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Abstract
Let P<∞ -mod) be the category of finitely generated left modules of finite projective
dimension over a basic Artin algebra . We develop a widely applicable criterion that
reduces the test for contravariant finiteness of P<∞ -mod) in -mod to corner alge-
bras for suitable idempotents e ∈ . The reduction substantially facilitates access to
the numerous homological benefits entailed by contravariant finiteness of P<∞ -mod).
The consequences pursued here hinge on the fact that this finiteness condition is known
to be equivalent to the existence of a strong tilting object in -mod. We moreover char-
acterize the situation in which the process of strongly tilting -mod allows for unlimited
iteration: This occurs precisely when, in the category mod- of right modules over the
strongly tilted algebra , the subcategory of modules of finite projective dimension is in
turn contravariantly finite; the latter condition can, once again, be tested on suitable cor-
ners of the original algebra . In the (frequently occurring) positive case, the sequence

of consecutive strong tilts, , , , is shown to be periodic with period 2 (up to
Morita equivalence); moreover, any two adjacent categories in the sequence P<∞(mod- ,

P<∞( -mod), P<∞(mod- , alternating between right and left modules, are dual via
contravariant Hom-functors induced by tilting bimodules which are strong on both sides.
Our methods rely on comparisons of right P<∞-approximations in the categories -mod,

-mod and the Giraud subcategory of -mod determined by e; these interactions hold
interest in their own right. In particular, they underlie our analysis of the indecomposable
direct summands of strong tilting modules.
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1 Introduction

Co- and contravariant finiteness of a subcategory A of the category -mod of finitely
generated modules over an Artin algebra were first considered by Auslander and Smalø
in [2] and [3]: If A = add(A) is closed under extensions, the combination of these two
finiteness conditions implies the existence of internal almost split sequences in A. Here
we focus on the full subcategory A = P<∞ -mod) consisting of the modules of finite
projective dimension; in this situation contravariant finiteness implies the dual property,
covariant finiteness [14]. (See Section 2 for notation and definitions of the italicized terms.)
Subsequently, it was found that contravariant finiteness of P<∞ -mod) entails a plethora
of additional homological benefits for -mod and the unrestricted module category -Mod.
Namely, this finiteness condition not only validates the finitistic dimension conjectures for
left -modules, i.e., confirms that l.findim = l.Findim ∞ in that case, but gives rise
to an intrinsic description of the -modules of finite projective dimension; see [1] and [14].

Crucial to our present investigation are the following facts: P<∞ -mod) is contravari-
antly finite in -mod if and only if -mod contains a strong tilting module, i.e., a tilting
module T which is relatively Ext-injective within the category P<∞ -mod). Such a
module T is alternatively characterized by the condition that the contravariant functor
Hom (−, T ) induces a duality between P<∞ -mod) and a specifiable resolving sub-
category of P<∞(mod- , where = End (T )op (see [12] and [13]). In this situation
we say that mod - results from -mod via strong tilting. Finally, we recall that, up to
isomorphism, -mod has at most one basic strong tilting module; see [1].

In the present article we tackle the foremost obstacle that stands in the way of apply-
ing the theory we sketched: namely, the notoriously difficult task of deciding whether, for
specific choices of , the category P<∞ -mod) is contravariantly finite in -mod. The
driving goals of our investigation are to significantly reduce this difficulty and to explore the
possibility and effect of iterating the process of strongly tilting -mod. In both directions
we make headway, next to retrieving known results in a simpler, more uniform format.

In more detail: In the first of our main results we address an Artin algebra for which
P<∞ -mod) is known to be contravariantly finite in -mod. In general, P<∞(mod-
need not inherit contravariant finiteness. However, whenever it does, the process of strongly
tilting -mod may be iterated in the following sense: -mod allows for unlimited iteration
of strong tilting if there exists an infinite sequence of basic algebras i )i≥0 with 0 =
such that mod - i+1 results from i- mod via strong tilting if i is even, and i+1- mod
results from mod - i via strong tilting if i is odd.

Theorem A (For a more complete version, see Theorem 3.1 and Corollary 3.4.) Suppose
that is a basic Artin algebra such that P<∞ -mod) is contravariantly finite in -mod.
Let T be the corresponding basic strong tilting module and = End (T )op.

If P<∞(mod- is contravariantly finite in mod- , the category -mod allows for
unlimited iteration of strong tilting. The resulting sequence of basic Artin algebras = 0,

1, 2, 3, . . . is ultimately periodic with period 2: i
∼= j whenever i and j are posi-

tive integers with the same parity. Their categories of modules of finite projective dimension
are linked by dualities

P<∞(mod- 1) ↔ P<∞
2-mod) ↔ P<∞(mod- 3) ↔ · · ·

induced by the contravariant Hom-functors of the corresponding basic strong tilting
bimodules

i
(Ti) i+1 , resp. i+1(Ti) i

.
In general, 0 need not be isomorphic to 2 however.
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To return to the problem of determining the contravariant finiteness status of
P<∞ -mod) in the first place, we suppose that e1, . . . , en form a complete set of orthog-
onal primitive idempotents of and that the subsum e = e1 + · · · + em includes all
idempotents ei that give rise to simple left modules of infinite projective dimension. Our
second and third main results refer to this setting.

Theorem B (For a complete version, see Theorem 4.6.) Adopt the notation of the preced-
ing paragraph, and suppose that 1 − e) has finite projective dimension as a left module
over the corner algebra . Then P<∞ -mod) is contravariantly finite in -mod if and
only if P<∞ -mod) is contravariantly finite in -mod.

Theorem 4.6 also spells out how, in case of existence, the minimal (right)P<∞ -mod)-
approximation of M ∈ -mod relates to the minimal P<∞ - mod)-approximation
of eM . The ensuing possibility of shucking off primitive idempotents in checking for
contravariant finiteness of P<∞ -mod) not only provides effortless access to most of
the cases in which this property has previously been established (formerly involving
considerable effort), but yields contravariant finiteness in far more general situations.

Our argument relies on an exploration of the torsion-torsionfree triple (C,T ,F) which
is associated to the idempotent e, and on the Giraud subcategory G of -Mod (in the sense
of Gabriel [8]) corresponding to the hereditary torsion pair (T ,F).

In order to extend Theorem B to an efficient test of whether the stronger conclusions
of Theorem A hold for , we once more assume that is a basic Artin algebra such that
P<∞ -mod) is contravariantly finite. As before, we let e1, . . . , en ∈ be a complete set
of primitive idempotents, T ∈ -mod the basic strong tilting module, and = End (T )op.
By Si we denote the simple left -module corresponding to ei . It is well-known that the
indecomposable direct summands T1, . . . , Tn of T coincide, up to isomorphism, with
the distinct indecomposable direct summands of 1≤i≤n Ai , where Ai is the minimal
P<∞ -mod)-approximation of the indecomposable injective left module with socle Si .
Our analysis of the Ti will pave the road towards showing that the question of unlimited
iterability of strong tilting of -mod can in turn be played back to the corner algebra
for any idempotent e as specified in Theorem B.

TheoremC Letm ≤ n be chosen such that pdim Sj < ∞ for j > m. Set e = e1+· · ·+em

and assume that pdim 1 − e) < ∞. Then:

(1) (Proposition 5.2.) The number of distinct indecomposable direct summands of

1≤i≤m Ai is m. Denote them by T1, . . . , Tm and set T = 1≤i≤m Ti .
For j ≥ m+1, the approximationAj of E(Sj ) decomposes in the formAj = Tj ⊕

Uj , where Tj is indecomposable with the property that Sj is the only simple module of
finite projective dimension in soc Tj , and all indecomposable direct summands of Uj

occur as direct summands of T .
(2) (For more detail, see Theorem 5.4, and Corollaries 5.5, 5.6.) -mod allows for

unlimited iteration of strong tilting if and only if the same is true for - mod.

Our proof of Theorem C is based on connections between T ∈ -mod and the strong
tilting objects in -mod and in the Giraud subcategory G.

Earlier results for truncated path algebras (i.e., for algebras of the form KQ/I , where
K is a field, Q a quiver, and I the ideal generated by the paths of length L + 1 for some
L ≥ 1), showcase the effects of iterated strong tilting and the associated dualities among
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the P<∞-categories encountered along the iterations [12]; these findings readily follow
from the above theorems. In fact, the present results yield substantial generalizations of the
picture that arose in the truncated case (Propositions 6.1, 6.2, Corollaries 6.3 and 6.4). From
our reduction technique it also follows that, for any left serial algebra , both P<∞ -mod)

and P<∞(mod- are contravariantly finite in -mod and mod- , respectively (the former
fact had been known; see [5]). Further applications address Artin algebras arising from
Morita contexts, such as algebras of triangular matrix type (Theorem 6.6, Corollary 6.7,
Examples 6.9), and the elimination of simple modules of low projective dimension in the
test for contravariant finiteness (Proposition 5.7).

Section 2 assembles minimal conceptual background and builds the tools required for
proving our main theorems. Section 3 provides a general characterization of the situation in
which -mod allows for unlimited iteration of strong tilting. The results targeting tests for
contravariant finiteness of -mod and for the availability of repeated strong tilts of -mod
are contained in Sections 4 and 5, respectively. In Section 6, we specify applications.

2 Notation, Background and Auxiliaries

Throughout, will be a basic Artin algebra, and J its Jacobson radical. We point out that the
restriction to basic algebras does not affect the generality of our investigation; we adopt it for
increased transparency of the underlying ideas. -Mod and -mod stand for the categories
of all (resp., all finitely generated) left -modules. Further, S1, . . . , Sn will be isomorphism
representatives of the simple objects in -Mod, and top M , soc M will stand for the top and
socle of M ∈ -Mod, respectively. By P<∞ -Mod) (resp., P<∞ -mod)) we denote the
full subcategory of -Mod (resp., -mod) having as objects the modules of finite projective
dimension. Moreover, for any finitely generated -module M , we denote by add(M) the full
subcategory of -mod consisting of the direct summands of finite direct sums of copies of M .
The module M is basic if it has no indecomposable direct summands of multiplicity > 1.

2.1 Contravariant Finiteness ofP<∞( -mod) and Strong TiltingModules

Following Miyashita [17], we call a left -module T a tilting module in case (1) T belongs
to P<∞ -mod), (2) Exti (T , T ) = 0 for i ≥ 1, and (3) there exists an exact sequence
0 → → T0 → · · · → Tm → 0 with Tj ∈ add(T ). It is well known that any basic
tilting module has precisely n = rank K0 indecomposable direct summands, and that
any tilting module T ∈ -mod gives rise to a left-right symmetric situation as follows:
If = End (T )op, then the right -module T is in turn a tilting module and End (T )

is canonically isomorphic to . This justifies reference to a tilting bimodule T . Strong
tilting modules were first considered by Auslander and Reiten in [1]. We introduce them via
a characterization equivalent to the original definition (see [1]): Namely, we call a tilting
module T strong if it satisfies the following relative injectivity condition in P<∞ -mod):
(4) Exti (M, T ) = 0 for all M ∈ P<∞ -mod) and i ≥ 1. It was shown by Auslander
and Reiten [loc.cit.] that -mod has a strong tilting module if and only if the category
P<∞ -mod) is contravariantly finite in -mod, a property which we will recall next.
Moreover, according to [loc.cit], in case of existence, there is precisely one basic strong
tilting module in -mod, up to isomorphism.

The concept of contravariant finiteness of subcategories of -mod has its roots in work
of Auslander and Smalø [2]: Namely, the category P<∞ -mod) is contravariantly finite in
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-mod provided that for each object M ∈ -mod, the functor Hom (−,M)|P<∞ -mod)
is

finitely generated in the category of additive contravariant functors P<∞ -mod) → Ab.
This condition translates into the following requirement for arbitrary M ∈ -mod: There is
an object A ∈ P<∞ -mod), together with a map φ ∈ Hom (A,M), such that each map
in Hom (P<∞ -mod),M) factors through φ. Any such pair (A, φ) is called a (right)
P<∞ -mod)-approximation of M . Since we will only consider right approximations, we
will frequently omit the qualifier “right”. By a mild abuse of terminology, we will more-
over refer to the domain A of φ as a P<∞ -mod)-approximation of M . Suppose M has
a P<∞ -mod)-approximation, say φ : A → M . As was shown by Auslander-Smalø in
[loc.cit.], up to isomorphism, there is only one approximation φ : A(M) → M such that
A(M) has minimal length. It is alternatively characterized by the condition that any endo-
morphism u of A(M) which satisfies φ ◦u = φ is an automorphism; we say that the map φ

is (right) minimal if this implication holds. Since it is unlikely to cause misunderstandings,
we will also refer to A(M) as “the” minimal P<∞ -mod)-approximation of M whenever
convenient.

The mentioned existence result by Auslander-Reiten will be crucial in the sequel. We
state it for easy reference.

Theorem 2.1 (1) [1] There exists a strong tilting module T ∈ -mod if and only if
P<∞ -mod) is contravariantly finite in -mod. In the positive case, the basic strong
tilting module is unique up to isomorphism: it is the direct sum of the distinct inde-
composable modules C ∈ P<∞ -mod) which satisfy Exti (P<∞ -mod), C) = 0
for i ≥ 1.

(2) [12, Supplement II in Section 2.A] A more explicit description of the indecomposable
direct summands of a strong tilting module T , when it exists, can be obtained from
the following: Let A be the minimal P<∞ -mod)-approximation of the minimal
injective cogenerator of -Mod. Then add(T ) = add(A).

2.2 The TTF-triple Associated to an Idempotent e in

We fix an idempotent element e ∈ . By Jans [16] (see also [19, Section VI.8]), e defines
a TTF triple (Ce,Te,Fe) in the category -Mod; this means that the pairs (Ce,Te) and
(Te,Fe) are both torsion pairs. The torsion, resp. torsionfree, classes are as follows:

(a) Ce consists of the -modules C generated by , i.e., the modules of the form C =
.

(b) Te consists of the left -modules annihilated by e.
(c) Fe consists of the -modules F with the property that the annihilator annF of

in F is zero.

Observe that the torsion pair (Te,Fe) is hereditary, whence the corresponding torsion rad-
ical is left exact (see [19, Proposition VI.3.1]). On the other hand, (Ce,Te) fails to be
hereditary in general.

Further notation: Since we will keep the idempotent e fixed, we will more briefly write

(C,T ,F) for (Ce,Te,Fe).

The torsion radicals ∇ and associated to the pairs (C,T ) and (T ,F) are the idempotent
subfunctors of the identity functor on -Mod given by:

∇(M) = and = annM = {x ∈ M | = 0},
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respectively. Note that ∇(M) is the largest submodule of M with the property that all
simple modules in the top of ∇(M) belong to F equivalently, top ∇(M) belongs to
add , whereas is the largest submodule of M which is annihilated by e

equivalently, all simple subfactors of belong to add 1 − e)/J (1 − e) .
A third functor -Mod → -Mod will serve to render the constructions in Sections 4

and 5 more transparent. It assigns to each -module M the following subfactor of M:

core(M) = ∇ ∇(M) = .

If M is finitely generated, the core of M has maximal length among the subfactors V/U of
M such that the top and socle of V/U belong to F , i.e., such that top(V/U), soc(V/U) ∈
add . In fact, it can easily be seen that this maximality property determines core(M)

up to isomorphism. Observe moreover, that C∩F consists of the -modules which coincide
with their cores.

Example 2.2 To illustrate these endofunctors, we let = KQ/ R , where K is a field, Q

the quiver

1

c

3
α1

α2

a

2
β2

β1

d

4

b

and R = {ab, cd, dc, β1c, β2c, } ∪ {αkbβl : k, l ∈ {1, 2}}.
We consider the TTF triple (C,T ,F) associated to e = e1 + e2 and apply the functors

∇, , core to the indecomposable injective left -modules shown below:

3 3

3 3 4 4

4 4 3
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��
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3
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3

��
��
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2 2

��
��
��

3

��
��
��

3 2
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��
��

1 4 3

��
��
��

2 2

��
��
��

1 2 3 4

(1) j ) = 0 (i.e. Ij ∈ F) for j = 1, 2. The submodules 3) of I3 and 4) of I4
are depicted by the following diagrams:

3 3

4 4

3
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(2) The submodules ∇(Ij ), for j = 1, ..., 4, are depicted by the diagrams

2 1 2

��
��

� 2

��
��
�

2

��
��

� 2

��
��
�

1 2 4 4

3

(3) Finally, core(Ij ) = ∇(Ij ), for i = 1, 2, and core(I3) ∼= S2 ⊕ S2 ∼= core(I4).

We point out that, in general, the core of a module may also have simple composition
factors annihilated by e; for a broader spectrum of examples, see [12, 13].

2.3 The Adjoint Pair ( e ⊗e e −, e)

By e we denote the functor -Mod → -Mod which sends M to eM . The two functors
of the title thus play the role of induction and restriction in the exchange of information
between -modules on one hand and -modules on the other. Accordingly, ⊗ − :

-Mod → -Mod is left adjoint to e.
The unit corresponding to this adjunction is the obvious natural transformation

η : 1 -Mod −→ e ◦ ⊗ −), U −→ ⊗ U).

Clearly, η is an isomorphism of functors, whence ⊗ − is fully faithful (see [11,
Proposition II.7.5]).

The counit : ⊗ −) ◦ e → 1 -Mod of the adjunction is given by the family
M)M∈ -Mod, where M : ⊗ eM → M sends a ⊗ x to ax. Note that the image

Im M) equals ∇(M).
We briefly explore the functor “restriction followed by induction”, -Mod → -Mod,

which sends M ∈ -Mod to M‡ := ⊗ eM . Evidently, this functor sees only the core
of a -module M; indeed, M‡ is naturally isomorphic to core(M)‡. On the other hand, it
preserves this core, as the following lemma shows.

Lemma 2.3 The functor core : -Mod → -Mod is naturally equivalent to the functor

⊗ e(−) ⊗ e(−) .

More precisely, the counit of the adjunction induces a family of isomorphisms

M : core(M‡) = ⊗ ⊗ eM) ∼= core(M), M ∈ -Mod,

which is natural in M .

Proof Clearly, gives rise to a family of epimorphisms

ρM : ⊗ eM → ∇ ∇(M)) = core(M),

and Ker(ρM) contains ⊗ eM). That, conversely, Ker(ρM) is contained in
⊗ eM) follows from the facts that e(ρM) : ⊗ eM → e core(M) = eM is

an isomorphism in -mod and ⊗ eM) is the largest submodule of ⊗ eM

which is annihilated by e. We conclude that the maps M are indeed isomorphisms.
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2.4 The Giraud Subcategory of -Mod Corresponding to the Torsion Pair (T ,F )

We apply well-known facts about localization with respect to a hereditary torsion class T
to the specialized situation where T = Te. We refer the reader to [9] and [19, Chapter IX]
for detail.

Recall that the Giraud subcategory G of -Mod relative to the hereditary torsion pair
(T ,F) is a realization, inside -Mod, of the quotient category -Mod/T ; here we identify
the torsion class T with the (full) localizing subcategory of -Mod that has object class T .
In particular, G is a Grothendieck category. Concretely, G is the full subcategory of -Mod
whose objects are the torsionfree -modules F with the following restricted injectivity
property: Ext1 (X, F ) = 0 for all (cyclic) torsion modules X ∈ T .

It is well known that the fully faithful inclusion functor ι : G → -Mod has an exact
left adjoint σ : -Mod → G, which is identifiable with the quotient functor -Mod →

-Mod/T ; in particular, the pair (G, σ ) has the universal property of such a quotient. We
will write Mσ for σ(M). In parallel, fσ = σ(f ) is the map Mσ → Nσ induced by f ∈
Hom (M,N).

To describe Mσ up to isomorphism, we abbreviate by M and let E(M) be
an injective envelope of M . Then Mσ is the preimage under the canonical map E(M) →
E(M)/M of the torsion submodule E(M)/M of the quotient. In particular, σ is the
identity on the objects of G.

The explicit description of σ : -Mod → -Mod reveals that this functor, in turn, sees
only the core of a -module M, i.e., Mσ = core(M)σ , and that it preserves cores, meaning
that core(Mσ ) is canonically isomorphic to core(M); in fact, Mσ is an essential extension
of core(M) which is maximal relative to the requirement that this core be preserved. The
following alternative incarnations of the category G will be helpful in Sections 4 and 5.

Lemma 2.4 Suppose e = e1 + · · · + em is a decomposition of e into primitive idempotents.

1. [19, Proposition XI.8.6] The categories G and -Mod are equivalent. Quasi-inverse
equivalences send F ∈G to eF in one direction, and sendX ∈ -Mod to ⊗ X)σ
in the other.

The indecomposable projective objects of G are i )σ for 1 ≤ i ≤ m, and the
indecomposable injectives are E(Si) σ

= E(Si) for 1 ≤ i ≤ m.
2. [8] The subcategory C ∩ F of -Mod is in turn equivalent to G. Quasi-inverse equiv-

alences send M = core(M) to Mσ ; in reverse, F ∈ G is sent to core(F ) = ∇(F ). In
particular, the functors σ and σ ◦core from -Mod to -Mod are naturally isomorphic.

The indecomposable projective objects of C ∩ F are core i ) = i i ) for
1 ≤ i ≤ m, and the indecomposable injectives are core E(Si) ) = ∇ E(Si) for
1 ≤ i ≤ m.

We add some notation: The unit of the adjunction (σ, ι) is the natural transformation

μ = (μM) : 1 -Mod −→ ι ◦ σ, with μM ∈ Hom (M, Mσ ) canonical.

If M is torsionfree, we identify μM with the inclusion map → Mσ ⊆ E(M). Clearly,
μM is an isomorphism precisely when M belongs to G.
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Remark 2.5 All the mentioned functors linking the subcategories of − Mod (resp. of
− Mod) introduced in Sections 2.2–2.4 restrict to functors connecting the pertinent

intersections of these subcategories with − mod (resp. − mod).

Example 2.6 (Return to Example 2.2.) In this instance, (Ij )σ = Ij for j = 1, 2, because I1
and I2 are injective objects of F , and consequently of G. Now let j ∈ {3, 4}. In either case,
Ij j ) ∼= S2 ⊕ S2, whence Ej := E(Ij j )) ∼= I2 ⊕ I2. Since the torsion submodule
of (I2 ⊕ I2)/(S2 ⊕ S2) is zero, we obtain (Ij )σ = S2 ⊕ S2, and the map μIj

: Ij −→
(Ij )σ = S2 ⊕ S2 is the obvious projection.

2.5 The Poset of Essential -extensions of a Morphism

In constructing P<∞ -mod)-approximations of -modules M from P<∞ -mod)-
approximations of eM , passage to maximal extensions of the type described in this subsection
will be crucial. Throughout we refer to the torsion theory (T ,F) introduced in 2.2.

Definition Given a morphism f : M −→ Y in -mod, we consider the following eligible
extensions of f : These are the pairs (L, g), where L is an essential extension of M with the
additional property that L/M ∈ T and g ∈ Hom (L, Y ) satisfies g|M = f .

We say that two eligible pairs (L, g) and (L , g ) are isomorphic if there is an isomor-
phism ψ : L → L such that g ◦ ψ = g. An essential -extension of f is the isomorphism
class [(L, g)] of an eligible pair (L, g).

The set Ef of all essential -extensions [(L, g)] of f is a poset under the following
partial order: [(L, g) (L , g )] in case there is a monomorphism ψ : L −→ L such that
g ◦ ψ = g.

We comment on the legitimacy of the final definition: Welldefinedness of the relation
is clear. To check that it is antisymmetric, it suffices to observe that the existence of

monomorphisms L −→ L and L −→ L forces the finitely generated -modules L and
L to have the same length, whence monomorphisms between them are isomorphisms.

Proposition 2.7 Suppose that M and Y are finitely generated torsionfree left -modules,
and let f ∈ Hom (M, Y ). Then the poset (Ef , ) has a maximum.

• In case Y ∈ G, this maximum is [(Mσ , fσ : Mσ −→ Yσ = Y )].
• For a general torsionfree module Y , the maximum of Ef is [(N, φ)], where φ : N −→ Y

results from the pullback of (fσ , μY ):

N
φ

χ

Y

μY

Mσ

fσ
Yσ

Proof In light of the hypothesis = 0, we have M ⊆ Mσ ⊆ E(M) for an injective
envelope E(M) of M , where the first inclusion coincides with the map μM : → Mσ

of 2.3. Due to the equality Mσ /M = , we find Mσ to be the largest among
the submodules M of E(M) which contain M and satisfy M /M ∈ T . Consequently, all
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elements of Ef are represented by pairs (L, g) with M ⊆ L ⊆ Mσ , and we may restrict our
focus to such representatives. Conversely, whenever h : N → Y is a homomorphism with
M ⊆ N ⊆ Mσ and h|M = f , the pair (N, h) represents a class in Ef .

To address our first claim, we note that the lengths of increasing sequences in Ef are
bounded from above by the composition length of E(M). In particular, each element of Ef

is majorized by a maximal element in this set. Therefore, we only need to prove that any two
elements [(L, g)] and [(N, h)] of Ef have a common upper bound. Consider the restrictions
g|X, h|X : X −→ Y to the intersection X = L ∩ N . Since the difference g|X − h|X
vanishes on M , it induces a homomorphism X/M −→ Y , which in turn vanishes because
X/M ∈ T and Y ∈ F . The resulting equality g|X = h|X guarantees that the assignment
ρ : L+N −→ Y with ρ(l +m) = g(l)+h(m) is a well-defined map in Hom (L+N, Y ).
In light of L + N ⊆ Mσ , the pair (L + N, ρ) represents an element in Ef which majorizes
both [(L, g)] and [(N, h)].

Now suppose that Y ∈ G. Then fσ : Mσ → Yσ
∼= Y gives rise to an essen-

tial -extension [(Mσ , fσ )]. That this extension is maximal in Ef is immediate from the
description of Mσ .

To prove the final claim, we note that the map χ in the pullback diagram is an injection
since μY is. Thus the submodule μ−1

M (χ(N)) of Mσ is isomorphic to N . On replacing N

by this copy and adjusting φ and χ accordingly, we obtain another pullback diagram for
(fσ , μY ) with M ⊆ N ⊆ Mσ , where χ is now replaced by the inclusion map. This shows
that (N, φ) is an eligible pair in the sense of the above definition. To check maximality
of [(N, φ)] in Ef , suppose that this -extension is majorized by [(N , φ )], where M ⊆
N ⊆ Mσ ; let ψ : → N be an embedding with φ = φ ◦ ψ . Since ψ extends to an
automorphism of E(M), we do not lose generality in viewing ψ as a set inclusion. We thus
obtain a commutative diagram, in which κ denotes the inclusion map N → Mσ :

N

φ

v

�

 � �

κ














N

ψ φ

χ

Y

μY

Mσ
fσ

Yσ

Then fσ ◦ κ ◦ψ = μY ◦φ ◦ψ , whence the restrictions of fσ ◦ κ and μY ◦φ to the domain
N of ψ coincide. Since the epimorphic image N /N of N /M is a torsion module, while Yσ

is torsionfree, the argumentation backing the first claim shows that fσ ◦ κ = μY ◦ φ . The
universal property of the pullback therefore yields a map v ∈ Hom (N ,N) with φ = φ◦v

and κ = χ ◦ v. In particular, v is a monomorphism. We infer that N and N have the
same length and conclude that ψ is an isomorphism. This proves [(N , φ )] = [(N, φ)] as
required.
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3 Iteration of Strong Tilting

When can the process of strongly tilting -mod to a category of right modules, mod- ,
be iterated? In the positive case, how do the resulting sequences of strongly tilted module
categories behave? The main purpose of this section is to answer these questions. More
specifically, we will show that, whenever -mod can be strongly tilted twice, the process
can be iterated arbitrarily and turns periodic after the initial step. Roughly speaking: In
case P<∞(mod- is in turn contravariantly finite in mod- , the initial transition from
to increases the homological symmetry by increasing the number of simple modules of
finite projective dimension. This symmetrization makes the subsequent sequence mod-

-mod · · · periodic with period 2.
The statement of the following theorem is based on part (1) of Theorem 2.1.

Theorem 3.1 Let be a basic Artin algebra such that P<∞ -mod) is contravariantly
finite in -mod. Moreover, let T be the corresponding basic strong tilting module, and

= End (T )op. Suppose that P<∞(mod- is in turn contravariantly finite in mod- ,
thus giving rise to a basic tilting bimodule T which is strong in mod- . Then T is strong
on both sides.

In particular, the process of strongly tilting -mod then allows for unlimited iteration,
yielding a sequence of basic Artin algebras = 0 1 2 3, . . . with the property that

i and j are isomorphic whenever i and j are positive integers with the same parity.
Moreover, the algebras 0 and 2 are isomorphic precisely when the tilting bimodule

T is strong on both sides, i.e., when T = T .

Comment 3.2 If, in the hypotheses of Theorem 3.1, the qualifiers “basic” are dropped, one
obtains Morita equivalent pairs of algebras i i+2) for all i ≥ 1.

Proof By a result of Auslander and Green (see [1, Proposition 6.5] and [6, Proposition 7.1]
for a short argument), a tilting bimodule AUB over Artin algebras A and B is strong in
A-mod if and only if all simple right B-modules embed into UB . In light of the hypothesis
that T is a strong tilting module, we thus find that all simple right -modules are contained
in soc T , up to isomorphism. Moreover, we deduce that strongness of T as a tilting object

in -mod will follow if we can show that all simple right -modules embed into T .
To realize such an embedding, let ( J ) = S1 ⊕ · · · ⊕ Sn, where the Si are sim-

ple. Further denote by E(S1 ⊕ · · · ⊕ Sn) an injective envelope, and let A be a minimal
P<∞(mod- -approximation of the latter. In light of our hypothesis that T is a strong
tilting object in mod- , the categories add(T ) and add(A) coincide; see Theorem 2.1(2).
Embed T into an injective right -module, say ι : T → 1≤i≤n E(Si)

mi . For a suitable

exponent m, we obtain a P<∞(mod- -approximation φ : Am → 1≤i≤n E(Si)
mi . Since

T belongs to P<∞(mod- , the embedding ι factors through φ, say ι = φ ◦ f for some
f ∈ Hom (T ,Am). Then f is injective, and we deduce that all simple right -modules
embed into Am. Clearly, this implies that all simples in mod- embed into socA. Invok-
ing the fact that add(A) = add(T ), we conclude that all Si occur in soc T as well, which
proves two-sided strongness of T .

The final assertion follows from the preceding argument.

The result is sharp in the sense that the existence of a strong tilting module in -mod does not,
by itself, provide sufficient homological symmetry to allow for iteration of strong tilting.
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Example 3.3 This example is due to Igusa-Smalø-Todorov [15]. Let = KQ/I , where Q

is the quiver

1

γ

2
β

α

and I ⊆ KQ is the ideal generated by βγ, γ α, γβ. Clearly the right socle of contains
both simple right -modules, whence l.findim = 0 (see [4]). Hence the basic strong
tilting object in -mod is T = , and is isomorphic to . However, the category
P<∞(mod- = P<∞(mod- fails to be contravariantly finite in mod- (see [15]).

For a first application, we combine Theorem 3.1 with the fact that strong tilting modules
induce contravariant equivalences of categories of modules of finite projective dimension
(see [12, Reference Theorem III and Theorem 1] or [13, Theorems 7,8]). This yields

Corollary 3.4 Retain the notation and hypotheses of Theorem 3.1. Then the pairs of
functors Hom (−, T ), Hom (−, T ) and Hom (−, T ),Hom (−, T ) induce dualities

P<∞ -mod) ←→ P<∞(mod- ∩ ⊥(T ) ⊆ P<∞(mod- ←→ P<∞( - mod),

where ⊥(T ) is the full subcategory of mod- whose objects are the modules M with
Exti (M, T ) = 0 for i ≥ 1. Moreover, ⊥(T ) contains P<∞(mod- if and only if T is

two-sided strong, i.e., precisely when T ∼= T .

In case the process of strongly tilting -mod permits for iteration, periodicity of the
sequence -mod mod- · · · may set in with delay. In fact, if is a truncated path
algebra one always obtains a sequence of basic strong tilts, -mod mod- · · · (see

[12, Theorem 19]); for this class of algebras, -mod ≈ -mod if and only if Q does not
have a precyclic source (see [6, Corollary 7.2]). We refer to [12] and [13] for examples
based on quivers with precyclic sources where the transition from the tilting module T to
the basic strong tilting module T in mod- is displayed.

We conclude the section with a variant of the criterion of Auslander and Green for a
strong tilting module T ∈ -mod to be strong also as a tilting module over End (T )op; it
was implicitly used in the proof of Theorem 3.1. The upcoming version of the criterion does
not rely on structural information regarding T and provides additional motivation for the
detection of twosided strongness.

Observation 3.5 Suppose is an Artin algebra such that P<∞ -mod) is contravariantly
finite in -mod. Then the following statements are equivalent:

(1) The basic strong tilting module T ∈ -mod is strong also in mod- , where =
End (T )op.

(2) Every simple left -module of infinite projective dimension embeds into a -module
of finite projective dimension.

(3) There exists a duality P<∞ -mod) ←→ P<∞(mod- .

If (1)–(3) are satisfied, then Hom (−, T ) and Hom (−, T ) induce (unique up to
isomorphism) quasi-inverse dualities P<∞ -mod) ←→ P<∞(mod- .

2444 B. Huisgen-Zimmermann et al.



Proof “(1) =⇒ (2)” is immediate from the criterion of Auslander and Green quoted in the
proof of Theorem 3.1. “(2) =⇒ (1)”: By (2), every simple left -module S embeds into a
module M = M(S) of finite projective dimension. Consider an embedding ι : → E

of M into an injective module E, and let φ : A → E be a minimal P<∞ -mod)-
approximation. Then ι factors through φ, which shows M to be contained in A up to
isomorphism. Hence so is S. Since add(A) ⊆ add(T ) by hypothesis (cf. the proof of The-
orem 3.1), we conclude that S embeds into T . Thus an application of [1, Proposition 6.5]
yields (1).

The equivalence “(1) ⇐⇒ (3)” follows from [12, Reference Theorem III and Theorem
1] or [13, Theorems 7,8]. For the supplementary statement, see [13, Corollary 9].

4 Testing for Contravariant Finiteness of the CategoryP<∞( -mod)

Our main objective in this section is to show that, in exploring whether the subcate-
gory P<∞ -mod) is contravariantly finite in -mod, a comparatively mild hypothesis
(Setting 4.1(ii) below) permits us to eliminate primitive idempotents which correspond to
simple left -modules of finite projective dimension. This reduces the problem to a more
manageable corner of .

4.1 The Setting

Setting 4.1 (Blanket hypotheses) Throughout this section, we will assume that the idempo-
tent e ∈ satisfies the following two conditions:

(i) The semisimple left -module 1 − e)/J (1 − e) has finite projective dimension.
(ii) 1 − e) has finite projective dimension as a left -module.

Remarks 4.2 • Suppose that e = e1+· · ·+em and 1−e = em+1+· · ·+en, where the ei are
orthogonal primitive idempotents of . Then the conditions under Section 4.1 amount
to finiteness of the projective dimensions of the simple -modules Si = i/J ei for
i ≥ m+1 and those of the -modules i for i ≥ m+1. In particular, Section 4.1 (i)
implies that, for all M ∈ -mod,

pdim M < ∞ ⇐⇒ pdim core(M) < ∞ ⇐⇒ pdim Mσ < ∞.

With regard to Section 4.1 (ii), we mention that, in case is a path algebra modulo
relations, the quiver and relations of are available from those of , making this
condition computationally accessible.

• Suppose that S1, . . . , Sm are precisely the simple left -modules of infinite projective
dimension; in particular, this means that Section 4.1 (i) is satisfied. Even over monomial
algebras, condition Section 4.1 (ii) is not automatic in this situation, as is witnessed by
an example of Fuller and Saorı́n [7, Example 4.2]. However, if all of the supplementary
simples Sm+1, . . . , Sn have projective dimension at most 1, then Section 4.1 (ii) does
always hold in this scenario [loc.cit.].

In the present setting, the adjoint pair ⊗ −, e) is particularly useful towards the
transfer of homological information between the categories -mod and -mod. Namely:
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Lemma 4.3 Suppose satisfies the conditions under 4.1. Then the functors e : -mod →
-mod and its left adjoint ⊗ − : -mod → -mod preserve and reflect finite

projective dimension.

Proof By [7, Lemma 1.2(b)], the functor e : -mod → -mod preserves finite projective
dimension. In light of the canonical isomorphism e ◦ ⊗ −) ∼= id -mod this shows
that ⊗ − reflects finite projective dimension.

To see that ⊗ − preserves finite projective dimension, let X ∈ P<∞ -mod),
and let

X : 0 → Qm
fm−→ · · · f2−→ Q1

f1−→ Q0
f0−→ X → 0

be a projective resolution in -mod. Then all terms ⊗ Qj of the complex
⊗ X are projective over ; indeed, the Qj belong to add( , whence the mod-

ules ⊗ Qj belong to the category add ⊗ = add( . Moreover, all
homology modules of ⊗ X have finite projective dimension in -mod; indeed, due
to the natural isomorphism e ⊗ X) ∼= X, they are all annihilated by e, whence their
simple composition factors are direct summands of 1− e)/J (1− e). Writing (Fi) for the
differential ⊗ fi) of ⊗ X, we find that Ker(Fm) has finite projective dimen-
sion. In view of projectivity of ⊗ Qm, so does Im(Fm), whence we obtain finiteness
of pdim Ker(Fm−1) from that of pdim Ker(Fm−1)/ Im(Fm). An obvious induction thus
shows that Im(F0) ∼= ⊗ X has finite projective dimension over .

That the functor e reflects finite projective dimension is now seen as follows: Given M ∈
-mod such that e(M) has finite projective dimension over , we apply the conclusion of

the preceding paragraph and Lemma 2.3 to deduce that pdim core(M) < ∞. Once more
invoking Section 4.1 (i), we conclude that pdim M < ∞.

The following consequences of Lemma 4.3 will facilitate applications of the main result
of this section.

First we combine Lemma 4.3 with the equivalences -Mod ≈ G ≈ C ∩ F of
Lemma 2.4, to find that finiteness of projective dimensions transfers smoothly among the
categories singled out in Section 2.4. Namely: If Mσ ∈ -Mod is an object of the Giraud
subcategory G of -Mod, then Mσ has finite projective dimension in G if and only if
pdim eMσ < ∞, if and only if pdim Mσ < ∞. Analogously: If M = core(M) is an
object of C ∩ F , then M has finite projective dimension in this subcategory if and only if
pdim M < ∞. This leads to

Lemma 4.4 Let M ∈ -mod, suppose that eM has aP<∞ -mod)-approximation, and
let q : X → eM be a minimal such approximation. Then ⊗ q)σ : ⊗ X)σ →

⊗ eM)σ ∼= Mσ is a minimal P<∞ -mod)-approximation of Mσ .

Proof Referring to the explicit category equivalences of Lemma 2.4, we see that ⊗ q)σ
is a minimal approximation of Mσ with respect to the subcategory P<∞ G ∩ -mod) of
G∩ -mod). In light of the preceding remarks, the domain of this map has finite projective
dimension also in -mod. Right minimality of ⊗ q)σ in -mod is clear. To see that

⊗ q)σ is actually a P<∞ -mod)-approximation of Mσ , let U ∈ P<∞ -mod) and
f ∈ Hom (U,Mσ ). Since Mσ is torsionfree and again belongs to P<∞ -mod),
we do not lose generality in assuming that U is torsionfree. Consequently, μU : U → Uσ

is an embedding with the property that Uσ /U ∈ T . Now the restricted injectivity property
of Mσ yields an extension of f to f ∗ : Uσ → Mσ , i.e., f = f ∗ ◦ μU . Since Uσ has finite
projective dimension in G ∩ -mod), we further obtain a factorization f ∗ = ⊗
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q)σ ◦ g for some g ∈ Hom (Uσ ⊗ X)σ ). This clearly yields a factorization of f

through ⊗ q)σ .

The next observation depends only on Condition 4.1(i).

Lemma 4.5 Let M ∈ -mod, and let p : A(M) → M be a minimal P<∞ -mod)-
approximation. Suppose p factors in the form p = τ ◦ ρ with ρ ∈ Hom (A(M),N) and
τ ∈ Hom (N,M).

If pdimN < ∞ and ρ is an epimorphism, then ρ is an isomorphism.
In particular: If M ∈ F , then alsoA(M) ∈ F .

Proof For the first implication it suffices to observe that, under the given premise, τ :
N → M is in turn a P<∞ -mod)-approximation of M . Minimality of p thus shows that
length(A(M)) ≤ length(N). Therefore the epimorphism ρ is an isomorphism.

To derive the final implication, assume that M is torsionfree, and apply the preceding
implication to the canonical map ρ : A(M) → A A(M) .

4.2 TheMain Theorem

The upcoming theorem shows that, in the situation of Section 4.1, contravariant finiteness
of P<∞ -mod) in -mod is equivalent to contravariant finiteness of P<∞ -mod) in

-mod. In fact, we obtain sharper information, relating minimal P<∞-approximations in
-mod to minimal P<∞-approximations in -mod.
As before, (T ,F) = (Te,Fe) is the torsion pair of Section 2.2. Recall that the class T

consists of the -modules all of whose composition factors belong to add 1−e)/J (1−e) ,
while F consists of the modules F with soc F ∈ add .

Theorem 4.6 Let be a basic Artin algebra, and let e ∈ be an idempotent such that the
left -module 1 − e)/J (1 − e) has finite projective dimension and 1 − e) has finite
projective dimension as a left -module.

Then P<∞ -mod) is contravariantly finite in -mod if and only if P<∞ -mod) is
contravariantly finite in -mod.

In more detail: The following two implications hold for every finitely generated left -
module F ∈ F .

(1) If p : M −→ F is a minimal right P<∞ -mod)-approximation of F , then p|eM :
eM −→ eF is a minimal right P<∞ -mod)-approximation of eF .

(2) Suppose that q : X −→ eF is a minimal right P<∞ - mod)-approximation of
eF , and let f be the composition

⊗ X

⊗ X)

1⊗q−→ ⊗ eF

⊗ eF )

F−→ F,

where F is induced by the natural map F : ⊗ eF → F . Then any representa-
tive of the unique maximal element of the poset Ef of essential -extensions of f (cf.
Proposition 2.7 for existence) is a minimal right P<∞ - mod)-approximation of F .

Remark 4.7 By Lemma 2.3, the map 1 ⊗ q in statement (2) of the theorem is naturally
isomorphic to the map core(1 ⊗ q) : core ⊗ X) → core(F ) and, modulo the canon-
ical isomorphism core(F ) ∼= ⊗ eF

⊗ eF )
, the map F : core(F ) = ∇(F ) → F is the

embedding of core(F ) into F .
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Proof We start by showing that the first assertion follows from (1) and (2). Indeed,
the correspondence S ↔ eS is a bijection between the isomorphism classes of simple

-modules in add and those of the simple left -modules. In light of [1, Propo-
sition 3.7] and the fact that the simples in add 1 − e)/J (1 − e) have finite projective
dimension, it thus suffices to show that any simple module S ∈ add has a
P<∞ -mod)-approximation precisely when eS has a P<∞ -mod)-approximation.
Clearly, the simple summands S of satisfy S = ∈ F , and thus the required
equivalence arises from (1) and (2) as a special case.

(1) We assume that p : M → F is a minimal P<∞ -mod)-approximation of F , and
set p = p|eM : eM −→ eF . Moreover, we abbreviate ⊗ Y to Y † for Y ∈

-mod and ⊗ eN to N‡ for N ∈ -Mod; thus (−)† and (−)‡ are functors
-Mod → -Mod and -Mod → -Mod, respectively, such that N‡ = (eN)†.

Let α ∈ Hom (Z, eF ) for some Z ∈ P<∞ -mod). By Lemma 4.3, Z† ∈
P<∞ -mod), and hence the composition F ◦ (1 ⊗ α) : ⊗ Z = Z† →
F belongs to Hom (P<∞ -mod), F ). By hypothesis, we thus obtain a map β ∈
Hom (Z†,M) such that F ◦ (1 ⊗ α) = p ◦ β. Since the functor e ◦ ⊗ −) =
e◦ (−)† is naturally equivalent to 1e -Mod, application of e to this equality shows that
β factors through p . Therefore p is a P<∞ -mod)-approximation of eF .

To prove that p is (right) minimal, it suffices to show that no nonzero direct sum-
mand of eM is contained in the kernel of p . So suppose eM = X⊕Y with p (Y ) = 0,
and let π : eM → X be the projection onto X along Y . The latter gives rise to a cor-
responding projection pr : M‡ ‡) → X† †). Bearing in mind that M ∈ F
by Lemma 4.5, we obtain the following commutative diagram with exact rows

0 M‡ ‡)

pr

M
M

ρ

Coker( M)

∼=

0

0 X† †)
u

N Coker(u) 0

where the left-hand square is the pushout of M and pr. In particular, ρ is an epi-
morphism and u is a monomorphism. Both of the flanking terms of the bottom
exact sequence have finite projective dimension: For X† †) this follows from
Lemma 4.3, for the righthand term it follows from Coker(u) ∼= Coker( M) ∼=
M/∇(M). Consequently, also N has finite projective dimension.

On defining q to be the restriction of F ◦(1 ⊗ p ) to X† †), one readily checks
that the following diagram commutes:

M‡ ‡)

pr

M
M

p

X† †)
q

F

The universal property of the pushout therefore yields a map v ∈ Hom (N, F ) such
that v ◦ ρ = p. By Lemma 4.5, ρ is an isomorphism, whence so is pr, meaning that
Y † †) = 0. Thus Y † ∈ T , and we conclude that Y ∼= e(Y †) = 0. This confirms
minimality of p .
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(2) Let q : X −→ eF and f be as in the assertion, and suppose that the pair (M, p)

represents the maximum of the set Ef . To check that p : M → F is a P<∞ -mod)-
approximation of F , let h ∈ Hom (N, F ) with N ∈ P<∞ -mod). Since =
0 and again belongs to P<∞ -mod), we may assume that = 0.
In light of Lemma 4.3, the restriction h = h|eN : eN → eF is a morphism in
Hom P<∞ -mod), eF , whence it factors through q, say h = q ◦ η with η ∈
Hom (eN,X). Again referring to Lemma 4.3, we moreover see that the map 1 ⊗ η :
N‡ ‡) → X† †) induced by η is a morphism in P<∞ -mod). In order
to suitably extend 1 ⊗ η to a homomorphism with domain N via the monomorphism
N : N‡ ‡) → N , we consider the pushout diagram of the pair ( N , 1 ⊗ η), as

shown in the diagram below:

0 N‡ ‡)

1⊗η

N
N

g

h

Coker( N )

∼=

0

0 X† †)

1⊗q

λ

f

N Coker(λ) 0

F ‡ ‡)

F

F

Since the image of N is ∇(N), we may use the argumentation in the proof of (1) to
infer that N ∈ P<∞ -mod). By the naturality of (see Lemma 2.3), F ◦ 1 ⊗ h

coincides with h ◦ N , which yields f ◦ (1 ⊗ η) = h ◦ N ; in other words, the above
diagram fully commutes. Thus the universal property of the pushout provides us with a
map φ ∈ Hom (N , F ) such that φ◦λ = f and φ◦g = h. Given that F is torsionfree,
φ factors through the canonical map π : N → N ); denote the induced map
N ) → F by φ, and note that the composition λ := π ◦ λ is still an embedding,
since Im(λ) ∩ ) = 0; it is thus harmless to view λ as a set inclusion. We will
ascertain that the pair N ), φ gives rise to a class in Ef : Indeed, the cokernel
of λ belongs to T , since it is an epimorphic image of N/∇(N). Torsionfreeness of
N ) moreover guarantees that λ is an essential extension. That φ extends f , is
immediate from our construction. The inequality [ N ), φ (M,p)] now
yields a monomorphism v : N ) → M such that p◦v = φ. It is straightforward
to deduce that h factors through p as required.

To see that p is a right minimal morphism, consider a decomposition p = p1 0 :
M = U ⊕ V −→ F , where p1 is right minimal. Due to the fact that [(M, p)] ∈ Ef ,
the domain M of p is an essential extension of X† †) such that the quotient of
M modulo X† †) belongs to T . This means that eM = e X† †) , whence
the induced map p = p|eM : eM → eF coincides with the restriction f of f

to e X† †) . In light of the natural equivalence e ◦ ⊗ −) ∼= 1 -mod,
this identifies f with the minimal approximation q : X → eF . Due to the matrix
decomposition p = p1 0 : X ∼= eU ⊕ eV → eF , where p1 = p1|eU , right
minimality of q thus yields eV = 0, so that V ∈ T . On the other hand, V ∈ F ; this
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follows from the fact that M ∈ F , because the torsionfree module X† †) is an
essential submodule of M . Consequently, V = 0, which proves minimality of p as
claimed.

We apply Theorem 4.6 to the situation where the P<∞-categories of -mod and
(equivalently) -mod are contravariantly finite in the corresponding ambient module cat-
egories. The proposition below picks up the theme of Lemma 4.4 and Remark 4.7. It
reinforces our understanding of the links among the minimal approximations of objects
M ∈ -mod and those of the corresponding -modules , Mσ , and core(M).
These connections underlie the upcoming exploration of the basic algebra that results
from strongly tilting -mod.

Proposition 4.8 Continue to adopt conditions 4.1(i) and (ii), and suppose thatP<∞ -mod)

is contravariantly finite in -mod. By Theorem 4.6, this implies contravariant finite-
ness of P<∞ -mod) in -mod. For M ∈ -mod, denote by A(M) the minimal right
P<∞ -mod)-approximation of M .

(a) If M ∈ G, thenA(M) ∈ G.
(b) If M is torsionfree, then A(M) naturally embeds into A(Mσ ), and the core of A(M)

coincides with that ofA(Mσ ).
(c) For arbitrary M ∈ -mod, A ∼= A A(M)), and the tor-

sion submodule A(M)) is isomorphic to . In particular, there is a natural
homomorphism ρ : A(M) → A(Mσ ) such that Ker(ρ) and Coker(ρ) belong to T .

Proof Part (a) is a consequence of Lemma 4.4. We re-encounter this fact in a notational
setup that is convenient towards parts (b) and (c).

Suppose that M ∈ -mod is torsionfree, and fix an injective envelope E of A(M). Since
A(M) is again torsionfree (Lemma 4.5), so is soc A(M) , which implies that soc A(M)

is contained in the submodule core A(M) of A(M). Therefore E is also an injective
envelope of core A(M) . Moreover, let p : A(M) → M be a minimal P<∞ -mod)-
approximation, and set X = eA(M). By Theorem 4.6 and Remark 4.7, the restriction
e(p) : eA(M) → eM is then a minimal P<∞ -mod)-approximation of eM , and p is
maximal in the set Ef of essential -extensions of the composition

f : ⊗ X

⊗ X)
∼= core(A(M)) −→ core → M . (•)

(a) Suppose M = Mσ . In view of the fact that e(p) : X = eA(M) → eM is a minimal
P<∞ -mod)-approximation of eM , Lemma 4.4 guarantees that ⊗ X)σ
is a minimal P<∞ -mod)-approximation of Mσ = M , i.e., A(M) ∼= A(M))σ as
claimed.

(b) In light of (a), ⊗ X)σ ∼= ⊗ X
⊗ X) σ

is a minimal P<∞ -mod)-
approximation of Mσ . Hence we infer from (•) that

A(Mσ ) ∼= coreA(M)
σ

∼= A(M)σ .

We may thus identify A(Mσ ) with a submodule of E containing A(M) such that
A(Mσ )/A(M) ∈ T . The latter condition implies that core A(Mσ ) = core A(M) .

(c) Now let M be arbitrary, and let π : M M = be the canonical map.
Moreover, suppose that q : A(M) → M is a minimal P<∞ -mod)-approximation
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of M . On the model of previous arguments, it is straightforward to check that the map
q : N → M in the following pullback is a P<∞ -mod)-approximation of M .

N

π

q
M

π

A(M)
q

M

The fact that Ker(π ) ∼= Ker(π) shows that Ker(π ) is a torsion module, necessarily equal
to because A(M) is torsionfree; hence q induces an isomorphism ) : ∼=

. To check right minimality of q , suppose u ∈ End (N) satisfies q ◦ u = q . On
applying the functors and (1 : , the latter acting as M → (1 : := M , we
find that ∈ End is an isomorphism, since ) is an isomorphism; further
(1 : ∈ End ∼= End A(M) is an isomorphism, since (1 : ) ∼=
q : A(M) → M was chosen right minimal. Consequently, also u is an isomorphism, which
proves q to be right minimal as claimed.

We conclude that q coincides with p up to isomorphism, whence A A(M))
∼= A(M) and A(M) ∼= . In particular, the composition

ρ : A(M) A ∼= A( → A(Mσ ) = A(Mσ )

has the postulated properties.

Remark 4.9 Analyzing the proof of the preceding proposition, one observes the following:
If πX : X −→ X = and pX : A(X) −→ X denote the canonical projection and
the minimal P<∞ -mod)-approximation of a module X, then one has a composition of
pullbacks

A(M)

πA(M)

pM
M

πM

A(M) pM
M

A(Mσ )
pMσ

Mσ

such that the compositions of the vertical arrows are isomorphic to the canonical maps
μA(M) : A(M) −→ A(M)σ and μM : M −→ Mσ , respectively.

In applying Theorem 4.6, we typically decompose e and 1−e into primitive idempotents:
e = e1 + · · · + em and 1 − e = em+1 + · · · + en. Since part (2) of Theorem 4.6 aims at
reducing the contravariant finiteness test for P<∞ -mod) to that for P<∞ -mod), we
are interested in making as “small” as possible. Hence the situation where all simple
left modules Si of finite projective dimension correspond to idempotents ei for i ≥ m + 1
is of particular interest. A modification of an example by Fuller-Saorı́n (see [7, Example
4.2]) shows that, even for monomial algebras , neither of the conditions Section 4.1 (i) nor
Section 4.1 (ii) in the hypothesis of Theorem 4.6 is dispensable.
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Example 4.10 Let be the monomial algebra based on the quiver

1
α

β

2

ε

γ

3
δ

which is defined by the graphs of its indecomposable projective left -modules, namely

1

α
β
��

��
� 2

γ ε
��

��
� 3

δ

2

ε

2 3

δ

2 2

ε

2 2

ε

2

2

Clearly, the simple left -modules S1, S2 have infinite projective dimension, whereas
pdim S3 = 2. Let e = e1+e2. Then condition Section 4.1 (i) is satisfied. On the other hand,
the indecomposable projective left -modules i for i = 1, 2 and the -module

1 − e) = 3 have the following graphs:

1

��
��

� 2

��
��

�

2 2 2 2

2 2

2

2

the indecomposable
projective left

-modules

the -module
1 − e)

This shows that the left -module 1 − e) has infinite projective dimension.
To see that the equivalence of Theorem 4.6 fails, observe that l.findim = 0,
whence P<∞ -mod) is contravariantly finite in -mod. Yet P<∞ -mod) is not
contravariantly finite in -mod, since the simple module S1 does not have a P<∞ -mod)-
approximation. Indeed, consider the family (Mn)n∈N of objects in P<∞ -mod) shown
below:

x1

1

β

��
��
��
�

2

��
��

��
��
��
��
�

x2

1

α

��
��
��
�

β

��
��
��
�

2

��
��

��
��
��
��
� · · · xn

1

α

��
��
��
�

β

��
��
��
�

3
���

3
���

2 2 2 2 · · · 2 2

With the aid of Criterion 10 of [10], one readily checks that no homomorphism φ ∈
Hom P<∞ -mod), S1 allows for factorization of all of the following maps fn ∈
Hom (Mn, S1) in the form fn = φ ◦ gn; here fn(x1) = e1 ∈ 1/Je1 and fn(xi) = 0 for
i > 1.
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We mention that, in the presence of condition Section 4.1 (ii), condition Section 4.1 (i)
in the hypothesis of Theorem 4.6 is not superfluous either. Instances attesting to this are
ubiquitous. In the above example, take e = e1, and note that this choice makes
semisimple.

5 The Basic Strong Tilting Object inP<∞( -mod)
and Its Endomorphism Algebra

In this section, we focus on the situation where P<∞ -mod) is contravariantly finite in
-mod. Let = End (T )op, where T is the basic strong tilting object in -mod. The

guiding question is this: When is P<∞(mod- in turn contravariantly finite in mod- ? In
light of Theorem 3.1, this amounts to the question of when the process of strongly tilting

-mod can be repeated arbitrarily. As witnessed by Example 3.3, the possibility of iteration
is not automatic in case -mod can be strongly tilted once.

Setting 5.1 (Upgraded blanket hypothesis) Throughout this section, let be a basic Artin
algebra and e ∈ an idempotent satisfying conditions (i) and (ii) of Setting 4.1, namely
pdim 1 − e)/J (1 − e) < ∞ and pdim 1 − e) < ∞, next to the additional
condition that

(iii) P<∞ -mod) is contravariantly finite in -mod.

By Theorem 4.6, P<∞ -mod) is contravariantly finite in -mod in this setting. We
will introduce an idempotent e in which naturally corresponds to e. Our objective is to
show that the blanket hypotheses Setting 4.1 carry over to mod- , meaning that the right -
module (1− e) 1− e)J in turn has finite projective dimension, and the corner (1− e) e

has finite projective dimension as a right e e-module. In light of Theorem 4.6, this will then
allow us to deduce contravariant finiteness of P<∞(mod- from that of P<∞(mod-e e).

To this end, we will first assemble some information about the -module structure of the
basic strong tilting module T .

From Section 2.1 we know that add T = addA, where A is a minimal P<∞ -mod)-
approximation of an injective cogenerator of -mod. In particular, any such minimal
approximation A is a strong tilting module. To pin down a candidate for A, we decom-
pose both e and 1 − e into sums of primitive idempotents of , say e = e1 + · · · + em

and 1 − e = em+1 + · · · + en. Moreover, we let Si = i/J ei be the corresponding
simple modules, and choose Ai to be the minimal P<∞ -mod)-approximations of their
injective envelopes E(Si). Clearly, A := 1≤i≤n Ai is then as required. Since the injec-
tive objects of the Giraud subcategory G of -mod relative to the torsion pair (T ,F)

(see 2.4) are precisely the torsionfree injective -modules, the subsum 1≤i≤m E(Si) is
an injective cogenerator in G. Moreover, according to Lemma 2.2, left multiplication by e

induces an equivalence of categories G ∩ -mod ∼= -mod, and 1≤i≤m eE(Si) is an
injective cogenerator in -mod. We separately explore the direct sums 1≤i≤m Ai and

m+1≤i≤n Ai .

Proposition 5.2 Assume the hypotheses 5.1, and let T ∈ -mod be the basic strong tilting
module. Then add( 1≤i≤m Ai ) contains preciselym isomorphism classes of indecomposable
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modules, represented by T1, . . . , Tm say. If T = 1≤i≤m Ti , then the direct summand
T of T is an object of G, and eT is the basic strong tilting object in -mod, up to
isomorphism.

Supplementary direct summands Tm+1, . . . , Tn of T such that T = T ⊕ m+1≤i≤n Ti

are as follows: For m + 1 ≤ i ≤ n, the minimal P<∞ -mod)-approximationAi of E(Si)

decomposes in the formAi = Ti ⊕ Ui with soc Ti) = Si and Ui ∈ add(T ).
In particular, soc T ) = Sm+1 ⊕ · · · ⊕ Sn.

Proof By Theorem 4.6(1), 1≤i≤m eAi is a P<∞ -mod)-approximation of the injec-
tive cogenerator 1≤i≤m eE(Si) in -mod, which shows that 1≤i≤m eAi is a strong
tilting object in -mod. Since the rank of K0 equals m, this implies that
add( 1≤i≤m eAi ) contains precisely m isomorphism classes of indecomposable -
modules (see Section 2.1). According to Proposition 4.8, the sum 1≤i≤m Ai in turn
belongs to G, and therefore the category equivalence G ∩ -mod ∼= -mod guarantees
that add( 1≤i≤m Ai ) contains the same number of isomorphism classes of indecompos-
able objects. If these are represented by T1, . . . , Tm, then e( 1≤i≤m Ti) is the basic strong
tilting -module by construction. This proves the first claim.

For the final claims, let i ≥ m + 1. We observe that Si = soc E(Si) is the only sim-
ple torsion module which embeds into Ai ; indeed, this is immediate from the fact that

Ai ) ∼= E(Si) by Proposition 4.8(c). Hence precisely one of the indecomposable
direct summands of Ai contains a copy of Si in its socle; say Ai = Ti ⊕ Ui with Ti

indecomposable and Si = soc Ti), while i ) = 0. Then m+1≤i≤n Ti consists of
n − m pairwise nonisomorphic direct summands in add(A), none of which occurs among
T1, . . . , Tm, and we conclude that T = 1≤i≤n Ti up to isomorphism. Since the Ui are
torsionfree and hence do not belong to add( m+1≤i≤n Ti), they belong to add( 1≤i≤m Ti).

In view of the fact that T is torsionfree, the final claim follows.

Definition We refer to Proposition 5.2. Let ei ∈ be the projection T → Ti ⊆ T with
respect to the decomposition T = 1≤i≤n Ti . Viewing ei as an endomorphism of T , we

thus obtain a primitive idempotent in the tilted algebra . We define e := 1≤i≤m ei ∈ .
Thus e is the projection T → T ⊆ T along T := m+1≤i≤n Ti .

Example 5.3 (Return to Example 2.2.) Let be the algebra of Example 2.2. It is readily
seen that e = e1 + e2 satisfies the conditions of Setting 5.1, that is a self-injective
algebra and that the indecomposable injective modules I1 and I2 have finite projective
dimension. Thus T = T1 ⊕ T2 = I1 ⊕ I2. Recall from Proposition 5.2 that T3 and T4
are the indecomposable summands of A3 ⊕ A4 which are not in F . Let us fix j ∈ {3, 4}
in the sequel. By Proposition 4.8 and Remark 4.9, in order to calculate Aj , we need to
identify the minimal P<∞ mod)-approximation of (Ij )σ = S2 ⊕ S2 (see Example 2.6).
By Lemma 4.4, such an approximation is of the form (1 ⊗ q)σ ⊕ (1 ⊗ q)σ , where
q : X −→ eS2 is the minimal P<∞ mod)-approximation. The latter is the projec-
tive cover 2 −→ eS2 of eS2 since is self-injective. It easily follows that (1 ⊗ q)σ
gets identified with the canonical projection ρ : 2)σ = I1 −→ S2. By Proposition
4.8 and Remark 4.9 again, the -module Aj is the upper left corner of the pullback of
ρ ⊕ ρ : I1 ⊕ I1 −→ S2 ⊕ S2 and the projection μIj

: Ij −→ (Ij )σ = S2 ⊕ S2. It then
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follows that T3 = A3 is given by the following diagram, and T4 = A4 is obtained from T3
by factoring out the copy of S3 in the socle of T3.

3 3 3 3

T3 = A3 : 4 4 4 4

3

��
��

� 3 2

��
��

�

��
��
�

3 2

��
��

�

��
��
�

3 3

��
��
�

1 4 1

3

Theorem 5.4 Let be a basic Artin algebra. Assume the hypotheses 5.1, and let T be
the basic strong tilting module in -mod. If = End (T )op, the corner algebra e e

is isomorphic to End (eT )op, where eT is the basic strong tilting module in -mod
specified in Proposition 5.2.

The pair ( e) satisfies the right-hand versions of conditions 4.1: Namely, (i) the right
-module (1−e) 1−e)J has finite projective dimension, and (ii) the right e e-module

(1 − e) e has finite projective dimension.

Proof The isomorphism e e ∼= End (T )op ∼= End (eT )
op is immediate from Propo-

sition 5.2 and the comments that precede it. As above, suppose that e = e1 + · · · + em and
1 − e = em+1 + · · · + en, where the ei are primitive.

Regarding condition (i) of the claim: By strongness of T , the functor Hom (−, T ) :
-mod → mod- induces a contravariant equivalence between P<∞ -mod) and a cer-

tain subcategory of P<∞(mod- , whence pdim Hom (Si, T ) < ∞ for all i ≥ m + 1
(see [12, Reference Theorem III and Theorem 1] or [13, Theorems 7,8]). So we only need
to show that the right -module Hom (Si, T ) is isomorphic to ei eiJ for m+1 ≤ i ≤ n.
Let i ≥ m + 1. In light of Proposition 5.2, Si = soc Ti) is the only occurrence of Si

in the socle of T , and therefore any homomorphism Si → T maps Si onto soc Ti). If
ini : Si → Ti ⊆ T is an embedding, we thus find that Hom (Si, T ) is isomorphic to
Hom (Si, iniSi) as a -module. One checks that the latter module is annihilated by the radical
J of , but not annihilated by ei , and concludes that Hom (Si, T ) ∼= ei eiJ as postulated.

To verify condition (ii), namely finiteness of pdime e (1 − e) e, we again use Propo-
sition 5.2. The isomorphism e e ∼= End (T )op shows that our claim amounts to
finite projective dimension of Hom (T , T ) over = End (T )op. Since add(T )

⊆ add m+1≤i≤n Ai by the proposition, it suffices to show that pdim Hom (Ai , T )

< ∞ for i ≥ m + 1. Fix i ≥ m + 1 in the following. Towards another reduction step, we
apply Proposition 4.8 to a minimal P<∞ -mod)-approximation Ai of E(Si)σ . Part (c)
of 4.8 provides us with a map ρ : Ai → Ai such that both Ker(ρ) and Coker(ρ) belong
to T . Since the restriction of the functor Hom (−, T ) to P<∞ -mod) is exact, so is
Hom (−, T )|P<∞ −mod), and consequently torsionfreeness of T shows Hom (ρ, T ) :
Hom (Ai , T ) → Hom (Ai , T ) to be an isomorphism of right -modules. Lemma
4.3 moreover ensures that eAi has finite projective dimension in -mod. Returning to
the category equivalence G ∩ -mod) ≈ -mod which sends M to eM (cf. Lemma
2.4), we thus find finiteness of pdim Hom (Ai , T ) to be equivalent to finiteness of
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the projective dimension of Hom (eAi , eT ) over End (eT )op alias e e. Given that
Hom (−, eT ) takes objects in P<∞ -mod) to objects in P<∞(mod-e e) [loc.cit.,
applied to in place of ], condition (ii) follows.

Theorem 5.4 ensures that, with a “duplicate” in of the original idempotent e ∈ , the
test provided by Theorem 4.6 is again available towards deciding whether P<∞(mod- is
contravariantly finite in mod- .

Corollary 5.5 Adopt the hypotheses and notation of Theorem 5.4. Then contravari-
ant finiteness of P<∞(mod- in mod- is equivalent to contravariant finiteness of
P<∞(mod-e e) in mod-e e.

In light of the fact that the basic strong tilt of coincides with e e, we thus
obtain: Not only is existence of a strong tilting object in -mod equivalent to existence of
a strong tilting object in -mod under conditions 4.1, but the same hypothesis implies
that -mod allows for unlimited iteration of strong tilting precisely when this is true for

-mod. This conclusion compiles information from Theorems 3.1, 4.6 and Corollary 5.5.

Corollary 5.6 Let be a basic Artin algebra and e ∈ an idempotent satisfying the
hypotheses 4.1 (i.e., all simple left -modules of infinite projective dimension belong to
add , and pdim 1−e) < ∞). Then the category -mod allows for unlimited
iteration of strong tilting if and only if the same is true for the category -mod.

A first straightforward application of our techniques shows that, in testing for contravari-
ant finiteness of P<∞ -mod) or iterability of strong tilting, we may automatically discard
the idempotents corresponding to the simple left -modules of projective dimension at most
1. Namely:

Proposition 5.7 Let be a basic Artin algebra in which we fix the complete set of primitive
idempotents {e1, ..., er , er+1, ..., en}, ordered in such a way that pdim i/J ei) ≤ 1 for
i > r . For e = r

i=1 ei , the following assertions are equivalent:

(1) P<∞ -mod) is contravariantly finite in -mod (resp., -mod allows for unlimited
iteration of strong tilting);

(2) P<∞ -mod) is contravariantly finite in -mod (resp., -mod allows for
unlimited iteration of strong tilting).

Proof From the proof of [7, Proposition 2.1], we know that 1 − e) is projective as a
left -module. Thus the pair -mod, e) satisfies the blanket hypotheses of Setting 4.1.
Assertions 1 and 2 are thus consequences of Theorem 4.6 and Corollary 5.6, respectively.

6 Applications and Examples

By way of the equivalences established in the previous sections, we can now easily secure
contravariant finiteness of P<∞ -mod) and P<∞(mod- in cases in which this orig-
inally required a considerable effort. Moreover, the unifying reasons behind these results
become more transparent through the reduction and permit us to expand the settings to
which they apply.
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6.1 Precyclic/Postcyclic Vertices and Normed Loewy Lengths

An instance in which the simplification gained by reduction to corner algebras stands out is
that of truncated path algebras and their strong tilts (see [12] and [13]); without a reduction
technique, it is challenging to confirm that -mod allows for unlimited iteration of strong
tilting in this case.

In light of Theorem 4.6, the first step, namely to confirm contravariant finiteness of
P<∞ -mod) for truncated , has now been trivialized. To generalize it, recall that, given
any path algebra modulo relations, = KQ/I , a vertex ei of Q (systematically identified
with a primitive idempotent of ) is called precyclic if there exists a path of length ≥ 0
which starts in ei and ends on an oriented cycle; the attribute postcyclic is dual, and ei is
called critical if it is both pre- and postcyclic. Clearly, all vertices which give rise to simple
modules of infinite projective dimension are among the precyclic ones; moreover ei j = 0
whenever ei is precyclic, but ej is not. Theorem 4.6 thus yields

Proposition 6.1 Let = KQ/I be an arbitrary path algebra modulo relations,and let
e be the sum of the primitive idempotents corresponding to the precyclic vertices of Q.
If P<∞ -mod) is contravariantly finite in -mod, e.g., if l.findim = 0, then
P<∞ -mod) is contravariantly finite in -mod.

For truncated , the final condition concerning the left finitistic dimension of is
clearly satisfied since all indecomposable projective left -modules i for precyclic
ei have the same Loewy length; this is not necessarily true for the indecomposable injective
left -modules, but it is for those whose socles correspond to critical vertices; namely,
if e is the sum of the critical vertices of Q, then the indecomposable injective left e -
modules also have coinciding Loewy lengths in the truncated case. The combination of these
two conditions which norm the Loewy lengths of certain projective or injective modules is,
in fact, all that is needed to guarantee that -mod allows for iterated strong tilting.

Proposition 6.2 Again, let = KQ/I be a path algebra modulo relations and e the sum
of the primitive idempotents corresponding to the precyclic vertices of Q. Moreover, let e

be the sum of those idempotents which correspond to the critical vertices.
Suppose that all indecomposable projective left -modules have the same Loewy

length, and that the analogous equality holds for the Loewy lengths of the indecompos-
able injective left e -modules. Then -mod allows for unlimited iteration of strong
tilting, thus giving rise to a sequence of related module categories -mod mod-

-mod · · · . Starting with the first strong tilt, mod- , the Morita equivalence classes of
these categories repeat periodically with period 2.

Proof Suppose that e = e1 + · · · + em and e = e1 + · · · + er for some r ≤ m.
Since l.findim = 0 due to the first condition on Loewy lengths, P<∞ -mod) is
contravariantly finite in -mod. Proposition 6.1 thus guarantees that P<∞ -mod) is
contravariantly finite in -mod.

As we already pointed out above, the conditions (i) and (ii) of Setting 4.1 are satisfied
for the pair -mod, e), whence, by Theorem 5.4, we only need to show that -mod
allows for unlimited iteration of strong tilting. Set = , and let Q , resp. J , be
the quiver and Jacobson radical of , respectively. We already know that the category
P<∞ -mod) is contravariantly finite in -mod, due to the vanishing of the left finitistic
dimension of . The latter in fact entails that the basic strong left -module T is a copy
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of the left regular module . Consequently, the strongly tilted algebra = , i.e., the
opposite of End (T ), coincides with . By Theorem 4.6, it therefore suffices to check
that P<∞(mod- ) is contravariantly finite in mod- . To confirm this, we observe that
the pair (mod- , e ) in turn satisfies the hypotheses 4.1: Indeed, the precyclic vertices of
(Q )op are precisely e1, . . . , er , whence the simple right -modules of infinite projective
dimension are among the quotients ei /eiJ for i ≤ r , and (e − e e = 0. The right
finitistic dimension of e e = e is in turn zero, because all indecomposable projective
right e -modules have the same Loewy length; indeed, this follows by duality from the
second of our two hypotheses. Consequently, another application of Proposition 6.1 yields
contravariant finiteness of P<∞(mod- ) as required.

The concluding statements are part of Theorem 3.1.

We deduce Theorem D of [12] as a special case.

Corollary 6.3 Suppose that = KQ/I is a truncated path algebra. Then -mod allows
for unlimited iteration of strong tilting.

The proof of the following generalization of Proposition 6.2 is immediate from that of
the latter.

Corollary 6.4 Let = KQ/I , and let e and e be as in the statement of 6.2. If
l.findim = 0 and P<∞(mod-e ) is contravariantly finite in mod-e , then

-mod allows for unlimited iteration of strong tilting.

Recall that an Artin algebra is said to be left serial if all indecomposable projective
left -modules are uniserial. The algebras which are left and right serial are also called
Nakayama algebras. In [5] it was shown that, for any split left serial algebra , the category
P<∞ -mod) is contravariantly finite in -mod. The conclusion actually carries over to
the category mod- of right -modules. Namely:

Proposition 6.5 Suppose that is a path algebra modulo relations. If is left serial,
thenP<∞ -mod) is contravariantly finite in -mod andP<∞(mod- is contravariantly
finite in mod- .

Proof The assertion for left modules was proved in [5]. We only address right -modules.
By hypothesis, ∼= KQ/I is left serial. In particular, this means that Q is free of double

arrows. Without loss of generality, we assume that Q is a connected quiver; we may further
assume that it is not a tree, since otherwise has finite global dimension, which renders
the contravariant finiteness claim trivial. By left seriality, Q then contains a single oriented
cycle such that all off-cycle vertices are pre- but not postcyclic. Consequently, any vertex
of Qop either belongs to said cycle or else is post- but not precyclic. On letting e be the
sum of the precyclic vertices of Qop, i.e., the vertices located on the oriented cycle in the
present situation, we thus obtain a Nakayama algebra . Hence the P<∞-categories in
both -mod and mod- are contravariantly finite in the corresponding ambient module
categories by [5, Theorem 5.2]. (The latter may alternatively be deduced from the fact that
Nakayama algebras have finite representation type.) On combining this with Proposition
6.1, we obtain the claim.
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6.2 Applications to Morita Contexts

In this subsection we shall see that Morita contexts provide a tool to construct examples
of P<∞-contravariant finiteness and iteration of strong tilting. Recall that a Morita context
(over a ground commutative ring K) consists of a sextuple (A, B, M, N, ϕ, ψ), where A

and B are K-algebras, M and N are an A-B- and a B-A-bimodule, which we always assume
with the same action of K on the left and on the right, and ϕ : M ⊗B N −→ A and ψ :
N⊗AM −→ B are morphisms of A-A- and B-B-bimodules, respectively, satisfying certain

compatibiliity conditions (see [18]) which are exactly the ones that make = A M

N B

into a K-algebra with the obvious multiplication. Recall that τA = Im(ϕ) and τB = Im(ψ)

are two-sided ideals of A and B, respectively, called the trace ideals of the Morita context.
The Morita contexts in which we are interested have some additional properties. We

assume that K is artinian and A, B, M and N are finitely generated as K-modules. Such
a Morita context will be called a basic Morita context of Artin algebras if is basic or,
equivalently, if A and B are basic, τA ⊆ J (A) and τB ⊆ J (B), where J (−) denotes the
Jacobson radical.

The following is the main result of the subsection.

Theorem 6.6 Let (A, B, M, N, ϕ, ψ) be a basic Morita context of Artin algebras, whereM

is projective as a left A-module. Suppose also that ψ : N ⊗A M −→ B is a monomorphism
and the algebra B/τB has finite global dimension.

Set = A M

N B
. ThenP<∞ -mod) is contravariantly finite in -mod (resp., -mod

allows for unlimited iteration of strong tilting) if and only if this is true for P<∞(A-mod)

(resp., A-mod).
In particular, -mod allows for unlimited iteration of strong tilting when A is a

Gorenstein algebra or a truncated path algebra or when l.findim A = 0 = r.findim A.

Proof Take e = 1 0
0 0

. The goal is to check that the pair -mod, e) satisfies the blanket

hypotheses of Setting 4.1. Bearing in mind that the algebra is isomorphic to A, the
result will then be a direct consequence of Theorem 4.6 and Corollary 5.6. Note that B

and (1 − 1 − e) are also isomorphic algebras and hence the -(1 − 1 − e)-
bimodule 1 − e) is isomorphic to the A-B-bimodule M , with the obvious meaning.
Hence pdim 1 − e)) = 0 and we need to check that pdim (

1−e)
1−e)

) < ∞.

We first prove that 1 − e) = 0 M

0 τB

∼= M

τB
is a projective left -module.

Indeed the adjunction map 1−e) : ⊗ 1 − e) −→ 1 − e) gets identified, in

the obvious way, with the map
A

N
⊗A M −→ M

B
, that can be expressed matricially as

μ 0
0 ψ

: A ⊗A M

N ⊗A M
−→ M

B
. Here μ : A⊗A M −→ M is the canonical isomorphism

given by multiplication and ψ : N ⊗A M −→ B is the map in the Morita context. It follows
that 1−e) is a monomorphism, and so

⊗ 1 − e) ∼= 1 − e) = Im 1−e)).

But ⊗ 1 − e) ∈ add ⊗ = add since 1 − e) ∈ -proj =
add( . Therefore 1 − e) is a projective left -module.
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Next we should notice that there is an algebra isomorphism ∼= B
τB

, so that these
isomorphic algebras have finite global dimension. Moreover, we have an isomorphism

∼= 1−e)
1−e)

in -mod, which, by the previous paragraph, implies that has pro-

jective dimension ≤ 1 as a left -module. Note also that 1−e)
1−e)

is canonically a left

-module. Fix a minimal projective resolution 0 → Qt → ... → Q1 → Q0 →
1−e)

1−e)
→ 0 in -mod. This is also an exact sequence in -mod, and we have

that pdim (Qk) ≤ 1 since Qk ∈ add( ), for all k = 0, 1, ..., t . It then follows that

pdim (
1−e)

1−e)
) < ∞, as desired.

The final statement clearly follows from assertion 3 since in those examples A-mod
allows for unlimited iteration of strong tilting.

The last theorem and its proof have the following consequence for triangular matrix
algebras.

Corollary 6.7 Let K be a commutative Artinian ring, let A and B be basic Artin K-
algebras and letM andN be a finitely generatedA-B-bimodule andB-A-bimodule, respec-
tively. Suppose that B has finite global dimension and P<∞(A-mod) is contravariantly
finite in A-mod. The following assertions hold:

(1) If = A 0
N B

, then P<∞ -mod) is contravariantly finite in -mod. Moreover if

A-mod allows for unlimited iteration of strong tilting, so does -mod.
(2) If pdim(AM) < ∞, the conclusions of assertion 1 remain true on replacement of by

= A M

0 B
.

Proof Assertion 1 is a direct consequence of Theorem 6.6. As for assertion 2, note that if

e = 1 0
0 0

then pdim 1 − e)) < ∞ since we have pdim(AM) < ∞. We will prove

that pdim 1− e)) < ∞ and, arguing as in the last paragraph of the proof of Theorem
6.6, we will conclude that the pair -mod, e) satisfies the blanket hypotheses of Setting
4.1, and the result will follow from Theorem 4.6 and Corollary 5.6.

Note that 0 = (1 − and so = is projective as right -module. Moreover
we have a commutative diagram of K-modules

⊗ 1 − e)
∼=

1 − e)

⊗ 1 − e) 1 − e)

,

where the upper horizontal arrow is the canonical isomorphism and the lower horizontal one
is the multiplication map. It follows that this latter arrow is an isomorphism, which implies
that pdim 1 − e)) < ∞ since 1 − e) has finite projective dimension and the
functor ⊗ − : -mod −→ -mod is exact and takes projectives to projectives.

We end the paper by giving non-triangular examples to which Theorem 6.6 applies. We
start with the following elementary observation.

2460 B. Huisgen-Zimmermann et al.



Remark 6.8 Let A and B be basic Artin K-algebras and M and N finitely generated A-B-
and B-A-bimodules, respectively. If N ⊗B M = 0 then any morphism ϕ : M ⊗B N −→ A

of A-A-bimodules such that Im(ϕ) ⊆ J (A) gives rise to a basic Morita context of Artin
algebras (A, B, M, N, ϕ, 0) since the required compatibility conditions hold (see, e.g., [19,
Exercise IV.35]).

Examples 6.9 Let A, B be basic finite dimensional algebras over an algebraically
closed field K and let us fix complete sets of primitive idempontents {e1, ...., em} and
{em+1, ...., en} in A and B, respectively. Consider either one of the following two situations,
where the unadorned ⊗ means ⊗K :

(a) gldim(B) < ∞, M is any finitely generated A-B-bimodule that is projective as a left
A-module, N is any finitely generated B-A-bimodule such that Nei = 0 whenever the
simple left A-module Aei/J (A)ei embeds in top(AM), and ϕ : M ⊗B N −→ A is
any morphism of A-A-bimodules such that Im(ϕ) ⊆ J (A). Then (A, B, M, N, ϕ, 0)

is a basic Morita context.
(b) Suppose that the quiver QB of B has no oriented cycles, let Soc(B) be the socle of B

as a B-B-bimodule and fix any index k ∈ {m+1, ..., n} such that W := Soc(B)ek = 0.
Note that W is a subbimodule of BBB isomorphic to Y ⊗ ekB

ekJ (B)
, for some semisimple

left B-module Y that, due to the absence of oriented cycles in QB , satisfies ekY = 0.
Take M = Aei ⊗ ekB

ekJ (B)
and N = Y ⊗ eiA

eiJ (A)
, for some i = 1, ...,m. We then have

M ⊗B N = 0 and an isomorphism of B-B-bimodules

N ⊗A M ∼= Y ⊗ eiAei

eiJ (A)ei

⊗ ekB

ekJ (B)
∼= Y ⊗ ekB

ekJ (B)
∼= W .

Taking as ψ : N ⊗A M −→ B the composition of this latter isomorphism followed
by the inclusion → B, we get a basic Morita context (A, B, M, N, 0, ψ) (cf. the
left-right symmetric version of Remark 6.8).

In the situations (a) and (b), the associated algebra = A M

N B
satisfies that

P<∞ -mod) is contravariantly finite in -mod (resp., -mod allows for unlimited
iteration of strong tilting) if, and only if, so does the algebra A.

Proof In situation (a), we have an isomorphism of left A-modules M ∼= ⊕i∈IAe
ti
i , where

I is the set of i ∈ {1, ...,m} such that the simple left A-module Aei/J (A)ei embeds in
top(AM) and ti > 0 for all i ∈ I . It follows that N ⊗A M = 0 and the existence of the
mentioned Morita context follows by Remark 6.8. Hence in both situations M is projective
as a left A-module and the map ψ : N ⊗AM −→ B is a monomorphism. In (a) we have that
τB = 0 and in (b) the quiver of B/τB has no oriented cycles. Therefore gl.dim(B/τB) < ∞
in both cases and assertions 1 and 2 are direct consequences of Theorem 6.6.

The following example is a combinatorial version of Example 6.9(a).

Example 6.10 Let A := KQe/ Re and B := KQ1−e/ R1−e be finite dimensional alge-
bras given as quotients of path algebras modulo relations, on which we fix bases Be and
B1−e consisting of paths in Qe and Q1−e, respectively. Consider the algebra = KQ/ R ,
also given by quiver and relations, where:
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(1) The quiver Q is obtained from the disjoint union quiver Qe Q1−e by adding two
finite sets of arrows (some possibly empty) {α1, ..., αs} and {β1, ..., βt }, where the αi

go from vertices in Q1−e to vertices in Qe and the βj from vertices in Qe to vertices
in Q1−e, with the only restriction that t (αk) = o(βl) for all k = 1, ..., s and l = 1, ..., t
(here o(γ ) and t (γ ) denote, respectively, the origin and terminus of any arrow γ );

(2) The set of relations is R = Re ∪ R1−e ∪ R1−e,e ∪ Re,e, where
R1−e,e = {βlq: l ∈ {1, ..., t} and q ∈ s

k=1 eo(βl)Beet(αk)}, and
Re,e = {αkpβl : l ∈ {1, ..., t}, k ∈ {1, ..., s} and p ∈ eo(αk)B1−eet (βl )}.

When gldim(B) < ∞, the subcategory P<∞ -mod) is contravariantly finite in -mod
(resp. -mod allows for arbitrary iteration of strong tilting) if, and only if, the corresponding
property is true for the algebra A.

Proof Let {e1, ..., em, em+1, ..., en} be the set of primitive idempotents of correspond-
ing to the vertices of Q, where we assume that i is a vertex of Qe if and only if i ≤ m.
We have the canonical Morita context associated to e := e1 + ... + em, so that ∼=

1 − e)

(1 − 1 − 1 − e)
. The relations R1−e,e and Re,e guarantee that the nonzero

paths in and (1− 1−e) consist exclusively of arrows of Qe and Q1−e, respectively.
That is, we have ∼= A and (1 − 1 − e) ∼= B.

On the other hand, one can check that the chosen set of relations implies that 1−e) =
s
k=1 p∈eo(αk)B1−e kp, that this sum is direct and that the map t (αk) −→ kp

(x → xαkp) is an isomorphism, for all k = 1, ..., s. Therefore 1 − e) is a projective left
-module. Moreover the simple left -module i/eJ ei embeds in top( 1−e))

if and only if i = t (αk) for some k = 1, ..., s. But the relations in R1−e,e imply that
(1 − t (αk) = 0, for all k = 1, ..., s.

We are thus in the situation of Example 6.9(a), and the conclusions follow from that
example.

6.3 A Specific Path Algebra Modulo Relations

The final example is a non-monomial path algebra modulo relations whose category of left
modules allows for unlimited iteration of strong tilting. Our reduction technique renders
verification of this fact significantly less labor-intensive.

Example 6.11 Let = KQ/I be a specimen of the following class of finite dimensional
algebras over a field K , which depends on 4 parameters c1, . . . , c4 ∈ K∗. The quiver Q is

1
μ

2
α

β

4
γ

δ

3

ρ

σ

ν 5

τ
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and I ⊆ KQ is the ideal generated by γα−c1δβ, γβ−c2δα, αρ−c3βσ , and αρ−c4τν, next
to monomial relations which are apparent from the graphs of the indecomposable projective
left -modules:

1
μ

2
α

��
��
� β

��
��

� 3
ρ

��
��
�

σ ��
��

�
ν






2
α

��
��
� β

��
��

� 4
γ

δ





4δ

���
���

���
γ

2

α ��
��

� 2
β

��
��
�

5

τ
���

���
���

4

γ ��
��

� 4

δ��
��
�

3

ν ��
��

� 3

ν��
��
�

4

3 5

4
γ

��
��
� δ





5

τ

3
ρ

��
��
�

σ

ν
��

��
� 3

ρ

��
��
�

σ

ν
��

��
� 4

γ

2

α ��
��

� 2
β

5

τ��
��
�

2

α ��
��

� 2
β

5

τ��
��
�

3
ρ

��
��
�

σ

ν
��

��
�

4 4 2 2 5

Then P<∞ -mod) is contravariantly finite in -mod, and -mod allows for unlimited
iteration of strong tilting.

Proof First one checks that the simple left -modules corresponding to the vertices e4 and
e5 have finite projective dimension, namely pdim S4 = 1 and pdim S5 = 3. Choose e :=
e1 + e2 + e3. To check that 1 − e) is projective in -mod, observe that := is
the algebra determined by the quiver Q and the indecomposable projective left -modules
shown below.

1
μ

2

γα=c1δβ

γβ=c2δα 3

ρ

σ

1
μ

2
γα

��
��
� γβ

��
��
� 3

ρ

��
��
�

σ
��
��
�

2
γα

3 3 2 2

3
We now read off that 4 ∼= e3)

2 and 5 ∼= e3 in -mod, to find that the left
-module 1 − e) is indeed projective. To see that P<∞ -mod) is contravariantly

finite in -mod, we check that l.findim = 0 by applying Bass’s criterion [4]: Indeed,
the graphs of the indecomposable projective right -modules,

1• 2
ρ

��
��
�

σ

μ
��

��
� 3

γα
γβ
��

��
�

3 3 1 2
μ

2

1

2463Contravariant Finiteness and Iterated...



show that all simple right -modules embed into the right socle of . Consequently,
Theorem 4.6 yields contravariant finiteness of P<∞ -mod) in -mod.

To confirm that -mod even allows for unlimited iteration of strong tilting, we show that
this is true for -mod, whence Corollary 5.6 will yield our claim. Since l.findim = 0,
the basic strong tilting object in -mod is T = , which yields ∼= .

It is not difficult to directly ascertain that P<∞(mod- ) is in turn contravariantly finite
in mod- , but another application of Theorem 4.6 cuts this task short: Setting e = e2 +e3,
where the ei are the primitive idempotents of corresponding to the vertices of Q , it
is effortless to check that e satisfies the conditions of Setting 4.1 relative to mod- , and
that r.findim e e = 0. Hence P<∞(mod-e e ) is contravariantly finite in mod-e e ,
and consequently so is P<∞(mod- ) in mod- . By Theorem 3.1, we thus conclude that

-mod allows for unlimited iteration of strong tilting. This completes the argument.
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