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Abstract
We provide a new approach towards the analysis of the fusion products defined by
B. Feigin and S. Loktev in the representation theory of (truncated) current Lie algebras. We
understand the fusion product as a degeneration using Gröbner theory of non-commutative
algebras and outline a strategy on how to prove a conjecture about the defining relations for
the fusion product of two evaluation modules. We conclude with following this strategy for
sl2(C[t]) and hence provide yet another proof for the conjecture in this case.
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1 Introduction

In the framework of finite-dimensional modules for current algebras, B. Feigin and S. Lok-
tev introduced the fusion product of evaluation modules. This is on one hand the ordinary
tensor product of two simple finite-dimensional modules of a semisimple finite-dimensional
complex Lie algebra g, for our purposes sln(C), and at the same time a graded module for
g ⊗ C[t], the current algebra. If V (λ) and V (μ) are two simple highest-weight modules,
then one obtains by construction graded Littlewood-Richardson coefficients cτ

λ,μ(q), a main
motivation for the introduction of fusion products. In the following years, fusion products
in general played their role in the construction of local Weyl modules and Demazure mod-
ules for g ⊗ C[t]. Despite their relevance in the representation theory of current algebras in
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the past twenty years, important properties are still not proved. For example, fusion prod-
ucts are cyclic modules for g ⊗ C[t] but their defining ideals are not known. A conjecture
by E. Feigin (Conjecture 2.3), claiming that the obvious relations are actually the defining
relations, remains open in general.
Local Weyl modules have been defined and studied for g⊗ A for any unital, finitely gener-
ated, commutative algebra A (and even beyond this case), but character formulas are known
only for C,C[t] and C[t±]. Even for A = C[t]/(t2), the character and dimension of the
local Weyl modules is conjectured only. The conjecture about the defining relations of the
fusion product would provide this information (Theorem 4.8).
For a fixedm, the Clebsch-Gordan formula for representations of sl2(C) gives rise to a poset
{(k,m − k) | 0 ≤ k ≤ m} with

(k,m − k) ≥ (�,m − �) :⇔ |m − 2k| ≤ |m − 2�|,
saying that there is an injective map of sl2(C)-modules V (�)⊗V (m−�) −→ V (k)⊗V (m−
k). Generalizing to sln(C), one has an induced partial order, using all positive roots, on the
set Pλ = {(λ1, λ2) | λ = λ1 + λ2, λi dominant, integral weights}. A conjecture, formulated
for the first time in [7] (for variants see also [12, 16]), states that

(λ1, λ − λ1) ≥ (μ, λ − μ) ⇒ V (μ) ⊗ V (λ − μ) ↪→ V (λ1) ⊗ V (λ − λ1)

or equivalently, denoting by sλ the Schur function or character of V (λ), sλ−λ1sλ1 − sλ−μsμ
is a non-negative sum of Schur functions. This conjecture is known as the Schur positivity
conjecture and again, there are only partial results proved so far. Again, the proof of the
defining relations for the fusion product would imply the conjecture on Schur positivity
(Theorem 4.8).

The impact and relevance of the conjecture defining relations should be clear by now
but unfortunately a proof is known in a few cases only. The sl2(C)-case follows from the
Clebsch-Gordan formula, further cases are treated for example in [13]. Moreover, providing
the proof for the case λ � μ has initiated the framework of PBW degenerations, see [11]
and [2].
In this paper, we provide a new approach to attack the problem. The fusion product is
defined as the associated graded module with respect to the natural filtration (induced by
the degree function on C[t]) and hence it is natural to describe the problem in terms of
Gröbner degenerations. Due to the context, we have to deal with Gröbner theory for non-
commutative, infinite-dimensional algebras, hence the existence of an appropriate finite
basis is not clear. The fusion product is defined using two evaluation parameters, but one
can simplify the general conjecture to just one parameter, say a ∈ C, then the defining ideal
Ia(λ, μ) for the tensor product of the evaluation modules is known. We fix a monomial
well-ordering on U(g⊗C[t]/Ia) compatible with the degree ordering on C[t]. Suppose that
there exists a Gröbner basis for Ia(λ, μ) whose leading terms do not contain the parameter
a, then the ideal of leading terms (defined as in Remark 3.1) equals the ideal of leading
terms of the ideal proposed by E. Feigin (Conjecture 2.7). We summarize our construction
in our main theorem

Theorem The existence of an appropriate finite Gröbner basis implies the conjecture on
the defining relations for the fusion product.

We are left with finding such a Gröbner basis for Ia(λ, μ), which would be almost hope-
less in general, but is much more accessible while working in the context of G-algebras.
The first step in the general proof is
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Theorem There exists an appropriate finite Gröbner basis for the fusion product of two
evaluation modules for sl2(C[t]).

The combinatorics of this Gröbner basis in the sl2(C[t])-case is non-trivial and we expect
that sln(C[t]) will be difficult as well.

The paper is organized as follows: In Section 2 we recall the fusion product and the
setup from representation theory, and translate the problem to degeneration theory. Section 3
provides the input from Gröbner theory of G-algebras and the proof that our approach is
valid. Section 4 explains the impact on the various conjectures on Schur positivity and local
Weyl modules, while in Section 5, we provide a Gröbner basis for the case of sl2(C).

2 Representation Theory - Setup

Let g be a finite-dimensional simple complex Lie algebra and g ⊗ C[t] its current (Lie)
algebra with Lie bracket

[x ⊗ p, y ⊗ q] = [x, y]g ⊗ pq.

We consider g as embedded into g ⊗ C[t] by the map x 
→ x ⊗ 1.
We fix a triangular decomposition g = n+ ⊕ h⊕ n−, denote the set of positive roots by R+
and for each α ∈ R+, we fix a (non-zero) root vector eα while fixing a root vector fα for
−α. Further denote hα = [eα, fα].
The finite-dimensional simple g-modules are indexed by their highest (dominant integral)
weight λ, the set of dominant integral weights is denoted by P +, and the fundamental
weights are denoted by ωi ∈ P +. For λ ∈ P +, let V (λ) be the corresponding simple mod-
ule and let vλ be any non-zero vector in the highest weight space. By denoting the universal
enveloping algebra as U(g), we have

V (λ) = U(g).vλ = U(n−).vλ.

Let V be a g-module and a ∈ C, then

(x ⊗ p).v := p(a)x.v

defines a g ⊗ C[t]-module structure on V and we denote this evaluation module by Va . Let
a1, . . . , as ∈ C be pairwise distinct and λ1, . . . , λs ∈ P +, then

V (λ1, . . . , λs, a1, . . . , as) := V (λ1)a1 ⊗ · · · ⊗ V (λs)as

is a simple g ⊗ C[t]-module, and any finite-dimensional simple g ⊗ C[t]-module is of this
form. It is important to notice here that

V (λ1, . . . , λs, a1, . . . , as) ∼=g V (λ1) ⊗ . . . ⊗ V (λs),

hence the g-module structure is independent of a1, . . . , as .

B. Feigin and S. Loktev introduced the fusion product for modules of the current algebra
[9], whose definition we recall here. These tensor products of evaluation modules are not
graded (with respect to the natural grading on C[t]), but only filtered, so they constructed
the associated graded module. One main motivation is a natural construction of graded
Littlewood-Richardson coefficients.
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The algebra U(g ⊗ C[t]) is naturally graded by the degree in t , i.e.

deg ((x1 ⊗ p1) · · · (xs ⊗ ps)) =
s∑

i=1

degpi,

so for r ∈ N0

U(g ⊗ C[t])r = {z ∈ U(g ⊗ C[t]) | deg z ≤ r}
defines a filtration on U(g ⊗ C[t]). Each filtered component is naturally a g-module, and
the associated graded algebra is again isomorphic to U(g ⊗ C[t]).

For each simple U(g⊗C[t])-module V (λ1, . . . , λs, a1, . . . , as), we fix a highest weight
vector v of weight λ1 + . . . + λs . Then

U(g ⊗ C[t])r .v ⊂ V (λ1, . . . , λs, a1, . . . , as)

defines a filtration on V (λ1, . . . , λs, a1, . . . , as). The associated graded space is then a mod-
ule for U(g⊗C[t]), with each graded component being a g-module. This is called the fusion
product and is denoted by

V (λ1)a1 ∗ . . . ∗ V (λs)as .

Again, we remark that

V (λ1)a1 ∗ . . . ∗ V (λs)as
∼=g V (λ1) ⊗ . . . ⊗ V (λs).

Remark 2.1 These fusion products play an important role in the construction of level one
local Weyl modules for g ⊗ C[t] [5, 14].

Since their introduction in [9], the following conjectures have remained open for the past
20 years:

Conjecture 2.2 Let a1, . . . , as ∈ C pairwise distinct and λ1, . . . , λs ∈ P +.

1. V (λ1)a1 ∗ . . . ∗ V (λs)as is independent of the parameters a1, . . . , as .
2. The fusion product, defined for any finite collection of cyclic modules, is associative,

e.g. for any b �= ai, 1 ≤ i ≤ s
(
V (λ1)a1 ∗ V (λ2)a2

)
b

∗ V (λ3)a3
∼= V (λ1)a1 ∗ (

V (λ2)a2 ∗ V (λ3)a3
)
b
.

2.1 Fusion Product with Two Simple Factors

We consider here the case of the fusion product of two evaluation modules. Fix λ1, λ2 ∈ P +,
set λ = λ1 + λ2 and denote I (λ1, λ2) the left ideal in U(g ⊗ C[t]) generated by

n+ ⊗ C[t], hα − λ(hα), h ⊗ tC[t]
and

f λ(hα)+1
α , (fα ⊗ t)min{λ1(hα), λ2(hα)}+1, n− ⊗ t2C[t],

where α ranges over all positive roots. The following conjecture is due to E. Feigin [13]
and we will discuss its implications to Schur positivity and truncated local Weyl modules in
Section 4:

Conjecture 2.3 Let a1 �= a2 ∈ C, then there is an isomorphism of graded g⊗C[t]-modules
V (λ1)a1 ∗ V (λ2)a2

∼= U(g ⊗ C[t])/I (λ1, λ2).
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Remark 2.4 A few remarks need to be made.

(1) This conjecture has been proved for sl2 in [8], but we provide a different proof in the
current paper.

(2) The conjecture has been proved for sln and λ1 � λ2, i.e. λ1 + weights (V (λ2)) ⊂
P +, in [11]. The proof uses a new type of monomial bases for V (λ) and initiated the
framework on PBW degenerations [11].

(3) Various cases such as multiples of fundamental weights in the sln-case are discussed
in [13].

We are aiming to prove this conjecture and make a first step towards a proof by refor-
mulating the conjecture into the language of Gröbner bases. We will use the following
proposition while omitting the obvious proofs.

Proposition 2.5 Let a ∈ C, then x ⊗ t 
→ x ⊗ (t − a) induces an automorphism φa of
U(g ⊗ C[t]). For a1 �= a2 ∈ C, λ1, λ2 ∈ P +, using the pullback gives

φ∗
a1

V (λ1, λ2, a1, a2) ∼= V (λ1, λ2, 0, a2 − a1).

This allows us to restrict the analysis of fusion products to parameters of the form
(0, a) ∈ {0} × C

∗.

Lemma 2.6 Let λ1, λ2 ∈ P +, a ∈ C
∗, then V (λ1, λ2, 0, a) is the U(g ⊗ C[t])-module

presented via the left ideal Ia(λ1, λ2), which is generated by

n+ ⊗ C[t], h − (λ1 + λ2)(h), h ⊗ t − aλ2(h),

for all h ∈ h, and

x ⊗ t2 − ax ⊗ t, f (λ1+λ2)(hα)+1
α , (fα ⊗ t)λ2(hα)+1, (fα ⊗ (t − a))λ1(hα)+1,

for all x ∈ g and positive roots α ∈ R+.

Proof First of all, we notice that V (λ1, λ2, 0, a) is a quotient of U(g ⊗ C[t])/Ia(λ1, λ2).
We have a closer look at the latter module. U(g⊗C[t])/Ia(λ1, λ2) is in fact a cyclic highest
weight module with one-dimensional highest weight space, due to the relations

n+ ⊗ C[t], h − (λ1 + λ2)(h), h ⊗ t − aλ2(h).

This implies that U(g ⊗ C[t])/Ia(λ1, λ2) is a quotient of the local Weyl module W0(λ1) ⊗
Wa(λ2) (see [6] or Section 4.2 for more details). So it is a module for g ⊗ C[t]/tN ⊕ g ⊗
C[t]/(t − a)N for some N > 0. Using

x ⊗ t2 − ax ⊗ t = 0 for all x ∈ g,

we can set N = 1 and hence U(g ⊗ C[t])/Ia(λ1, λ2) is a tensor product of evaluation
modules.

This gives a one-parameter family of left ideals in U(g⊗C[t]) and hence we are able to
apply methods from the theory of Gröbner bases (for the setup, we refer to Section 3):
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Conjecture 2.7 Ia(λ1, λ2) is a flat family of left ideals (overC[a]) in U(g⊗C[t]) and there
exists a monomial ordering on U(g ⊗ C[t]) such that the leading term ideals of Ia(λ1, λ2)

and I (λ1, λ2) coincide.

To prove the conjecture about the defining relations for the fusion products it is enough
to prove the conjecture on the Gröbner basis:

Theorem 2.8 Conjecture 2.7 implies Conjecture 2.3.

Proof By definition of the ideal I (λ1, λ2), there is a surjective map of g ⊗ C[t]-modules

U(g ⊗ C[t])/I (λ1, λ2) � V (λ1)a1 ∗ V (λ2)a2 ,

Conjecture 2.7 implies that

dimU(g ⊗ C[t])/I (λ1, λ2) = dimU(g ⊗ C[t])/Ia(λ1, λ2)

but then with Proposition 2.5 and Lemma 2.6, we have

dimU(g ⊗ C[t])/Ia(λ1, λ2) = dimV (λ1)a1 ∗ V (λ2)a2 .

Hence the surjective map is in fact an isomorphism.

3 Gröbner Theory in G-algebras - Setup

We recall in this section the Gröbner theory for G-algebras and how this applies to our
setup. In fact, we first degenerate our G-algebra using a two-sided ideal and at the same
time, using the same parameter, we degenerate a left ideal of the G-algebra.

3.1 G-algebras and Gröbner Bases

A total ordering ≤ on the monoid (Nn
0, +, 0) is called admissible if α ≤ β implies α + γ ≤

β + γ for all α, β, γ ∈ N
n
0. Let K be a field and A a K-algebra generated by x1, . . . , xn.

• The set of standard monomials of A is

Mon(A) := {xα| α ∈ N
n
0} := {xα1

1 x
α2
2 · · · xαn

n | αi ∈ N0}.
• Let ≤ be an admissible total ordering on N

n
0. Any f ∈ K-span(Mon(A)) \ {0} has a

unique representation f = ∑
α∈Nn

0
cαxα with cα ∈ K , where cα = 0 for almost all α.

Now we define

– lexp(f ) := max{α ∈ N
n
0 | cα �= 0}, the leading exponent of f with respect to

≤,
– lc(f ) := clexp(f ) ∈ K \ {0}, the leading coefficient of f with respect to ≤,
– lm(f ) := xlexp(f ) ∈ Mon(A), the leading monomial of f with respect to ≤.

For n ∈ N and 1 ≤ i < j ≤ n consider the constants qij ∈ K \ {0} and polynomials
dij ∈ K[x1, . . . , xn]. Suppose that there exists an admissible ordering ≤ on N

n
0 such that

for any 1 ≤ i < j ≤ n either dij = 0 or lexp(dij ) ≤ lexp(xixj ) holds. The K-algebra

A := K〈x1, . . . , xn | {xjxi = qij xixj + dij : 1 ≤ i < j ≤ n}〉
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is called a G-algebra if Mon(A) is a K-basis of A1. It is additionally of Lie type, if all
qij = 1. A monomial ordering ≺ on a G-algebra is defined through an admissible total
ordering ≤ on Nn

0 by the rule xα ≺ xβ :⇔ α ≤ β.
G-algebras [17, 18] are also known as algebras of solvable type and as PBW-algebras;

they are left and right Noetherian domains. As an important example, universal envelop-
ing algebras of finite-dimensional Lie algebras over arbitrary fields are G-algebras of
Lie type.

Let B be a G-algebra with the fixed monomial ordering ≺. For a left ideal I ⊂ B, a
subset G ⊂ I is a left Gröbner basis of I , if for all f ∈ I there exists g ∈ G such that
lexp(g) ≤cw lexp(f ) (componentwise comparison). Over a G-algebra, one always finds a
finite left Gröbner basis. It is usually constructed by means of a generalized Buchberger’s
algorithm [17, 18], in which a set of critical pairs is formed out of starting elements. Then,
for each pair, the s-polynomial is formed, which is then reduced to the remainder of the left
division algorithm. If the remainder is nonzero, it is added to the starting set. The algorithm
terminates when all critical pairs are reduced to zero.

Remark 3.1 The ideal of leading terms over a G-algebra A in, say, variables x1, . . . , xm

over a fieldK needs to be defined quite differently from the way it arises in the commutative
case [17]. Namely, let us collect leading exponents (with respect to a fixed monomial order-
ing ≺) of polynomials from a left ideal L ⊂ A into a set Exp(L). It has a natural structure
of a monoid ideal inNm

0 , which is necessarily finitely generated by Dixon’s lemma. Suppose
the set of generators is G(L). The ideal Exp(L) = (G(L)) ⊂ N

m
0 is bijectively translated

into the finitely generated monomial ideal LT (L) := (xα : α ∈ G(L)) in the commutative
ringK[x1, . . . , xm]. We callLT (L) ⊂ K[x1, . . . , xm] the ideal of leading terms ofL ⊂ A.
Notably, the commutative ring K[x1, . . . , xm] need not be the associated graded algebra of
A, though sometimes it is. A mini-example showing the necessity of this construction is as
follows: let L = (x, x∂ + 1) in the first Weyl algebra A = K〈x, ∂ | ∂x = x∂ + 1〉: the
construction we’ve described gives (x, x∂) ∈ K[x, ∂] with x as its’ minimal basis, while
the ideal of leading terms directly in A is (x, x∂) = (1) since 1 = ∂x − x∂ is contained in
the ideal.

Note that over G-algebras, finite right and two-sided Gröbner bases exist as well and are
algorithmically computable. All these and many other algorithms for the whole class of G-
algebras and their factor-algebras are implemented in the freely available computer algebra
system SINGULAR as a subsystem called PLURAL [18].

For using Gröbner bases over G-algebras in theoretical arguments, the following
Generalized Product Criterion [17, 18] is very useful:

Lemma 3.2 Let A be a G-algebra of Lie type and f, g ∈ A. Suppose that lm(f ) and lm(g)

have no common factors, then the s-polynomial of f and g reduces to [g, f ] with respect to
{f, g}.

That is, in the situation described in Lemma 3.2, we can compute Lie brackets instead of
some s-polynomials. However, note that in general we cannot compute a Gröbner basis of
a left ideal by merely computing Lie brackets.

1which is equivalently formulated via algebraic relations between qij and dij [17, 18], generalizing the Jacobi
identities for commutators
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3.2 Gröbner Degenerations for Current Algebras

We want to apply the theory of G-algebras to current algebras (see Section 2).

Lemma 3.3 For m ∈ N let p = tm − ∑m−1
i=0 pit

i ∈ C[t] be a polynomial. Then
U (g ⊗ C[t]/(p)) is a G-algebra.

Proof Let {x1, . . . , xn} be a basis of g. Denote by xij := xi ⊗ tj for 1 ≤ i ≤ n and
0 ≤ j < m. In the free algebra C〈{xij }〉, we derive the following relations 1 ≤ i, k ≤ n and
0 ≤ j, � < m:

• By definition of the current algebras, [xij , xk�] = [xi, xk] ⊗ tj+�.
• In particular, [xij , xi�] = 0.
• Suppose that [xi, xk] = ∑

r cik
r xr �= 0, then

[xi, xk] ⊗ tj+� =
{∑n

r=1 cik
r xr,j+� if j + � < m,∑n

r=1
∑m−1

s=0 cik
r dj+�,sxrs if m ≤ j + � < 2m − 1,

where
∑m−1

s=0 dj+�,s t
s = tj+� mod p.

As we can see, the relation form a two-sided Gröbner basis of a G-algebra type, since any
triple commutator of, say xij , xk�, xuw, reduces to the triple commutator of xi, xk, xu, which
is subject to the Jacobi identity:

[[xij , xk�], xuw] = [[xi, xk] ⊗ tj+�, xu ⊗ tw] = [[xi, xk], xu] ⊗ tj+�+w .

As we can see, the proof carries verbatim to the case of an arbitrary field; also to the
case, where we allow the coefficients pi of p to be from C[a1, . . . , aq ] instead of just C for
indeterminants ai (which commute with elements from g).

3.3 Two Degenerations at Once

We outline here how we restrict from g ⊗ C[t] to finite-dimensional Lie algebras and why
it is enough to consider Gröbner basis for the ideals Ia(λ1, λ2).

For a ∈ C, we consider the ideal Ia ⊂ U(g ⊗ C[t]) generated by g ⊗ (t2 − at). Then

U(g ⊗ C[t])/Ia
∼= U(g ⊗ C[t]/(g ⊗ (t2 − at))) ∼= U(g ⊗ C[t]/(t2 − at)).

Consider a monomial well-ordering ≺ on the countably generated algebra U(g ⊗ C[t]),
compatible with the natural degree on C[t]. Then C[t]/(t2 − at) defines a flat family, since
the ideal of leading terms with respect to ≺ is independent on a. Hence the ideal of leading
terms of Ia is in fact generated by g ⊗ t2, it is again independent on a, and thus Ia defines
a Gröbner degeneration. So U(g ⊗ C[t])/Ia is a flat family of C[a]-modules.

Consider now a left ideal Ja ⊂ U(g ⊗ C[t])/Ia which admits a left Gröbner basis (with
respect to a monomial ordering, being a restriction of ≺ above), such that the left ideal
of leading terms of Ja is independent on a. Combining this with the finite generation of
(U(g ⊗ C[t])/Ia) as an algebra, we invoke a classical Gröbner argument: the Gel’fand-
Kirillov dimension (or the Krull dimension in the commutative case), the C-dimension and
the rank over C[a] of (U(g ⊗ C[t])/Ia)/Ja are all the same for any value of a. In other
words, we have just proved
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Theorem 3.4 Viewed as C[a]-modules, (U(g ⊗ C[t])/Ia) /Ja is a flat family,
i.e. U(g ⊗ C[t]/(t2))/J0 is the special fiber of a Gröbner degeneration.

4 Schur Positivity and Local Weyl Modules

In this section, we would like to explain the implications of Conjecture 2.3. These implica-
tions might be well known for experts but the connection will not be present for the general
audience, so we include this section for the sake of completeness. We start with briefly
recalling Schur positivity and local Weyl modules for truncated current algebras.

4.1 Conjecture on Schur Positivity

Let λ ∈ P +, then following [4] we set

Pλ := {(λ1, λ2) ∈ P + × P + | λ1 + λ2 = λ}

and define a partial order on Pλ

(λ1, λ2) � (μ1, μ2) :⇐⇒ (λ1 − λ2)(hα) ≤ (μ1 − μ2)(hα) ∀ α ∈ R+.

This relation is equivalent to

min{λ1(hα), λ2(hα)} ≤ min{μ1(hα), μ2(hα)} ∀ α ∈ R+.

The cover relations for (Pλ,�) have been studied in [4]. It is important to notice that there
exists, up to S2-symmetry, a unique maximal element in the poset, (λmax,1, λmax,2). This is
obtained by splitting λ into two weights which differ by an alternating sum of fundamental
weights only.

For the connection to Schur positivity, we briefly recall Schur polynomials and charac-
ters:
For λ ∈ P +, we denote sλ = charV (λ), which is equal to the Schur polynomial of the
partition λ. Relevant for our purpose might be that for (λ1, λ2) ∈ Pλ

charsln V (λ1)a1 ∗ V (λ2)a2 = sλ1sλ2 .

The Schur polynomial form a basis of the ring of symmetric polynomials in n variables
(modulo the relation x1 . . . xn − 1) and we call a symmetric polynomial Schur positive if it
is a non-negative linear combination of Schur polynomials. The interesting implication for
representation theory is that any Schur positive symmetric polynomial is the character of a
finite-dimensional sln-module.

The following conjecture has been stated in this generality for the first time in [7] and
was later rediscovered in [4].

Conjecture 4.1 Let λ ∈ P + and suppose (λ1, λ2) � (μ1, μ2) in (Pλ, �), then sλ1sλ2 −
sμ1sμ2 is Schur positive.
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Some remarks on this conjecture and what is known so far

Remark 4.2 (1) The conjecture is a generalization (in some direction) of the row shuffle
conjecture, e.g. for the unique maximal element (λmax,1, λmax,2) in (Pλ, �) one has
that

sλmax,1 sλmax,2 − sμ1sμ2

is Schur positive. This has been conjectured by [12] and proved by [16].
(2) In [7] it has been shown that the support (in terms of the basis of Schur polynomials)

of sμ1sμ2 is contained in the support of sλ1sλ2 whenever (λ1, λ2) � (μ1, μ2) in Pλ.
(3) The conjecture would imply that if (λ1, λ2) � (μ1, μ2) inPλ, then there is a surjective

map of sln-modules V (λ1) ⊗ V (λ2) � V (μ1) ⊗ V (μ2).
(4) It has been shown in [4] that

dimV (λ1) ⊗ V (λ2) ≥ dimV (μ1) ⊗ V (μ2),

if (λ1, λ2) � (μ1, μ2) in (Pλ,�).
(5) The conjecture has been proved for sl3 in [4] using combinatorics of crystal graphs.

4.2 Conjecture on Truncated Local Weyl Modules

We briefly recall local Weyl modules for generalized current algebras and what is conjec-
tured for truncated current algebras.

Let A be quotient of the polynomial ring in finitely many variables by an homogeneous
ideal and we denote A+ the positively graded part of A. One can define then analogously to
A = C[t] the current algebra

sln ⊗ A.

Definition 4.3 Let λ ∈ P +, then the local Weyl module in the origin W0(λ) is the sln ⊗
A-module generated by wλ with defining relations

n+ ⊗ A.wλ = 0; h ⊗ A+.wλ = 0; h − λ(h).wλ = 0; f λ(hα)+1
α .wλ = 0.

for all h ∈ h and α ∈ R+.

In fact these local Weyl modules can be defined way more general for any finitely gener-
ated, commutative, unital algebra (see [3] for details), but we restrict ourselves to the unique
graded local Weyl module. Several remarks should be made:

Remark 4.4 (1) Local Weyl modules have been originally defined in [6] for A = C[t]
and A = C[t±], then generalized in [10] and [3].

(2) Let A = C[t] or C[t±] and λ = ∑
miωi then

W0(λ) ∼=sln V (ω1)
⊗m1 ⊗ . . . ⊗ V (ωn−1)

⊗mn−1 ,

a result due to [5] and later to [14].
(3) Beyond the two cases, nothing general is known about the sln-structure of local Weyl

modules. The formulas for the polynomial ring in three or more variables are already
way more complicated even for sl2.

(4) Historically, local Weyl modules over hyper and truncated current sl2-algebras were
treated by using Gröbner(-Shirshov) bases first in [1]. In our approach we have recog-
nized that our algebras can be presented as factor-algebras of convenient G-algebras,
on the contrary to general finitely presented algebras.
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Since the generalization for more than one variable is out of reach at the moment, the
natural question is to look for finite-dimensional quotients ofC[t]. So for k ≥ 1, we consider
A = C[t]/(tk) and denote the local Weyl module W0(λ, k).

Remark 4.5 Let k = 1, then obviously W0(λ, 1) ∼= V (λ).

So let us consider the first non-trivial case and already here, the local Weyl modules are
still not understood satisfactorily. The following conjecture is due to V. Chari and appeared
in [13]:

Conjecture 4.6 Let λ ∈ P + and let (λmax,1, λmax,2) be the unique maximal element in Pλ.
Then for any a1 �= a2 ∈ C:

W0(λ, 2) ∼= V (λmax,1)a1 ∗ V (λmax,2)a2 .

Remark 4.7 This conjecture is proved in several cases, for example for sl2 it follows from
[8], various other cases have been proved in [15].

4.3 Flat Degenerations and the Two Conjectures

Theorem 4.8 Conjecture 2.7 implies the conjecture on Schur positivity (Conjecture 4.1)
and the conjecture on local Weyl modules for truncated current algebras (Conjecture 4.6).

Proof We have seen already that the conjecture on the flat family implies the conjecture
on the defining ideal for the fusion product. Suppose Conjecture 2.7 is true, then we have
defining relations for the fusion product. First, we prove the implication of the conjecture
on local Weyl modules:
We know by the universal property of the local Weyl module that there is a surjective map
of sln ⊗ C[t]/(t2)-modules

W0(λ, 2) � V (λmax1)a1 ∗ V (λmax2)a2 .

It remains to prove that the local Weyl module satisfies the defining relations of the fusion
product. This is true for sl2, as in this case the local Weyl module is explicitly computed by
[8] and its dimension coincides with the dimension of the right hand side. This implies that
the positive root α of sl2, one has

(fα ⊗ t)min{λmax1 (hα), λmax2 (hα)}+1 = 0

in the local Weyl module. Now, we consider sln and a positive root α of sln. Let W0(λ, 2)
be the local Weyl module, then we consider the submodule within W0(λ, 2), generated
through the unique highest weight space by sl(α) ⊗ C[t]/(t2), denote this submodule V .
By construction, V is a quotient of W0(λ(hα), 2), the local sl(α) ⊗ C[t]/(t2)-Weyl module
and hence the relation

(fα ⊗ t)min{λmax1 (hα), λmax2 (hα)}+1 = 0

is true in the submodule and hence on the generator of W0(λ, 2). The remaining relations
of the fusion product are obviously satisfied. We conclude that W0(λ, 2) is a quotient of
V (λmax1)a1 ∗ V (λmax2)a2 and hence they are isomorphic.
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We turn to the implication of the conjecture on Schur positivity:
Proof for Schur positivity: (λ1, λ2) � (μ1, μ2), then λ1 + λ2 = μ1 + μ2 and

min{λ1(hα), λ2(hα)} ≤ min{μ1(hα), μ2(hα)} ∀ α ∈ R+.

Suppose now Conjecture 2.3 is true, then I (λ1, λ2) ⊂ I (μ1, μ2) and there is a surjective
map of sln ⊗ C[t]-modules

V (λ1)a1 ∗ V (λ2)a2 � V (μ1)a1 ∗ V (μ2)a2 .

5 The sl2(C)-case

In this section, we prove Conjecture 2.7 for g = sl2. This implies of course Conjecture 2.3
for sl2, which has been known before due to [8]. We provide a new approach which might
generalize to sln. The idea is outlined in Theorem 3.4.When considering sl2⊗C[t]/(t2−at),
one has by Lemma 3.3 a Gröbner basis for the ideal generated by sl2 ⊗ (t2 − at), since
C[t] is a principal ideal domain and hence {t2 − at} is a Gröbner basis for (t2 − at). By
Theorem 3.4 we are left to show that there is a Gröbner basis for theU(sl2⊗C[t]/(t2−at))-
ideal Ia(λ, μ), cf. Lemma 2.6. The goal of this section is therefore the proof of Theorem 5.7,
where such a Gröbner basis will be established explicitly.

5.1 Commutator Relations in Tensor Products

We fix non-negative integers λ ≥ μ and we set for x ∈ sl2:

x0 := x ⊗ 1 , x1 := x ⊗ t in sl2 ⊗ C[t] ,

so in particular, we have the elements h0, h1, f0, f1, e0, e1 ∈ sl2 ⊗ C[t].
In the following, we will prove commutation relations involving such elements and addi-

tional elements which will be denote by Fi , which will play a crucial role in the Gröbner
basis we will describe.

Definition 5.1 For all 0 ≤ j ≤ i ≤ μ + 1, we define

mi :=λ+μ+1−i, cji :=
(

mi

j

)(
μ−j

μ−i

)
=

(
mi

j

)(
μ−j

i−j

)
, Fi :=

i∑

k=0

cki(−a)i−kf k
1 f

mi−k
0

(note that cki = 0 as soon as mi < k, so no negative powers of f0 are occurring) and for all
0 ≤ i ≤ μ,

pi := −2mi(i + 1)/(mi − i − 1), qi := −2mi(μ − i)/(mi − i − 1) .

unless λ = μ = i, in which case we define pμ := 0 and qμ := 0.

We record that Fμ+1 = (
λ

μ+1

)
f

μ+1
1 f

λ−μ−1
0 is a monomial multiple of f

μ+1
1 , which

is equal to zero if λ = μ. On the other end of the spectrum we have another monomial
F0 = f

λ+μ+1
0 .
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Lemma 5.2 For all 0 ≤ i ≤ μ,

[h0, Fi] = −2miFi , [h1, Fi] = pif0Fi+1 + qiaFi , (5.1)

[h0, f μ+1
1 ] = −2(μ + 1)f μ+1

1 , and [h1, f μ+1
1 ] = −2a(μ + 1)f μ+1

1 . (5.2)

Proof For all s, t ≥ 0, we have

[h0, f s
1 f t

0 ] = −2(s + t)f s
1 f t

0 and [h1, f s
1 f t

0 ] = −2asf s
1 f t

0 − 2tf s+1
1 f t−1

0 , (5.3)

which imply directly (5.2) and the formula for [h0, Fi] in Eq. 5.1. For the remaining formula
for [h1, Fi], we compute

[h1, Fi] =
i∑

j=0
−2ajcji(−a)i−j f

j

1 f
mi−j

0 − 2(mi − j)cji(−a)i−j f
j+1
1 f

mi−(j+1)
0 ,

so the non-zero coefficients of monomials of the form f
j

1 f
mi−j

0 are

Cj :=
{

−2(mi − i)cii j = i + 1

−2ajcji(−a)i−j − 2(mi − j + 1)cj−1,i (−a)i−j+1 1 ≤ j ≤ i
.

On the other hand, the corresponding coefficients in qiaFi + pif0Fi+1 are

C′
j :=

{
pici+1,i+1 j = i + 1

qiacji(−a)i−j + picj,i+1(−a)i+1−j 0 ≤ j ≤ i
.

Now if λ = μ = i, then Ci+1 = C′
i+1 = C0 = C′

0 = 0. Otherwise, the terms ci+1,i+1, c0,i ,
and (mi − i − 1) are non-zero, and Ci+1 = C′

i+1 and C0 = C′
0 if and only if

pi = −2(mi − i)cii/ci+1,i+1 = −2mi(i + 1)/(mi − i − 1)

and qi = pic0,i+1/c0,i = −2mi(μ − i)/(mi − i − 1) ,

which is indeed consistent with the way we defined pi and qi . For all 1 ≤ j ≤ i, Cj = C′
j

if and only if

2jcji − 2(mi − j + 1)cj−1,i = −qicji + picj,i+1 . . .

If λ = μ = i, both sides are zero, so the identity holds trivially, otherwise the term (mi −
i − 1) is non-zero and we can simplify the identity:

. . . ⇔ 0 = mi(i+1)
mi−i−1cj,i+1 − (

mi(μ−i)
mi−i−1 − j)cji − (mi − j + 1)cj−1,i

= cji

(
mi(i+1)
mi−i−1

(mi−j)(μ−i)
mi(i−j+1) − (

mi(μ−i)
mi−i−1 − j) − (mi − j + 1) j (μ−j+1)

(mi−j+1)(i−j+1)

)

= cji

(
(i+1)(mi−j)(μ−i)
(mi−i−1)(i−j+1) − (

mi(μ−i)
mi−i−1 − j) − j (μ−j+1)

i−j+1

)
.

Indeed, after multiplying with the non-zero term (mi − i −1)(i − j +1)/cji , the right-hand
side simplifies to

(i + 1)(mi − j)(μ − i) − mi(μ − i)(i − j + 1) + j (i − j + 1)(mi − i − 1)

−j (μ − j + 1)(mi − i − 1)

= (i + 1)(mi − j)(μ − i) − mi(μ − i)(i − j + 1) − j (μ − i)(mi − i − 1)

= (μ − i)((i + 1)(mi − j) − mi(i − j + 1) − j (mi − i − 1))

= (μ − i)(−(i + 1)j + mij − j (mi − i − 1)) = 0 ,

as desired.
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Lemma 5.3 For all s, t ≥ 0,

[e0, f s
1 f t

0 ] = sf s−1
1 f t

0 (h1 − a(s − 1)) + tf s
1 f t−1

0 (h0 − 2s − t + 1) (5.4)

[e1, f s
1 f t

0 ] = asf s−1
1 f t

0 (h1 − a(s−1)) + tf s
1 f t−1

0 (h1−2as)−t (t−1)f s+1
1 f t−2

0 (5.5)

Proof Using basic identities in the current algebra sl2 ⊗ C[t] and Eq. 5.3, we compute for
all s, t ≥ 1

[e0, f t
0 ] = h0f

t−1
0 + f0[e0, f t−1

0 ] = −2(t − 1)f t−1
0 + f t−1

0 h0 + f0[e0, f t−1
0 ]

=
t−1∑

k=0

f k
0 (−2(t − k − 1)f t−k−1

0 + f t−k−1
0 h0) = tf t−1

0 (h0 − (t − 1)) , so

[e0, f s
1 f t

0 ] = h1f
s−1
1 f t

0 + f1[e0, f s−1
1 f t

0 ]
= −2a(s − 1)f s−1

1 f t
0 − 2tf s

1 f t−1
0 + f s−1

1 f t
0h1 + f1[e0, f s−1

1 f t
0 ]

= f s−1
1 f t

0 (h1 − 2a(s − 1)) + f s
1 f t−1

0 (−2t) + f1[e0, f s−1
1 f t

0 ]

=
s−1∑

k=0

f k
1 (f s−k−1

1 f t
0 (h1 − 2a(s − k − 1)) + f s−k

1 f t−1
0 (−2t)) + f s

1 [e0, f t
0 ]

= sf s−1
1 f t

0 (h1 − a(s − 1)) + tf s
1 f t−1

0 (−2(s − 1)) + tf s
1 f t−1

0 (h0 − (t − 1))

= sf s−1
1 f t

0 (h1 − a(s − 1)) + tf s
1 f t−1

0 (h0 − 2(s − 1) − (t − 1)) .

and it is easy to see that the equation even holds for s, t ≥ 0, where the negative powers of
f1 or f0 do not pose a problem, since they occur with coefficient 0.

Similarly, we obtain

[e1, f t
0 ] = h1f

t−1
0 + f0[e1, f t−1

0 ] = −2(t − 1)f1f
t−2
0 + f t−1

0 h1 + f0[e1, f t−1
0 ]

=
t−2∑

k=0

f k
0 (−2(t − k − 1)f1f

t−k−2
0 + f t−k−1

0 h1) + f t−1
0 [e1, f0]

= −t (t − 1)f1f
t−2
0 + tf t−1

0 h1 , so

[e1, f s
1 f t

0 ] = ah1f
s−1
1 f t

0 + f1[e1, f s−1
1 f t

0 ]
= −2a2(s − 1)f s−1

1 f t
0 − 2atf s

1 f t−1
0 + af s−1

1 f t
0h1 + f1[e1, f s−1

1 f t
0 ]

= a(f s−1
1 f t

0 (h1 − 2a(s − 1)) + f s
1 f t−1

0 (−2t)) + f1[e1, f s−1
1 f t

0 ]

=
s−1∑

k=0

af k
1 (f s−k−1

1 f t
0 (h1 − 2a(s − k − 1)) + f s−k

1 f t−1
0 (−2t)) + f s

1 [e1, f t
0 ]

= asf s−1
1 f t

0 (h1 − a(s − 1)) + tf s
1 f t−1

0 (h1 − 2as) − t (t − 1)f s+1
1 f t−2

0 .

Lemma 5.4 For all 0 ≤ i ≤ μ,

[e0, Fi] = (∂f0Fi)(h0 − (λ + μ)) + (∂f1Fi)(h1 − μa) , (5.6)

[e1, Fi] = (∂f0Fi + a∂f1Fi)(h1 − μa) + (i + 1)(mi − 1)Fi+1 , (5.7)

[e0, f μ+1
1 ] = (μ + 1)f μ

1 (h1 − μa) , and [e1, f μ+1
1 ] = a(μ + 1)f μ

1 (h1 − μa) . (5.8)
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Proof Equations 5.4 and 5.5 directly imply the last two identities. Equation 5.4 also allows
us to take the coefficients of f

j

1 f
mi−j−1
0 on the two sides of the asserted commutator

formula involving e0 to see that it is equivalent to the identity

0 = cj+1,i (−a)i−j−1(j + 1)(h1 − aj − h1 + aμ)

+cji(−a)i−j (mi − j)(h0 − 2j − (mi − j) + 1 − h0 + (λ + μ))

= (−a)i−j (−cj+1,i (j + 1)(μ − j) + cji(mi − j)(i − j))

=
{
0 j = μ

cji(−a)i−j (− (i−j)(mi−j)
(j+1)(μ−j)

(j + 1)(μ − j) + (mi − j)(i − j)) else

for all 0 ≤ j ≤ i, which is true in any case.
Similarly, again considering the coefficients of f

j

1 f
mi−j−1
0 and now using (5.5), the

asserted commutator formula involving e1 is equivalent to the identity

0 = cj+1,i (−a)i−j−1a(j + 1)(h1 − aj) + cji(−a)i−j (mi − j)(h1 − 2aj)

−cj−1,i (−a)i−j+1(mi − j + 1)(mi − j) − cji(−a)i−j (mi − j)(h1 − aμ)

−cj+1,i (−a)i−j−1a(j + 1)(h1 − aμ)

+(i + 1)(mi − 1)cj,i+1(−a)i−j+1 . . . (5.9)

which is true if μ = j , since then μ = i and

. . . = −cμ+1,μ(μ + 1)(h1 − aμ) + cμ,μ(mμ − μ)(h1 − 2aμ)

−cμ−1,μ(−a)(mμ − μ + 1)(mμ − μ)

−cμ,μ(mμ − μ)(h1 − aμ) + cμ+1,μ(μ + 1)(h1 − aμ)

= −acμ,μ(mμ − μ)(μ − μ
(mμ−μ+1) (mμ − μ + 1)) ,

which is true. Otherwise, the terms (μ − j) and (mi − j + 1) are non-zero and we can
simplify (5.9)

. . . = cji(−a)i−j (− (i−j)(mi−j)
(j+1)(μ−j)

a(j + 1)(μ − j) + (mi − j)a(μ − 2j)

+a
j (μ−j+1)

(i−j+1)(mi−j+1) (mi − j + 1)(mi − j) + (i + 1)(mi − 1)(−a)
(mi−j)(μ−i)

(mi−1)(i−j+1) )

= cji(−a)i−j+1(mi − j)((i − j) − (μ − 2j) − j (μ−j+1)
i−j+1 + (i + 1) μ−i

i−j+1 )

= cji(−a)i−j+1(mi − j)(μ − i)(−1 − j
i−j+1 + (i + 1) 1

i−j+1 ) ,

which is true, too.

5.2 Gröbner Basis for Ia (λ,μ)

In order to to prove the Gröbner basis property of the ideal Ia(λ, μ) defined in Lemma 2.6,
we are left with understanding the interplay of the Fi in the commutative ring C(a)[f0, f1].
From now on let� be a monomial well-ordering on both {f0, f1} and {e0, e1, h0, h1, f0, f1}
satisfying f1 � f0.

Proposition 5.5 Suppose that for 1 ≤ i ≤ μ there is a factorization Fi = G1G2 in
C(a)[f0, f1] with G1,G2 both not being constant, then G1,G2 /∈ Ia(λ, μ).
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Proof Suppose one has a non-trivial factorization, say Fi = G1G2. Since Fi is homoge-
neous of degree λ + μ + 1 − i, G1, G2 are both homogeneous and of the form

p∑

k=0

ckf
k
1 f �−k

0 ,

for some 0 ≤ p ≤ i, p ≤ � < λ + μ + 1− i and some coefficients ck . It is enough to show
that the set

{f k
1 f �−k

0 .(vλ ⊗ vμ) ∈ V (λ)0 ⊗ V (μ)a | 0 ≤ k ≤ p}
is linearly independent. One has

f k
1 f �−k

0 .vλ ⊗ vμ = akf �−k
0 (vλ ⊗ f k

0 vμ).

Hence it remains to show that the set

{f �−k
0 (vλ ⊗ f k

0 vμ) | 0 ≤ k ≤ p}
with p ≤ i ≤ μ and p ≤ � < λ + μ + 1 − i is linearly independent. The weight space
(V (λ) ⊗ V (μ))λ+μ−2� has in fact dimension λ + μ + 1− � > i ≥ p. Linear independence
follows from that the fact the columns of the (λ + μ + 1 − �) × (p + 1)-matrix

A =
(

(� − (r − 1))!
(� − (r − 1) − (s − 1))!

)

r,s

are linearly independent. In fact, for p = λ + μ − �, the determinant of the square matrix
equals

∏p

q=0 q!, up to a sign. This implies that the set is linearly independent and hence
neither G1 nor G2 are in Ia(λ, μ).

We remark, that by the similar reasoning the monomial element Fμ+1 factorizes, and

therefore will be replaced by f
μ+1
1 in the ideal Ia(λ, μ).

Let us denote the s-polynomial of two polynomials f, g by spoly(f, g).

Proposition 5.6 Over a polynomial ring R := C(a)[f0, f1], the set F :=
{Fi(λ, μ) : 0 ≤ i ≤ μ + 1} is a Gröbner basis with respect to � of the ideal it generates.

Proof We introduce a convenient notation first:

Fk =
k∑

j=0

cjk(−a)k−j f
j

1 f
mk−j

0 = (−a)kf
m0−k
0

k∑

j=0

cjkg
j ,

where g := f1−af0
is of degree 0. Note that after multiplication of the right hand side we do

not have fractions in f0 since we assume λ ≥ μ.
The monomial ordering, preferring f1 over f0, carries over to the new notation by order-

ing polynomials in g (which are of total degree 0) by their exponents. Fk rewritten in f0, g

is a graded polynomial of degree mk = m0 − k. For a natural � in the admissible range we
see that spoly(Fk, Fk+�) is graded of degree m0 − k:

S := f �
0 Fk+� − κg�Fk = (−a)k+�f

m0−k
0

k+�∑

j=0

cj,k+�g
j − κ(−a)kf

m0−k
0

k∑

j=0

cjkg
j+�

where κ := (−a)�
ck+�,k+�

ck,k
guarantees that the leading term cancels out. If S = 0, we are

done. Otherwise there exists 0 ≤ q < k + � such that S = f
m0−k
0 p1(g) for a polynomial
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p1 ∈ C[g]. Writing similarly Fk as f
m0−k
0 p2(g), let G := gcd(p1, p2) ∈ C[g]. Since there

exist a, b ∈ C[g] with G = ap1 + bp2, also f
m0−k
0 G = aS + bFk belongs to the graded

subspace of degree m0 − k. Now G | p2 implies f
m0−k
0 G | Fk . Since by Proposition 5.5,

Fk cannot have proper factors, which belong to Ia(λ, μ), it follows that S and Fk differ by
a constant, say κ ′ ∈ C \ {0}. Thus

f �
0 Fk+� − κg�Fk = spoly(Fk, Fk+�) = κ ′Fk,

and rewriting back in f0, f1-notation

(−a)�f 2�
0 Fk+� − κf �

1 Fk = κ ′(−a)�f �
0 Fk

shows that the original spoly(Fk, Fk+�) reduces to zero with Fk for any � ≥ 1 in the
admissible range, therefore F is a Gröbner basis.

Theorem 5.7 Let λ ≥ μ ∈ N≥0 be dominant weights for sl2 and the monomial ordering �
be chosen as in the current section. Then the following is a Gröbner basis with respect to �
of the left ideal Ia(λ, μ) defining V0(λ) ⊗ Va(μ) as a sl2 ⊗ C[t]/(t2 − at)-module:

{e0, e1, h0 − (λ + μ), h1 − μa} ∪ {Fi(λ, μ) | i = 0, . . . , μ} ∪ {f μ+1
1 }.

Proof For short, we use again Fi := Fi(λ, μ) and Ia := Ia(λ, μ). We prove that

{e0, e1, h0 − (λ + μ), h1 − μa} ∪ {Fi(λ, μ) | i = 0, . . . , μ}
is a Gröbner basis, then clearly adding f

μ+1
1 is still a Gröbner basis since f

μ+1
1 ∈ Ia . By

definition of the ideal Ia , the elements

{e0, e1, h0 − (λ + μ), h1 − μa, F0, f
μ+1
1 }

generate the ideal. Using Eq. 5.7, we see that Fi ∈ Ia for all 1 ≤ i ≤ μ. So it is left to show
that this set is in fact a Gröbner basis for Ia . We have seen already that the commutator
of pairs of the elements, obeying the condition from the Lemma 3.2, have left Gröbner
presentations: for all 0 ≤ i ≤ μ,

(1) [e0, e1] = 0.
(2) [e0, h0 − (λ + μ)] = −2e0.
(3) [e0, h1 − μa] = −2e1.
(4) [e0, Fi] = (∂f0Fi)(h0 − (λ + μ)) + (∂f1Fi)(h1 − μa).

(5) [e0, f μ+1
1 ] = (μ + 1)f μ

1 (h1 − μa)

(6) [e1, h0 − (λ + μ)] = −2e1.
(7) [e1, h1 − μa] = 0.
(8) [e1, Fi] = (∂f0Fi + a∂f1Fi)(h1 − μa) + (i + 1)(mi − 1)Fi+1

(9) [e1, f μ+1
1 ] = a(μ + 1)f μ

1 (h1 − μa)

(10) [h0 − (λ + μ), h1 − μa] = 0.
(11) [h0 − (λ + μ), Fi] = −2miFi .
(12) [h0 − (λ + μ), f

μ+1
1 ] = −2(μ + 1)f μ+1

1 .
(13) [h1 − μa, Fi] = pif0Fi+1 + qiaFi .
(14) [h1 − μa, f

μ+1
1 ] = −2a(μ + 1)f μ+1

1 .

(Recall that Fμ+1 is a monomial and a multiple of f
μ+1
1 .)

In fact, (1), (2), (3), (5), (6), (9) are obvious, (4), (7) are from Eq. 5.6 and Eq. 5.7,
(10), (11) are from Eq. 5.1.
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Indeed, replacing Fμ+1 = f
λ−μ−1
0 f

μ+1
1 by f

μ+1
1 does not violate the Gröbner property

of the set F : as in the proof of Proposition 5.6, let 0 ≤ k, � ≤ μ be such that k + � = μ+ 1.
Then there exist appropriate constants such that

(
κf �

1 + κ ′(−a)�f �
0

)
· Fk = (−a)�f 2�

0 Fμ+1 = (−a)�f
3�−μ−1
0 · f

μ+1
1 .

Since the leftmost factor is not divisible by f0, it follows that all the s-polynomials involving
Fμ+1 can be expressed as such involving f

μ+1
1 and thus reduced to zero. Now, from Propo-

sition 5.6 it follows that the set F ′ = F ∪ {f μ+1
1 } is a left Gröbner basis of the left ideal,

generated by F over the ring C(a)[f0, f1], hence the same holds over the algebra A since
F does not involve variables, other than f0 and f1, and monomial orderings are compatible
by the setup, hence we are done.

We conclude the paper with

Proposition 5.8 Conjecture 2.7 for sl2.

Proof Let λ ≥ μ. Using the results Theorem 5.7 together with Lemma 3.3 and Theorem 3.4,
we see that Ia(λ, μ) defines a flat family of ideals in U(g ⊗ C[t]). It remains to show that
I0(λ, μ) = I (λ, μ). From the Gröbner basis in Theorem 5.7 we read off the generators of
I0(λ, μ):

{e0, e1, h − (λ + μ), h1, f
μ+1
1 } ∪ {f k

1 f
λ+μ+1−2k
0 | k = 0, . . . , μ},

additionally one has sl2 ⊗ t2C[t] as generators. Comparing with the generators of I (λ, μ)

we have obviously
I (λ, μ) ⊆ I0(λ, μ)

and it remains to show that f k
1 f

λ+μ+1−2k
0 ∈ I (λ, μ) but this follows from

(ade1)
kf

λ+μ+1
0 =

(
2k

k−1∏

�=0

(
λ + μ + 1 − 2�

2

))
f k
1 f

λ+μ+1−2k
0 + J

where J is the left ideal generated by {e1, h1, sl2 ⊗ t2}.
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