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Abstract
Quaternionic projective plane HP 2 is the next simplest conjugacy class of a complex
symplectic group with pseudo-Levi stabilizer subgroup after the sphere S4 � HP 1. Its quan-
tization gives rise to a module category Ot

(
HP 2

)
over finite-dimensional representations

of the symplectic quantum group Uq
(
sp(6)

)
, a full subcategory in the BGG categoryO. We

prove that Ot

(
HP 2

)
is semi-simple and equivalent to a category of quantized equivariant

vector bundles on HP 2.

Keywords Quaternionic Grassmannians · Quantum symplectic group · Module category ·
Contravariant form · Vector bundles

Mathematics Subject Classification (2010) 17B10 · 17B37 · 53D55.

1 Introduction

With every point t of a maximal torus T of a simple complex algebraic group G one can
associate a full subcategoryOt in the BGG categoryO of the corresponding quantum group,
Uq(g). This subcategory is additive and stable under the tensor product with the category
Finq(g) of finite-dimensional (quasi-classical) Uq(g)-modules. Its objects are submodules
in tensor products of V ∈ Finq(g) with a distinguished base module M of highest weight
λ depending on t . In generic situation, the locally finite part of End(M) is an equivariant
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quantization A of the coordinate ring of Ct = AdG(t), the conjugacy class of t . If Ot is
semi-simple, then its objects can be regarded as “representations” of quantum equivariant
vector bundles on AdG(t). According to the famous Serre-Swan theorem [22, 24], global
sections of vector bundles on an affine variety form finitely generated projective modules
over its coordinate ring and vice versa. Finitely generated projective rightA-modules equiv-
ariant with respect to Uq(g) can be viewed as quantum equivariant vector bundles. They
constitute a Finq(g)-module category, Prq(A, g).

Equivalence of Finq(g)-module categories Ot and Prq(A, g) is established via functors
acting on objects as Prq(A, g) � � �→ � ⊗A M ∈ Ot and Ot � N �→ Hom◦

C
(M,N) ∈

Prq(A, g), where the circle designates the locally finite part with respect to the Uq(g)-
action. The module M is absent in the classical picture as there is no faithful irreducible
representation of a classical commutative coordinate ring.

Quantization of vector bundles is a natural extension of the deformation quantization
programme for Poisson manifolds [1]. Vector bundles on non-commutative spaces are of
interest in the K-theory [23], non-commutative geometry [4], and non-commutative quan-
tum field theory [5]. There is one more area of their applications in connection with quantum
symmetric pairs and universal K-matrices, [8, 12]. If the class Ct is a symmetric space, then
there is a one-dimensional representation of A (a classical point on quantized Ct ). It satis-
fies the reflection equation [9] defining a coideal subalgebra Uq(k′) ⊂ Uq(g). Then A can
be realized as the subalgebra of Uq(k′)-invariants in the Hopf algebra of functions on the
quantum group that is dual to Uq(g). In the classical limit, Uq(k′) turns into the centralizer
U(k′) of a point t ′ ∈ Ct , which is conjugate to the centralizer U(k) of the point t .

The representation theory ofUq(k′) is a challenge since t ′ �∈ T (which is fixed for a quan-
tum group) and the triangular decomposition of Uq(g) is not compatible with that of Uq(k′),
[12, 13]. The category Ot , if semi-simple, plays the role of a bridge between Prq(A, g)
and the category of finite-dimensional Uq(k′)-modules via a chain of equivalences. This is
discussed in detail in [18] for quantum spheres.

Remark that an associated vector bundle in the classical geometry is obtained via induc-
tion functor from a finite dimensional representation of the stabilizer subgroup, which is
a relatively simple thing. In the non-commutative world the picture is quite opposite. It is
surprisingly easier to construct an apparently more complex vector bundle, and arrive at the
fiber via specialization at the (quantum) initial point, if any. This transition is demonstrated
for projective spaces in [20].

In the present paper we study the category Ot for G = SP (6) and t ∈ T one of 6
points with the stabilizer � SP (4) × SP (2) (they belong to two isomorphic conjugacy
classes). In this case, Ct is the quaternionic projective plane HP 2 which enters one of the
two infinite series, HPn, of rank 1 non-Hermitian symmetric conjugacy classes. The other
series comprises even spheres and has been studied in [18]. However, the approach of [18]
(as well of the last section in [19]) is special for S2n and cannot be extended any further. The
method we demonstrate here on the example of HP 2 works for any semi-simple conjugacy
class comprising elements of finite order (e.g. symmetric conjugacy classes). This method
reduces the question of semi-simplicity ofOt to simplicity ofM .

We prove that the module M is irreducible in the case of HP 2 and explicitly construct
an orthonormal basis with respect to the contravariant form on it. Our approach is based
on viewing M as a module over Uq(l) ⊂ Uq(g), where l � gl(2) ⊕ sp(2) is the maximal
reductive Lie subalgebra in k such that U(l) is quantized as a Hopf subalgebra in Uq(g).
This is the content of Section 2.
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In Section 3, we prove semi-simplicity of the category Ot . It is an illustration of a
complete reducibility criterion for tensor products of highest weight modules based on a
contravariant form and Zhelobenko extremal cocycle [17, 19, 25]. We show that for every
finite-dimensional quasi-classical Uq(g)-module V the tensor product V ⊗M is completely
reducible and its simple submodules are in a natural bijection with simple k-submodules in
the classical g-module V . This way we establish equivalence of Ot and Fin(k) as Abelian
categories.

In Section 4 we present a classical point on quantum HP 2, i.e. a one-dimensional rep-
resentation of A. It is a numerical solution of the reflection equation that satisfies other
relations of quantized C[HP 2]. Therein we describe the coideal subalgebra Uq(k′).

In the last Section 5 we establish equivalence of the category Ot with the category
Prq(A, g).

1.1 QuantumGroup Uq
(
sp(6)

)
and Basic Conventions

In this paper, g = sp(6), k = sp(4)⊕ sp(2) and l = gl(2)⊕ sp(2). There are inclusions g ⊃
k ⊃ l of Lie algebras, which we describe by inclusions of their root bases as follows. Both k
and l are reductive subalgebras of maximal rank, i.e. they contain the Cartan subalgebra h of
g. Fix the inner product on h such that the long root has length 2. All positive roots of g are
expressed in an orthonormal basis of weights {εi}3i=1 ∈ h∗ as R+

g = {εi ± εj }i<j ∪{2εi}3i=1.
Then αi = εi − εi+1, i = 1, 2, and α3 = 2ε3 form the basis of simple roots �g = �. The
basis of simple roots of k is �k = {α1, 2α2 + α3, α3}. Note that the root 2α2 + α3 is not in
�g. In contrast with l ⊂ k whose basis of simple roots is �l = {α1, α3}.

For two elements x, y of an associative algebra and a scalar a we write [x, y]a = xy −
ayx. We say that x and y quasi-commute if [x, y]a = 0 for some a ∈ C, and call the algebra
quasi-commutative if this holds for all pairs of its generators.

The quantum group Uq(g) is a C-algebra with unit parameterized by a complex number
q, which is assumed not a root of unity, [2, 3]. It is generated by simple root vectors ei , fi
(Chevalley generators), and invertible Cartan generators qhi , i = 1, 2, 3. The elements q±hi
generate a commutative subalgebra Uq(h) in Uq(g) isomorphic to the polynomial algebra
on a torus. They obey the following commutation relations with ei , fi :

qhi ej = q(αi ,αj )ej q
hi qhi fj = q−(αi ,αj )fj qhi i, j = 1, 2, 3.

Furthermore, [ei, fj ] = δij
qhi−q−hi
q−q−1 for all i, j = 1, 2, 3. Non-adjacent positive Chevalley

generators commute while adjacent generators satisfy quantum Serre relations

[ei, [ei, ej ]q ]q̄=0, i, j=1, 2, i �=j, [e2, [e2, [e2, e3]q2 ]]q̄2=0, [e3, [e3, e2]q̄2 ]q2=0,

where q̄ = q−1. Similar relations hold for the negative Chevalley generators on replacement
fi → ei , which extends to an involutive algebra automorphism σ of Uq(g) with σ(qhi ) =
q−hi .

A comultiplication defined on the generators by

	(fi) = fi ⊗ 1+ q−hi ⊗ fi, 	(q±hi ) = q±hi ⊗ q±hi , 	(ei) = ei ⊗ qhi + 1⊗ ei

makes Uq(g) a Hopf algebra. The assignment qhi �→ 1, ei �→ 0, fi �→ 0 extends to the
counit homomorphism Uq(g)→ C, then antipode γ acts on the generators by qhi �→ q−hi ,
ei �→ −eiq−hi , fi �→ −qhi fi . It is an anti-algebra and anti-coalgebra automorphism of
Uq(g).
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The composition ω = σ ◦ γ is an involutive automorphism of Uq(g) that preserves
comultiplication and flips multiplication.

The Serre relations are homogeneous with respect to the Uq(h)-grading via its adjoint
action on Uq(g). They are determined by the corresponding weight, so we refer to a
particular relation by its weight in what follows.

We remind that a total ordering on the set of positive roots is called normal if any α ∈ R+
presentable as a sum α = μ + ν with μ, ν ∈ R+ lies between μ and ν. A reductive Lie
subalgebra l ⊂ g of maximal rank is called Levi if it has a basis �l of simple roots which
is a part of �. Then there is a normal ordering such that every element of R+

g/l
is preceding

all elements of Rl. In this paper, l designates the subalgebra gl(2) ⊕ sp(2) as agreed upon
earlier.

With a normal ordering one can associate a system {f̃α}α∈R+ ⊂ Uq(g−) of elements
such that ordered monomials in f̃α form a PBW-like basis in Uq(g−). In particular, the
algebra Uq(g−) is freely generated over Uq(l−) by ordered monomials in f̃α with α ∈ R+

g/l
.

In the classical limit, the elements f̃α form a basis of root vectors in g−. For a detailed
construction of such a basis, the reader is referred to [2].

By 
g we denote the weight lattice of g, i.e. a free Abelian group generated by funda-
mental weights relative to the fixed polarization of R. The semi-group of integral dominant
weights is denoted by 
+

g . All Uq(g)-modules are assumed diagonalizable over Uq(h). A

non-zero vector v of a Uq(h)-module V is said to be of weight μ ∈ h∗ if qhαv = q(α,μ)v for
all α ∈ �+. A weight vector is called singular if it is annihilated by all eα , α ∈ �+. Vectors
of weight μ span a subspace in V denoted by V [μ]. The set of weights of V is denoted by

(V ).

Infinitesimal character of a Uq(h)-module is defined as a formal sum∑
μ∈
(V ) dimV [μ]μeμ. We write ch(V ) � ch(W) if dimV [μ] � dimW [μ] for all μ and

ch(V ) < ch(W) if this inequality is strict for some μ.
By all q we mean all not a root of unity; almost all q stands for all except for a finite set

of values.

2 BaseModule forHP2

In this section we study a Uq(g)-module M that generates the category of our interest. We
prove its irreducibility and construct an orthonormal basis with respect to a contravariant
form on it.

Let ρ denote the half sum of positive roots of g and κ the half-sum of the positive roots
of k. Regard roots (more generally, integral weights) as characters of the maximal torus T of
the groupG (the torus has been fixed and its Lie algebra is h participating in the construction
ofUq(g)). Define base weight λ ∈ h∗ as one featuring the property q2(λ,α) = α(t)q2(κ−ρ,α),
for all α ∈ �g, where α(t) is the value of root α on the initial point t ∈ T . It is the eigenvalue
of the operator Adt on the corresponding root space in g and, in particular, α(t) = 1 once
α ∈ �k.

Remark that λ is evaluated on squared Cartan generators in the above equality. Therefore
base weight is not uniquely determined by the point t but up to a choice of sign in ±√α(t)
for each α ∈ �g. One can pick up any for λ, but we additionally assume q(λ,α) = 1 for all
α ∈ �l = �g∩�k. This is consistent with the conditions on λ because (κ, α) = (ρ, α) = 1
for such α. The rational for this will be explained later.
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We fix the initial point t by

εi(t) =
{−1, i = 1, 2,

1, i = 3,

so the base weight satisfies q2(λ,ε3) = q(λ,ε1−ε2) = 1, q2(λ,ε1) = q2(λ,ε2) = −q−2.
Set δ = 2α2 + α3 and fδ = f 2

2 f3 − (q2 + q̄2)f2f3f2 + f3f 2
2 . It is easy to check that fδ

commutes with f3 and e3, cf. [21]. Let M̂λ denote the Verma module with highest weight
λ and define M as the quotient of M̂λ by its submodule generated by vectors f11λ, f31λ,
and fδ1λ. It is isomorphic to Uq(g−)/J as a Uq(g−)-module, where J ⊂ Uq(g−) is the left
ideal generated by f1, f3, fδ .

The module M supports quantization of the conjugacy class HP 2 in the sense that its
quantized (deformed) coordinate ring Cq [HP 2] can be represented as a Uq(g)-invariant
subalgebra in End(M). Its explicit formulation in terms of generators and relations is given
in Section 4.

As l is a Levi subalgebra in g, its universal enveloping algebra is quantized to a Hopf
subalgebra Uq(l) ⊂ Uq(g). The module M is a quotient of the parabolic Verma module

M
�
λ of the same weight, by the submodule generated by (the image of) the vector fδ1λ,

which is singular in M�
λ. It follows that M is locally finite over Uq(l), [19]. We will study

M regarding it as a Uq(l)-module; then our additional requirements (λ, α) = 0 for α ∈ �l

will keep us within the category of quasi-classical Uq(l)-modules (deformations of classical
U(l)-modules). HoweverM is not quasi-classical for entire Uq(g).

Remark 2.1 Note thatM contains a base module for the quantum 4-sphere, [21]. It is gen-
erated by the highest vector, over the natural quantum subgroup Uq

(
sp(4)

) � Uq
(
so(5)

)

in Uq
(
sp(6)

)
. We will further refer to results on S

4 in our study of higher pseudo-parabolic
modules over HP 2 in Section 3.

2.1 Uq(l)-module Structure of M

It turns out that highest vectors of finite dimensional Uq(l)-submodules in M belong to a
subalgebra � Uq

(
sl(3)

) ⊂ Uq(g), which we describe next.
Set ξ = α1 + α2 + α3 and θ = α1 + 2α2 + α3 and define root vectors

fξ = [[f1, f2]q̄ , f3]q̄2 , fθ = [f2, fξ ]q, eξ = [e3, [e2, e1]q ]q2 , eθ = [eξ , e2]q̄ .
Remark that eφ is proportional to σ(fφ) for φ = ξ, θ . The set {fξ , eξ , q±hξ } forms a
quantum sl(2)-triple with [eξ , fξ ] = [2]q [hξ ]q .

Proposition 2.2 The elements e2, f2, q±h2 , eξ , fξ , q±hξ generate a subalgebra Uq(m) ⊂
Uq(g) isomorphic to Uq

(
sl(3)

)
, with the set of simple roots {α2, ξ}.

Proof Observe that the set Rm = {±α2,±ξ,±θ} ⊂ h∗ is a root system of the sl(3)-type
with

(ξ, ξ) = 2, (α2, α2) = 2, (ξ, α2) = −1,

so the commutation relations between the Cartan and simple root generators are correct.
Furthermore, it is straightforward to check that [e2, fξ ] = 0 and [eξ , f2] = 0. Finally, so
long fθ = [f2, fξ ]q , the Serre relations [fθ , f2]q = 0 = [fξ , fθ ]q hold by (A.20) and
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(A.23). This also yields the Serre relations [eθ , e2]q = 0 = [eξ , eθ ]q via the involution
σ .

Remark that the subalgebra Uq(m) results from a Lusztig transformation of the subalge-
bra with the simple root basis α1, α2, see Appendix.

Proposition 2.3 Vectors {f k2 f lθ1λ}k,l∈Z+ ⊂ M are Uq(l)-singular (killed by all eα with
α ∈ �l).

Proof Both e1 and e3 commute with f2, so we check their interaction with fθ . An easy
calculation gives [e3, fθ ] = 0 and [e1, fθ ] = fδq

h1 ∈ JUq(h). Hence f k2 f lθ1λ is annihilated
by e1 and e3, by virtue of (A.21).

Corollary 2.4 The vector fθ belongs to the normalizer of the left ideal J .

Proof Indeed, fδfθ ∈ J by (A.21). Furthermore, fθ1λ generates a finite-dimensional
Uq(l)-submodule inM . Since (λ− θ, αi) = 0 for i = 1, 3, this submodule is trivial, hence
f1fθ and f3fθ are in J .

We denote by B the set {f k2 f lθ1λ}k,l∈Z+ ⊂ M . Our next objective is to show that B is
a basis of the subspace of Uq(l+)-invariants in M . Let Lk,l ⊂ M be the Uq(l)-submodule
generated by f k2 f

l
θ1λ and set L = ⊕∞

k,l=0Lk,l ⊂ M .
Introduce notation fij for i � j by setting fii = fi and recursively fi,j+1 =

[fi,j , fi+1]a , where a = q(αi+...+αj ,αj+1). Then Serre relations imply

f1f
k
2 = [k]qf k−1

2 f12 + q−kf k2 f1, f3f
k
2 =−q2[k]q2f k−1

2 f23+q2kf k2 f3 mod J(2.1)

since fδ commutes with f2 and f3. It will be also of use to write these formulas as

f k−1
2 f12 = 1

[k]q f1f
k
2 mod J, f k−1

2 f23 = − 1

q2[k]q2
f3f

k
2 mod J . (2.2)

Lemma 2.5 For all k � 2, f1f3f k2 = [k]q2f k−2
2

(
[k]qf2f3f1f2 − [k−1]q [2]q

(1−q̄2) fθ

)
mod J .

Proof Pushing f3 and then f1 to the right in f1f3f k2 we find it equal to

−q2f1[k]q2f k−1
2 f23 mod J = −q2[k]q2 [k−1]qf k−2

2 f12f23−q2q−k+1[k]q2f k−1
2 f1f23 mod J,

where we have used (2.1). Expressing f12f23 and f2f1f23 on the right through f2fξ and fθ
modulo J we prove the lemma.

Proposition 2.6 L exhausts all ofM .

Proof It is sufficient to check that the Uq(l)-submodule L is invariant under Uq(g−) as it
contains 1λ. That is so if and only it is f2-invariant.

The elements fij with i < j quasi-commute with fk , k = 1, 3, unless k = i − 1 or
k = j + 1. Therefore

f2L ⊂ Uq(l−)f12B + Uq(l−)f23B + Uq(l−)fξB + L.

Notice that f12 quasi-commutes with every power of f2 while f23 quasi-commutes with it
modulo J because fδ ∈ J commutes with f2 and f3. Therefore we can further push them
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to the right until they hit fθ -s and then apply (2.2). This way we prove f12B ⊂ L and
f23B ⊂ L, with the help of Corollary 2.4.

Furthermore, push fξ to the right in the third term until it hits fθ -s, using [f2, fξ ]q =
fθ . Then for all k, l ∈ Z+ we get fξf k2 f

l
θ1λ = f k2 fξf

l
θ1λ modulo L because fθ quasi-

commutes with f2 by (A.20). But fξf lθ1λ ∝ f1f3f2f
l
θ1λ because f1 and f3 are in J and

kill f lθ1λ by Corollary 2.4. Applying Lemma 2.5 to fξf k2 f
l
θ1λ ∝ f k2 f1f3f2f

l
θ1λ we prove

fξB ⊂ L. Then f2L ⊂ Uq(l−)fξB + L ⊂ L, as required.

If follows from Proposition 2.2 that

[e2, f kθ ] = [k]qfξf k−1
θ q−h2 , [ekθ , fξ ] = −q−(k−1)[2]q [k]qek−1

θ e2q
−hξ . (2.3)

Setting λi = (αi, λ) we get as a consequence that

e2f
l
2f

k
θ 1λ = [l]q [λ3 − l − k]qf l−1

2 f kθ 1λ + [k]qq−λ2f l2fξf k−1
θ 1λ. (2.4)

Proposition 2.7 The moduleM is irreducible.

Proof It is sufficient to check that none of the Uq(l)-singular vectors f l2f
k
θ 1λ with l+k > 0

is killed by e2. For k = 0 this is straightforward: el2f
l
21λ = [l]q ∏l−1

i=0[λ2−i]q1λ. This never
turns zero because q2λ2 = q2(λ,ε2−ε3) = q2(λ,ε2) = −q−2. For k > 0, the operator e1e3
annihilates the first term in (2.4) and returns f l+1

2 f k−1
θ 1λ, up to a non-zero scalar multiplier,

on the second. Proceeding this way we obtain (e1e3e2)kf l2f
k
θ 1λ ∝ f k+l2 1λ �= 0. Therefore

f l2f
k
θ 1λ �= 0 and f l2f

k
θ 1λ �∈ ker(e2) unless l + k = 0. Hence these vectors are highest for

different Uq(l)-submodules inM and none of them is singular for Uq(g).

In summary, M is isomorphic to the natural Uq
(
gl(2)

) − Uq
(
sl(2)

)
-bimodule

Cq [End(C2)]. It is semi-simple and multiplicity free. In the classical limit, the subalgebra of
U(l+)-invariants inC[C2⊗C

2] � C[End(C2)] is a polynomial algebra in two variables gen-
erated by the principal minors of the coordinate matrix, see e.g. [7]. In the quantum case, the
space of Uq(l+)-invariants inM is isomorphic to a polynomial algebra in quasi-commuting
variables f2, fθ .

Corollary 2.8 The infinitesimal character of the base module M equals
∏
α∈R+\R+

k
(1 −

e−α)−1eλ.

Proof Readily follows from an isomorphism C[End(C2)] � U(g−/k−) of U(l)-modules.

2.2 Orthonormal Basis in M

A symmetric bilinear form (., .) on a Uq(g)-module V is called contravariant if (xv,w) =
(v, ω(x)w) for all x ∈ Uq(g) and all v,w ∈ V . Recall that every highest weight module
over a reductive quantum group has a unique contravariant form with respect to the involu-
tion ω normalized to 1 on the highest vector. In this section we build an orthonormal basis in
M , with the help of the subalgebras Uq(l) and Uq(m). It can be constructed as the Gelfand-
Zeitlin basis in every Uq(l)-submodule Ll,k ⊂ M , up to a common factor equal to the norm
of the highest vector of Ll,k . Thus the problem essentially reduces to calculation of those
norms. That is done within a Uq(m)-submodule inM generated by 1λ because the space of
Uq(l+)-invariants is in that submodule.
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Proposition 2.9 Set λθ = (λ, θ). Then the assignment (l, k) �→ c̃l,k = 〈1λ, ekθ el2f l2f kθ 1λ〉
is a unique function Z2+ → C satisfying

c̃l,k = −c̃l,k−1[2]q [k]2qq−λθ+l+1 + q−k[l]q [λ2 − l + 1]q c̃l−1,k, lk �= 0,

and c̃l,0 = [l]q !
l−1∏

i=0

[λ2 − i]q , c̃0,k = [k]q ![2]kq
k−1∏

i=0

[λθ − i]q .

Proof The boundary conditions easily follow from the basic relations ofUq(m). Uniqueness
can be checked by an obvious induction on l + k. To prove the recurrence relation permute
f kθ and f l2, then in the resulting matrix element q−lk〈1λ, ekθ el2f kθ f l21λ〉 push one copy of e2
to the right:

c̃l,k = q−kl〈1λ, ekθfξ el−1
2 f k−1

θ f l21λ〉[k]qq−λ2+2l+q−k〈1λ, ekθ el−1
2 f l−1

2 f kθ 1λ〉[l]q [λ2−l+1]q
= −c̃l,k−1[2]q [k]2qq−λθ+l−1 + q−k[l]q [λ2 − l + 1]q c̃l−1,k .

This calculation is actually done inUq(m). In particular, we used (2.3) and [f2, fθ ]q̄=0.

Proposition 2.10 The matrix element cl,k = 〈f l2f kθ 1λ, f l2f kθ 1λ〉 equals
(−1)l+kqk(k−5)+lk+l(l−1) × q−l(λ,α2)c̃l,k , with

c̃l,k = [l]q ![k]q ![2]kq
l−1∏

i=0

[λ2 − i]q
∏l+k−1
i=0 [λθ − i]q

∏l−1
i=0[λθ − i]q

. (2.5)

Proof Let f̄θ ∈ Uq(g−) be the vector obtained from fθ by the substitution q−1 → q. Using
the formula (A.18), replace fθ with q−2f̄θ in the left argument. Then cl,k equals

〈f l2f kθ 1λ, f l2f kθ 1λ〉 = (−1)kq−2k〈f l2 f̄ kθ 1λ, f kθ f l21λ〉
= (−1)lq−2k〈1λ, (q−hθ−4eθ )

k(q−h2e2)lf l2f
k
θ 1λ〉

since ω(f̄θ ) = −q−hθ−4eθ . One can express the right hand side through c̃l,k =
〈1λ, ekθ el2f l2f kθ 1λ〉 and check that c̃l,k defined by (2.5) satisfies the conditions of Proposition
(2.9).

Note that λθ can be replaced with λ2 because q2λ2 = −q2 = q2λθ .

Corollary 2.11 The system y
l,k
i,j = 1√

[2]jqdl,i dl,j cl,k
f i1f

j

3 f
l
2f

k
θ 1λ, where l, k ∈ Z+, i, j � l,

and dl,m = (−1)mq−m(l−m+1)[m]q [l−m+1]q , is an orthonormal basis with respect to the
contravariant form onM .

3 CategoryOt(HP2)

While the base module M supports a representation of Cq [HP 2], it generates a family of
modules which may be regarded as “representations” of more general quantum vector bun-
dles. This interpretation is only possible if all such modules are completely reducible: then
they give rise to projective modules over Cq [HP 2]. They appear as submodules in tensor
products V⊗M (representing a trivial vector bundle), for every V from the category Finq(g)
of finite-dimensional quasi-classical Uq(g)-modules. Therefore the key issue is complete
reducibility of tensor products V ⊗M . We solve this problem in the present section using a
technique developed in [17, 19].
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3.1 Complete Reducibility of Tensor Products

Suppose that V andZ are irreducible modules of highest weight. Each of them has a unique,
upon a normalization, nondegenerate contravariant symmetric bilinear form, with respect to
the involution ω : Uq(g)→ Uq(g). Define a contravariant form on V ⊗Z as the product of
the forms on the factors. Then the module V ⊗ Z is completely reducible if and only if the
form on V ⊗Z is non-degenerate when restricted to the span of singular vectors (V ⊗Z)+.
Equivalently, if and only if every submodule of highest weight in V ⊗Z is irreducible, [17].

For practical calculations, it is convenient to deal with the pullback of the form under an
isomorphism of (V ⊗ Z)+ with a certain vector subspace in V (alternatively, in Z) which
is defined as follows. Let I−Z ⊂ Uq(g−) be the left ideal annihilating the vector 1ζ ∈ Z

of highest weight ζ , then I+Z = σ(I−Z ) is a left ideal in Uq(g+). Denote by V +
Z ⊂ V the

kernel of I+Z , i.e. the subspace of vectors killed by I+Z . Since I+Z is Uq(h)-invariant, V
+
Z is

Uq(h)-invariant too. There is a linear isomorphism between V +
Z and (V ⊗ Z)+ assigning

a singular vector u = v ⊗ 1ζ + . . . to any weight vector v ∈ V +
Z , [17], Prop. 3.2. Here

we suppressed the terms whose tensor Z-factors have lower weights than ζ . Note that the
isomorphism V +

Z → (V ⊗ Z)+ is “almost” Uq(h)-equivariant: it shifts weights by ζ .
The pullback of the contravariant form under the map V +

Z → (V ⊗Z)+ can be expressed
through the contravariant form 〈−,−〉 on V as 〈θ(v), w〉, for a certain linear map θ on
V +
Z with values in its dual space. We call it extremal twist defined by Z. In this paper, the

contravariant form on V is always non-degenerate when restricted to V +
Z , so we can write

θ ∈ End(V +
Z ). This operator is related with the extremal projector pg, which is an element

of a certain extension Ûq(g) of Uq(g), [10]. It is constructed as follows.
A normal order on R+ defines an embedding ια : Uq

(
sl(2)

) → Uq(g) for each α ∈ R+,
[2]. It acts by the assignment

q → qα = q
(α,α)
2 , e→ ẽα, fα → f̃α, qh → qhα ,

where e, f and qh are the standard generators of Uq
(
sl(2)

)
and the twiddled elements are

root vectors constructed via Lusztig automorphisms, [2]. For ψ ∈ h∗, set pg(ψ), to be an
ordered product

pg(ψ) =
<∏

α∈R+
pα

(
(ψ + ρ, α∨)

)
, (3.6)

where α∨ = 2α
(α,α)

and pα(z) is the ια-image of

p(z) =
∞∑

k=0

f kek
(−1)kqk(z−1)

[k]q !∏k
i=1[h+ z+ i]q

∈ Ûq
(
sl(2)

)
, z ∈ C. (3.7)

For genericψ , the operator pg(ψ) is well defined and invertible on every finite-dimensional
Uq(g)-module. The specialization pg = pg(0) is an idempotent satisfying eαpg = 0 =
pgfα for all α ∈ �. This idempotent is called extremal projector.

The element pg(ψ) defines a rational trigonometric operator function of weight in every
weight Uq(g)-module that is locally nilpotent over Uq(g+). We say that it is well defined
if possible singularities are removable. It the case of ψ = 0, we then also assume that the
image of pg(0) is in the space of Uq(g+)-invariants, cf. [19].

Theorem 3.1 [19] Suppose that the map pg(0) : V +
Z ⊗ 1ζ → (V ⊗ Z)+ is well defined.

Then pg(ζ ) is well defined as an operator on V +
Z . If pg(ζ ) invetible, then θ = p−1

g (ζ ).
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In the case of our concern, pg = pg(0) is well defined, cf. Proposition 3.2 below. How-
ever, the operator pg(ζ ) may have poles as a function of ζ . The above theorem claims that
such poles are removable. In the special case of the fundamental module V = C

6 all weights
in V +

Z are multiplicity free. Then det(θ) ∝ ∏
α∈R+

∏
μ∈
(V ) θαμ up to a non-zero factor, with

θαμ =
lμ,α∏

k=1

[(ζ + ρ + μ, α∨)+ k]qα
[(ζ + ρ, α∨)− k]qα

. (3.8)

Here lμ,α is the maximal integer k such that ẽkαV
+[μ] �= {0} for ẽα = ια(e). We compute θ

in the next section.

3.2 Extremal Twist and Extremal Projector

In this section we calculate the determinant of the extremal twist defined by the base module
M using its relation to extremal projector and show that it does not vanish at all q.

Denote simple positive roots of the Lie subalgebra k ⊂ g by β1 = α1, β2 = δ, β3 = α3.
The corresponding fundamental weights of k are μ1 = ε1, μ2 = ε1 + ε2, μ3 = ε3. Pick
up an integral dominant (with respect to k) weight ξ = ∑3

s=1 isμs with �i = (is)
3
s=1 ∈ Z

3+
and set ζ = ξ + λ. The Verma module M̂ζ of highest weight ζ and highest vector 1ζ has

singular vectors F̄ is+1
s 1ζ , where F̄s = fs , s = 1, 3, and

F̄2 = q̄2
(
f 2
2 f3

[h2 − 1]p
[h2 + 1]q − f2f3f2[2]q [h2 − 1]q

[h2]q + f3f
2
2

)
∈ Ûq(b−).

That is straightforward for F̄ i1+1
1 1ζ and for F̄

i3+1
3 1ζ and follows from [18], Proposition 2.7,

since 1ζ generates a Verma submodule over the quantum subgroup Uq(sp(4)), cf. Remark
2.1.

Denote by M̃�i the quotient of M̂ζ by the submodule generated by {F̄ is+1
s 1ζ }3s=1. The

projection M̂ζ → M̃�i factors through a parabolic Verma module relative to Uq(l): it is

the quotient of M̂ζ by the submodule generated by {f is+1
s 1ζ }s=1,3. Therefore M̃�i is locally

finite over Uq(l), [18]. We use the same notation 1ζ for the highest vector in M̃�i .
Denote by F is+1

s ∈ Uq(g−) the Shapovalov elements, i.e. the images of singular vectors

F̄
is+1
s 1ζ under the natural isomorphisms Uq(g−) � M̂ζ , and set Eis+1

s = σ(F
is+1
s ) ∈

Uq(g+). The element F2 equals fδ modulo Uq(g−)f3. Note with care that, contrary to

F̄
i2+1
2 , the elements F i2+1

2 are not powers of F2.
Let Ĩ−�i ⊂ Uq(g−) denote the left ideal annihilating the highest vector in M̃�i . and

put Ĩ+�i = σ(Ĩ−�i ) ⊂ Uq(g+). These ideals are generated by {F is+1
s }3s=1 and {Eis+1

s }3s=1,
respectively, For i = 1, 3, the generators are simply powers of simple root vectors.

From now to the end of the section we fix V = C
6, the smallest fundamental module of

Uq(g). Up to non-zero scalar factors, the action of Uq(g+) on V is described by a graph

v−1
e1−→ v−2

e2−→ v−3
e3−→ v3

e2−→ v2
e1−→ v1 (3.9)

where the vectors v±i of weights ±εi , i = 1, 2, 3, form an orthonormal basis with respect
to the contravariant form. The diagram for the Uq(g−)-action is obtained by reversing the
arrows in (3.9). We find from the diagram that ker(Es) equals

V � Span{v−1, v2}, s = 1, V � Span{v−2}, s =2, V � Span{v−3}, s = 3.(3.10)
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Furthermore, ker(Eis) is entire V if i > 1. We denote by Ṽ +
�i = ∩3

s=1 ker(E
is+1
s ) the kernel

of the left ideal Ĩ+�i in V .

Proposition 3.2 The extremal projector pg : Ṽ +
�i ⊗ 1ζ → (V ⊗ M̃�i )+ is well defined.

Proof It is argued in [19] that the factors pα(z) in (3.6) for α ∈ R+
l
are regular on Ṽ +

�i ⊗ 1ζ

at z = (ρ, α∨) because all weights in Ṽ +
�i ⊗ 1ζ are k- and therefore l-dominant.

Suppose that α ∈ R+
g \R+

l
and evaluate the denominators in pα(z) at z = (ρ, α∨) on a

tensor of weight η = μ + ζ , μ ∈ 
(Ṽ +
�i ). They contain [z + (η, α∨) + k]qα with k ∈ N.

For α ∈ R+
g \R+

k
, such a factor is proportional to qx + q−x for some x ∈ Q and does not

vanish because q is not a root of unity. Therefore all factors pα(t) for such α are regular at
z = (ρ, α∨). Moreover, the extremal projector of the subalgebra Uq(gα2) is well defined on
V ⊗ 1ζ taking it to ker e2.

Now suppose that α ∈ R+
k
\R+

l
. With ξ = 0 (i.e. ζ = λ), the factor [(η + ρ, α∨) + k]q

entering pα(t) is equal, upon evaluation of hα on the subspace of weight η = μ + ζ in
Ṽ +
�i ⊗ 1ζ , to

[(μ, α∨)+ 2+ k]q2 , [(μ, α∨)+ 1+ k]q2 , [(μ, α∨)+ 3+ k]q,
for α = 2ε1, 2ε2, ε1 + ε2, respectively. They are not zero since k > 0 and (μ, α∨) ∈
{−1, 0, 1} for μ ∈ 
(Ṽ +

�i ). That is a fortiori true when ξ �= 0 because (ξ, α∨) ∈ Z+.
Therefore such pα(t) are also regular on Ṽ +

�i ⊗ 1ζ at t = (ρ, α∨).
Thus all root factors in pg(ψ) are regular on Ṽ

+
�i ⊗1ζ at ψ = 0, so pg(0) is independent

of normal ordering. For a simple root α choose an order with α on the left. Then eαpg(0) =
0 on Ṽ +

�i ⊗ 1ζ . We already saw that for α = α2; for α = α1, α3 this is true because V ⊗M�i
is locally finite over Uq(l) and all weights in Ṽ +

�i ⊗ 1ζ are dominant with respect to l, cf.
[19], Proposition 3.6. This completes the proof.

Thus the first condition of Theorem 3.1 is satisfied. The second condition will be secured
by the following calculation.

Proposition 3.3 For all ξ = ∑3
s=1 isμs with �i ∈ Z

3+, the operator pg(ξ + λ) is invertible
on Ṽ +

�i .

Proof Let us calculate θαμ , which are inverse eigenvalues of the root factors constitut-
ing pg(ζ ), up to a non-zero factor. From (3.9) we conclude that all integers lμ,α in (3.8)
are at most 1. Put ζ = λ + ξ , then (3.8) reduces to θαμ = 1 for lα,μ = 0 and to

θαμ = [(ζ+ρ+μ,α∨)+1]qα
[(ζ+ρ,α∨)−1]qα for lα,μ = 1. Observe that

θ
ε1−ε3−ε1 , θε1−ε3ε3

, θ
ε2−ε3−ε2 , θε2−ε3ε3

, θ
ε2+ε3−ε2 , θ

ε2+ε3−ε3 , θ
ε1+ε3−ε1 , θ

ε1+ε3−ε3 .

are all of the form {m1}q
{m2}q for some integers m1,m2, where {x}q = qx+q−x

q+q−1 . They cannot turn

zero as q is not a root of unity. The remaining non-trivial factors θαμ are

θ
2ε1−ε1 =

[i1 + i2 + 2]q2
[i1 + i2 + 1]q2

, θ
2ε2−ε2 =

[i2 + 1]q2
[i2]q2

, θ
2ε3−ε3 =

[i3 + 1]q2
[i3]q2

,
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θ
ε1−ε2−ε1 = [i1 + 1]q

[i1]q = θε1−ε2ε2
, θ

ε1+ε2−ε1 = [i1 + 2i2 + 3]q
[i1 + 2i2 + 2]q = θ

ε1+ε2−ε3 .

Notice that the denominator in θαμ may vanish only for α ∈ �k. That happens if is = 0

for some s = 1, 2, 3. However, such μ do not belong to 
(Ṽ +
�i ), as seen from (3.10).

Since q is not a root of unity, all θαμ never turn zero. Therefore pg(ζ ) is invertible, and
θ = pg(ζ )

−1.

In the next section we shall see that the kernels Ṽ +
�i parameterise irreducible decomposi-

tions in a pseudo-parabolic category associated with HP 2.

3.3 Pseudo-parabolic CategoryOt (HP2) and its Structure

In this section we define the pseudo-parabolic category overHP 2, prove its semi-simplicity
and describe simple objects, based on the results of the previous section.

Denote byOt (HP
2) a full subcategory in the categoryO whose objects are submodules

in W ⊗M , where W ∈ Finq(g) is a quasi-classical finite-dimensional module over Uq(g).
It is a module category over Finq(g) because for every submodule N ⊂ W ⊗M and U ∈
Finq(g), the module U ⊗N is in U ⊗W ⊗M .

We denote by Fin(k) the tensor category of finite-dimensional k-modules. It is a module
category over Fin(g) via the restriction functor.

Let M�i denote the irreducible quotient of M̃�i (we will later prove that they coincide
at almost all q). We call it pseudo-parabolic Verma module of the corresponding highest
weight.

We define V +
�i as the kernel of the left ideal I+�i = σ(I−�i ), where I

−
�i is the annihilator

of the highest vector in M�i . Obviously V
+
�i ⊆ Ṽ +

�i because Ĩ+�i ⊆ I+�i . The subspace V +
�i

is isomorphic to the span of singular vectors in V ⊗M�i , in compliance with discussion of
Section 3.1. In principle, Ṽ +

�i might be bigger than V +
�i but we shall see that they coincide

for almost all q (for all if dimV = 6).
From now until Corollary 3.9 we assume that V = C

6. Let X�i ∈ Fin(k), with �i ∈ Z
3+,

denote the finite-dimensional k-module of highest weight ξ = ∑3
s=1 isμs . For each �i ∈ Z

3+,
introduce a set of triples Ĩ (�i) ⊂ Z

3+:

Ĩ (�i) = {
(i1 ± 1, i2, i3), (i1, i2, i3 ± 1), (i1 ± 1, i2 ∓ 1, i3)

}
, (3.11)

where those with negative coordinates are excluded. Elements of Ĩ (�i) parameterize irre-
ducible k-submodules in V ⊗X�i : their components are coordinates of highest weights in the
basis of fundamental weights {μs}3s=1.

Let Fin(g ↓ k) denote the subcategory of k-modules that are submodules in modules from
Fin(g).

Proposition 3.4 Fin(g ↓ k) ∼ Fin(k).

Proof Since Fin(g) is generated by V as a tensor category, it is sufficient to prove that for
each �i ∈ Z

3+ the k-module X�i is in some tensor power of V . We do it by induction on
|�i| = i1 + i2 + i3. For |�i| = 0, X�i is the trivial module C, which is in Fin(g ↓ k). Suppose
that the statement is proved for allX�i with |�i| = m � 0. Fix an index �i with |�i| = m+1 and
let � be the minimal s ∈ {1, 2, 3} such that is > 0. We will separately consider two cases
depending on the value of �.
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For � = 1, 3 we define �j� ∈ Z
3+ by setting j�s = is − δs�. Then �i ∈ Ĩ ( �j�), as follows

from (3.11). Since | �j�| = m by assumption, X�i is in Fin(g ↓ k).
In the case of � = 2 we consider a pair of vectors �j, �k ∈ Z

3+ via js = is − δ2s and
ks = is + δ1s − δ2s for s = 1, 2, 3. Since | �j | = m, the module X �j is in Fin(g ↓ k) by the

induction assumption. Now observe from (3.11) that �k ∈ Ĩ ( �j) and �i ∈ Ĩ (�k). Therefore X�k
and X�i are in Fin(g ↓ k). This completes the proof.

Let us denote by fβs , eβs ∈ k, s = 1, 2, 3, its negative and positive (classical) Chevalley
generators.

Lemma 3.5 For all i ∈ Z+, there are isomorphisms ker(F is ) � ker(f iβs ) and ker(Eis) �
ker(eiβs ), s = 1, 2, 3, in V .

Proof Notice that the case of i > 1 is easy because the kernels coincide with the whole V .
The case i = 1 is an elementary calculation based on the diagram (3.9).

Corollary 3.6 The vector space Ṽ +
�i is isomorphic to (V ⊗X�i )k+ .

Proof First of all observe that ∩3
s=1 ker(e

is+1
βs

) � ∩3
s=1 ker(E

is+1
βs

) because all weights in V

are multiplicity free. Then the statement is due to the isomorphism Ṽ +
�i � ∩3

s=1 ker(e
is+1
βs

)

because the right-hand side is in bijection with the span of singular vectors in the k-module
V ⊗X�i .

Proposition 3.7 All modules in Ot (HP
2) are semi-simple, and its simple objects are

Uq(g)-modules of highest weights λ+ ξ , ξ ∈ 
+
k
.

Proof Since V +
�i ⊆ Ṽ +

�i and M�i is a quotient of M̃�i , the extremal projector pg : V +
�i ⊗

1ζ → (V ⊗M�i )+ is well defined, by Proposition 3.2. The operator pg(ζ ) is invertible on
V +
�i by Proposition 3.3. Then the tensor product V ⊗M�i is completely reducible, for each

�i ∈ Z
3+, thanks to Theorem 3.1. The highest weights of irreducible submodules are from

λ+
(Ṽ +
�i ⊗ 1�i ) ⊂ λ+
+

k
.

Now observe that every module from Finq(g) can be realized as a submodule in a tensor
power of V . Applying induction on m ∈ Z+ such that M�i ⊂ V⊗m ⊗ M (for m = 0 the
statement is obvious) we prove that all modules from Ot (HP

2) are completely reducible
and the weights of irreducible components are as stated.

Since M�i is a quotient of M̃�i , singular vectors in V ⊗ M�i may have only weights
∑3

s=1 jsμs +λ with �j ∈ Ĩ (�i), by Proposition 3.7. Let I (�i) ⊆ Ĩ (�i) denote the subset of such
triples. We aim to prove that I (�i) = Ĩ (�i).

Proposition 3.8 For each �i ∈ Z
3+:

1. ch(M�i ) = ch(X�i )ch(M) for all q,
2. allM�i with �i ∈ Z

3+ are inOt (HP
2).
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Proof Consider M̃�i as a Uq(g−)-module, M̃�i � Uq(g−)/Ĩ−�i , which makes sense at q = 1

too.1 It the classical limit q → 1, it goes to a quotient of U(g−) by the left ideal generated
by f is+1

βs
, s = 1, 2, 3. Therefore

ch(M�i ) � ch(M̃�i ) � ch(X�i )ch(g−/k−)e
λ = ch(X�i )ch(M),

at generic q. That is, the inequalities hold for dimensions of subspaces of the same weight
for almost all q. The set of q-s where they are violated may depend on the weight.

Suppose that ch(M�i ) = ch(X�i )ch(M) for each M�i ⊂ Vm ⊗M , m � 0, at all q. That
holds trivially for m = 0. The direct sum decomposition V ⊗M�i � ⊕�j∈I (�i)M �j implies

ch(V )ch(M�i ) =
∑

�j∈I (�i)
ch(M �j ) �

∑

�j∈Ĩ (�i)
ch(M̃ �j ) �

�
∑

�j∈Ĩ (�i)
ch(X �j )ch(M) = ch(V )ch(X�i )ch(M) (3.12)

for generic q, because⊕�j∈Ĩ (�i)X �j = V ⊗X�i . We conclude that the inequalities in (3.12) are

all equalities (for generic q), and, secondly, I (�i) = Ĩ (�i). In particular, for each �j and each
weight μ we have

dimM �j [μ] = dim M̃ �j [μ] = dim(X �j ⊗M)[μ] (3.13)

at all q in a punctured neighbourhood of 1 (that might depend on �i and μ). Then ch(M �j ) =
ch(X �j )ch(M) at all q as M �j is simultaneously a quotient of a Verma module and is a sub-

module in V⊗(m+1) ⊗ M , which are both flat at all q including q = 1. Induction on m
proves 1) for allM �j .

To prove 2), we use the equality Ĩ (�i) = I (�i) we have already established. That is, for
each weight η of a singular vector in the k-module V ⊗X�i the pseudo-parabolic module of
highest weights λ+η does appear in V⊗M�i (uniquely since all weights in V are multiplicity
free). Again induction on m such that V⊗m ⊗M ⊃ M�i along with Proposition 3.4 secures
2).

Corollary 3.9 For every V ∈ Finq(g) and for all �i, �j ∈ Z
3+, there is an isomorphism

HomUq(g)(M �j , V ⊗M�i ) � Homk(X �j , V ⊗X�i ).

Proof The equality ch(V ⊗ M�i ) =
∑

�j∈I ch(M �j ), where the summation is over an irre-
ducible decomposition of V ⊗ M�i , implies ch(V ⊗ X�i ) = ∑

�j∈I ch(X �j ), thanks to
Proposition 3.8. Therefore the k-module⊕�j∈IX �j is isomorphic to V ⊗X�i and the assertion
follows.

Now we summarise the main result of the paper.

Theorem 3.10 1. Ot (HP
2) is semi-simple for all q.

2. For all q,Ot (HP
2) is equivalent to the category Fin(k).

3. Simple objects in Ot (HP
2) are exactly pseudo-parabolic Verma modules, for almost

all q.

1Although the action of Uq(g) on these modules does not extend to the classical point q = 1, they are
quasi-classical as modules over Uq(g−) and equipped with an obvious grading by weights.
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Proof The category Ot (HP
2) is clearly additive. To prove the first statement, observe that

a module V from Finq(g) can be realized as a submodule in a tensor power of C6. Then
apply Propositions 3.4 and 3.7.

Equivalence Ot (HP
2) ∼ Fin(k) as Abelian categories can be proved similarly to [18],

Proposition 3.8 (cf. also Corollary 3.9 above).
We know from Propositions 3.7 and 3.8 that simple objects ofOt (HP

2) are exactlyM�i ,�i ∈ Z
3+. Let us prove that forM�i � M̃�i for all but a finite number of values of q.

Indeed, a module of highest weight is irreducible if and only if its contravariant form is
non-degenerate or, alternatively, it has no singular vectors. Weights of singular vectors may
be only in the orbit of the highest weight under the shifted action of the Weyl group. Let
W̃ ⊂ M̃�i andW ⊂ M�i denote the sums of weight spaces whose weights are in that orbit. It
is sufficient to check non-degeneracy of the form only on W̃ . Since W̃ is finite dimensional,
there is an alternative: either the form is degenerate for all q or it is not at some and therefore
almost all q. From (3.13) we see that W̃ � W in an open neighbourhood of 1. Therefore the
form is non-degenerate on W̃ and hence on M̃�i for almost all q as required.

Note that the set of exceptional q where M�i �� M̃�i may depend on a module. We
nevertheless conjecture that it is empty for all �i, as is the case for the base module.

4 The AlgebraCq[HP2] and Reflection Equation

In this section we give a more detailed description of the quantized polynomial ring
A = Cq [HP 2] and its one-dimensional representation. This is a special case of a general
construction, and the reader is referred to [16, 20] for details.

Let π be the representation homomorphisms of Uq(g) to End(V ), V � C
6. Pick up a

basis {vi}6i=1 ⊂ V as in Section 3.2. Let νi denote the weight of vi , then νi = −νi′ , where
i′ = 7− i. Denote ςi = 1 and ςi′ = −1 for i = 1, 2, 3.

Let R be a universal R-matrix of Uq(g) such that (π ⊗ id)(R) ∈ End(C6) ⊗ Uq(b+)
and set Q = R21R. It commutes with the coproduct of every element in Uq(g). Denote
by P the flip of the tensor factors in C

6 ⊗ C
6 and fix a Uq(g)-invariant braid matrix S ∈

End(C6)⊗ End(C6). Note that R = PS needs not to be image of the particularR entering
Q: e.g. one can take R = (π ⊗ π)(R−1

21 ). One can choose π and R as in [6].
It is known that Cq [G] can be realized as the locally finite part of the adjoint Uq(g)-

module. It is a subalgebra in Uq(g) generated by entries of the matrix (π ⊗ id)(Q). The
image of Cq [G] in End(M) is a flat deformation of a quotient of C[G] by the defining
ideal of HP 2. That is a maximal proper invariant ideal in C[G], whence the image is a
quantization of C[HP 2], see [16] for details.

Let � ∝ ∑6
i,j=1 q

ρi−ρj ςiςj ei′j eij ′ be the invariant projector onto the trivial one-

dimensional submodule inC6⊗C
6. Here ρi = (ρ, νi) = −(ρ, νi′); in particular, ρi = 4− i

for i = 1, 2, 3.
Let π�i , �i ∈ Z

3+, denote the representation homomorphism Uq(g) → End(M�i ). The
operator (π ⊗ π�i )(Q) has eigenvalues

xν = q2(λ+ξ+ρ,ν)−2(ρ,ε1), ν ∈ 
(V +
�i ), (4.14)

where λ + ξ is the highest weight of M�i . In particular, the matrix Q = (π ⊗ π�0)(Q)
has two eigenvalues q2(λ+ρ,ε1)−2(ρ,ε1) and q2(λ+ρ,ε3)−2(ρ,ε1) on C

6 ⊗M corresponding to
irreducible submodules of highest weights ε1 + λ and ε3 + λ. The value of its q-trace
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Trq(Q) = Tr
(
π(q2hρ )Q

)
on M can be found by the formula Trq(Q) = Tr

(
π(q2hρ+2hλ)

)
,

cf. [15].
The algebra A is generated by the entries {Qij }6i,j=1, which satisfy

S12Q2S12Q2 = Q2S12Q2S12, Q2S12Q2�12 = q−7�12 = �12Q2S12Q2,

(Q+ q−2)(Q− q−4) = 0, Trq(Q) = −(q4 + q−4).
Equations of the first line are understood in End(C6) ⊗ End(C6) ⊗ End(M) and the sub-
scripts label the End(C6)-factors. They are equations of Cq [G], a deformation of C[G] that
is equivariant under the conjugation action of G on itself. The last two equations fix the
quantized conjugacy class HP 2. This is the full set of relations definingA, [16].

There is a one-dimensional representation χ : A → C,Qij �→ Aij , where

A = −q−3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

q − q̄ 0 0 0 1 0
0 q − q̄ 0 0 0 −1
0 0 q 0 0 0
0 0 0 q 0 0
1 0 0 0 0 0
0 −1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the classical limit, the matrix A goes over to a point t ′ ∈ HP 2 where the Poisson bracket
vanishes.

The matrix A defines an embedding of A in the restricted Hopf dual to Uq(g) that we
denote by T . A description of the algebra T can be extracted from [6]. Let T = (Tij )

6
i,j=1

denote its matrix of generators. This matrix is invertible with (T −1)ij = γ (Tij ), where γ is
the antipode of T . One has two commuting left and right translation actions of Uq(g) on T
expressed through the Hopf paring and the comultiplication in T by

h � a = a(1)(h, a(2)), a  h = (a(1), h)a(2), a ∈ T , h ∈ Uq(g).
They are compatible with multiplication on T making it a Uq(g)-bimodule algebra.

The assignment Qij �→ (T −1AT )ij defines an equivariant homomorphism A → T ,
where T is viewed as a Uq(g)-module under the left translation action. It is an embedding
by similar deformation arguments as with the case ofA ⊂ End(M). The character χ factors
through the compositionA → T → C, where the right arrow is the counit ε.

The entries of the matrix

K = (id⊗ π)(R12)A2(id⊗ π)(R21) ∈ Uq(g)⊗ End(C6)

generate a left coideal subalgebra Uq(k′) ⊂ Uq(g). It is a deformation of U(k′) with k′ � k

being the Lie algebra of the centralizer of t ′.
One can check that a b = ε(b)a for all b ∈ Uq(k′) and a ∈ A. We argue thatA exhausts

all of the subalgebra of Uq(k′)-invariants, for generic q. Indeed, the latter is ∩6
i,j=1 kerK′

ij

where K′
ij = Kij − ε(Kij ) ∈ k′ mod (q − 1). Restricted to every isotypic component of

the Peter-Weyl decomposition of T , the kernel cannot increase in deformation.

5 Quantization of Equivariant Vector Bundles onHP2

In this section, we will interpret Ot (HP
2) as a category of “representations” for quantum

vector bundles on HP 2.
In the classical algebraic geometry, global sections of vector bundles on a variety are

finitely generated projective modules over its coordinate ring. If a group G acts on the
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bundle coherently with the base, the vector bundle is called equivariant. Algebraically it
means thatG acts on global functions by automorphisms,G acts on global sections, and the
multiplication between functions and sections is equivariant.

In the case of homogeneous space G/K , a vector bundle �(G/K,X) is characterized
by a finite dimensional K-module X over the initial point. It can be realized as the space
of K-invariants in C[G] ⊗ X under right translations. The group G acts on �(G/K,X) �
(C[G] ⊗X)K by left translations.

For a reductive pair G ⊃ K , the Peter-Weyl decomposition C[G] = ∑
[V ] V ⊗ V ∗

gives the isotypic component of an irreducible module V in �(G/K,X); it is � V ⊗
HomK(X, V ). This is the classical input that we are going to mimic in our approach to
quantization.

We have already argued that the base moduleM supports a faithful representation ofA as
a subalgebra in the locally finite part End◦(M) of linear operators onM . Similarly we claim
that the locally finite part Hom◦(M,M�i ) of the Uq(g)-module of linear maps fromM toM�i
is a quantization of the vector bundle �(HP 2, X�i ) with fiber X�i . Note that Hom

◦(M,M�i )
is a natural equivariant right End◦(M)-module via the composition of linear maps.

Proposition 5.1 As a Uq(g)-module, Hom◦(M,M�i ) is a deformation of �(HP 2, X�i ).

Proof Since M and M�i are irreducible along with their dual modules of lowest weight,
equivariant maps from V to Hom(M,M�i ) are in bijection with equivariant maps from
Hom(M∗

�i ,M
∗) to V ∗, for every V ∈ Finq(g). We have a version of Corollary 3.9 for dual

modules and we can write

HomUq(g)

(
Hom(M∗

�i ,M
∗), V ∗) � HomUq(g)

(
M∗

�i , V
∗ ⊗M∗) � Homk(X

∗
�i , V

∗)
� Homk(V ,X�i ).

The rightmost term is isomorphic to Homk(X�i , V ) as V is completely reducible over k. Thus
the isotypic component of V in Hom◦(M,M�i ) is a deformation of the isotypic component
of its classical counterpart in �(HP 2, X�i ).

In particular, settingM�i = M we conclude that End◦(M) has the same module structure
as A. This implies that, for q �= 1, the algebra A exhausts all of End◦(M). We will give a
recipe for construction of Hom◦(M,M�i ) in what follows. For each V ∈ Finq(g) an invariant
projector from End(V )⊗ End(M) is in End(V )⊗ End◦(M) and therefore in End(V )⊗A.
Such projectors can be constructed with the help of the invariant elementQ.

Lemma 5.2 For each �i ∈ Z
3+, the operatorQ separates irreducible components inC6⊗M�i .

Proof Let λ+ ξ , ξ ∈ 
+
k
, be the highest weight ofM�i . We will calculate eigenvalues ratio

xμx
−1
ν with μ �= ν using the formula (4.14). By definition of the base weight, we find

xμx
−1
ν = q2(λ+ξ+ρ,μ−ν) = α(t)q2(κ+ξ,α), α = μ− ν ∈ Rg.

Here we used the fact that all non-zero weight differences in C
6 are roots. The right-hand

side cannot turn 1 if α ∈ Rg\Rk, because it has the form −qZ, and q is not a root of unity.
On the other hand, if α ∈ R+

k
, then xμx−1

ν = q2(κ+ξ,α) �= 1 either because (κ, α) > 0 and
(ξ, α) � 0.

It turns out that the matrix Q together with intertwiners from Finq(g) are enough to
get all morphisms in Ot (HP

2). The braid matrix S from the previous section produces a
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family of Uq(g)-invariant operators on the tensor algebra T (V ) of the module V = C
6 in

the standard way, see e.g. [6]. Denote by I the algebra of invariant operators on T (V )⊗M

generated by the matrixQ ∈ End(V ⊗M) and all invariant operators on T (V ).

Proposition 5.3 I exhausts all of the algebra of invariant operators on T (V )⊗M .

Proof We need to show that I separates submodules in V⊗m ⊗M for all m � 0. We do it
by induction on m.

The assertion is true form = 0 becauseM is irreducible. Form = 1 it is true because the
Q separates two irreducible submodules in V ⊗M . Suppose that is proved for some m � 1
and pick up M�i ⊂ V⊗m ⊗M with the representation π�i : Uq(g) → End(M�i ). Choose an
invariant projector P�i : V⊗m ⊗M → M�i . By induction assumption, P�i belongs to I .

Observe that the image of the operator (id⊗	m)(Q) in End(V⊗m)⊗End(M) belongs to
I for all m. This readily follows from the identity (id⊗	)(Q) = R−1

12 Q13R12Q23, which
reduces (id⊗	m)(Q) to a product of S-matrices andQ, [11]. Therefore the operator

(
π⊗(m+1) ⊗ π�0

)
(id⊗	m+1)(Q)× (id⊗ P�i ) ∈ I

separates irreducible submodules in V ⊗M�i , by Lemma 5.2. This is true for each summand
in the decomposition V ⊗ V⊗m ⊗M = ⊕�iV ⊗M�i . Induction on m is completed.

By construction, I is a subalgebra in T
(
End(V )

) ⊗ A. Applying χ to the right factor
one obtains a subalgebra IA of Uq(k′)-invariant operators in T (V ). It is generated by the
matrix A over the subalgebra of Uq(g)-invariant operators on T (V ), cf. [20], Proposition
4.5. It follows from Proposition 5.3 above that IA is exactly the commutant of Uq(k′) in
T

(
End(V )

)
.

In the remaining part of the section we prove equivalence of Ot (HP
2) and a cate-

gory Prq(A, g) of Uq(g)-equivariant projective right A-modules. Objects in Prq(A, g) are
direct summands in A-modules freely generated by Uq(g)-modules from Finq(g). Arrows
in Prq(A, g) are Uq(g)-equivariantA-module homomorphisms.

Every module N from Ot (HP
2) is a direct summand in V ⊗M for some V ∈ Finq(g),

therefore Hom◦(M,N) is a direct summand in a free equivariantA-module Hom◦(M, V ⊗
M) � V ⊗ Hom◦(M,M) � V ⊗ A. The assignment N �→ Hom◦(M,N) is a covariant
functor from Ot (HP

2) to Prq(A, g), which we denote by H. It is obviously additive and
respects tensor multiplication by modules from Finq(g).

Lemma 5.4 For every N ∈ Ot (HP
2), the evaluation map Hom◦(M,N) ⊗ M → N ,

φ ⊗m �→ φ(m) factors through an isomorphism Ev : Hom◦(M,N)⊗A M → N .

Proof First suppose that N �= {0} is irreducible. As the map is equivariant, its image is
a submodule in N and hence coincides with N because Hom◦(M,N) �= {0}, by Proposi-
tion 5.1. In general, N is a direct sum of irreducibles, N = ⊕iNi . Then Hom◦(M,N) =
⊕iHom◦(M,Ni), so Ev is an epimorphism. In particular, that holds true for N = V ⊗M

for any V ∈ Finq(g).
On the other hand, any N can be embedded in V ⊗M for some finite dimensional V .

Since Hom◦(M, V⊗M) � V⊗A, we conclude that Hom◦(M, V⊗M)⊗AM is isomorphic
to V ⊗M . Thus Ev is a surjective endomorphism of completely reducible V ⊗M . Therefore
it is injective as well as its restriction to N ⊂ V ⊗M .

Define a functor T from Prq(A, g) toOt (HP
2) setting T : � �→ �⊗AM on objects and

T : f �→ f ⊗A idM on morphisms.
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Proposition 5.5 The functor T is a left inverse to H.

Proof Let N be a module from Ot (HP
2) and P be an invariant projector V ⊗ M → N

for some V ∈ Finq(g). As we commented after Proposition 5.1, P ∈ End(V ) ⊗ A. Then
Hom◦(M,N) is isomorphic to P(V ⊗A) and P(V ⊗A)⊗A M = N becauseAM = M .

If f : N1 → N2 is a Uq(g)-homomorphism and φ ∈ Hom◦(M,N1), then H(f )(φ) =
f ◦ φ is a map from Hom◦(M,N2). Then

Ev ◦ (
H(f )⊗A idM

)
(φ ⊗A m) = Ev

(
(f ◦ φ)⊗A m

) = f
(
φ(m)

) = f ◦ Ev(φ ⊗A m)

for all φ ∈ Hom◦(M,N1) and all m ∈ M . That is, the isomorphism Ev takes (T ◦ H)(f ) to
f .

The functor H is surjective on objects up to an isomorphism. If V ∈ Finq(g) and P(V ⊗
A) is an A-module from Prq(A, g) determined by an invariant idempotent P ∈ End(V )⊗
A, then P(V ⊗ A) is isomorphic to Hom◦(M,N) with N = P(V ⊗ M) ∈ Ot (HP

2)

becauseA � End◦(M). Every module from Prq(A, g) can be presented this way.

Theorem 5.6 The Finq(g)-module categories Ot (HP
2) and Prq(A, g) are equivalent.

Proof We have seen that H is surjective on objects and injective on morphisms. By [14],
Theorem IV.4.1, we are left to check that it is surjective on morphisms.

Suppose thatG : �1 → �2 is a morphism in Prq(A, g). We can assume that �i = H(Ni)

for some Ni ∈ Ot (HP
2), i = 1, 2. Denote by ji : Ni → Vi ⊗M and by ℘i : Vi ⊗M → Ni

their embeddings and projections, respectively, such that ℘i ◦ ji = idNi . They give rise to
embeddings and projections H(ji) : �i → Vi ⊗ A and H(℘i) : Vi ⊗ A → �i , satisfying
H(℘i) ◦ H(ıi) = id�i , for i = 1, 2.

Consider a morphism F = H(j2) ◦ G ◦ H(℘1) from V1 ⊗A to V2 ⊗A. It implies that
G = H(℘2) ◦ F ◦ H(j1). An equivariant map F : (V1 ⊗ 1A) → V2 ⊗ A gives rise to an
equivariant map f ∈ V1 ⊗M → V2 ⊗M because A � End◦(M). Then F = H(f ), and
G = H(℘2 ◦ f ◦ j1), hence H is bijective on morphisms. This completes the proof.

Note that the category of general projective A-modules is not semi-simple because the
quotient of two projectives is not necessarily so.

The presence of a one-dimensional representation χ : A → C from the previous section
enables a realization of Prq(A, g) via quantized functions on the groupG. This construction
is a deformation of the classical realization of associated vector bundles. Define Finq(k′)
as the category of modules that are submodules of modules from Finq(g). It is a Finq(g)-
module category as Uq(k′) is a coideal subalgebra in Uq(g).

Given X ∈ Finq(k′) define the associated bundle with fiber X as the subspace of Uq(k′)-
invariants in T ⊗X. It is in Prq(A, g) because for all V ∈ Finq(g) there is a natural bijection
between Uq(g)-invariant idempotents in End(V ) ⊗ A and Uq(k′)-invariant projectors on
V , cf. [20]. The inverse functor acts by � �→ � ⊗A C for � ∈ Prq(A, g). This yields
an equivalence between Finq(k′) and Prq(A, g) ∼ Ot (HP

2), which obviously respects the
action of Finq(g).

Appendix

In this technical section, we derive some identities in the algebra Uq(g−) which are needed
for this exposition.
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Lemma A.1 Define f̄θ obtained from fθ by replacement q → q̄. Then

fθ = [f2, [[f1, f2]q̄ , f3]q̄2 ]q = q̄[[f1, f2]q̄ , [f2, f3]q2 ]q̄ , (A.15)

f̄θ = [f2, [[f1, f2]q, f3]q2 ]q̄ = q[[f1, f2]q , [f2, f3]q̄2 ]q . (A.16)

Proof We will use a modified Jacobi identity

[x, [y, z]a]b = [[x, y]c, z] ab
c
+ c[y, [x, z] b

c
] a
c
, (A.17)

which holds true for any elements x, y, z of an associative algebra and any scalars a, b, c
with invertible c. This can be verified by a direct calculation.

Now let us prove the right equality in (A.15). Apply (A.17) to [f2, [[f1, f2]q̄ , f3]q̄2 ]q
choosing c = q̄:

[f2, [[f1, f2]q̄ , f3]q̄2 ]q = [[f2, [f1, f2]q̄ ]q̄ , f3] + q̄[[f1, f2]q̄ , [f2, f3]q2 ]q̄ .
The first summand vanishes thanks to the Serre relation of weight −(2α2 + α1) whence
(A.15) follows. Then (A.16) follows from (A.15) by replacement q → q̄.

Lemma A.2 One has

qfθ + q̄f̄θ = [f1, fδ] ∈ J, (A.18)

Proof Apply (A.17) to [f1, fδ] = [f1, [f2, [f2, f3]q2 ]q̄2 ] choosing c = q̄. Then

[f1, fδ] = [[f1, f2]q̄ , [f2, f3]q2 ]q̄ + q̄[f2, [f1, [f2, f3]q2 ]q ]q̄ .
The first summand is qfθ from (A.15). In the second summand, replace [f1, [f2, f3]q2 ]q
with [[f1, f2]q, f3]q2 , then it becomes q̄f̄θ from (A.18).

Other identities of interest can be also derived from the Serre relations a with the use of
the modified Jacobi identity (A.17). We will give another proof based on Lusztig’s braid
group automorphisms of Uq(g), [2].

Proposition A.3 The following relations hold true in Uq(g−):

[f3, fθ ] = 0 = [f3, f̄θ ], (A.19)

f2fθ = q̄fθf2, f2f̄θ = qf̄θf2, (A.20)

fδfθ = q̄2fθfδ, (A.21)

fνfθ = qfθfν, (A.22)

fξfθ = qfθfξ , (A.23)

where fν = [f1, f2]q̄ .

Proof Let Ti be Lusztig automorphisms of Uq(g) corresponding to simple reflections
σi : R → R relative the simple roots αi , as in [2]. They satisfy braid group relations, of
which we will need only

T2T3T2T3 = T3T2T3T2.

In particular, fν = T −1
2 (f1) and T

−1
3 (f2) = [f2, f3]q̄2 which implies

T −1
3 T −1

2 T −1
3 (f1) = T −1

3 (fν) = fξ ,
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because T −1
3 (f1) = f1. Set w = T −1

3 T −1
2 T −1

3 , then

w(f1) ∝ fξ , w(f2) = f2, wT −1
2 (f1) ∝ w(fν) ∝ fθ , wT −1

2 (e3) ∝ q−h3f3.

The first equality has been checked. The second equality is fulfilled because σ3σ2σ3(α2) =
α2. The third formula follows from the first two as w is an algebra automorphism. The last
one readily follows from the equality T −1

2 T −1
3 T −1

2 (e3) = e3 as a result of T
−1
3 (e3), cf. [2].

Applying wT −1
2 to a commuting pair (e3, f1) one gets the left equality (A.19) because

(θ, α3) = 0. Applying w to a quasi-commuting pair (f2, fν), one gets the left equality
in (A.20). The right equalities in (A.19) and (A.20) result from replacement q → q−1.
Then (A.20) follows since fδ comprises two f2-factors and one f3-factor. To prove (A.22),
apply T −1

2 T −1
3 to a quasi-commuting pair of f1 and fν � T −1

2 T −1
3 (f1), using the equality

T −1
3 (f1) = f1 and the braid relation. The formula (A.23) is obtained by applying w to

quasi-commuting f2 and fν .
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