any (Koszul)G−C-algebra
which would impose different relations on the resulting algebra.

To calculate Ã(G) as a matrix algebra, let d = dim(T ), and M an element of EndC(T )⊗
SymC(Cn), M is an element of Ã(G) if and only if ρ(g)(g(M))ρ(g)−1 = M . In particular
M can be calculated by blocks Mij , which are of size dim(Vi) × dim(Vj ) using:

Mij = ρi(g)g
(
Mij

)
ρj (g)−1 (1)

for all g ∈ G.

Definition 9.7 Let G be a finite group acting on C
n and {V1, . . . , Vr } be a list of all

non-isomorphic irreducible representations of G and V is the standard representation. The
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McKay quiver �(G) ofG is defined as follows: the vertices of�(G) are the irreducible rep-
resentations Vi of G and there are mij arrows from Vi to Vj if Vj appears with multiplicity
mij in Vi ⊗ V

Remark 9.8 Some authors use the opposite convention for the direction of the arrows in the
McKay quiver.

When two algebras A and B are Mortia equivalent we write A ∼=M B.

Theorem 9.9 [11, Theorem 6.14] Let G be a finite group acting on C
n, Let A =

SymC(Cn) ∼= TC(Cn)/I thenA∗G is Morita equivalent to a path algebraCQ/〈I 〉whereQ

is the McKay quiver of G and 〈I 〉 is the ideal of relations in CQ induced by I . In particular
Ã(G) ∼=M CQ/〈I 〉.

From Eq 1, we see that the block Mij of M will represent the arrow Vj → Vi in the
McKay quiver.

Theorem 9.10 [11, Theorem 4.10] Let � = �(G(m, 1, 2)) be the McKay quiver of
G(m, 1, 2). The vertices correspond to m-tuples of Young diagrams (λ0, . . . , λm−1) of size
0 ≤ ni ≤ 2 such that

∑m−1
i=0 ni = 2. There is an arrow from α to β iff the m-tuple of Young

diagrams β can be obtained from α by removing a cell from position i and then adding a
cell to position i + 1 mod m.

Let G(m, 1, 2) when m ≥ 3 then the McKay quiver contains the following mesh:

Recall that the generators of the group are:

s1 :=
[
ξm 0
0 1

]

, s2 :=
[
0 1
1 0

]

.

Let:

v = i−1 j , u = i j , w = i j−1, t = i−1 j−1.
We first calculate the 2 × 2 matrix Mv,u which, when choosing scalars, will correspond

to the arrow labelled A.

Mv,u =
[
a11x + b11y a12x + b12y

a21x + b21y a22x + b22y

]

and so:

s1(M
v,u) =

[
ξma11x + b11y ξma12x + b12y

ξma21x + b21y ξma22x + b22y

]

s2(M
v,u) =

[
b11x + a11y b12x + a12y

b21x + a21y b22x + a22y

]
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The matrix Mv,u has the following relations:

Mv,u = ρv(s1)s1(M
v,u)ρ−1

u (s1) =
[
ξ

j
m 0
0 ξ i−1

m

]

s1(M
v,u)

[
ξ

m−j
m 0
0 ξm−i

m

]

and

Mv,u = ρv(s2)s2(M
v,u)ρ−1

u (s2) =
[
0 1
1 0

]

s1(M
v,u)

[
0 1
1 0

]

calculating the first relation gives us:

Mv,u =
[

ξma11x + b11y ξ
m−i+j−1
m a12x + ξ

m−i−j
m b12y

ξ
m−j+i
m a21x + ξ

m−j+i−1
m b21y a22x + ξm−1b22y

]

Thus, since i 
= j − 1, j we get the following equations:

a11 = a12 = a21 = b12 = b21 = b22 = 0

Using the second generator, gives the equations:

b22 = a11, a22 = b11, b21 = a12, a21 = b12

Using these together we see that:

Mv,u =
[
ay 0
0 ax

]

for a scalar a ∈ C.
Using similar calculations we obtain:

Mw,u =
[
bx 0
0 by

]

Mt,v =
[
cx 0
0 cy

]

Mt,w =
[
dy 0
0 dx

]

For scalars b, c, d ∈ C

SinceA = SymC(C2) ∼= C〈x, y〉/〈xy−yx〉, to calculate the relations that are induced by
I = 〈xy − yx〉, we look at the matrix that encodes the paths of length 2, i.e, in the notation
of [11] we take 2 general elements M and M ′ of EndC(T )⊗SymC(Cn) and calculate M ·M ′

(M · M ′)t,u =
[
c′axy + d ′byx 0

0 c′ayx + d ′bxy

]

From this we get the relation:
CA + DB = 0

A different mesh appears in the McKay quiver when j = i + 1.
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The relations can be obtained in a similar way to before.

HE + IF − 2KJ

Gives the relation:
PO = QL = 0

Theorem 9.11 Letm > 2, V andU be irreducible representations ofG(m, 1, 2), andAU,V

be the arrow from V to U . The Lusztig algebra Ã(G(m, 1, 2)) ∼= CQ/〈I 〉 where 〈I 〉 is the
ideal generated by:

A
i i+1,

i+1A i, i i+1 , A i i+1, i+1A i
, i i+1

for 0 ≤ i ≤ m − 1 and i+1 is taken mod m

A i j−1, i j A i−1 j−1, i j−1 + A i−1 j , i j A i−1 j−1, i−1 j

for 0 ≤ i, j ≤ m = 1, i + 1 
= j and i − 1 is taken mod m

A i
, i i+1A i−1 i ,

i + A i, i i+1A i−1 i , i

−2A i−1 i+1, i i+1A i−1 i , i−1 i+1

Proof The discussion above gives all of the relations in the McKay quiver of G(m, 1, 2) for
m > 2.

For the case of G(2, 1, 2), the McKay quiver is:
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The Lusztig algebra is:

SymC(C2)(G(2, 1, 2)) ∼= CQ/〈AH, BG,CF, DE, EA + HD − BF − GC〉
These calculations can be found in [11, Example 6.15]

Reiten and Van den Bergh classified two dimensional tame orders of finite representation
type in [21]. Here we discuss how the Lusztig algebra of G(m, 1, 2) and the Lusztig algebra
for the other complex reflection groups of rank 2 fit into the classification.

Definition 9.12 Let Q be a quiver, then ZQ is the quiver that has vertices (x, i), where
x ∈ Q and i ∈ Z and for each arrow α : x → y and for every i there is an arrow
(x, i) → (y, i) and an arrow (y, i) → (x, i + 1).

Theorem 9.13 The McKay quivers for G(m, 1, 2) for m ≥ 3 are the quivers Z�/H where
� = D̃m+2 and H is an automorphism of Z�.

Proof We start by describing a section for the quivers Z�. Let p = m + 2 − �m+5
2 �.

Here we start with a D̃m+2 slice of the translation quiver, i.e Fig. 1, where vertices are
indexed by irreducible representations of G(m, 1, 2). We can then populate ZD̃m+2 using
(vλ, i + 1) = (vλ⊗det, i). The group action H is identifying vertices that are indexed by
the same representation. To be explicit with the notation from [21], consider the following

orientation
−→̃
Dn of D̃n

v1

v2

v3 . . . vl . . . vn−1

vn

vn+1

where l = � n+3
2 �. Define ρ as the automorphism of

−→̃
Dn given (uniquely) by ρ(v1) = vn

and ρ(vn) = v1.
When m > 2 is even, the group G which acts on the translation quiver ZD̃m+2 is

generated by the automorphism:

φm
2
(v, i) =

(
ρ(v), i − m

2

)

When m is odd G is generated by the element:

ψm(vj ) =
⎧
⎨

⎩

(
ρ(vj ), s − m+1

2

)
if j ≤ m+1

2(
ρ(vj ), s − m−1

2

)
if j > m+1

2 .

Corollary 9.14 The Lusztig algebras Ã(G(m, 1, 2)) for m > 2 are not Morita equivalent.
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Fig. 1 A slice of the translation quiver ZD̃m+2 decorated with irreducible representations of G(m, 1, 2).

The relations of the Lusztig algebra can then be read off of Z� as the mesh relations on
the quiver, with the translation τ = − ⊗ det.
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Let Gm = G(m, 1, 2), since the Lusztig algebra Ā(Gm) ∼=M SymC(C2) ∗ Gm, we can
relate this to the result of Buchweitz–Faber–Ingalls:

Theorem 9.15 [10, Theorem 4.17] Let G ⊂ GL(V ) be a true reflection group, Let A =
SymC(C2) ∗ G and Ā = A/AeχA where eχ is an idempotent for a linear representation
χ ∈ A. Then:

Ā ∼= EndR/(�)(S/(z))

Thus for the groups G(m, 1, 2) the following diagram shows the results of this section:

EndR/(�2)(SG2/(zG2))
∼=M AG2/AG2eχAG2

∼=
M

EndR/(�m) Gm(SGm/(zGm)) 
∼=M

 ∼=

M

AGm/AGmeχAGm

This suggests that to expand Theorem 9.15 to any complex reflection group, we need
to quotient the skew group ring with more idempotents. Locating the correct irreducible
representations would be interesting.
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