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Abstract
We compute the homology of the complexes of finite Verma modules over the annihilation
superalgebra A(K ′

4), associated with the conformal superalgebra K ′
4, obtained in Bagnoli

and Caselli (J. Math. Phys. 63, 091701, 2022). We use the computation of the homology
in order to provide an explicit realization of all the irreducible quotients of finite Verma
modules over A(K ′

4).
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1 Introduction

Finite simple conformal superalgebras were completely classified in [15] and consist of the
following list: Cur g, where g is a simple finite−dimensional Lie superalgebra, Wn(n ≥ 0),
Sn,b and S̃n (n ≥ 2, b ∈ C), Kn(n ≥ 0, n �= 4), K ′

4, CK6. The finite irreducible modules
over the conformal superalgebras Cur g, K0, K1 were studied in [10, 11]. Boyallian, Kac,
Liberati and Rudakov classified all finite irreducible modules over the conformal superalge-
bras of type W and S in [5]. The finite irreducible modules over the conformal superalgebras
S2,0, Kn, for n = 2, 3, 4 were studied in [13]. Boyallian, Kac and Liberati classified all
finite irreducible modules over the conformal superalgebras of type Kn in [3]. A classifi-
cation of all finite irreducible modules over the conformal superalgebra CK6 was obtained
in [4] and [23] with different approaches. Finally the classification of all finite irreducible
modules over the conformal superalgebra K ′

4 was obtained in [2].
In [2] the classification of all finite irreducible modules over the conformal superalgebra

K ′
4 was obtained by their correspondence with irreducible finite conformal modules over the
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annihilation superalgebra g := A(K ′
4) associated with K ′

4. In order to obtain this classifi-
cation, the authors classified all highest weight singular vectors, i.e. highest weight vectors
which are annihilated by A(K ′

4)>0, of finite Verma modules, that are the induced modules
Ind(F ) = U(g) ⊗U(g≥0) F such that F is a finite−dimensional irreducible g≥0-module
[13, 19]. In [2] the authors showed that for A(K ′

4) there are four families of singular vec-
tors of degree 1, four families of singular vectors of degree 2 and two singular vectors of
degree 3. Since the classification of singular vectors of finite Verma modules is equivalent
to the classification of morphisms between such modules, in [2] it was shown that these
morphisms can be arranged in an infinite number of bilateral complexes as in Fig. 1, which
is similar to those obtained for the exceptional Lie superalgebras E(1, 6), E(3, 6), E(3, 8)

and E(5, 10) (see [6, 8, 18–21, 24]).
The aim of this work is to compute the homology of the complexes in Fig. 1 and provide

an explicit construction of all the irreducible quotients of finite Verma modules over A(K ′
4).

We compute the homology through the theory of spectral sequences of bicomplexes, using
an argument similar to the one used in [18] for the homology of the complexes of finite

Fig. 1 Morphisms between degenerate finite Verma modules

2628



Computation of the Homology of the Complexes of Finite Verma Modules for K ′
4

Verma modules over E(3, 6). We obtain in particular that the complexes in Fig. 1 are exact
in each point except for the origin of the first quadrant and the point of coordinates (1, 1) in
the third quadrant, in which the homology space is isomorphic to the trivial representation.

The computation of the homology allows us to show that all the irreducible quotients of
finite Verma modules over A(K ′

4) occur among cokernels, kernel and images of complexes
in Fig. 1. As an application of this result, we compute the size of all the irreducible quotients
of finite Verma modules, that is defined following [18].

The paper is organized as follows. In Section 2 we recall some notions on conformal
superalgebras. In Section 3 we recall the definition of the conformal superalgebra K ′

4 and the
classification of singular vectors obtained in [2]. In Section 4 we find an explicit expression
for the morphisms represented in Fig. 1. In Section 5 we recall the preliminaries on spectral
sequences that we need. In Section 6 we compute the homology of the complexes in Fig. 1.
Finally in Section 7 we compute the size of all the irreducible quotients of finite Verma
modules.

2 Preliminaries on Conformal Superalgebras

We recall some notions on conformal superalgebras. For further details see [16, Chapter 2],
[3, 5, 14].

Let g be a Lie superalgebra; a formal distribution with coefficients in g, or equivalently a
g−valued formal distribution, in the indeterminate z is an expression of the following form:

a(z) =
∑

n∈Z
anz

−n−1,

with an ∈ g for every n ∈ Z. We denote the vector space of formal distributions with
coefficients in g in the indeterminate z by g[[z, z−1]]. We denote by Res(a(z)) = a0
the coefficient of z−1 of a(z). The vector space g[[z, z−1]] has a natural structure of
C[∂z]−module. We define for all a(z) ∈ g[[z, z−1]] its derivative:

∂za(z) =
∑

n∈Z
(−n − 1)anz

−n−2.

A formal distribution with coefficients in g in the indeterminates z and w is an expression
of the following form:

a(z,w) =
∑

m,n∈Z
am,nz

−m−1w−n−1,

with am,n ∈ g for every m, n ∈ Z. We denote the vector space of formal distributions
with coefficients in g in the indeterminates z and w by g[[z, z−1, w,w−1]]. Given two
formal distributions a(z) ∈ g[[z, z−1]] and b(w) ∈ g[[w, w−1]], we define the commutator
[a(z), b(w)]:

[a(z), b(w)] =
[
∑

n∈Z
anz

−n−1,
∑

m∈Z
bmw−m−1

]
=
∑

m,n∈Z
[an, bm]z−n−1w−m−1.
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Definition 2.1 Two formal distributions a(z), b(z) ∈ g[[z, z−1]] are called local if:

(z − w)N [a(z), b(w)] = 0 f or some N � 0.

We call δ−function the following formal distribution in the indeterminates z and w:

δ(z − w) = z−1
∑

n∈Z

(
w

z

)n

.

See Corollary 2.2 in [16] for the following equivalent condition of locality.

Proposition 2.2 Two formal distributions a(z), b(z) ∈ g[[z, z−1]] are local if and only if
[a(z), b(w)] can be expressed as a finite sum of the form:

[a(z), b(w)] =
∑

j

(a(w)(j)b(w))
∂

j
w

j ! δ(z − w),

where the coefficients (a(w)(j)b(w)) := Resz(z−w)j [a(z), b(w)] are formal distributions
in the indeterminate w.

Definition 2.3 (Formal Distribution Superalgebra) Let g be a Lie superalgebra and F
a family of mutually local g−valued formal distributions in the indeterminate z. The
pair (g,F) is called a formal distribution superalgebra if the coefficients of all formal
distributions in F span g.

We define the λ−bracket between two formal distributions a(z), b(z) ∈ g[[z, z−1]] as
the generating series of the (a(z)(j)b(z))’s:

[a(z)λb(z)] =
∑

j≥0

λj

j ! (a(z)(j)b(z)). (1)

Definition 2.4 (Conformal superalgebra) A conformal superalgebra R is a left Z2−graded
C[∂]−module endowed with a C−linear map, called λ−bracket, R ⊗ R → C[λ] ⊗ R,
a ⊗ b 	→ [aλb], that satisfies the following properties for all a, b, c ∈ R:

(i) conf ormal sesquilinearity : [∂aλb] = −λ[aλb], [aλ∂b] = (λ + ∂)[aλb];
(ii) skew − symmetry : [aλb] = −(−1)p(a)p(b)[b−λ−∂a];

(iii) J acobi identity : [aλ[bμc]] = [[aλb]λ+μc] + (−1)p(a)p(b)[bμ[aλc]];
where p(a) denotes the parity of the element a ∈ R and p(∂a) = p(a) for all a ∈ R. We
call n−products the coefficients (a(n)b) that appear in [aλb] =∑n≥0

λn

n! (a(n)b) and give an
equivalent definition of conformal superalgebra.

Definition 2.5 (Conformal superalgebra) A conformal superalgebra R is a left Z2−graded
C[∂]−module endowed with a C−bilinear product (a(n)b) : R ⊗R → R, defined for every
n ≥ 0, that satisfies the following properties for all a, b, c ∈ R, m, n ≥ 0:

(i) p(∂a) = p(a);
(ii) (a(n)b) = 0, f or n � 0;

(iii) (∂a(0)b) = 0 and (∂a(n+1)b) = −(n + 1)(a(n)b);

(iv) (a(n)b) = −(−1)p(a)p(b)
∑

j≥0(−1)j+n ∂j

j !
(
b(n+j)a

)
;

(v) (a(m)(b(n)c)) =∑m
j=0

(
m
j

)
((a(j)b)(m+n−j)c) + (−1)p(a)p(b)(b(n)(a(m)c)).
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Using (iii) and (iv) in Definition 2.5 it is easy to show that for all a, b ∈ R, n ≥ 0:

(a(n)∂b) = ∂(a(n)b) + n(a(n−1)b).

Due to this relation and (iii) in Definition 2.5, the map ∂ : R → R, a 	→ ∂a is a derivation
with respect to the n−products.

Remark 2.6 Let (g,F) be a formal distribution superalgebra, endowed with λ−bracket (1).
The elements of F satisfy sesquilinearity, skew-symmetry and Jacobi identity with ∂ = ∂z;
for a proof see Proposition 2.3 in [16].

We say that a conformal superalgebra R is finite if it is finitely generated as a
C[∂]−module. An ideal I of R is a C[∂]−submodule of R such that (a(n)b) ∈ I for every
a ∈ R, b ∈ I , n ≥ 0. A conformal superalgebra R is simple if it has no non-trivial ideals
and the λ−bracket is not identically zero. We denote by R′ the derived subalgebra of R, i.e.
the C−span of all n−products.

Definition 2.7 A module M over a conformal superalgebra R is a left Z2−graded
C[∂]−module endowed with C−linear maps R → EndC M , a 	→ a(n), defined for every
n ≥ 0, that satisfy the following properties for all a, b ∈ R, v ∈ M , m, n ≥ 0:

(i) a(n)v = 0 f or n � 0;
(ii) (∂a)(n)v = [∂, a(n)]v = −na(n−1)v;

(iii) [a(m), b(n)]v =∑m
j=0

(
m
j

)
(a(j)b)(m+n−j)v.

For an R−module M , we define for all a ∈ R and v ∈ M:

aλv =
∑

n≥0

λn

n! a(n)v.

A module M is called finite if it is a finitely generated C[∂]−module. We can construct a
conformal superalgebra starting from a formal distribution superalgebra (g,F). Let F be
the closure of F under all the n−products, ∂z and linear combinations. By Dong’s Lemma,
F is still a family of mutually local distributions (see [16]). It turns out that F is a conformal
superalgebra. We will refer to it as the conformal superalgebra associated with (g,F).

Let us recall the construction of the annihilation superalgebra associated with a confor-
mal superalgebra R. Let R̃ = R[y, y−1], set p(y) = 0 and ∂̃ = ∂ + ∂y . We define the
following n−products on R̃, for all a, b ∈ R, f, g ∈ C[y, y−1], n ≥ 0:

(af(n)bg) =
∑

j∈Z+
(a(n+j)b)

(
∂

j
y

j ! f
)

g.

In particular if f = ym and g = yk we have for all n ≥ 0:

(aym
(n)by

k) =
∑

j∈Z+

(
m

j

)
(a(n+j)b)ym+k−j .
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We observe that ∂̃R̃ is a two sided ideal of R̃ with respect to the 0−product. The quotient
Lie R := R̃/̃∂R̃ has a structure of Lie superalgebra with the bracket induced by the
0−product, i.e. for all a, b ∈ R, f, g ∈ C[y, y−1]:

[af, bg] =
∑

j∈Z+
(a(j)b)

(
∂

j
y

j ! f
)

g. (2)

Definition 2.8 The annihilation superalgebra A(R) of a conformal superalgebra R is the
subalgebra of LieR spanned by all elements ayn with n ≥ 0 and a ∈ R.

The extended annihilation superalgebraA(R)e of a conformal superalgebra R is the Lie
superalgebra C∂ �A(R). The semidirect sum C∂ �A(R) is the vector space C∂ ⊕ A(R)

endowed with the structure of Lie superalgebra determined by the bracket:

[∂, aym] = −∂y(ay
m) = −maym−1,

for all a ∈ R and the fact that C∂ , A(R) are Lie subalgebras.

For all a ∈ R we consider the following formal power series in A(R)[[λ]]:

aλ =
∑

n≥0

λn

n! ay
n. (3)

For all a, b ∈ R, we have: [aλ, bμ] = [aλb]λ+μ and (∂a)λ = −λaλ (for a proof see [7]).

Proposition 2.9 [10] Let R be a conformal superalgebra. If M is an R-module then M has
a natural structure ofA(R)e-module, where the action of ayn on M is uniquely determined
by aλv = ∑

n≥0
λn

n! ay
n.v for all v ∈ M . Viceversa if M is a A(R)e-module such that for

all a ∈ R, v ∈ M we have ayn.v = 0 for n � 0, then M is also an R-module by letting
aλv =∑n

λn

n! ay
n.v.

Proposition 2.9 reduces the study of modules over a conformal superalgebra R to the
study of a class of modules over its (extended) annihilation superalgebra. The following
proposition states that, under certain hypotheses, it is sufficient to consider the annihilation
superalgebra. We recall that, given a Z− graded Lie superalgebra g = ⊕i∈Zgi , we say that
g has finite depth d ≥ 0 if g−d �= 0 and gi = 0 for all i < −d.

Proposition 2.10 [3, 13] Let g be the annihilation superalgebra of a conformal superalge-
bra R. Assume that g satisfies the following conditions:

L1: g is Z−graded with finite depth d;
L2: There exists an element whose centralizer in g is contained in g0;
L3: There exists an element � ∈ g−d such that gi−d = [�, gi], for all i ≥ 0.

Finite modules over R are the same as modules V over g, called finite conformal, that
satisfy the following properties:

(1) For every v ∈ V , there exists j0 ∈ Z, j0 ≥ −d, such that gj .v = 0 when j ≥ j0;
(2) V is finitely generated as a C[�]−module.

Remark 2.11 We point out that condition L2 is automatically satisfied when g contains a
grading element, i.e. an element t ∈ g such that [t, b] = deg(b)b for all b ∈ g.
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Let g = ⊕i∈Zgi be a Z−graded Lie superalgebra. We will use the notation g>0 =
⊕i>0gi , g<0 = ⊕i<0gi and g≥0 = ⊕i≥0gi . We denote by U(g) the universal enveloping
algebra of g.

Definition 2.12 Let F be a g≥0−module. The generalized Verma module associated with
F is the g−module Ind(F ) defined by:

Ind(F ) := Indgg≥0(F ) = U(g) ⊗U(g≥0) F .

If F is a finite−dimensional irreducible g≥0−module we will say that Ind(F ) is a
finite Verma module. We will identify Ind(F ) with U(g<0) ⊗ F as vector spaces via the
Poincaré−Birkhoff−Witt Theorem. The Z−grading of g induces a Z−grading on U(g<0)

and Ind(F ). We will invert the sign of the degree, so that we have a Z≥0−grading on U(g<0)

and Ind(F ). We will say that an element v ∈ U(g<0)k is homogeneous of degree k. Anal-
ogously an element m ∈ U(g<0)k ⊗ F is homogeneous of degree k. For a proof of the
following proposition see [2].

Proposition 2.13 Let g = ⊕i∈Zgi be a Z−graded Lie superalgebra. If F is an irreducible
finite− dimensional g≥0−module, then Ind(F ) has a unique maximal submodule. We denote
by I (F ) the quotient of Ind(F ) by the unique maximal submodule.

Definition 2.14 Given a g−module V , we call singular vectors the elements of:

Sing(V ) = {v ∈ V | g>0.v = 0} .

Homogeneous components of singular vectors are still singular vectors so we often assume
that singular vectors are homogeneous without loss of generality. In the case V = Ind(F ),
for a g≥0−module F , we will call trivial singular vectors the elements of Sing(V ) of degree
0 and nontrivial singular vectors the nonzero elements of Sing(V ) of positive degree.

Theorem 2.15 [13, 19] Let g be a Lie superalgebra that satisfies L1, L2, L3, then:

(i) If F is an irreducible finite−dimensional g≥0−module, then g>0 acts trivially on it;
(ii) The map F 	→ I (F ) is a bijective map between irreducible finite−dimensional

g0−modules and irreducible finite conformal g−modules;
(iii) The g−module Ind(F ) is irreducible if and only if the g0−module F is irreducible

and Ind(F ) has no nontrivial singular vectors.

We recall the notion of duality for conformal modules (see for further details [5, 7]). Let
R be a conformal superalgebra and M a conformal module over R.

Definition 2.16 The conformal dual M∗ of M is defined by:

M∗ = {fλ : M → C[λ] | fλ(∂m) = λfλ(m), ∀m ∈ M} .

The structure of C[∂]−module is given by (∂f )λ(m) = −λfλ(m), for all f ∈ M∗, m ∈ M .
The λ−action of R is given, for all a ∈ R, m ∈ M , f ∈ M∗, by:

(aλf )μ(m) = −(−1)p(a)p(f )fμ−λ(aλm).

Definition 2.17 Let T : M → N be a morphism of R−modules, i.e. a linear map such that
for all a ∈ R and m ∈ M:

i: T (∂m) = ∂T (m),
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ii: T (aλm) = aλT (m).

The dual morphism T ∗ : N∗ → M∗ is defined, for all f ∈ N∗ and m ∈ M , by:
[
T ∗(f )

]
λ
(m) = −fλ (T (m)) .

Theorem 2.18 [5, Proposition 2.6] Let R be a conformal superalgebra and M,N

R−modules. Let T : M −→ N be a homomorphism of R−modules such that N/T is a
finitely generated torsion−free C[∂]−module. Then the standard map � : N∗/KerT ∗ −→
(M/KerT )∗, given by [�(f )]λ(m) = fλ(T (m)) (where by the bar we denote the
corresponding class in the quotient), is an isomorphism of R−modules.

We denote by F the functor that maps a conformal module M over a conformal super-
algebra R to its conformal dual M∗ and maps a morphism between conformal modules
T : M → N to its dual T ∗ : N∗ → M∗.

Proposition 2.19 The functor F is exact if we consider only morphisms T : M → N , where
N/ Im T is a finitely generated torsion free C[∂]−module.

Proof Let us consider an exact short sequence of conformal modules:

0 → M
d1−→ N

d2−→ P → 0.

Therefore we know that d2 ◦ d1 = 0, d1 is injective, d2 is surjective and Ker d2 = Im d1. We
consider the dual of this sequence:

0 → P ∗ d∗
2−→ N∗ d∗

1−→ M∗ → 0.

By Theorem 2.18 and Remark 3.11 in [7], we know that d∗
1 is surjective and d∗

2 is injective.
We have to show that Ker d∗

1 = Im d∗
2 . Let us first show that Ker d∗

1 ⊃ Im d∗
2 . Let β ∈

Im d∗
2 ⊂ N∗. We have β = d∗

2 (α) for some α ∈ P ∗. For all m ∈ M:
[
d∗

1 (β)
]
λ
(m) = −βλ(d1(m)) = αλ(d2(d1(m))) = 0.

Let us now show that Ker d∗
1 ⊂ Im d∗

2 . Let β ∈ Ker d∗
1 ⊂ N∗. For all m ∈ M:

0 = [d∗
1 (β)

]
λ
(m) = −βλ(d1(m)).

Since Ker d2 = Im d1, this condition tells that β vanishes on Ker d2. We also know that
for every p ∈ P , p = d2(np), for some np ∈ N . We define α ∈ P ∗ as follows, for all
p ∈ P :

αλ(p) = αλ(d2(np)) = −βλ(np).

Let us show that α actually lies in P ∗. For every p ∈ P :

αλ(∂p) = αλ(∂d2(np)) = αλ(d2(∂np)) = −βλ(∂np).

Since β ∈ N∗, we know that −βλ(∂np) = −λβλ(np). Therefore αλ(∂p) = λαλ(p). We
have for all n ∈ N that:

[
d∗

2 (α)
]
λ
(n) = −αλ(d2(n)) = βλ(n).
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3 The Conformal Superalgebra K ′
4

In this section we recall some notions and properties about the conformal superalgebra K ′
4

(for further details see [2, 3, 15]). We first recall the notion of the contact Lie superalgebra,
which is one of the linearly compact Lie superalgebras classified in [17]. Let

∧
(N) be the

Grassmann superalgebra in the N odd indeterminates ξ1, ..., ξN . Let t be an even indetermi-
nate and

∧
(1, N) = C[t, t−1] ⊗∧

(N). We consider the Lie superalgebra of derivations of∧
(1, N):

W(1, N) =
{

D = a∂t +
N∑

i=1

ai∂i | a, ai ∈ ∧
(1, N)

}
,

where ∂t = ∂
∂t

and ∂i = ∂
∂ξi

for every i ∈ {1, ..., N}.
Let us consider the contact form ω = dt − ∑N

i=1ξidξi . The contact Lie superalgebra
K(1, N) is defined by:

K(1, N) = {D ∈ W(1, N) | Dω = fDω f or some fD ∈ ∧
(1, N)

}
.

We denote by K ′(1, N) the derived subalgebra [K(1, N),K(1, N)] of K(1, N). Analo-
gously, let

∧
(1, N)+ = C[t] ⊗ ∧

(N). We define the Lie superalgebra W(1, N)+ (resp.
K(1, N)+) similarly to W(1, N) (resp. K(1, N)) using

∧
(1, N)+ instead of

∧
(1, N).

One can define on
∧

(1, N) a Lie superalgebra structure as follows: for all f, g ∈∧
(1, N) we let

[f, g] =
(

2f −
N∑

i=1

ξi∂if

)
(∂tg) − (∂tf )

(
2g −

N∑

i=1

ξi∂ig

)
+ (−1)p(f )

(
N∑

i=1

∂if ∂ig

)
.

(4)
We recall that K(1, N) ∼= ∧

(1, N) as Lie superalgebras via the following map (see [9] and
[12]):

∧
(1, N) −→ K(1, N)

f 	−→ 2f ∂t + (−1)p(f )
N∑

i=1

(ξi∂tf + ∂if )(ξi∂t + ∂i).

From now on we will always identify elements of K(1, N) with elements of
∧

(1, N) and
we will omit the symbol ∧ between the ξi’s. We adopt the following notation: we denote by
I the set of finite sequences of elements in {1, . . . , N}; we will write I = i1 · · · ir instead
of I = (i1, . . . , ir ). Given I = i1 · · · ir and J = j1 · · · js , we will denote i1 · · · ir j1 · · · js

by IJ ; if I = i1 · · · ir ∈ I we let ξI = ξi1 · · · ξir and |ξI | = |I | = r . We denote by I �=
the subset of I of sequences with distinct entries. We consider on K(1, N) the standard
grading, i.e. for every m ∈ Z and I ∈ I , deg(tmξI ) = 2m + |I | − 2.

Now we want to recall the definition of the conformal superalgebra KN . In order to do
this, we construct a formal distribution superalgebra using the following family of formal
distributions:

F =
{

A(z) :=
∑

m∈Z
(Atm)z−m−1 = Aδ(t − z), ∀A ∈ ∧

(N)

}
.

Note that the set of all the coefficients of formal distributions in F spans
∧

(1, N) and
the distributions are mutually local (for a proof see [2, Proposition 3.1]). The conformal
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superalgebra associated with (K(1, N),F) is identified with KN := C[∂] ⊗∧
(N). For all

I, J ∈ I the λ−bracket is given by

[ξI λξJ ] = (|I | − 2)∂(ξIJ ) + (−1)|I |
N∑

i=1

(∂iξI )(∂iξJ ) + λ(|I | + |J | − 4)ξIJ , (5)

for a proof see [2, Proposition 3.1]. KN is simple except for the case N = 4. If N = 4,
K4 = K ′

4 ⊕Cξ1234, where K ′
4 is the derived subalgebra, i.e. the C−span of the n−products.

K ′
4 is a simple conformal superalgebra (see [15]).

Proposition 3.1 [2] The annihilation superalgebraA(K ′
4), associated with K ′

4, is a central
extension of K(1, 4)+ by a one−dimensional center CC:

A(K ′
4) = K(1, 4)+ ⊕ CC.

The extension is given by the 2−cocycle ψ ∈ Z2(K(1, 4)+,C) which computed on basis
elements returns non−zero values in the following cases only (up to skew-symmetry of ψ):

ψ(1, ξ1234) = −2,

ψ(ξi, ∂iξ1234) = −1.

We denote with g := A(K ′
4) = K(1, 4)+ ⊕CC. We recall from [2] the description of g.

The grading on g is the standard grading of K(1, 4)+ and C has degree 0. We have:

g−2 = 〈1〉 ,

g−1 = 〈ξ1, ξ2, ξ3, ξ4〉 ,

g0 = 〈{
C, t, ξij : 1 ≤ i < j ≤ 4

}〉
.

The annihilation superalgebra g satisfies L1, L2, L3: L1 is straightforward; L2 follows by
Remark 2.11 since t is a grading element for g; L3 follows from the choice � := −1/2 ∈
g−2. We recall that g0 = 〈{C, t, ξij : 1 ≤ i < j ≤ 4

}〉 ∼= so(4) ⊕ Ct ⊕ CC, where so(4) is
the Lie algebra of 4×4 skew−symmetric matrices. In the above isomorphism the element ξij

corresponds to the skew-symmetric matrix −Ei,j +Ej,i ∈ so(4). We consider the following
basis of a Cartan subalgebra h:

hx := −iξ12 + iξ34, hy := −iξ12 − iξ34. (6)

Let αx, αy ∈ h∗ be such that αx(hx) = αy(hy) = 2 and αx(hy) = αy(hx) = 0. The set of
roots is � = {αx,−αx, αy,−αy} and we have the following root decomposition:

so(4) = h ⊕ (⊕α∈�gα) with gαx = Cex, g−αx = Cfx, gαy = Cey, g−αy = Cfy

where

ex = 1
2 (−ξ13 − ξ24 − iξ14 + iξ23), ey = 1

2
(−ξ13 + ξ24 + iξ14 + iξ23),

fx = 1
2 (ξ13 + ξ24 − iξ14 + iξ23), fy = 1

2
(ξ13 − ξ24 + iξ14 + iξ23).

We will use the following notation:

e1 = ex + ey = −ξ13 + iξ23, e2 = ex − ey = −ξ24 − iξ14.

The set {e1, e2} is a basis of the nilpotent subalgebra gαx ⊕ gαy . We denote by gss
0 the

semisimple part of g0.
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Remark 3.2 The sets {ex, fx, hx} and {ey, fy, hy} span two copies of sl2 and we think of
gss

0 in the standard way as a Lie algebra of derivations. We have that:

gss
0 = 〈ex, fx, hx〉 ⊕ 〈ey, fy, hy〉 ∼= 〈x1∂x2 , x2∂x1 , x1∂x1 − x2∂x2〉

⊕〈y1∂y2 , y2∂y1 , y1∂y1 − y2∂y2〉.

By direct computations, we obtain the following results.

Lemma 3.3 [2] The subalgebra g>0 is generated by g1, i.e. gi = gi
1 for all i ≥ 2 and as

g0−modules:

g1 ∼= 〈tξi : 1 ≤ i ≤ 4〉 ⊕ 〈ξI : |I | = 3〉.
The g0−modules 〈tξi : 1 ≤ i ≤ 4〉 and 〈ξI : |I | = 3〉 are irreducible and the corresponding
lowest weight vectors are t (ξ1 + iξ2) and (ξ1 + iξ2)ξ3ξ4.

By Lemma 3.3 to check whether a vector �m in a g-module is a highest weight singular
vector it is sufficient to show that it is annihilated by e1, e2, t (ξ1 + iξ2) and (ξ1 + iξ2)ξ3ξ4.

Lemma 3.4 [2] As gss
0 −modules:

g−1 ∼= 〈x1y1, x1y2, x2y1, x2y2〉.
The isomorphism is given by:

ξ2 + iξ1 ↔ x1y1, ξ2 − iξ1 ↔ x2y2, −ξ4 + iξ3 ↔ x1y2, ξ4 + iξ3 ↔ x2y1.

From now on it is always assumed that F is a finite−dimensional irreducible
g≥0−module.

Remark 3.5 Since Ind(F ) ∼= U(g<0) ⊗ F , it follows that Ind(F ) ∼= C[�] ⊗ ∧
(4) ⊗ F .

Indeed, let us denote by ηi the image in U(g) of ξi ∈ ∧
(4), for all i ∈ {1, 2, 3, 4}. In

U(g) we have that η2
i = �, for all i ∈ {1, 2, 3, 4}: since [ξi, ξi] = −1 in g, we have

ηiηi = −ηiηi − 1 in U(g).

Given I = i1 · · · ik ∈ I �=, we will use the notation ηI to denote the element ηi1 · · · ηik ∈
U(g<0) and we will denote |ηI | = |I | = k.

Remark 3.6 Since C is central, by Schur’s lemma, C acts as a scalar on F .

We will write the weights μ = (m, n, μt , μC) of weight vectors of g0−modules with
respect to the action of the vectors hx, hy, t and C. Motivated by Lemma 3.4, we will use
the notation

w11 = η2 + iη1, w22 = η2 − iη1, w12 = −η4 + iη3, w21 = η4 + iη3. (7)

We point out that

[w11, w22] = 4�, [w12, w21] = −4� (8)

and all other brackets between the w′s are 0. Moreover in U(g<0) we have:

w2
11 = w2

22 = w2
12 = w2

21 = 0. (9)

Indeed for example w2
11 = (η2 + iη1)(η2 + iη1) = � + iη21 + iη12 − � = 0.
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In [2] it is presented the classification of all highest weight singular vectors (i.e. singular
vectors �m such that e1. �m = e2. �m = 0). We recall the following remark from [2].

Remark 3.7 We recall that highest weight singular vectors allow to construct g−morphisms
between finite Verma modules. Indeed, let us call M(μ1, μ2, μ3, μ4) the Verma module
Ind(F (μ1, μ2, μ3, μ4)), where F(μ1, μ2, μ3, μ4) is the irreducible g0−module with high-
est weight (μ1, μ2, μ3, μ4). We call a Verma module degenerate if it is not irreducible. We
point out that, given M(μ1, μ2, μ3, μ4) and M(μ̃1, μ̃2, μ̃3, μ̃4) finite Verma modules, we
can construct a non trivial morphism of g−modules from the former to the latter if and only
if there exists a highest weight singular vector �m in M(μ̃1, μ̃2, μ̃3, μ̃4) of highest weight
(μ1, μ2, μ3, μ4). The map is uniquely determined by:

∇ : M(μ1, μ2, μ3, μ4) −→ M(μ̃1, μ̃2, μ̃3, μ̃4)

vμ 	−→ �m,

where vμ is a highest weight vector of F(μ1, μ2, μ3, μ4). If �m is a singular vector of degree
d, we say that ∇ is a morphism of degree d .

Remark 3.7 is used in [2] to construct the maps in Fig. 1 of all possible morphisms
between finite Verma modules in the case of K ′

4. The maps will be described explicitly in
Section 4. We now recall from [2] the following remark about conformal duality.

Remark 3.8 By the main result in [7], the conformal dual of a Verma module
M(m, n,μt , μC) is M(m, n, −μt + a, −μC + b), with

a = str(ad(t)|g<0) = 2

and

b = str(ad(C)|g<0) = 0,

where g = A(K ′
4), ‘str’ denotes supertrace, and ‘ad’ denotes the adjoint representation. In

particular in Fig. 1 the duality is obtained with the rotation by 180 degrees of the whole
picture.

We introduce the following g0−modules:

VA = C [x1, x2, y1, y2] , VB = C
[
∂x1 , ∂x2 , y1, y2

]
[1,−1] ,

VC = C
[
∂x1 , ∂x2 , ∂y1 , ∂y2

]
[2,0] , VD = C

[
x1, x2, ∂y1 , ∂y2

]
[1,1] .

The subscripts [i, j ] mean that t acts on VX , for X = A, B,C, D, as − 1
2 (x1∂x1 + x2∂x2 +

y1∂y1 + y2∂y2) plus i Id and C acts on VX , for X = A,B, C,D, as 1
2 (x1∂x1 + x2∂x2) −

1
2 (y1∂y1 + y2∂y2) plus j Id; the subscript [i, j ] is assumed to be [0, 0] when it is omitted,
i.e. for X = A.

The elements of gss
0 act on VX , for X = A,B,C, D, in the standard way:

xi∂xj
xk = χ

j=k
xi, xi∂xj

.∂xk
=−χ

i=k
∂xj

, xi∂xj
yk = 0, xi∂xj

.∂yk
= 0;

yi∂yj
yk = χ

j=k
yi, yi∂yj

.∂yk
=−χ

i=k
∂yj

, yi∂yj
xk = 0, yi∂yj

.∂xk
= 0.

We introduce the following bigrading:

V
m,n
X := {f ∈ VX : (x1∂x1 + x2∂x2).f = mf and (y1∂y1 + y2∂y2).f = nf

}
. (10)
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The V
m,n
X ’s are irreducible g0−modules. We point out that for m, n ∈ Z≥0:

V
m,n
A

∼= F
(
m, n,−m + n

2
,
m − n

2

)
, V

−m,n
B

∼= F
(
m, n, 1+ m − n

2
,−m + n

2
− 1
)
,(11)

V
−m,−n
C

∼= F
(
m, n,

m + n

2
+ 2,

n − m

2

)
, V

m,−n
D

∼= F
(
m, n, 1+ n − m

2
,
m + n

2
+ 1
)

.

Hence for m, n ∈ Z≥0, V
m,n
A is the irreducible g0−module determined by coordinates

(m, n) in quadrant A of Fig. 1, V
−m,n
B is the irreducible g0−module determined by

coordinates (m, n) in quadrant B, V
−m,−n
C is the irreducible g0−module determined by

coordinates (m, n) in quadrant C and V
m,−n
D is the irreducible g0−module determined by

coordinates (m, n) in quadrant D. We have that VX = ⊕m,nV
m,n
X is the direct sum of all the

irreducible g0−modules in quadrant X.
We denote by M

m,n
X = U(g<0) ⊗ V

m,n
X ; we point out that, for m, n ∈ Z≥0, M

m,n
A is the

finite Verma module represented in Fig. 1 in quadrant A with coordinates (m, n), M
−m,n
B

is the finite Verma module represented in quadrant B with coordinates (m, n), M
−m,−n
C is

the finite Verma module represented in quadrant C with coordinates (m, n), M
m,−n
D is the

finite Verma module represented in quadrant D with coordinates (m, n). We call MX =
⊕m,n∈ZM

m,n
X the direct sum of all finite Verma modules in the quadrant X of Fig. 1. We now

recall the classification of highest weight singular vectors found in [2], using the notation
of the VX’s for X = A,B,C, D and Eq. 11.

Theorem 3.9 [2] Let F be an irreducible finite−dimensional g0−module, with highest
weight μ. A vector �m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 1 if
and only if �m is (up to a scalar) one of the following vectors:

a: μ = (m, n, −m+n
2 , m−n

2

)
with m, n ∈ Z≥0,

�m1a = w11 ⊗ xm
1 yn

1 ;
b: μ = (m, n, 1 + m−n

2 ,−1 − m+n
2

)
, with m ∈ Z>0, n ∈ Z≥0,

�m1b = w21 ⊗ ∂m
x2

yn
1 + w11 ⊗ ∂x1∂

m−1
x2

yn
1 ;

c: μ = (m, n, 2 + m+n
2 , n−m

2

)
, with m, n ∈ Z>0,

�m1c = w22 ⊗ ∂m
x2

∂n
y2

+w12 ⊗ ∂x1∂
m−1
x2

∂n
y2

+w21 ⊗ ∂m
x2

∂y1∂
n−1
y2

+w11 ⊗ ∂x1∂
m−1
x2

∂y1∂
n−1
y2

;
d: μ = (m, n, 1 + n−m

2 , 1 + m+n
2

)
, with m ∈ Z≥0, n ∈ Z>0,

�m1d = w12 ⊗ xm
1 ∂n

y2
+ w11 ⊗ xm

1 ∂y1∂
n−1
y2

.

Theorem 3.10 [2] Let F be an irreducible finite−dimensional g0−module, with highest
weight μ. A vector �m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 2 if
and only if �m is (up to a scalar) one of the following vectors:

a: μ = (0, n, 1 − n
2 , −1 − n

2

)
with n ∈ Z≥0,

�m2a = w11w21 ⊗ yn
1 ;

b: μ = (m, 0, 1 − m
2 , 1 + m

2

)
with m ∈ Z≥0,

�m2b = w11w12 ⊗ xm
1 ;

c: μ = (m, 0, 2 + m
2 ,−m

2

)
with m ∈ Z>1,

�m2c = w21w22 ⊗ ∂m
x2

+ (w11w22 + w21w12) ⊗ ∂x1∂
m−1
x2

+ w11w12 ⊗ ∂2
x1

∂m−2
x2

;
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d: μ = (0, n, 2 + n
2 , n

2

)
with n ∈ Z>1,

�m2d = w12w22 ⊗ ∂n
y2

+ (w11w22 + w12w21) ⊗ ∂y1∂
n−1
y2

+ w11w21 ⊗ ∂2
y1

∂n−2
y2

.

Theorem 3.11 [2] Let F be an irreducible finite−dimensional g0−module, with highest
weight μ. A vector �m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 3 if
and only if �m is (up to a scalar) one of the following vectors:

a: μ =
(

1, 0, 5
2 , − 1

2

)
,

�m3a = w11w22w21 ⊗ ∂x2 − w21w12w11 ⊗ ∂x1;
b: μ =

(
0, 1, 5

2 , 1
2

)
,

�m3b = w11w22w12 ⊗ ∂y2 − w12w21w11 ⊗ ∂y1 .

Theorem 3.12 [2] There are no singular vectors of degree greater than 3.

Remark 3.13 We point out that the highest weight singular vectors of Theorems 3.9, 3.10
and 3.9 are written differently from [2]. Indeed in [2] the irreducible gss

0 −module of highest
weight (m, n) with respect to hx, hy is identified with the space of bihomogeneous polyno-
mials in the four variables x1, x2, y1, y2 of degree m in the variables x1, x2, and of degree
n in the variables y1, y2. We use instead the notation of the VX’s and Eq. 11 because it is
convenient for the explicit description of the morphisms in Fig. 1.

From Theorems 3.9, 3.11, 3.11 and 3.12 it follows that the module M(0, 0, 2, 0) does
not contain non trivial singular vectors, hence it is irreducible due to Theorem 12.5.

Proposition 3.14 [2] The module M(0, 0, 2, 0) is irreducible and it is isomorphic to
the coadjoint representation of K(1, 4)+, where we consider the restricted dual, i.e.
K(1, 4)∗+ = ⊕j∈Z(K(1, 4)+j )

∗.

4 TheMorphisms

In this section we find an explicit form for the morphisms that occur in Fig. 1. We follow
the notation in [18] and define, for every u ∈ U(g<0) and φ ∈ Hom(VX, VY ), the map
u ⊗ φ : MX −→ MY by:

(u ⊗ φ)(u′ ⊗ v) = u′ u ⊗ φ(v), (12)

for every u′⊗v ∈ U(g<0)⊗VX . From this definition it is clear that the map u⊗φ commutes
with the action of g<0. The following is straightforward.

Lemma 4.1 Let u⊗φ be a map as in Eq. 12. Let us suppose that u⊗φ =∑iui ⊗φi where
{ui}i and {φi}i are bases of dual g0−modules and ui is the dual of φi for all i. Then u ⊗ φ

commutes with g0.

Lemma 4.2 Let us consider a map u ⊗ φ ∈ U(g<0) ⊗ Hom(VX, VY ). In order to show
that u ⊗ φ commutes with g0, it is sufficient to show that wu ⊗ φ(v) = u ⊗ φ(w.v) for all
v ∈ VX , w ∈ g0.
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Proof Let w ∈ g0. For every ui1ui2 . . . uik ⊗ v ∈ U(g<0) ⊗ VX:

w.(ui1ui2 . . . uik ⊗ v) = ui1ui2 . . . uik ⊗ w.v +
∑

ũi1 ũi2 . . . ũik ⊗ v.

Hence for a map u ⊗ φ ∈ U(g<0) ⊗ Hom(VX, VY ):

(u ⊗ φ)(w.(ui1ui2 . . . uik ⊗ v)) = ui1ui2 . . . uiku ⊗ φ(w.v) +
∑

ũi1 ũi2 . . . ũik u ⊗ φ(v).

On the other hand we have:

w.(u ⊗ φ)(ui1ui2 . . . uik ⊗ v) = w.(ui1ui2 . . . uik u ⊗ φ(v))

= ui1ui2 . . . uikwu ⊗ φ(v) +
∑

ũi1 ũi2 . . . ũik u ⊗ φ(v).

Therefore, in order to show that u ⊗ φ commutes with g0, it is sufficient to show that
wu ⊗ φ(v) = u ⊗ φ(w.v) for all v ∈ VX , w ∈ g0.

Lemma 4.3 Let � : MX → MY be a linear map. Let us suppose that � commutes with
g≤0 and that �(v) is a singular vector for every v highest weight vector in V

m,n
X and for all

m, n ∈ Z. Then � is a morphism of g−modules.

Proof Due to Lemma 2.3 in [18], it is sufficient to show that g>0�(w) = 0 for every
w ∈ VX , in order to prove that � commutes with g>0.

We know that g>0�(v) = 0 for every v highest weight vector in V
m,n
X for all m, n ∈ Z.

Let v be the highest weight vector in V
m,n
X , f one among fx, fy and g+ ∈ g>0. We have

that:

g+.�(f .v) = g+.(f .�(v)) = f .(g+.�(v)) + [g+, f ].�(v) = 0.

This can be iterated and we obtain that g>0.�(w) = 0 for all w ∈ V
m,n
X . Hence g>0.�(w) =

0 for all w ∈ VX .

We consider, for j = 1, 2, the map ∂xj
: VX −→ VX that is the derivation by xj

for X = A,D and the multiplication by ∂xj
for X = B, C. We define analogously, for

j = 1, 2, the map ∂yj
: VX −→ VX , that is the derivation by yj for X = A, B and the

multiplication by ∂yj
for X = C, D. We will often write, by abuse of notation, ∂xj

instead
of 1 ⊗ ∂xj

: MX −→ MX .
We define the maps �+ : MX −→ MX , �− : MX −→ MX , ∇ : MX −→ MX as

follows:

�+ = w11 ⊗ ∂x1 + w21 ⊗ ∂x2 , �− = w12 ⊗ ∂x1 + w22 ⊗ ∂x2 , (13)

∇ = �+∂y1 + �−∂y2 = w11 ⊗ ∂x1∂y1 + w21 ⊗ ∂x2∂y1 + w12 ⊗ ∂x1∂y2 + w22 ⊗ ∂x2∂y2 .
(14)

We point out that ∇|Mm,n
X

: M
m,n
X −→ M

m−1,n−1
X for X = A, B,C, D; by abuse of notation

we will write ∇ instead of ∇|Mm,n
X

.

Remark 4.4 By Eqs. 8 and 9 it is straightforward that (�+)2 = 0, (�−)2 = 0 and �+�− +
�−�+ = 0.

Proposition 4.5 The map ∇ is the explicit expression of the g−morphisms of degree 1 in
Fig. 1 and ∇2 = 0.
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Proof It is a straightforward verification that ∇ : M
m,n
X −→ M

m−1,n−1
X is constructed so

that ∇(v), for v highest weight vector in V
m,n
X , is the highest weight singular vector of

degree 1 in M
m−1,n−1
X , classified in Theorem 3.9 Indeed for m, n ≥ 0:

a: Let ∇ : M
m,n
A −→ M

m−1,n−1
A . The highest weight vector in V

m,n
A is xm

1 yn
1 . By direct

computation, ∇ (xm
1 yn

1

) = mn �m1a , where �m1a is the highest weight singular vector of

M
(
m − 1, n − 1, −m+n−2

2 , m−n
2

)
found in Theorem 3.9

b: Let ∇ : M
−m,n
B −→ M

−m−1,n−1
B . The highest weight vector in V

−m,n
B is ∂m

x2
yn

1 . By
direct computation, ∇ (∂m

x2
yn

1

) = n �m1b, where �m1b is the highest weight singular

vector of M
(
m + 1, n − 1, 1 + m−n+2

2 ,−m+n
2 − 1

)
found in Theorem 3.9

c: Let ∇ : M
−m,−n
C −→ M

−m−1,−n−1
C . The highest weight vector in V

−m,−n
C is ∂m

x2
∂n
y2

.
By direct computation, ∇(∂m

x2
∂n
y2

) = �m1c, where �m1c is the highest weight singular

vector of M
(
m + 1, n + 1, m+n+2

2 + 2, n−m
2

)
found in Theorem 3.9

d: Let ∇ : M
m,−n
D −→ M

m−1,−n−1
D . The highest weight vector in V

m,−n
D is xm

1 ∂n
y2

. By

direct computation, ∇
(
xm

1 ∂n
y2

)
= m �m1d , where �m1d is the highest weight singular

vector of M
(
m − 1, n + 1, 1 + n−m+2

2 , m+n
2 + 1

)
found in Theorem 3.9

The map ∇ : MX → MX commutes with g<0 by Eq. 12. By Lemmas 4.1 and 4.3 it follows
that ∇ is a morphism of g−modules. The property ∇2 = 0 follows from the fact that ∇ is a
map between Verma modules that contain only highest weight singular vectors of degree 1,
by Theorems 3.9, 3.10 and 3.11.

By Proposition 4.5, it follows that for all m, n ∈ Z≥0:

i: The maps ∇ : M
m,n
A −→ M

m−1,n−1
A are the morphisms represented in Fig. 1 in

quadrant A;
ii: The maps ∇ : M

−m,n
B −→ M

−m−1,n−1
B are the morphisms represented in Fig. 1 in

quadrant B;
iii: The maps ∇ : M

−m,−n
C −→ M

−m−1,−n−1
C are the morphisms represented in Fig. 1 in

quadrant C;
iv: The maps ∇ : M

m,−n
D −→ M

m−1,−n−1
D are the morphisms represented in Fig. 1 in

quadrant D.

We introduce the following notation:

VA′ = ⊕m∈ZV
m,0
A = C [x1, x2] , VB ′ = ⊕m∈ZV

m,0
B = C

[
∂x1 , ∂x2

]
[1,−1] ,

VC′ = ⊕m∈ZV
m,0
C = C

[
∂x1 , ∂x2

]
[2,0] , VD′ = ⊕m∈ZV

m,0
D = C [x1, x2][1,1] .

We denote MX′ = U(g<0)⊗VX′ . We point out that MX′ is the direct sum of Verma modules
of Fig. 1 in quadrant X that lie on the axis n = 0. We consider the map τ1 : MA′ −→ MD′
that is the identity. We have that:

[t, τ1] = τ1, [C, τ1] = τ1. (15)

We call ∇2 : MA′ −→ MD′ the map

�−�+τ1 = w11w12 ⊗ ∂2
x1

+ w11w22 ⊗ ∂x1∂x2 + w21w12 ⊗ ∂x1∂x2 + w21w22 ⊗ ∂2
x2

.
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We consider the map τ2 : MB ′ −→ MC′ that is the identity. We have that:

[t, τ2] = τ2, [C, τ2] = τ2. (16)

By abuse of notation, we also call ∇2 : MB ′ −→ MC′ the map

�−�+τ2 = w11w12 ⊗ ∂2
x1

+ w11w22 ⊗ ∂x1∂x2 + w21w12 ⊗ ∂x1∂x2 + w21w22 ⊗ ∂2
x2

.

We observe that MX′ = ⊕m∈ZM
m,0
X for X = A,B,C, D. We will denote Mm

X′ = M
m,0
X .

We point out that ∇2|Mm
A′ : Mm

A′ −→ Mm−2
D′ for every m ≥ 2 and ∇2|M−m

B′ : M−m
B ′ −→

M−m−2
C′ for every m ≥ 0. By abuse of notation we will also write ∇2 instead of ∇2|Mm

A′ and
∇2|M−m

B′ .

Proposition 4.6 The map ∇2 is the explicit expression of the morphisms of degree 2 in
Fig. 1 from the quadrant A to the quadrant D and from the quadrant B to the quadrant C;
∇2∇ = ∇∇2 = 0.

Proof We first point out that:

i: For m ≥ 2, the map ∇2 : Mm
A′ −→ Mm−2

D′ is constructed so that ∇2(v), for v highest

weight vector in V m
A′ , is the highest weight singular vector of degree 2 in Mm−2

D′ , clas-
sified in Theorem 3.10. Indeed, the highest weight vector in V m

A′ is xm
1 and, by direct

computation, ∇2(x
m
1 ) = m(m − 1) �m2b, where �m2b is the highest weight singular

vector of M
(
m − 2, 0, 1 − m−2

2 , 1 + m−2
2

)
found in Theorem 3.10.

ii: For m ≥ 0, the map ∇2 : M−m
B ′ −→ M−m−2

C′ is constructed so that ∇2(v), for v highest

weight vector in V −m
B ′ , is the highest weight singular vector of degree 2 in M−m−2

C′ ,
classified in Theorem 3.10. Indeed, the highest weight vector in V −m

B ′ is ∂m
x2

and, by
direct computation, ∇2(∂

m
x2

) = �m2c, where �m2c is the highest weight singular vector

of M
(
m + 2, 0, 2 + m+2

2 , −m+2
2

)
found in Theorem 3.10.

The map ∇2 commutes with g<0 by Eq. 12. By Lemmas 4.1, 4.3 it follows that ∇2 is a
morphism of g−modules. Finally, ∇2∇ = ∇∇2 = 0 follows from the fact that due to
Theorem 3.11, there are no highest weight singular vectors of degree 3 in the codomain of
∇2∇ and ∇∇2.

By Proposition 4.6, it follows that, for every m ≥ 2, the maps ∇2 : Mm
A′ −→ Mm−2

D′ are
the morphisms represented in Fig. 1 from the quadrant A to the quadrant D and, for every
m ≥ 0, the maps ∇2 : M−m

B ′ −→ M−m−2
C′ are the morphisms from the quadrant B to the

quadrant C.
We now define the map τ3 : V

0,0
A −→ V

0,0
C that is the identity. We have that:

[t, τ3] = 2τ3, [C, τ3] = 0. (17)

We define the map ∇3 : M
0,1
A −→ M

−1,0
C as follows, using definition (12), for every

m ∈ M
0,1
A :

∇3(m) = �− ◦ (w11w21 ⊗ τ3) ◦ (1 ⊗ ∂y1)(m)

+�− ◦ ((w12w21 + w11w22) ⊗ τ3) ◦ (1 ⊗ ∂y2)(m).

Proposition 4.7 The map ∇3 : M
0,1
A −→ M

0,−1
C is the explicit form for the morphism of

g−modules of degree 3 from quadrant A to quadrant C and ∇3∇ = ∇∇3 = 0.
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Proof The map ∇3 : M
0,1
A −→ M

−1,0
C is constructed so that ∇3(v), for v highest weight

vector in V
0,1
A , is the highest weight singular vector of degree 3 in M

−1,0
C , classified in

Theorem 3.11. Indeed, the highest weight vector in V
0,1
A is y1 and, by direct computation,

∇3(y1) = − �m3a , that is the highest weight singular vector of M(1, 0, 5
2 ,− 1

2 ) found in
Theorem 3.11. ∇3 commutes with g<0 due to Eq. 12. By a straightforward computation and
Eq. 17, wu⊗∇3(v) = u⊗∇3(w.v) for every w ∈ g0, v ∈ V

0,1
A . Therefore it is a morphism

of g−modules due to Lemmas 4.2 and 4.3. Finally ∇3∇ = ∇∇3 = 0 since there are no
singular vectors of degree 4 due to Theorem 3.12.

Let us define the maps �̃+ : MX −→ MX and �̃− : MX −→ MX as follows:

�̃+ = w11 ⊗ ∂y1 + w12 ⊗ ∂y2 , �̃− = w21 ⊗ ∂y1 + w22 ⊗ ∂y2 . (18)

We point out that the morphism ∇, defined in Eq. 14, can be expressed also by ∇ = �̃+∂x1+
�̃−∂x2 .

Remark 4.8 By Eqs. 8 and 9 it is straightforward that (�̃+)2 = 0, (�̃−)2 = 0 and �̃+�̃− +
�̃−�̃+ = 0.

We introduce the following notation:

VA′′ = ⊕n∈ZV
0,n
A = C [y1, y2] , VB ′′ = ⊕n∈ZV

0,n
B = C [y1, y2][1,−1] ,

VC′′ = ⊕n∈ZV
0,n
C = C

[
∂y1 , ∂y2

]
[2,0] , VD′′ = ⊕n∈ZV

0,n
D = C

[
∂y1 , ∂y2

]
[1,1] .

We denote MX′′ = U(g<0) ⊗ VX′′ . We point out that MX′′ is the direct sum of Verma
modules of Fig. 1 in quadrant X that lie on the axis m = 0. We consider the map τ̃1 :
MA′′ −→ MB ′′ that is the identity. We have that:

[t, τ̃1] = τ̃1, [C, τ̃1] = −τ̃1. (19)

We call ∇̃2 : MA′′ −→ MB ′′ the map

�̃−�̃+τ̃1 = w11w21 ⊗ ∂2
y1

+ w12w21 ⊗ ∂y1∂y2 + w11w22 ⊗ ∂y1∂y2 + w12w22 ⊗ ∂2
y2

.

We consider the map τ̃2 : MD′′ −→ MC′′ that is the identity. We have that:

[t, τ̃2] = τ̃2, [C, τ̃2] = −τ̃2. (20)

By abuse of notation, we also call ∇̃2 : MD′′ −→ MC′′ the map

�̃−�̃+τ̃2 = w11w21 ⊗ ∂2
y1

+ w12w21 ⊗ ∂y1∂y2 + w11w22 ⊗ ∂y1∂y2 + w12w22 ⊗ ∂2
y2

.

We point out that ∇̃2 |Mn
A′′ : Mn

A′′ −→ Mn−2
B ′′ for every n ≥ 2 and ∇̃2 |M−n

D′′ : M−n
D′′ −→

M−n−2
C′′ for every n ≥ 0. By abuse of notation we will also write ∇̃2 instead of ∇̃2 |Mn

A′′ and

∇̃2 |M−n

D′′ .

Proposition 4.9 The map ∇̃2 is the explicit expression of the morphisms of g−modules of
degree 2 in Fig. 1 from the quadrant A to the quadrant B and from the quadrant D to the
quadrant C and ∇̃2∇ = ∇∇̃2 = 0.

Proof We first point out that:
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i: For n ≥ 2, the map ∇̃2 : Mn
A′′ −→ Mn−2

B ′′ is constructed so that ∇̃2(v), for v highest

weight vector in V n
A′′ , is the highest weight singular vector of degree 2 in Mn−2

B ′′ , clas-
sified in Theorem 3.10. Indeed, the highest weight vector in V n

A′′ is yn
1 and, by direct

computation, ∇̃2(y
n
1 ) = n(n− 1) �m2a , where �m2a is the highest weight singular vector

of M(0, n − 2, 1 − n−2
2 , −1 − n−2

2 ) found in Theorem 3.10.

ii: For n ≥ 0, the map ∇̃2 : M−n
D′′ −→ M−n−2

C′′ is constructed so that ∇̃2(v), for v highest

weight vector in V −n
D′′ , is the highest weight singular vector of degree 2 in M−n−2

C′′ ,
classified in Theorem 3.10. Indeed, the highest weight vector in V −n

D′′ is ∂n
y2

and, by

direct computation, ∇̃2(∂
n
y2

) = �m2d , where �m2d is the highest weight singular vector

of M(0, n + 2, 2 + n+2
2 , − n+2

2 ) found in Theorem 3.10.

The map ∇̃2 commutes with g<0 by Eq. 12. By Lemmas 4.1, 4.3 it follows that ∇̃2 is a
morphism of g−modules. Finally, ∇̃2∇ = ∇∇̃2 = 0 follows from the fact that due to
Theorem 3.11, there are no highest weight singular vectors of degree 3 in the codomain of
∇̃2∇ and ∇∇̃2.

By Proposition 4.9, it follows that, for every for every n ≥ 2, the maps ∇̃2 : Mn
A′′ −→

Mn−2
B ′′ are the morphisms represented in Fig. 1 from the quadrant A to the quadrant B and,

for every n ≥ 0, the maps ∇̃2 |M−n

D′′ : M−n
D′′ −→ M−n−2

C′′ are the morphisms from the quadrant

D to the quadrant C.
We define the map ∇̃3 : M

1,0
A −→ M

0,−1
C as follows, using definition (12), for every

m ∈ M
1,0
A :

∇̃3(m) = �̃− ◦ (w11w12 ⊗ τ3) ◦ (1 ⊗ ∂x1)(m)

+�̃− ◦ ((w21w12 + w11w22) ⊗ τ3) ◦ (1 ⊗ ∂x2)(m).

Proposition 4.10 The map ∇̃3 : M
1,0
A −→ M

0,−1
C is the explicit form of the morphism of

g−modules of degree 3 represented in Fig. 1 from quadrant A to quadrant C and ∇̃3∇ =
∇∇̃3 = 0.

Proof The map ∇̃3 : M
1,0
A −→ M

0,−1
C is constructed so that ∇̃3(v), for v highest weight

vector in V
1,0
A , is the highest weight singular vector of degree 3 in M

0,−1
C , classified in

Theorem 3.11. Indeed, the highest weight vector in V
1,0
A is x1 and, by direct computation,

∇̃3(x1) = − �m3b, that is the highest weight singular vector of M(0, 1, 5
2 , 1

2 ) found in The-
orem 3.11. ∇̃3 commutes with g<0 due to Eq. 12. By a straightforward computation and
Eq. 17, wu⊗∇̃3(v) = u⊗∇̃3(w.v) for every w ∈ g0, v ∈ V

1,0
A . Therefore it is a morphism

of g−modules by Lemmas 4.2 and 4.3. Finally ∇̃3∇ = ∇∇̃3 = 0 since there are no singular
vectors of degree 4 due to Theorem 3.12.

The following sections are dedicated to the computation of the homology of complexes
in Fig. 1. We will use techniques of spectral sequences, that we briefly recall for the reader’s
convenience in the next section.

5 Preliminaries on Spectral Sequences

In this section we recall some notions about spectral sequences; for further details see [18,
Appendix] and [22, Chapter XI]. We follow the notation used in [18]. Let A be a module
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with a filtration:

... ⊂ Fp−1A ⊂ FpA ⊂ Fp+1A ⊂ ..., (21)

where p ∈ Z. A filtration is called convergent above if A = ∪p FpA. We suppose that A is
endowed with a differential d : A −→ A such that:

d2 = 0 and d(FpA) ⊂ Fp−s+1A, (22)

for fixed s and all p in Z. The classical case studied in [22, Chapter XI, Section 3]
corresponds to s = 1. We will need the case s = 0.

The filtration (21) induces a filtration on the module H(A) of the homology spaces of A:
indeed, for every p ∈ Z, FpH(A) is defined as the image of H(FpA) under the injection
FpA −→ A.

Definition 5.1 Let E = {
Ep

}
p∈Z be a family of modules. A differential d : E −→ E of

degree −r ∈ Z is a family of homorphisms
{
dp : Ep −→ Ep−r

}
p∈Z such that dp ◦ dp+r =

0 for all p ∈ Z. We denote by H(E) = H(E, d) the homology of E under the differential
d that is the family

{
Hp(E, d)

}
p∈Z, where:

Hp(E, d) = Ker
(
dp : Ep −→ Ep−r

)

Im
(
dp+r : Ep+r −→ Ep

) .

Definition 5.2 (Spectral sequence) A spectral sequence E = {(Er, dr )}r∈Z is a sequence
of families of modules with differential (Er, dr ) as in Definition 5.1, such that, for all r , dr

has degree −r and:

H(Er, dr ) ∼= Er+1.

Proposition 5.3 Let A be a module with a filtration as in Eq. 21 and differential as in
Eq. 22. Therefore it is uniquely determined a spectral sequence, as in Definition 5.2, E =
{(Er, dr )}r∈Z such that:

H(Er, dr ) ∼= Er+1, (23)

Er
p

∼= FpA/Fp−1A for r ≤ s − 1, (24)

dr = 0 for r < s − 1, (25)

ds−1 = Gr d, (26)

Es
p

∼= H(FpA/Fp−1A). (27)

Proof For the proof see [18, Appendix].

We point out that Eq. 27 states that Es is isomorphic to the homology of the module
Gr A with respect to the differential induced by d.

Remark 5.4 Let {(Er, dr )}r∈Z be a spectral sequence as in Definition 5.2. We know that
E1

p
∼= Hp(E0, d0). We denote E1

p
∼= C0

p/B0
p, where C0

p = Ker d0
p and B0

p = Im d0
p+r .

Analogously E2
p

∼= Hp(E1, d1) and E2
p

∼= C1
p/B1

p , where C1
p/B0

p = Ker d1
p , B1

p/B0
p =

Im d1
p+r and B1

p ⊂ C1
p . Thus, by iteration we obtain the following inclusions:

B0
p ⊂ B1

p ⊂ B2
p ⊂ ... ⊂ C2

p ⊂ C1
p ⊂ C0

p .
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Definition 5.5 Let A be a module with a filtration as in Eq. 21 and differential as in Eq. 22.
Let {(Er, dr )}r∈Z be the spectral sequence determined by Proposition 5.3. We define E∞

p

as:

E∞
p =

⋂
r Cr

p⋃
r Br

p

.

Let B be a module with a filtration as in Eq. 21. We say that the spectral sequence converges
to B if, for all p:

E∞
p

∼= FpB/Fp−1B.

Proposition 5.6 Let A be a module with a filtration as in Eq. 21 and differential as in
Eq. 22. Let us suppose that the filtration is convergent above and, for some N , F−NA = 0.
Then the spectral sequence converges to the homology of A, that is:

E∞
p

∼= FpH(A)/Fp−1H(A).

Proof For the proof see [18, Appendix].

Remark 5.7 Let A be a module with a filtration as in Eq. 21 and differential as in Eq. 22.
We moreover suppose that A = ⊕n∈ZAn is a Z−graded module and d : An −→ An−1
for all n ∈ Z. Therefore the filtration (21) induces a filtration on each An. The family{
FpAn

}
p,n∈Z is indexed by (p, n). It is customary to write the indices as (p, q), where p

is the degree of the filtration and q = n − p is the complementary degree. The filtration is
called bounded below if, for all n ∈ Z, there exists a s = s(n) such that FsAn = 0.

In this case the spectral sequence E = {(Er, dr )}r∈Z, determined as in Proposition 5.3,

is a family of modules Er =
{
Er

p,q

}

p,q∈Z indexed by (p, q), where Er
p = ∑

p,q∈Z Er
p,q ,

with the differential dr =
{
dr
p,q : Ep,q −→ Ep−r,q+r−1

}

p,q∈Z of bidegree (−r, r−1) such

that dp,q ◦ dp+r,q−r+1 = 0 for all p, q ∈ Z. Equations 23, 24, 25, 26 and 27 can be written
so that the role of q is explicit. For instance, Eq. 23 can be written as:

Hp,q(Er, dr ) = Ker(dr
p,q : Er

p,q −→ Er
p−r,q+r−1)

Im(dr
p+r,q−r+1 : Er

p+r,q−r+1 −→ Er
p,q)

∼= Er+1
p,q .

for all p, q ∈ Z. Equation 27 can be written as Es
p,q

∼= H(FpAp+q/Fp−1Ap+q) for all
p, q ∈ Z.

We now recall some results on spectral sequences of bicomplexes; for further details see
[18] and [22, Chapter XI, Section 6].

Definition 5.8 (Bicomplex) A bicomplex K is a family
{
Kp,q

}
p,q∈Z of modules endowed

with two families of differentials, defined for all integers p, q, d ′ and d ′′ such that

d ′ : Kp,q −→ Kp−1,q , d ′′ : Kp,q −→ Kp,q−1

and d ′2 = d ′′2 = d ′d ′′ + d ′′d ′ = 0.
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We can also think K as a Z−bigraded module where K = ∑
p,q∈ZKp,q . A bicomplex

K as in Definition 5.8 can be represented by the following commutative diagram:

d ′′
��

d ′′
��

d ′′
��

· · · d ′
�� Kp+1,q+1

d ′′
��

d ′
�� Kp,q+1

d ′′
��

d ′
�� Kp−1,q+1

d ′′
��

d ′
�� · · ·

· · · d ′
�� Kp+1,q

d ′′
��

d ′
�� Kp,q

d ′′
��

d ′
�� Kp−1,q

d ′′
��

d ′
�� · · ·

· · · d ′
�� Kp+1,q−1

d ′′

��

d ′
�� Kp,q−1

d ′′

��

d ′
�� Kp−1,q−1

d ′′

��

d ′
�� · · ·

.

(28)

Definition 5.9 (Second homology) Let K be a bicomplex. The second homology of K is
the homology computed with respect to d ′′, i.e.:

H ′′
p,q(K) = Ker

(
d ′′ : Kp,q −→ Kp,q−1

)

d ′′(Kp,q+1)
.

The second homology of K is a bigraded complex with differential d ′ : H ′′
p,q(K) −→

H ′′
p−1,q (K) induced by the original d ′. Its homology is defined as:

H ′
pH ′′

q (K) =
Ker

(
d ′ : H ′′

p,q(K) −→ H ′′
p−1,q

)

d ′
(
H ′′

p+1,q (K)
) ,

and it is a bigraded module.

Definition 5.10 (First homology) Let K be a bicomplex. The first homology of K is the
homology computed with respect to d ′, i.e.:

H ′
p,q(K) = Ker

(
d ′ : Kp,q −→ Kp−1,q

)

d ′(Kp+1,q )
.

The first homology of K is a bigraded complex with differential d ′′ : H ′
p,q(K) −→

H ′
p,q−1(K) induced by the original d ′′. Its homology is defined as:

H ′′
q H ′

p(K) =
Ker

(
d ′′ : H ′

p,q(K) −→ H ′
p,q−1

)

d ′′(H ′
p,q+1(K))

,

and it is a bigraded module.

Definition 5.11 (Total complex) A bicomplex K defines a single complex T = T ot (K):

Tn =
∑

p+q=n

Kp,q, d = d ′ + d ′′ : Tn −→ Tn−1.

From the properties of d ′ and d ′′, it follows that d2 = 0. The complex T is called total
complex.
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We point out that Tn is the sum of the modules of the secondary diagonal in diagram
(28). We have that:

· · · d−→ Tn+1
d−→ Tn

d−→ Tn−1
d−→ · · · .

The first filtration F ′ of T = T ot (K) is defined as:

(F ′
pT )n =

∑

h≤p

Kh,n−h.

The associated spectral sequence E′ is called first spectral sequence. Analogously we can
define the second filtration and the second spectral sequence.

Proposition 5.12 Let (K, d ′, d ′′) be a bicomplex with total differential d. The first spectral
sequence E′ = {(E′r , dr )

}
, E′r =∑p,qE′r

p,q has the property:

(E′0, d0) ∼= (K, d ′′), (E′1, d1) ∼= (H(K, d ′′), d ′), E′2
p,q

∼= H ′
pH ′′

q (K).

The second spectral sequence E′′ = {(E′′r , δr )
}
, E′′r =∑p,qE′′r

p,q has the property:

(E′′0, δ0) ∼= (K, d ′), (E′′1, δ1) ∼= (H(K, d ′), d ′′), E′′2
p,q

∼= H ′′
q H ′

p(K).

If the first filtration is bounded below and convergent above, then the first spectral sequence
converges to the homology of T with respect to the total differential d .

If the second filtration is bounded below and convergent above, then the second spectral
sequence converges to the homology of T with respect to the total differential d.

Proof See [22, Chapter XI].

6 Homology

In this section we compute the homology of the complexes in Fig. 1. The main result is the
following theorem.

Theorem 6.1 The complexes in Fig. 1 are exact in each module except for M(0, 0, 0, 0)

and M(1, 1, 3, 0). The homology spaces in M(0, 0, 0, 0) and M(1, 1, 3, 0) are isomorphic
to the trivial representation.

Lemma 6.2 Let ∇ : M(μ1, μ2, μ3, μ4) −→ M(μ̃1, μ̃2, μ̃3, μ̃4) be a morphism rep-
resented in Fig. 1 and constructed as in Remark 3.7. Then Im ∇ is an irreducible
g−submodule of M(μ̃1, μ̃2, μ̃3, μ̃4).

Proof By Theorems 3.9, 3.10, 3.11 and Remark 3.7, we know that M(μ̃1, μ̃2, μ̃3, μ̃4) con-
tains a unique, up to scalars, highest weight nontrivial singular vector, that we call �m. By
construction of ∇, Im ∇ is the g−submodule of M(μ̃1, μ̃2, μ̃3, μ̃4) generated by �m. In par-
ticular it is straightforward that g0 �m is an irreducible finite−dimensional g0−module on
which g>0 acts trivially, since �m is singular. The g−module Im ∇ = g �m is therefore iso-
morphic to Ind(g0 �m). Hence, due to Theorem 2.15, Im ∇ is an irreducible g−module since
in M(μ̃1, μ̃2, μ̃3, μ̃4) there is only the highest weight nontrivial singular vector �m that is
trivial for Ind(g0 �m).
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Remark 6.3 We are now able to show, using Theorem 6.1, that all the irreducible quo-
tients of finite degenerate Verma modules occur among cokernels, kernels and images
of the complexes in Fig. 1. Indeed if (μ1, μ2, μ3, μ4) is not among the weights that
occur in Theorems 3.9, 3.10, 3.11, then M(μ1, μ2, μ3, μ4) is irreducible, due to The-
orem 2.15, since it does not contain nontrivial singular vectors. Let us now suppose
that (μ1, μ2, μ3, μ4) is among the weights that occur in Theorems 3.9, 3.10, 3.11. By
Theorem 2.15,, M(μ1, μ2, μ3, μ4) is degenerate. We denote its irreducible quotient by
I (μ1, μ2, μ3, μ4). By Fig. 1 we know that if (μ1, μ2, μ3, μ4) �= (0, 0, 0, 0) there exist two
morphisms ∇ : M(μ1, μ2, μ3, μ4) → M(μ̃1, μ̃2, μ̃3, μ̃4) and ∇̂ : M(μ̂1, μ̂2, μ̂3, μ̂4) →
M(μ1, μ2, μ3, μ4) constructed as in Remark 3.7. Due to Lemma 6.2, Ker ∇ is the maximal
submodule of M(μ1, μ2, μ3, μ4) because M(μ1, μ2, μ3, μ4)/ Ker ∇ ∼= Im ∇ is irreducible
and Im ∇ ∼= I (μ1, μ2, μ3, μ4). Moreover if (μ1, μ2, μ3, μ4) �= (1, 1, 3, 0), by Theo-
rem 6.1, then Ker ∇ = Im ∇̂ is irreducible and it is the unique nontrivial submodule of
M(μ1, μ2, μ3, μ4); in this case I (μ1, μ2, μ3, μ4) can be realized also as the cokernel
of the map ∇̂. We point out that M(1, 1, 3, 0) can be realized as M(1, 1, 3, 0)/ Ker ∇ ∼=
Im ∇. Finally, in the case of M(0, 0, 0, 0), by Remark 3.7, we have a morphism ∇ :
M(1, 1, −1, 0) → M(0, 0, 0, 0). By Theorem 6.1, M(0, 0, 0, 0)/ Im ∇ is irreducible and
therefore I (0, 0, 0, 0) ∼= M(0, 0, 0, 0)/ Im ∇.

The aim of this section is to prove Theorem 6.1. Following [18], we consider the fol-
lowing filtration on U(g<0): for all i ≥ 0, FiU(g<0) is defined as the subspace of U(g<0)

spanned by elements with at most i terms of g<0. Namely:

C = F0U(g<0) ⊂ F1U(g<0) ⊂ ... ⊂ Fi−1U(g<0) ⊂ FiU(g<0) ⊂ ... ,

where FiU(g<0) = g<0Fi−1U(g<0)+Fi−1U(g<0). We call FiMX = FiU(g<0)⊗VX . By
Eq. 14, it follows that ∇FiMX ⊂ Fi+1MX . Therefore MX is a filtered complex with the
bigrading induced by Eq. 10 and differential ∇; moreover MX = ∪iFiMX and F−1MX =
0. Hence we can apply Propositions 5.3 and 5.6 to our complex (MX, ∇) and obtain a
spectral sequence

{
(Ei,∇ i )

}
such that E0 = H(Gr MX), Ei+1 ∼= H(Ei, ∇ i ) and E∞ ∼=

Gr H(MX). Thus we start by studying the homology of Gr MX .

Remark 6.4 We observe that g contains a copy of W(1, 0) = 〈p(t)∂t 〉 via the injective Lie
superalgebras morphism:

W(1, 0) −→ g

p(t)∂t −→ p(t)

2
.

In particular, we point out that g−2 is contained in this copy of W(1, 0).

We consider the standard filtration on W(1, 0) = LW
−1 ⊃ LW

0 ⊃ LW
1 ... .

Lemma 6.5 For all i ≥ 0 and j ≥ −1:

LW
j FiMX ⊂ Fi−jMX . (29)

Proof We point out that LW
j ⊆ ⊕

k≥j g2k , since p(t)∂t ∈ LW
deg(p(t))−1 corresponds to

p(t)
2 ∈ g and deg

(
p(t)

2

)
= 2 deg(p(t)) − 2.
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Let us fix j and show the thesis by induction on i. It is clear that LW
j F0MX ⊂ F−jMX .

Indeed let wj ∈ LW
j , v ∈ F0MX , then:

wj .v ∈
{

F0MX if j ≥ 0;
F1MX if j = −1.

We now suppose that the thesis holds for i. Let wj ∈ LW
j and u1u2...ur ⊗ v ∈ Fi+1MX ,

with r ≤ i + 1 and u1, u2, ..., ur ∈ g<0. We moreover suppose that, for some N , us = �

for all s ≤ N and us ∈ g−1 for all s > N . We obtain that:

wju1u2...ur ⊗ v = (−1)p(wj )p(u1)u1wju2...ur ⊗ v + [wj , u1]u2...ur ⊗ v.

By hypothesis of induction, u1wju2...ur ⊗ v ∈ Fr−jMX ⊂ Fi+1−jMX . Let us focus
on [wj , u1]u2...ur ⊗ v. We have two possibilities: [wj , u1] ∈ ⊕k≥jg2k−2 if u1 = � or
[wj , u1] ∈ ⊕k≥jg2k−1 if u1 ∈ g−1.

If u1 = �, then [wj , u1] ∈ LW
j−1 and, by hypothesis of induction, [wj , u1]u2...ur ⊗ v ∈

Fr−jMX ⊂ Fi+1−jMX . If u1 ∈ g−1, then deg([wj , u1]u2...ur) ≥ 2j −1−r+1 and, by our
assumption, u2, ..., ur ∈ g−1. Therefore [wj , u1]u2...ur⊗v ∈ Fr−2jMX ⊂ Fi+1−jMX .

By Eq. 29 and the fact that W(1, 0) ∼= Gr W(1, 0), we have that the action of W(1, 0) on
MX descends on Gr MX .

By the Poincaré−Birkhoff−Witt Theorem, Gr U(g<0) ∼= S(g−2) ⊗ ∧
(g−1); indeed, in

U(g<0), η2
i = � for all i ∈ {1, 2, 3, 4}. Therefore:

Gr MX = Gr U(g<0) ⊗ VX
∼= S(g−2) ⊗ ∧

(g−1) ⊗ VX .

We define:

W = W(1, 0) + g0 = W(1, 0) ⊕ gss
0 ⊕ CC,

that is a Lie subalgebra of g. On W we consider the filtration W = LW−1 ⊃ LW
0 ⊃ LW

1 ... ,
where LW

0 = LW
0 ⊕ gss

0 ⊕ CC and LW
k = LW

k for all k > 0. From Eq. 29, it follows that
LW

1 = LW
1 annihilates GX := ∧

(g−1) ⊗ VX . Therefore, as W−modules:

Gr MX
∼= S(g−2) ⊗ (

∧
(g−1) ⊗ VX) ∼= IndW

LW
0

(
∧
(g−1) ⊗ VX).

We observe that Gr MX is a complex with the morphism induced by ∇, that we still call ∇.
Indeed ∇FiMX ⊂ Fi+1MX for all i and therefore it is well defined the induced morphism

∇ : Gri MX = FiMX/Fi−1MX −→ Gri+1 MX = Fi+1MX/FiMX,

that has the same expression as ∇ defined in Eq. 14, except that the multiplication by the
w’s must be seen as multiplication in Gr U(g<0) instead of U(g<0). Thus (GX, ∇) is a sub-
complex of (Gr MX,∇): indeed it is sufficient to restrict ∇ to GX; the complex (Gr MX,∇)

is obtained from (GX,∇) extending the coefficients to S(g−2).
We point out that also the homology spaces Hm,n(GX) are annihilated by LW

1 .
Therefore, as W−modules:

Hm,n(Gr MX) ∼= S(g−2) ⊗ Hm,n(GX) ∼= IndW
LW

0
(Hm,n(GX)). (30)

By Eq. 30 and Propositions 5.3, 5.6, we obtain the following result.

Proposition 6.6 If Hm,n(GX) = 0, then Hm,n(Gr MX) = 0 and therefore Hm,n(MX) = 0.
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6.1 Homology of the Complexes GX

Motivated by Proposition 6.6, in this subsection we study the homology of the complexes
GX’s. We will use arguments similar to the one used in [18] for E(3, 6). We point out that,
in order to compute the homology of the MX’s, we will compute the homology of the GX’s
for X = A,C, D and we will use arguments of conformal duality, in particular Remark 3.8
and Proposition 2.19, for the case X = B.

We denote by GX′ := ∧
(g−1)⊗VX′ . Let us consider the evaluation maps from VX to VX′

that map y1, y2, ∂y1 , ∂y2 to zero and are the identity on all the other elements. We consider
the corresponding evaluation maps from GX to GX′ . We can compose these maps with ∇2
when X = A,B and obtain new maps, that we still call ∇2, from GA to GD′ and from GB

to GC′ respectively.
We consider also the map from GA′ to GD (resp. from GB ′ to GC) that is the composition

of ∇2 : GA′ −→ GD′ (resp. ∇2 : GB ′ −→ GC′ ) and the inclusion of GD′ into GD (resp.
GC′ into GC); we will call also this composition ∇2. We let:

GA◦ = Ker(∇2 : GA −→ GD′), GD◦ = CoKer(∇2 : GA′ −→ GD),

GB◦ = Ker(∇2 : GB −→ GC′), GC◦ = CoKer(∇2 : GB ′ −→ GC).

Remark 6.7 The map ∇ is still defined on GX◦ since ∇∇2 = ∇2∇ = 0.
The bigrading (10) induces a bigrading also on the GX◦ ’s. We point out that G

m,n
A =

G
m,n
A◦ for n > 0, G

m,n
D = G

m,n
D◦ for n < 0, G

m,n
B = G

m,n
B◦ for n > 0 and G

m,n
C = G

m,n
C◦ for

n < 0.
The complexes (GX◦ ,∇) start or end at the axes of Fig. 1; thus for m, n ∈ Z:

Hm,n(GA◦) = G
m,n
A◦

Im
(
∇ : G

m+1,n+1
A◦ −→ G

m,n
A◦
) for m = 0 or n = 0;

Hm,n(GD◦) =

⎧
⎪⎨

⎪⎩

G
m,n
D◦

Im
(
∇:Gm+1,n+1

D◦ −→G
m,n
D◦
) for m = 0;

Ker
(
∇ : G

m,n
D◦ −→ G

m−1,n−1
D◦

)
for n = 0;

Hm,n(GB◦) =

⎧
⎪⎨

⎪⎩

Ker
(
∇ : G

m,n
B◦ −→ G

m−1,n−1
B◦

)
for m = 0;

G
m,n
B◦

Im
(
∇:Gm+1,n+1

B◦ −→G
m,n
B◦
) for n = 0;

Hm,n(GC◦) = Ker
(
∇ : G

m,n
C◦ −→ G

m−1,n−1
C◦

)
for m = 0 or n = 0.

Remark 6.8 The following relations are a direct consequence of the definition of the GX◦ ’s
and Remark 6.7:

Hm,n(GA) = Hm,n(GA◦) for m > 0, n ≥ 0;
Hm,n(GD) = Hm,n(GD◦) for m > 0, n ≤ 0;
Hm,n(GB) = Hm,n(GB◦) for m < 0, n ≥ 0;
Hm,n(GC) = Hm,n(GC◦) for m < 0, n ≤ 0.

Motivated by Remark 6.8 and Proposition 6.6, we study the homology of the complexes
GX◦ ’s.

2652



Computation of the Homology of the Complexes of Finite Verma Modules for K ′
4

We therefore introduce an additional bigrading as follows:

(VX)[p,q] = {f ∈ VX : y1∂y1f = pf and y2∂y2f = qf
}
, (31)

(GX)[p,q] = ∧
(g−1) ⊗ (VX)[p,q].

The definition can be extended also to GX◦ . We point out that this new bigrading is related
to the bigrading (10) by the equation p + q = n.

We have that d ′ := �+∂y1 : (GX)[p,q] −→ (GX)[p−1,q], d ′′ := �−∂y2 : (GX)[p,q] −→
(GX)[p,q−1] and d = d ′ + d ′′ = ∇ : ⊕mG

m,n
X −→ ⊕mG

m,n−1
X .

We know, by Remark 4.4, that d ′2 = d ′′2 = d ′d ′′ + d ′′d ′ = 0. Therefore ⊕mGm
X

and ⊕mGm
X◦ , with the bigrading (31), are bicomplexes with differentials d ′, d ′′ and total

differential ∇ = d ′ + d ′′.
Now let:

∧i
+ = ∧i〈w11, w21〉 and

∧i
− = ∧i〈w12, w22〉.

We point out that
∧i

+ and
∧i

− are isomorphic as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules;

therefore, in the following, we will often write
∧i when we are speaking of the 〈x1∂x1 −

x2∂x2 , x1∂x2 , x2∂x1〉− module isomorphic to
∧i

+ and
∧i

−.
We introduce the following notation, for all a, b ∈ Z and p, q ≥ 0:

GA(a, b)[p,q] = ∧a−p
+

∧b−q
− ⊗ C [x1, x2] y

p

1 y
q

2 ,

GB(a, b)[p,q] = ∧a−p
+

∧b−q
− ⊗ C

[
∂x1 , ∂x2

]
y

p

1 y
q

2 ,

and for all a, b ∈ Z, p, q ≤ 0:

GD(a, b)[p,q] = ∧a−p
+

∧b−q
− ⊗ C [x1, x2] ∂

−p
y1 ∂

−q
y2 ,

GC(a, b)[p,q] = ∧a−p
+

∧b−q
− ⊗ C

[
∂x1 , ∂x2

]
∂

−p
y1 ∂

−q
y2 .

From now on we will use the notation
∧i

±[x1, x2] (resp.
∧i

±[∂x1 , ∂x2 ]) for
∧i

± ⊗ C[x1, x2]
(resp.

∧i
± ⊗ C[∂x1 , ∂x2 ]).

We point out that, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules, GX = ⊕a,bGX(a, b),
where GX(a, b) = ⊕p,qGX(a, b)[p,q].

Similarly we define GX◦(a, b)[p,q] and, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules,
GX◦ = ⊕a,bGX◦(a, b), where GX◦(a, b) = ⊕p,qGX◦(a, b)[p,q].

We observe that ∇ : GX(a, b) → GX(a, b) (resp. ∇ : GX◦(a, b) → GX◦(a, b)) and
therefore GX(a, b) (resp. GX◦(a, b)) is a subcomplex of GX (resp. GX◦ ); the GX(a, b)’s
and GX◦(a, b)’s are bicomplexes, with the bigrading induced by Eq. 31 and differentials
d ′ = �+∂y1 and d ′′ = �−∂y2 . The computation of homology spaces of GX and GX◦ can be
reduced to the computation for GX(a, b) and GX◦(a, b). In the followings we compute the
homology of the GX◦(a, b)’s. We start with the homology of the GX◦(a, b)’s when either a

or b do not lie in {0, 1, 2}. To prove the following results we will use Proposition 5.12

Lemma 6.9 Let us suppose that a > 2 or b > 2. Let k = max(a, b).
Then as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GA◦(a, b)) = Hm,n(GA(a, b)) ∼=
{

0 if m > 0 or (m = 0, n < k),
∧a+b−n if m = 0, n ≥ k.
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Let us suppose that a < 0 or b < 0. Let k = min(a, b).
Then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GD◦(a, b)) = Hm,n(GD(a, b)) ∼=
{

0 if m > 0 or (m = 0, n > k),
∧a+b−n if m = 0, n ≤ k;

Hm,n(GC◦(a, b)) = Hm,n(GC(a, b)) ∼=
{

0 if m < 0 or (m=0, n>k−2),
∧a+b−n−2 if m = 0, n ≤ k − 2.

Proof We first observe that if a > 2 or b > 2 (resp. a < 0 or b < 0), then
GX◦(a, b) = GX(a, b) for X = A (resp. X = C, D); indeed they differ only when
p + q = 0, that does not occur in this case. We prove the thesis in the case b > 2 for
X = A and b < 0 for X = C,D; the case a > 2 for X = A and a < 0 for X = C,D can
be proved analogously using the second spectral sequence instead of the first one.

Case A) Let us consider GA◦(a, b) with the differential d ′′ = �−∂y2 :

...
�−∂y2←−−− ∧a−p

+
∧b−q+1

− [x1, x2] y
p

1 y
q−1
2

�−∂y2←−−−−∧a−p
+

∧b−q
− [x1, x2] y

p

1 y
q

2

�−∂y2←−−−∧a−p
+

∧b−q−1
− [x1, x2] y

p

1 y
q+1
2

�−∂y2←−−−− ... .

This complex is the tensor product of
∧a−p

+ y
p

1 and the following complex, since
∧a−p

+ y
p

1
is not involved by d ′′:

0
�−∂y2←−−−− ∧2

− [x1, x2] yb−2
2

�−∂y2←−−−− ∧1
− [x1, x2] yb−1

2

�−∂y2←−−−− ∧0
− [x1, x2] yb

2

�−∂y2←−−−− 0.

We now show that this complex is exact except for the right end, in which the homology
space is Cyb

2 . Indeed:

i let us consider the map �−∂y2 : ∧0
− [x1, x2] yb

2 −→ ∧1
− [x1, x2] yb−1

2 . We compute

the kernel. Let p(x1, x2)y
b
2 ∈ ∧0

− [x1, x2] yb
2 . Then

�−∂y2(p(x1, x2)y
b
2 ) = w12 ⊗ ∂x1p(x1, x2)by

b−1
2 + w22 ⊗ ∂x2p(x1, x2)by

b−1
2

is zero if and only if p is constant. Hence the kernel is Cyb
2 .

ii Let us consider the map �−∂y2 : ∧1
− [x1, x2] yb−1

2 −→ ∧2
− [x1, x2] yb−2

2 . We compute

the kernel. Let w12⊗p1(x1, x2)y
b−1
2 +w22⊗p2(x1, x2)y

b−1
2 ∈ ∧1

− [x1, x2] yb−1
2 . Then

�−∂y2(w12 ⊗ p1(x1, x2)y
b−1
2 + w22 ⊗ p2(x1, x2)y

b−1
2 )

= w12w22 ⊗ ∂x2p1(x1, x2)(b − 1)yb−2
2 + w22w12 ⊗ ∂x1p2(x1, x2)(b − 1)yb−2

2

is zero if and only if ∂x2p1(x1, x2) = ∂x1p2(x1, x2), that implies p1(x1, x2) =∫
∂x1p2(x1, x2)dx2. Hence an element of the kernel is such that:

w12 ⊗
(∫

∂x1p2(x1, x2)dx2

)
yb−1

2 + w22 ⊗ p2(x1, x2)y
b−1
2

= �−∂y2

((∫
p2(x1, x2)dx2

)
yb

2

b

)
.

Thus at this point the sequence is exact.
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iii We consider the map �−∂y2 : ∧2
− [x1, x2] yb−2

2 −→ 0. We have that:

w12w22 ⊗ p(x1, x2)y
b−2
2 = �−∂y2

(
w12 ⊗

(∫
p(x1, x2)dx2

)
yb−1

2

b − 1

)
.

Thus at this point the sequence is exact.

Since the original complex was the tensor product with
∧a−p

+ y
p

1 , we have that the non

zero homology space is
∧a−p

+ y
p

1 yb
2 and E

′1
p,q(GA◦(a, b)) survives only for q = b. Now we

should compute its homology with respect to d ′, but the E
′1
p,q(GA◦(a, b))’s do not involve

x1, x2, so the differentials d ′’s are zero and we have E
′2 = E

′1. Moreover, for a one−row
spectral sequence, we know that E

′2 = ... = E
′∞ since, for all r ≥ 2 and all p ∈ Z, dr

p,b

has bidegree (−r, r − 1), i.e. dr
p,b : Er

p,b −→ Er
p−r,b+r−1 = 0, dr

p+r,b−r+1 : Er
p+r,b−r+1 =

0 −→ Er
p,b. Therefore:

E
′∞
p,q(GA(a, b)) =

{
0 if q �= b,
∧a−p

+ y
p

1 yb
2 if q = b.

We observe that the first filtration (F ′
p(GA(a, b)))n = ∑

h≤p(GA(a, b))[h,n−h] is bounded
below, since F ′−1 = 0, and it is convergent above. Therefore by Proposition 5.12:
∑

m

Hm,n(GA(a, b)) ∼=
∑

p+q=n

E
′∞
p,q(GA(a, b)) = E

′∞
n−b,b(GA(a, b)) ∼= ∧a+b−n

+ yn−b
1 yb

2 .

Since there are no x1’s and x2’s involved, this means that Hm,n(GA(a, b)) = 0 if m �= 0 and
H 0,n(GA(a, b)) = ∧a+b−n

+ yn−b
1 yb

2
∼= ∧a+b−n as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules.

Case D) In the case of GD(a, b), using the same argument, when b < 0 we obtain:

E
′∞
p,q(GD(a, b)) =

{
0 if q �= b,
∧a−p

+ ∂
−p
y1 ∂−b

y2
if q = b.

Therefore:
∑

m

Hm,n(GD(a, b)) ∼=
∑

p+q=n

E
′∞
p,q(GD(a, b)) = E

′∞
n−b,b(GD(a, b)) ∼= ∧a+b−n

+ ∂−n+b
y1

∂−b
y2

.

Since there are no x1’s and x2’s involved, this means that Hm,n(GD(a, b)) = 0
if m �= 0 and H 0,n(GD(a, b)) = ∧a+b−n

+ ∂−n+b
y1

∂−b
y2

∼= ∧a+b−n as 〈x1∂x1 −
x2∂x2 , x1∂x2 , x2∂x1〉−modules.

Case C) In the case of GC(a, b) when b < 0 we have the following complex with the
differential d ′′ = �−∂y2 :

← ∧a−p
+

∧b−q+1
−

[
∂x1 , ∂x2

]
∂

−p
y1 ∂

−q+1
y2

�−∂y2←−−−∧a−p
+

∧b−q
−

[
∂x1 , ∂x2

]
∂

−p
y1 ∂

−q
y2

�−∂y2←−−−− ∧a−p
+

∧b−q−1
−

[
∂x1 , ∂x2

]
∂

−p
y1 ∂

−q−1
y2 ← .

This complex is the tensor product of
∧a−p

+ ∂
−p
y1 and the following complex, since

∧a−p
+ ∂

−p
y1

is not involved by d ′′:

0
�−∂y2←−−− ∧2

−
[
∂x1 , ∂x2

]
∂−b+2
y2

�−∂y2←−−−−∧1
−
[
∂x1 , ∂x2

]
∂−b+1
y2

�−∂y2←−−−− ∧0
−
[
∂x1 , ∂x2

]
∂−b
y2

�−∂y2←−−−− 0.
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We now show that this complex is exact except for the left end, in which the homology
space is C

∧2
−∂−b+2

y2
. Indeed:

i let us consider the map �−∂y2 : ∧0
−
[
∂x1 , ∂x2

]
∂−b
y2

−→ ∧1
−
[
∂x1 , ∂x2

]
∂−b+1
y2

. We

compute the kernel. Let p(∂x1 , ∂x2)∂
−b
y2

∈ ∧0
−
[
∂x1 , ∂x2

]
∂−b
y2

. Then

�−∂y2(p(∂x1 , ∂x2)∂
−b
y2

) = w12 ⊗ ∂x1p(∂x1 , ∂x2)∂
−b+1
y2

+ w22 ⊗ ∂x2p(∂x1 , ∂x2)∂
−b+1
y2

is zero if and only if ∂x1p(∂x1 , ∂x2) = ∂x2p(∂x1 , ∂x2) = 0, that is p = 0. Hence the
kernel is 0.

ii Let us consider the map �−∂y2 : ∧1
−
[
∂x1 , ∂x2

]
∂−b+1
y2

−→ ∧2
−
[
∂x1 , ∂x2

]
∂−b+2
y2

.

We compute the kernel. Let w12 ⊗ p1(∂x1 , ∂x2)∂
−b+1
y2

+ w22 ⊗ p2(∂x1 , ∂x2)∂
−b+1
y2

∈
∧1

−
[
∂x1 , ∂x2

]
∂−b+1
y2

. Then

�−∂y2(w12 ⊗ p1∂
−b+1
y2

+ w22 ⊗ p2∂
−b+1
y2

)

= w12w22 ⊗ ∂x2p1∂
−b+2
y2

+ w22w12 ⊗ ∂x1p2∂
−b+2
y2

is zero if and only if ∂x2p1(∂x1 , ∂x2) = ∂x1p2(∂x1 , ∂x2), that is p1(∂x1 , ∂x2) =
∂x1 p2(∂x1 ,∂x2 )

∂x2
(in particular p2 has positive degree in ∂x2 ). Therefore an element of the

kernel is such that:

w12⊗ ∂x1p2(∂x1 , ∂x2)

∂x2

∂−b+1
y2

+w22 ⊗ p2(∂x1 , ∂x2)∂
−b+1
y2

=�−∂y2

(
p2(∂x1 , ∂x2)

∂x2

∂−b
y2

)
.

Thus at this point the sequence is exact.
iii Let us consider the map �−∂y2 : ∧2

−
[
∂x1 , ∂x2

]
∂−b+2
y2

−→ 0. Let w12w22 ⊗
p(∂x1 , ∂x2)∂

−b+2
y2

∈ ∧2
−
[
∂x1 , ∂x2

]
∂−b+2
y2

. If p has positive degree in ∂x1 , then:

w12w22 ⊗ p(∂x1 , ∂x2)∂
−b+2
y2

= �−∂y2

(
−w22 ⊗ p(∂x1 , ∂x2)

∂x1

∂−b+1
y2

)
.

If p has positive degree in ∂x2 , then:

w12w22 ⊗ p(∂x1 , ∂x2)∂
−b+2
y2

= �−∂y2

(
w12 ⊗ p(∂x1 , ∂x2)

∂x2

∂−b+1
y2

)
.

If p is constant, it does not belong to the image of �−∂y2 . Therefore the homology

space is isomorphic to C
∧2

−∂−b+2
y2

.

Since the original complex was the tensor product with
∧a−p

+ ∂
−p
y1 , then the non zero homol-

ogy space is
∧a−p

+
∧2

−∂
−p
y1 ∂−b+2

y2
and E

′1
p,q(GC(a, b)) survives only for q = b−2. Moreover

E
′1
p,q

∼= E
′2
p,q because the map d ′ is 0 on the E

′1
p,q ’s (the image of the map d ′ always involves

elements of positive degree in ∂x1 or ∂x2 that are 0 in E
′1
p,q for the previous computations).

Since we have a one row spectral sequence, then E
′2 = ... = E

′∞. Therefore:

E
′∞
p,q(GC(a, b)) =

{
0 if q �= b − 2,
∧a−p

+
∧2

−∂
−p
y1 ∂−b+2

y2
if q = b − 2.
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We observe that the first filtration (F ′
p(GC(a, b)))n = ∑

h≤p(GC(a, b))[h,n−h] is bounded
below, since F ′

n−1 = 0, and it is convergent above. Therefore by Proposition 5.12:

∑

m

Hm,n(GC(a, b)) ∼=
∑

p+q=n

E
′∞
p,q(GC(a, b)) = E

′∞
n−b+2,b−2(GC(a, b))

∼= ∧a+b−n−2
+

∧2
−∂−n+b−2

y1
∂−b+2
y2

.

Since there are no ∂x1 ’s and ∂x2 ’s involved, this means that Hm,n(GC(a, b)) = 0 if

m �= 0 and H 0,n(GC(a, b)) = ∧a+b−n−2
+

∧2
−∂−n+b−2

y1
∂−b+2
y2

∼= ∧a+b−n−2 as 〈x1∂x1 −
x2∂x2 , x1∂x2 , x2∂x1〉−modules.

In Lemma 6.9 we computed the homology of the GX◦(a, b)’s in the case that either a

or b do not belong to {0, 1, 2}. In order to compute the homology of the GX◦(a, b)’s in the
case that both a and b belong to {0, 1, 2}, we need the following remark and lemmas.

Remark 6.10 We introduce some notation that will be used in the following lemmas. Let
0 < b ≤ 2. Let us define:

G̃A(a, b)[p,q] =
{∧a−p

+
∧b−q

− [x1, x2] if p ≥ 0, q ≥ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GA(a, b)[p,q] −→ G̃A(a, b)[p,q] which is
the valuating map that values y1 and y2 in 1 and is the identity on all the other elements.
We consider on G̃A(a, b) the differentials d ′ = �+ and d ′′ = �− induced by �+∂y1 and
�−∂y2 for GA(a, b). We also define:

GD′(a, b)[p,q] =
{∧a+1

+
∧b+1

− [x1, x2] if p = q = 0,

0 otherwise.

The following is a commutative diagram:

GA(a, b) GD′(a, b)

γ id

∇2

�−�+τ1

G̃A(a, b) GD′(a, b).

We have that G̃A◦(a, b) := Ker(�−�+τ1 : G̃A(a, b) −→ GD′(a, b)) is isomorphic, as
a bicomplex, to GA◦(a, b). Its diagram is the same of G̃A(a, b) except for p = q = 0. The
diagram of G̃A(a, b) is the following, respectively for a = 0, a = 1, a ≥ 2:

a = 0
∧0

+
∧0

−[x1, x2]

∧0
+
∧b

−[x1, x2],

· · ·

∧1
+
∧0

−[x1, x2]
∧0

+
∧0

−[x1, x2]

· · · · · ·

a = 1

∧1
+
∧b

−[x1, x2]
∧0

+
∧b

−[x1, x2],

a ≥ 2
∧2

+
∧0

−[x1, x2]
∧1

+
∧0

−[x1, x2]
∧0

+
∧0

−[x1, x2]

· · · · · · · · ·
∧2

+
∧b

−[x1, x2]
∧1

+
∧b

−[x1, x2]
∧0

+
∧b

−[x1, x2],
where the horizontal maps are d ′ and the vertical maps are d ′′. The diagram of G̃A◦(a, b)

is analogous to this, except for p = q = 0, where
∧a

+
∧b

−[x1, x2] is substituted by
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Ker(�−�+ : ∧a
+
∧b

−[x1, x2] −→ ∧a+1
+

∧b+1
− [x1, x2]), that we shortly call Ker(�−�+) in

the next diagram.
The E′1 spectral sequence of G̃A◦(a, b), i.e. the homology with respect to �−, is the

following, respectively for a = 0, a = 1, a ≥ 2, b = 1 and a = 0, a = 1, a ≥ 2, b = 2 (the
computation is analogous to Lemma 6.9):

a = 0, b = 1
∧0

+

Ker(�−�+)
Im(�−)

,

a = 1, b = 1
∧1

+
∧0

+

Ker(�−�+)
Im(�−)

∧0
+
∧1

−[x1,x2]
Im(�−)

,

a ≥ 2, b = 1
∧2

+
∧1

+
∧0

+
∧2

+
∧1

−[x1,x2]
Im(�−)

∧1
+
∧1

−[x1,x2]
Im(�−)

∧0
+
∧1

−[x1,x2]
Im(�−)

.

a = 0, b = 2
∧0

+

Ker(�−�+)
Im(�−)

,

0

a = 1, b = 2
∧1

+
∧0

+

Ker(�−�+)
Im(�−)

∧0
+
∧2

−[x1,x2]
Im(�−)

,

0 0

a ≥ 2, b = 2
∧2

+
∧1

+
∧0

+

0 0 0

∧2
+
∧2

−[x1,x2]
Im(�−)

∧1
+
∧2

−[x1,x2]
Im(�−)

∧0
+
∧2

−[x1,x2]
Im(�−)

.

We have that, in the diagram of the E′1 spectral sequence, only the rows for q = 0 and
q = b are different from 0. The previous diagram will be the first step in Lemma 6.13 for
the computation of the homology of the G̃A◦(a, b)’s when a, b ∈ {0, 1, 2}.

Analogously we define, for 0 ≤ b < 2:

G̃C(a, b)[p,q] =
{∧a−p

+
∧b−q

− [∂x1 , ∂x2 ] if p ≤ 0, q ≤ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GC(a, b)[p,q] −→ G̃C(a, b)[p,q] which is
the valuating map that values ∂y1 and ∂y2 in 1 and is the identity on all the other elements.
We consider on G̃C(a, b) the differentials d ′ = �+ and d ′′ = �− induced by �+∂y1 and
�−∂y2 for GC(a, b). We also define:

GB ′(a, b)[p,q] =
{∧a−1

+
∧b−1

− [∂x1 , ∂x2 ] if p = q = 0,

0 otherwise.

We have the following commutative diagram:

GB ′(a, b) GC(a, b)

id

∇2

γ

�−�+τ2

GB ′(a, b) G̃C(a, b).

We have that G̃C◦(a, b) := CoKer(�−�+τ2 : GB ′(a, b) −→ G̃C(a, b)) is isomorphic,
as a bicomplex, to GC◦(a, b). Its diagram is the same of G̃C(a, b) except for p = q = 0. In
the following diagram we shortly write CoKer(�−�+) for:

CoKer(�−�+ : ∧a−1
+

∧b−1
− [∂x1 , ∂x2 ] −→ ∧a

+
∧b

−[∂x1 , ∂x2 ]).
The diagram of the bicomplex G̃C◦(a, b) is the following, respectively for a = 2, a = 1
and a ≤ 0:
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a = 2

CoKer(�−�+),

· · ·
∧2

+
∧2

−[∂x1 , ∂x2 ],

a = 1
∧2

+
∧b

−[∂x1 , ∂x2 ] CoKer(�−�+),

· · ·· · ·
∧2

+
∧2

−[∂x1 , ∂x2 ]
∧1

+
∧2

−[∂x1 , ∂x2 ],

a ≤ 0
∧2

+
∧b

−[∂x1 , ∂x2 ]
∧1

+
∧b

−[∂x1 , ∂x2 ]
∧0

+
∧b

−[∂x1 , ∂x2 ]

· · · · · · · · ·
∧2

+
∧2

−[∂x1 , ∂x2 ]
∧1

+
∧2

−[∂x1 , ∂x2 ],
∧0

+
∧2

−[∂x1 , ∂x2 ],

where the horizontal maps are d ′ and the vertical maps are d ′′.
In the following diagram we shortly write Ker(�−)i,j for:

Ker(�− : ∧i
+
∧j

−[∂x1 , ∂x2 ] −→ ∧i
+
∧j+1

− [∂x1 , ∂x2 ]),

and we shortly write Ker(�−)
Im(�−�+)

for:

Ker
(
�− : ∧a

+
∧b

−[∂x1 , ∂x2 ] −→ ∧a
+
∧b+1

− [∂x1 , ∂x2 ]
)

�−�+ : ∧a−1
+

∧b−1
− [∂x1 , ∂x2 ] −→ ∧a

+
∧b

−[∂x1 , ∂x2 ]
.

The E′1 spectral sequence of G̃C◦(a, b) is the following, respectively for a = 2, a = 1,
a ≤ 0, b = 1 and a = 2, a = 1, a ≤ 0, b = 0 (the computation is analogous to Lemma 6.9):

a = 2, b = 1

Ker(�−)
Im(�−�+)

∧2
+
∧2

−,

a = 1, b = 1

Ker(�−)2,1
Ker(�−)

Im(�−�+)

∧2
+
∧2

−
∧1

+
∧2

−,

a ≤ 0, b = 1

Ker(�−)2,1 Ker(�−)1,1 Ker(�−)0,1

∧2
+
∧2

−
∧1

+
∧2

−
∧0

+
∧2

−.

a = 2, b = 0

Ker(�−)
Im(�−�+)

0

∧2
+
∧2

−

a = 1, b = 0

Ker(�−)2,0
Ker(�−)

Im(�−�+)

00

∧2
+
∧2

−
∧1

+
∧2

−,

a ≤ 0, b = 0

Ker(�−)2,0 Ker(�−)1,0 Ker(�−)0,0

0 0 0

∧2
+
∧2

−
∧1

+
∧2

−
∧0

+
∧2

−.

We have that only the rows q = 0 and q = b − 2 are different from 0. We point out that,
since b < 2:

Ker(�−)

Im(�−�+)
∼=

�−
(∧a

+
∧b−1

−
[
∂x1 , ∂x2

])

�−�+
(∧a−1

+
∧b−1

− [∂x1 , ∂x2 ]
) ∼=CoKer

(
�− (∧a−1

+
∧b−1

− [∂x1 , ∂x2 ]
)

�+−−→ �− (∧a

+
∧b−1

− [∂x1 , ∂x2 ]
))

.

The isomorphism holds because b < 2 and we know, by Lemma 6.9, that

0
�−−−→ ∧0

−
[
∂x1 , ∂x2

] �−−−→ ∧1
−
[
∂x1 , ∂x2

] �−−−→ ∧2
−
[
∂x1 , ∂x2

] �−−−→ 0

is exact except for the right end.
The previous diagram will be the first step in Lemma 6.13 for the computation of the

homology of the G̃C◦(a, b)’s when a, b ∈ {0, 1, 2}.

The following two technical lemmas will be used in the proof of Lemma 6.13 for the
computation of the homology of the GX◦(a, b)’s when a, b ∈ {0, 1, 2}.

Lemma 6.11 Let 0 ≤ b ≤ 2. Let us consider the complex S(a, b) defined as follows:

S(a, b)a
�+←−− ...

�+←−− �−(
∧k

+
∧b

−[x1, x2]) �+←−− ...
�+←−− �−(

∧0
+
∧b

−[x1, x2]),
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where S(a, b)a = Ker(�−(
∧a

+
∧b

−[x1, x2]) �+−−→ �−(
∧a+1

+
∧b

−[x1, x2])). The homology
spaces of the complex S(a, b), from left to right, are respectively isomorphic to:

Ha(S(a, b)) ∼= ∧a+b+1, ... , Hk(S(a, b)) ∼= ∧k+1+b, ... , H0(S(a, b)) ∼= ∧b+1.

Proof We first focus on 0 < b ≤ 2. In order to make the proof more clear, we show the
statement for b = 1 that is more significant; the proof for b = 2 is analogous. We observe
that, due to the definition of S(a, 1), Hi(S(a, 1)) = Hi(S(a + 1, 1)) for 0 ≤ i ≤ a. Hence
it is sufficient to compute it for large a. We take a > 2; for sake of simplicity, we choose
a = 3. The complex S(3, 1) reduces to:

0
�+←−− �−(

∧2
+
∧1

−[x1, x2]) �+←−− �−(
∧1

+
∧1

−[x1, x2]) �+←−− �−(
∧0

+
∧1

−[x1, x2]).
In this case the thesis reduces to show that:

H3(S(3, 1)) ∼= 0, H2(S(3, 1)) ∼= 0, H1(S(3, 1)) ∼= 0, H0(S(3, 1)) ∼= ∧2
+.

We point out that the complex S(3, 1) is isomorphic, via �−, to the complex:

0
�+←−−

∧2
+
∧1

−[x1, x2]
Im(�−)

�+←−−
∧1

+
∧1

−[x1, x2]
Im(�−)

�+←−−
∧0

+
∧1

−[x1, x2]
Im(�−)

,

that is exactly the row for q = 0 in the diagram of the E′1 spectral sequence of G̃A◦(3, 1)

in Remark 6.10. In particular, since a = 3, this is the row for q = 0 and values of p

respectively 0, 1, 2 and 3 from the left to the right. The isomorphism of the two complexes
follows from b = 1 > 0 and the fact that, by Lemma 6.9, we know that

0
�−−−→ ∧0

− [x1, x2]
�−−−→ ∧1

− [x1, x2]
�−−−→ ∧2

− [x1, x2]
�−−−→ 0

is exact except for the left end.
Since E′2(GA◦(3, 1)) has two nonzero rows for q = 0 and q = 1 (see the diagram in

Remark 6.10, then the differentials dr
p,q are all zero except for r = b + 1 = 2, q = 0,

1 < p ≤ 3. Indeed 1 < p ≤ 3 follows from the fact that:

d2
p,0 : E′2

p,0 −→ E′2
p−2,1

and E′2
p−2,1 = 0 if p − 2 < 0, E′2

p,0 = 0 if p > 3.

From the fact that the homology spaces of GA◦(3, 1) and G̃A◦(3, 1) are isomorphic and
from Lemma 6.9, it follows that:

∑

p+q=n

E′∞
p,q(G̃A◦(3, 1)) =

{
0 if n < 3,
∧1

+ if n = 3.
(32)

By Eq. 32 we obtain that d2
p,0, for 1 < p ≤ 3, must be an isomorphism. Indeed, let us first

show that d2
p,0, for 1 < p ≤ 3, is surjective. We point out that:

d2
p,0 : E′2

p,0

(
G̃A◦(3, 1)

) −→ E′2
p−2,1(G̃A◦(3, 1)). (33)

It is possible to show that E′2
p−2,1

(
G̃A◦(3, 1)

) ∼= ∧a+b−p+1
+ = ∧5−p

+ using an argument
similar to Lemma 6.9.

By Eq. 32, we know that for n = p − 1 < 3:
∑

p̃+q̃=p−1

E′∞̃
p,̃q(G̃A◦(3, 1)) = 0.
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Moreover dr = 0 for r > 2 and d2
p−2,1 = 0. Therefore d2

p,0 must be surjective.

Let us see that d2
p,0 is injective. If p < 3, then E′∞

p,0(G̃A◦(3, 1)) = 0 since it appears in
the sum ∑

p̃+q̃=p

E′∞̃
p,̃q(G̃A◦(3, 1)) = 0,

by Eq. 32. Moreover

d2
p+2,−1 : E′2

p+2,−1(G̃A◦(3, 1)) = 0 −→ E′2
p,0(G̃A◦(3, 1)) (34)

is identically 0. Hence Ker(d2
p,0) = 0. If p = 3, we know, by Eq. 32, that
∑

p̃+q̃=p

E′∞̃
p,̃q(G̃A◦(3, 1)) ∼= ∧1

+ (35)

and E′∞
p,0(G̃A◦(3, 1)) appears in this sum. Moreover we know that

E′2
2,1(G̃A◦(3, 1)) = E′∞

2,1(G̃A◦(3, 1)) ∼= ∧1
+,

since dr = 0, when r > 2, d2
4,0 = d2

2,1 = 0 and E′2
2,1(G̃A◦(3, 1)) ∼= ∧1

+ due to an argument

similar to Lemma 6.9. The space E′∞
2,1(G̃A◦(3, 1)) also appears in the sum (35) and therefore

we conclude that E′∞
p,0(G̃A◦(3, 1)) = 0. Since d2

p+2,−1, given by Eq. 34, is identically 0,

therefore Ker(d2
p,0) = 0. Thus, by the fact that d2

p,0 is an isomorphism, we obtain that

E′2
p,0(G̃A◦(3, 1)) ∼= ∧5−p

+ . Hence:

H3(S(3, 1)) ∼= 0, H2(S(3, 1)) ∼= 0, H1(S(3, 1)) ∼= 0, H0(S(3, 1)) ∼= ∧2
+.

We now prove the statement in the case b = 0. Due to the definition of S(a, 0),
Hi(S(a, 0)) = Hi(S(a +1, 0)) for 0 ≤ i ≤ a. Hence it is sufficient to compute it for a = 2.
The complex S(2, 0) reduces to:

�−(
∧2

+
∧0

−[x1, x2]) �+←−− �−(
∧1

+
∧0

−[x1, x2]) �+←−− �−(
∧0

+
∧0

−[x1, x2]).
In this case the thesis reduces to show that:

H2(S(2, 0)) ∼= 0, H1(S(2, 0)) ∼= ∧2
+, H0(S(2, 0)) ∼= ∧1

+.

We compute the homology spaces by direct computations. Let us compute H0(S(2, 0)). We
take p(x1, x2) ∈ ∧0

+
∧0

−[x1, x2]; an element in �−(
∧0

+
∧0

−[x1, x2]) has the following form:

P := w12 ⊗ ∂x1p + w22 ⊗ ∂x2p.

Hence:

�+(P ) = w12w11 ⊗ ∂2
x1

p + w12w21 ⊗ ∂x1∂x2p + w22w11 ⊗ ∂x1∂x2p + w22w21 ⊗ ∂2
x2

p.

Therefore P lies in the kernel if and only if ∂2
x1

p = ∂x1∂x2p = ∂2
x2

p = 0, that is p =
αx1 + βx2, for α, β ∈ C. Thus H0(S(2, 0)) ∼= ∧1.
Let us now compute H1(S(2, 0)). We take w11p(x1, x2) + w21q(x1, x2) ∈ ∧1

+
∧0

−[x1, x2];
an element in �−(

∧1
+
∧0

−[x1, x2]) has the following form:

P := w11w12 ⊗ ∂x1p + w11w22 ⊗ ∂x2p + w21w12 ⊗ ∂x1q + w21w22 ⊗ ∂x2q.

Hence:

�+(P ) = w11w12w21 ⊗ ∂x1 ∂x2 p + w11w22w21 ⊗ ∂2
x2

p + w21w12w11 ⊗ ∂2
x1

q + w21w22w11 ⊗ ∂x1 ∂x2 q.

2661



L. Bagnoli

Therefore P lies in the kernel if and only if:
{

∂x1∂x2p − ∂2
x1

q = 0,

∂2
x2

p − ∂x1∂x2q = 0.

We obtain that:
{

∂x1q = ∫ ∂x1∂x2pdx1 = ∂x2p + Q2(x2),

∂x1q = ∫ ∂2
x2

pdx2 = ∂x2p + Q1(x1),

where Q1(x1) (resp. Q2(x2)) is a polynomial expression costant in x2 (resp. costant in x1).
Therefore, if P lies in the kernel then ∂x1q = ∂x2p + α, with α ∈ C. Let us consider an
element of the kernel, we obtain that:

P = w11w12 ⊗ ∂x1p + w11w22 ⊗ ∂x2p + w21w12 ⊗ (∂x2p + α) + w21w22 ⊗
∫

∂2
x2

pdx1

= �+(−w12 ⊗ p − w22 ⊗
∫

∂x2pdx1) + w21w12 ⊗ α

= �+(�−(−
∫

pdx1)) + w21w12 ⊗ α.

We point out that w21w12 ⊗α does not lie in the image of the map �−(
∧0

+
∧0

−[x1, x2]) �+−−→
�−(

∧1
+
∧0

−[x1, x2]), because w21w12 ⊗ α = �+(−w12 ⊗ αx2) but −w12 ⊗ αx2 /∈
�−(

∧0
+
∧0

−[x1, x2]). Thus H1(S(2, 0)) ∼= ∧2.

Finally, let us compute H2(S(2, 0)). We take w11w21p(x1, x2) ∈ ∧2
+
∧0

−[x1, x2]; an

element in �−(
∧2

+
∧0

−[x1, x2]) has the following form:

P := w11w21w12 ⊗ ∂x1p + w11w21w22 ⊗ ∂x2p.

We point out that:

P = �+(−w11w12 ⊗
∫

∂x1pdx2 − w11w22 ⊗ p) = �+
(

�−(−w11 ⊗
∫

pdx2)

)
.

Therefore every element of �−(
∧2

+
∧0

−[x1, x2]) lies in the image of the map

�−(
∧1

+
∧0

−[x1, x2]) �+−−→ �−(
∧2

+
∧0

−[x1, x2]). Thus H0(S(2, 0)) ∼= 0.

Lemma 6.12 Let 0 ≤ b < 2. Let us consider the complex T (a, b) defined as follows:

�−(
∧2

+
∧b−1

− [∂x1 , ∂x2 ]) �+←−− ...
�+←−− �−(

∧k
+
∧b−1

− [∂x1 , ∂x2 ]) �+←−− ...
�+←−−

�+←−− CoKer(�−(
∧a−1

+
∧b−1

− [∂x1 , ∂x2 ]) �+−−→�−(
∧a

+
∧b−1

− [∂x1 , ∂x2 ])).
(36)

The homology spaces of the complex T (a, b), from left to right, are respectively isomorphic
to:

H2(T (a, b)) ∼= ∧b−1
+ , ... , Hk(T (a, b)) ∼= ∧k+b−3

+ , ... , Ha(T (a, b)) ∼= ∧−1+a+b−2
+ .

Proof We first point out that the statement is obvious for b = 0 since in this case the
complex is trivial and the homology spaces are obviously trivial. We now focus on b = 1.
The complex T (a, b), due to its construction, has the property that Hi(T (a, b)) = Hi(T (a−
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1, b)) for a ≤ i ≤ 2; then we can compute the homology for small a. Let us take a < 0.
For sake of simplicity we focus on a = −1. The complex T (−1, 1) reduces to:

�−(
∧2

+
∧0

−[∂x1 , ∂x2 ]) �+←−− �−(
∧1

+
∧0

−[∂x1 , ∂x2 ]) �+←−− �−(
∧0

+
∧0

−[∂x1 , ∂x2 ]) �+←−− 0. (37)

The thesis reduces to show that:

H2(T (−1, 1)) ∼= ∧0
+, H1(T (−1, 1)) ∼= 0, H0(T (−1, 1)) ∼= 0, H−1(T (−1, 1)) ∼= 0.

In order to prove the thesis, we use that the complex T (−1, 1) is isomorphic, via �−, to the
row for q = 0 in the diagram of the E′1 spectral sequence of G̃C◦(−1, 1) in Remark 6.10,
that is:

Ker(�−)2,1
�+←−− Ker(�−)1,1

�+←−− Ker(�−)0,1
�+←−− 0,

where we shortly write Ker(�−)i,j for:

Ker(�− : ∧i
+
∧j

−[∂x1 , ∂x2 ] −→ ∧i
+
∧j+1

− [∂x1 , ∂x2 ]).
We point out that in this case, the spaces Ker(�−)2,1, Ker(�−)1,1 and Ker(�−)0,1 corre-
spond respectively to the valus of p = −3, −2, −1 and q = 0 in the diagram of the E′1
spectral sequence of G̃C◦(−1, 1) (see Remark 6.10). The isomorphism between the two
complexes follows from b = 1 < 2 and the fact that, by Lemma 6.9, we know that

0
�−−−→ ∧0

−
[
∂x1 , ∂x2

] �−−−→ ∧1
−
[
∂x1 , ∂x2

] �−−−→ ∧2
−
[
∂x1 , ∂x2

] �−−−→ 0

is exact except for the right end. In this case the complex E′1 of G̃C◦(−1, 1) has two nonzero
rows, for q = 0 and q = b− 2 = −1, and therefore the differentials dr

p,q are all zero except
for r = 2, q = −1 and −2 < p ≤ 0. Indeed:

d2
p,−1 : E′2

p,−1 −→ E′2
p−2,0,

where E′2
p,−1 = 0 if p > 0 and E′2

p−2,0 = 0 if p − 2 < −3. We know, by Lemma 6.9, that:

∑

p+q=n

E′∞
p,q(G̃C◦(−1, 1)) =

{
0 if n > −3
∧1

+ if n = −3.
(38)

By Eq. 38 we obtain that dr
p,q for r = 2, q = −1 and −2 < p ≤ 0 must be an isomorphism.

Indeed, let us first show that d2
p,q for q = −1 and −2 < p ≤ 0 is injective. We point out

that:

d2
p,−1 : E′2

p,−1(G̃C◦(−1, 1)) −→ E′2
p−2,0(G̃C◦(−1, 1)). (39)

It is possible to show that E′2
p,−1(G̃C◦(−1, 1)) ∼= ∧−p−1

+ using an argument similar to
Lemma 6.9. We know, by Eq. 38, that for n = p − 1 > −3:

∑

p̃+q̃=p−1

E′∞̃
p,̃q(G̃C◦(−1, 1)) = 0.

Hence E′∞
p,−1(G̃C◦(−1, 1)) = 0. Moreover dr = 0 for r > 2 and d2

p+2,−2 = 0 since its

domain is 0. Therefore d2
p,−1 must be injective.

Let us show that d2
p,−1 is surjective. If p − 2 > −3, then E

′∞
p−2,0(G̃C◦(−1, 1)) appears

in the sum
∑

p̃+q̃=p−2

E
′∞
p̃,q̃ (G̃C◦(−1, 1)) = 0,
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by Eq. 38. Therefore E
′∞
p−2,0(G̃C◦(−1, 1)) = 0. But we know that

d2
p−2,0 : E

′2
p−2,0(G̃C◦(−1, 1)) −→ E

′2
p−4,1(G̃C◦(−1, 1)) = 0 (40)

is identically 0 because the codomain is 0. Hence d2
p,−1 must be surjective. If p − 2 = −3,

then E
′∞
p−2,0(G̃C◦(−1, 1)) appears in the sum

∑

p̃+q̃=p−2

E
′∞
p̃,q̃ (G̃C◦(−1, 1)) = ∧1

+, (41)

by Eq. 38. We know that E
′2−2,−1(G̃C◦(−1, 1)) = E

′∞−2,−1(G̃C◦(−1, 1)) ∼= ∧1
+, since dr =

0, when r > 2, d2
0,−2 = d2−2,−1 = 0 and E

′2−2,−1(G̃C◦(−1, 1)) ∼= ∧1
+ due to an argument

similar to Lemma 6.9. Since E
′∞−2,−1(G̃C◦(−1, 1)) also appears in the sum (41), we conclude

that E
′∞
p−2,0(G̃C◦(−1, 1)) = 0.

Since d2
p−2,0, given by Eq. 40, is identically 0, therefore d2

p,−1 must be surjective. Hence,

by the fact that d2
p,−1 is an isomorphism, we obtain that E

′2
p−2,0(G̃C◦(−1, 1)) ∼= ∧−1−p

+ .

Thus E
′2
s,0(G̃C◦(−1, 1)) ∼= ∧−s−3

+ and we obtain that:

H2(T (−1, 1)) ∼= ∧0
+, H1(T (−1, 1)) ∼= 0, H0(T (−1, 1)) ∼= 0, H−1(T (−1, 1)) ∼= 0.

Now using Remark 6.10 and Lemmas 6.11, 6.12 we are able to compute the homology
of the GX◦(a, b)’s when a, b ∈ {0, 1, 2}.

Lemma 6.13 If 0 ≤ a ≤ b ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GA◦(a, b)) ∼=

⎧
⎪⎨

⎪⎩

∧a+b−n if m = 0, n ≥ b,
∧a+b−n+1 if m = 1, 0 ≤ n ≤ a,

0 otherwise;

Hm,n(GD◦(a, b)) ∼=
{∧a+b−n if m = 0, n ≤ 0,

0 otherwise.

If 0 ≤ b ≤ a ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GC◦(a, b)) ∼=

⎧
⎪⎨

⎪⎩

∧a+b−n−2 if m = 0, n ≤ b − 2,
∧−1+a+b−n−2 if m = −1, a − 2 ≤ n ≤ 0,

0 otherwise.

Analogously if 0 ≤ b ≤ a ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GA◦(a, b)) ∼=

⎧
⎪⎨

⎪⎩

∧a+b−n if m = 0, n ≥ a,
∧a+b−n+1 if m = 1, 0 ≤ n ≤ b,

0 otherwise;

Hm,n(GD◦(a, b)) ∼=
{∧a+b−n if m = 0, n ≤ 0,

0 otherwise.
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If 0 ≤ a ≤ b ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GC◦(a, b)) ∼=

⎧
⎪⎨

⎪⎩

∧a+b−n−2 if m = 0, n ≤ a − 2,
∧−1+a+b−n−2 if m = −1, b − 2 ≤ n ≤ 0,

0 otherwise.

Proof We prove the statement in the case 0 ≤ a ≤ b ≤ 2 for X = A, D and 0 ≤ b ≤ a ≤ 2
for X = C using the theory of spectral sequences for bicomplexes; the case 0 ≤ b ≤ a ≤ 2
for X = A, D and 0 ≤ a ≤ b ≤ 2 for X = C can be proved analogously using the second
spectral sequence instead of the first.

Case A) Let us first consider GA◦(0, 0) = Ker(∇2 : ∧0
+
∧0

−[x1, x2] −→
∧1

+
∧1

−[x1, x2]). We have that GA◦(0, 0) = C + 〈x1, x2〉, since an element p(x1, x2) ∈
∧0

+
∧0

−[x1, x2] lies in the kernel if and only if ∂x1∂x1p = ∂x1∂x2p = ∂x2∂x2p = 0. In this
case the statement is straightforward. Indeed by a = b = 0 we deduce that p = q = 0.
Therefore G

m,n
A◦ (0, 0) = 0 when n �= 0, G

1,0
A◦ (0, 0) = 〈x1, x2〉, G

0,0
A◦ (0, 0) = C and, by the

fact that

∇−→ G
2,1
A◦ (0, 0) = 0

∇−→ G
1,0
A◦ (0, 0) = 〈x1, x2〉 → 0,

we obtain H 1,0(GA◦(0, 0)) ∼= ∧1. By the sequence

∇−→ G
1,1
A◦ (0, 0) = 0

∇−→ G
0,0
A◦ (0, 0) = C → 0,

we deduce that H 0,0(GA◦(0, 0)) ∼= ∧0. We therefore assume b > 0. As in Remark 6.10 we
consider:

G̃A(a, b)[p,q] =
{∧a−p

+
∧b−q

− [x1, x2] if p ≥ 0, q ≥ 0,

0 otherwise.

We consider on this space the differentials d ′ = �+ and d ′′ = �− induced by �+∂y1 and
�−∂y2 for GA(a, b). As in Remark 6.10, the E′1 spectral sequence of G̃A◦(a, b), i.e. the
homology with respect to �−, is represented in following diagram:

∧a
+

∧0
+· · ·

0 · · · 0

Ker(�−�+)
Im(�−)

∧0
+
∧b

−[x1,x2]
Im(�−)

.· · ·

We have that only the rows for q = 0 and q = b are different from 0. We observe
that d ′ is 0 on the row q = b. Moreover dr

p,q is 0 for r ≥ 2 because either the domain

or the codomain of these maps are 0, since a ≤ b. Therefore E′2 = ... = E′∞. We need
to compute E′2 for the row q = 0; for this computation we apply Lemma 6.11. We point
out that the isomorphism in Eq. 33 of Lemma 6.11 was induced by ∇, that decreases the
degree in x1, x2 by 1. Therefore E′2

p,0(G̃A◦(a, b)) ∼= ∧a+b−p+1
+ is formed by elements with
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representatives of degree 1 in x1, x2. Hence, if 0 ≤ n ≤ a < b:
∑

p+q=n

E′∞
p,q(G̃A◦(a, b)) = E′∞

n,0(G̃A◦(a, b)) = E′2
n,0(G̃A◦(a, b))

∼= ∧a+b−n+1
+ (degree 1 in x1, x2). (42)

Hence H 1,n(G̃A◦(a, b)) ∼= ∧a+b−n+1
+ , if 0 ≤ n ≤ a. If n ≥ b > a:

∑

p+q=n

E′∞
p,q(G̃A◦(a, b)) = E′∞

n−b,b(G̃A◦(a, b)) = E′2
n−b,b(G̃A◦(a, b)) ∼= ∧a+b−n

+ .

Indeed in this sum there is not the possibility (p, q) = (p, 0) with p ≤ a < b. We have that
H 0,n(G̃A◦(a, b)) ∼= ∧a+b−n

+ , if n ≥ b > a. For n = a = b the result follows similarly.
Case D) We define:

G̃D(a, b)[p,q] =
{∧a−p

+
∧b−q

− [x1, x2] if p ≤ 0, q ≤ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GD(a, b)[p,q] −→ G̃D(a, b)[p,q] which is
the valuating map that values ∂y1 and ∂y2 in 1 and is the identity on all the other elements.
We consider on G̃D(a, b) the differentials d ′ = �+ and d ′′ = �− induced by �+∂y1 and
�−∂y2 for GD(a, b). We also define:

GA′(a, b)[p,q] =
{∧a−1

+
∧b−1

− [x1, x2] if p = q = 0,

0 otherwise.

We have the following commutative diagram:

GA′(a, b) GD(a, b)

id γ

∇2

�−�+τ1

GA′(a, b) G̃D(a, b).

We have that G̃D◦(a, b) := CoKer(�−�+τ1 : GA′(a, b) −→ G̃D(a, b)) is isomorphic,
as a bicomplex, to GD◦ . Its diagram is the same of G̃D except for p = q = 0 (upper right
point in the following diagram), where instead of

∧a
+
∧b

−[x1, x2] there is CoKer(�−�+ :
∧a−1

+
∧b−1

− [x1, x2] −→ ∧a
+
∧b

−[x1, x2]). Moreover we observe that GA′(0, 0) = 0, then
GD◦(0, 0) = GD(0, 0) and we can use the same argument of Lemma 6.9. We now assume
b > 0. The diagram of GD(a, b) is the following:

∧2
+
∧b

−[x1, x2]
∧a

+
∧b

−[x1, x2]· · ·

· · · · · · · · ·
∧2

+
∧2

−[x1, x2]
∧a

+
∧2

−[x1, x2],· · ·
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where the horizontal maps are d ′ and the vertical maps are d ′′. In the following diagram we

shortly write Ker(�−)
Im(�−�+)

for the space:

Ker
(
�− : ∧a

+
∧b

−[x1, x2] −→ ∧a
+
∧b+1

− [x1, x2]
)

Im
(
�−�+ : ∧a−1

+
∧b−1

− [x1, x2] −→ ∧a
+
∧b

−[x1, x2]
) ,

and Ker(�−)i,j for:

Ker
(
�− : ∧i

+
∧j

−[x1, x2] −→ ∧i
+
∧j+1

− [x1, x2]
)

.

The E′1 spectral sequence of G̃D◦(a, b) is (the computation is analogous to Lemma 6.9):

Ker(�−)2,b
Ker(�−)

Im(�−�+)
· · ·

0 · · · 0

0 0.0

We observe that, since b > 0:

Ker(�−)

Im(�−�+)
∼=

�−
(∧a

+
∧b−1

− [x1, x2]
)

�−�+
(∧a−1

+
∧b−1

− [x1, x2]
)

∼= CoKer

(
�− (∧a−1

+
∧b−1

− [x1, x2]
)

�+−−→ �− (∧a
+
∧b−1

− [x1, x2]
))

.

The non zero row of the previous diagram is isomorphic, via �−, to the following complex:

�− (∧2
+
∧b−1

− [x1, x2]
)

�+←−− ...
�+←−−

(
CoKer

(
�− (∧a−1

+
∧b−1

− [x1, x2]
)

�+−−→ �− (∧a
+
∧b−1

− [x1, x2]
)))

.

(43)

The fact that the two complexes are isomorphic follows from b > 0 and that, by Lemma
6.9, the sequence

0
�−−−→ ∧0

− [x1, x2]
�−−−→ ∧1

− [x1, x2]
�−−−→ ∧2

− [x1, x2]
�−−−→ 0

is exact except for the left end. We observe that we can compute the homology of the
complex (43) using the homology of S(2, b − 1) given by Lemma 6.11. Indeed (43)
is different from S(2, b − 1) only at the right end, because the left end of (43) is

�−(
∧2

+
∧b−1

− [x1, x2]) ∼= Ker(�−(
∧2

+
∧b−1

− [x1, x2]) �+−−→ �−(
∧3

+
∧b−1

− [x1, x2] = 0)) that
is the left end of S(2, b − 1).

The homology at the right end of (43) is:

Ker

⎛

⎜⎝�+

⎛

⎜⎝
�−

(∧a

+
∧b−1

− [x1, x2]
)

�−�+
(∧a−1

+
∧b−1

− [x1, x2]
)

⎞

⎟⎠

⎞

⎟⎠ ∼=
Ker

(
�+

(
�−

(∧a

+
∧b−1

− [x1, x2]
)))

�−�+
(∧a−1

+
∧b−1

− [x1, x2]
) ∼= Ha(S(2, b − 1)).

Therefore we can use the homology S(2, b − 1) and obtain that the homology spaces for
the complex (43) are isomorphic, respectively from left to right, to:

∧2+b
+ ...

∧a+b
+ .
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We conclude because E
′2
n,0(G̃D◦(a, b)) = E

′∞
n,0(G̃D◦(a, b)) ∼= ∧a−n+b

+ and:
∑

p+q=n

E
′∞
p,q(G̃D◦(a, b)) = E

′∞
n,0(G̃D◦(a, b)) ∼= ∧a−n+b

+ .

Case C) Let us first consider GC◦(2, 2) = CoKer(∇2 : ∧1
+
∧1

−[∂x1 , ∂x2 ] −→
∧2

+
∧2

−[∂x1 , ∂x2 ]). We have that GC◦(0, 0) = C+ 〈∂x1 , ∂x2〉, since an element p(∂x1 , ∂x2) ∈
∧1

+
∧1

−[∂x1 , ∂x2 ] is mapped to an element with degree increased by 2 in ∂x1 , ∂x2 . In this case
the statement is true. Indeed by a = b = 2, we deduce p = q = 0. Hence G

m,n
C◦ (2, 2) = 0

when n �= 0, G
−1,0
C◦ (0, 0) = 〈∂x1 , ∂x2〉, G

0,0
C◦ (2, 2) = C. By the sequence

∇−→ G
0,1
C◦ (2, 2) = 0

∇−→ G
−1,0
C◦ (2, 2) = 〈∂x1 , ∂x2〉 → 0,

we obtain H−1,0(GC◦(0, 0)) ∼= ∧1. By the sequence

∇−→ G
1,1
C◦ (2, 2) = 0

∇−→ G
0,0
C◦ (2, 2) = C → 0,

we obtain H 0,0(GC◦(2, 2)) ∼= ∧2. We therefore assume b < 2. As in Remark 6.10, we
consider:

G̃C(a, b)[p,q] =
{∧a−p

+
∧b−q

− [∂x1 , ∂x2 ] if p ≤ 0, q ≤ 0,

0 otherwise.

We consider on this space the differentials d ′ = �+ and d ′′ = �− induced by �+∂y1

and �−∂y2 for GC(a, b). As in Remark 6.10, the E′1 spectral sequence of G̃C◦(a, b) is
represented in the following diagram:

Ker(�−)2,b
Ker(�−)

Im(�−�+)
· · ·

0 · · · 0

∧2
+
∧2

−
∧a

+
∧2

−.· · ·

We have that only the rows for q = 0 and q = b − 2 are different from 0. We observe that
d ′ is 0 on the row q = b − 2. Moreover dr

p,q is 0 for r ≥ 2 because either the domain or

the codomain of these maps are 0, since 2 − a ≤ 2 − b. Therefore E′2 = ... = E′∞. We
need to compute E′2 for the row q = 0; for this computation we apply Lemma 6.12. We
observe that the isomorphism in Eq. 39 of Lemma 6.12 is induced by ∇ that increases the
degree in ∂x1 , ∂x2 by 1. Thus the elements of E

′2
p,0(G̃C◦(a, b)) are represented by elements

with degree 1 in ∂x1 , ∂x2 . Therefore we have that if 0 ≤ b ≤ a ≤ 2 and a − 2 ≤ n ≤ 0:
∑

m

Hm,n(G̃C◦(a, b))=
∑

p+q=n

E
′∞
p,q(G̃C◦(a, b)) = E

′∞
n,0(G̃C◦(a, b))

∼= ∧−1+a+b−n−2
+ (degree 1 in ∂x1 , ∂x2).

Then H−1,n(G̃C◦(a, b)) ∼= ∧−1+a+b−n−2
+ . If 0 ≤ b ≤ a ≤ 2 and n ≤ b − 2:

∑

m

Hm,n(G̃C◦(a, b)) =
∑

p+q=n

E
′∞
p,q(G̃C◦(a, b)) = E

′∞
n−b+2,b−2(G̃C◦(a, b)) ∼= ∧a+b−n−2

+ .

2668



Computation of the Homology of the Complexes of Finite Verma Modules for K ′
4

Hence H 0,n(G̃C◦(a, b)) ∼= ∧a+b−n−2
+ . Finally if 0 ≤ b ≤ a ≤ 2 and n = b − 2 = a − 2,

the result follows analogously.

We now sum up the information of Lemmas 6.9 and 6.13 in the following result about the
homology of the GX◦ ’s. Following [18], we introduce the notation P(n, t, c) that denotes
the irreducible 〈y1∂y1 −y2∂y2 , y1∂y2 , y2∂y1〉⊕Ct ⊕CC−module of highest weight (n, t, c)

with respect to y1∂y1 − y2∂y2 , t, C when n ∈ Z≥0 and P(n, t, c) = 0 when n < 0. In
the following result we will use the notation Q(i, n, t, c) for the irreducible g0−module of
highest weight (i, n, t, c) with respect to x1∂x1 −x2∂x2 , y1∂y1 −y2∂y2 , t, C when i, n ∈ Z≥0
and Q(i, n, t, c) = 0 when n < 0 or i < 0. Moreover, for i ∈ {0, 1, 2}, we will denote by ri
the remainder i mod 2, that is ri = 0 for i = 0, 2 and ri = 1 for i = 1. Using Lemmas 6.9,
6.13 and the fact that GX◦ = ⊕a,bGX◦(a, b), we obtain the following result.

Proposition 6.14 As g0−modules:

Hm,n(GA◦ ) ∼=

⎧
⎪⎨

⎪⎩

∑2
i=0Q

(
ri , n − i, −i − 1

2 n,− 1
2 n
)

if m = 0, n ≥ 0,∑2
i=0 Q

(
ri , i − n − 1, −i − 1

2 n + 1
2 , − 1

2 n + 1
2

)
if m = 1, 0 ≤ n ≤ 1,

0 otherwise.

Hm,n(GD◦ ) ∼=
{∑2

i=0Q
(
ri ,−n + i,−i − 1

2 n + 1, − 1
2 n + 1

)
if m = 0, n ≤ 0,

0 otherwise.

Hm,n(GC◦ ) ∼=

⎧
⎪⎨

⎪⎩

∑2
i=0Q

(
ri , −n − 2 + i, −i − 1

2 n,− 1
2 n
)

if m = 0, n ≤ 0,∑2
i=0Q

(
ri , n + 2 − i − 1, −i − 1

2 n − 1
2 , − 1

2 n − 1
2

)
if m = −1, −1 ≤ n ≤ 0,

0 otherwise.

Proof This result follows directly from Lemmas 6.9, 6.13 and the decomposition GX◦ =
⊕a,bGX◦(a, b). We show explicitly the thesis for X = A; the proof for X = C,D is
analogous. By the decomposition GA◦ = ⊕a,bGA◦(a, b) we obtain that:

Hm,n(GA◦) =∑a,bH
m,n(GA◦(a, b)). (44)

By the definition of the GA◦(a, b)’s, y1∂y1 −y2∂y2 acts on the elements of Hm,n(GA◦(a, b))

as multiplication by a − b. By Lemmas 6.9 and 6.13 we obtain that the RHS of Eq. 44 is 0
for m > 1.

For m = 0, Eq. 44 reduces to:

H 0,n(GA◦) = H 0,n(GA◦(0, n)) + H 0,n(GA◦(1, n − 1)) + ... + H 0,n(GA◦(n − 1, 1))

+H 0,n(GA◦(n, 0))

+H 0,n(GA◦(1, n)) + H 0,n(GA◦(2, n − 1)) + ... + H 0,n(GA◦(n − 1, 2))

+H 0,n(GA◦(n, 1))

+H 0,n(GA◦(2, n)) + H 0,n(GA◦(3, n − 1)) + ... + H 0,n(GA◦(n − 1, 3))

+H 0,n(GA◦(n, 2)). (45)

We observe that the RHS of Eq. 45 is the sum of three irreducible g0−modules that we call
M0, M1 and M2, that are defined as follows. As vector spaces:

M0 := H 0,n(GA◦ (0, n)) + H 0,n(GA◦ (1, n − 1)) + ... + H 0,n(GA◦ (n, 0)) ∼= ∧0 ⊗ P

(
n,− 1

2
n,− 1

2
n

)
.

Indeed by Lemmas 6.9 and 6.13:
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H 0,n(GA◦(n, 0)) = ∧0 ⊗ yn
1

H 0,n(GA◦(n − 1, 1)) = ∧0 ⊗ yn−1
1 y2

...

H 0,n(GA◦(1, n − 1)) = ∧0 ⊗ y1y
n−1
2

H 0,n(GA◦(0, n)) = ∧0 ⊗ yn
2 .

y2∂y1

y2∂y1

Therefore, as a g0−module, M0 ∼= Q
(

0, n,− 1
2n,− 1

2n
)

. Now let us show that as vector
spaces:

M1 := H 0,n(GA◦ (1, n)) + H 0,n(GA◦ (2, n − 1)) + ... + H 0,n(GA◦ (n, 1)) ∼= ∧1 ⊗ P

(
n,− 1

2
n,− 1

2
n

)
.

By Lemmas 6.9 and 6.13:

H 0,n(GA◦(n, 1)) ∼= ∧1
− ⊗ yn

1

H 0,n(GA◦(n − 1, 2)) ∼= ∧1
− ⊗ yn−1

1 y2

...

H 0,n(GA◦(3, n − 2)) ∼= ∧1
− ⊗ y3

1yn−3
2

H 0,n(GA◦(2, n − 1)) ∼= ∧1
− ⊗ y2

1yn−2
2

H 0,n(GA◦(1, n)) ∼= ∧1
− ⊗ y1y

n−1
2 .

y2∂y1

y2∂y1

y2∂y1

Indeed by Lemma 6.9, H 0,n(GA◦(n, 1)) ∼= ∧1
− ⊗yn

1 = 〈w12 ⊗ yn
1 , w22 ⊗yn

1 〉. We point out
that:

(y1∂y1 − y2∂y2).(w12 ⊗ yn
1 ) = (n − 1)w12 ⊗ yn

1 ,

y2∂y1 .(w12 ⊗ yn
1 ) = w12 ⊗ nyn−1

1 y2 ∈ H 0,n(GA◦(n − 1, 2)),

y1∂y2 .(w12 ⊗ yn
1 ) = w11 ⊗ yn

1 = ∇
(

x1y
n+1
1

n + 1

)
= 0 in H 0,n(GA◦(n + 1, 0)),

and analogously for w22 ⊗ yn
1 . Let us show explicitly that

H 0,n(GA◦(3, n − 2))
y2∂y1−−−→ H 0,n(GA◦(2, n − 1)).
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By Lemmas 6.9 and 6.13, H 0,n(GA◦(3, n−2)) ∼= ∧1
−⊗y3

1yn−3
2 and H 0,n(GA◦(2, n−1)) ∼=

∧1
+ ⊗ y1y

n−1
2 . We have that:

y2∂y1 .(w12 ⊗ y3
1yn−3

2 ) = w12 ⊗ 3y2
1yn−2

2 ,

but w12 ⊗ y2
1yn−2

2 = −w11 ⊗ 2y1y
n−1
2

n−1 in H 0,n(GA◦(2, n − 1)) since:

∇
(

x1y
2
1yn−1

2

n − 1

)
= w11 ⊗ 2y1y

n−1
2

n − 1
+ w12 ⊗ y2

1yn−2
2 .

An analogous argument holds for w22 ⊗ y3
1yn−3

2 . Finally, by Lemmas 6.9 and 6.13,

H 0,n(GA◦(1, n)) ∼= ∧1
+ ⊗ yn

2
∼= ∧1

− ⊗ y1y
n−1
2 and:

y2∂y1 .(w12 ⊗ y1y
n−1
2 ) = w12 ⊗ yn

2 = ∇
(

x1y
n+1
2

n + 1

)
= 0 in H 0,n(GA◦(0, n + 1)),

y2∂y1 .(w22 ⊗ y1y
n−1
2 ) = w22 ⊗ yn

2 = ∇
(

x2y
n+1
2

n + 1

)
= 0 in H 0,n(GA◦(0, n + 1)).

Hence, as a g0−module, M1 ∼= Q
(

1, n − 1, −1 − 1
2n,− 1

2n
)

. Finally as vector spaces:

M2 := H 0,n(GA◦ (2, n)) + H 0,n(GA◦ (3, n − 1)) + ... + H 0,n(GA◦ (n, 2)) ∼= ∧2 ⊗ P

(
n,− 1

2
n,− 1

2
n

)
.

Indeed using an analogous reasoning, by Lemmas 6.9 and 6.13 if follows that:

H 0,n(GA◦(n, 2)) ∼= ∧2
− ⊗ yn

1

H 0,n(GA◦(n − 1, 3)) ∼= ∧2
− ⊗ yn−1

1 y2

...

H 0,n(GA◦(3, n − 1)) ∼= ∧2
− ⊗ y3

1yn−3
2

H 0,n(GA◦(2, n)) ∼= ∧2
− ⊗ y2

1yn−2
2 .

y2∂y1

y2∂y1

Therefore, as a g0−module, M2 ∼= Q
(

0, n − 2, −2 − 1
2n,− 1

2n
)

.

Now let us focus on m = 1. By Lemma 6.13, H 1,n(GA◦(a, b)) ∼= ∧a+b−n+1 for 0 ≤
a ≤ b ≤ 2 and 0 ≤ n ≤ a or 0 ≤ b ≤ a ≤ 2 and 0 ≤ n ≤ b and it is 0 otherwise. Therefore
H 1,n(GA◦(a, b)) = 0 if n ≥ 2. Indeed if n = 2, then a = b = 2 and

∧a+b−n+1 ∼= ∧3 = 0.
The case n > 2 is ruled out by conditions 0 ≤ a ≤ b ≤ 2 and 0 ≤ n ≤ a or 0 ≤ b ≤ a ≤ 2
and 0 ≤ n ≤ b. Hence we focus on n = 0 and n = 1.

Let n = 0. Equation 44 reduces to:

H 1,0(GA◦) = H 1,0(GA◦(0, 0)) + H 1,0(GA◦(1, 0)) + H 1,0(GA◦(0, 1)). (46)

The RHS of Eq. 46 is the sum of two irreducible g0−modules M1 and M2 that are defined
as follows. We define:

M1 := H 1,0(GA◦(0, 0)).
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By relation (42) in the proof of Lemma 6.13, as a g0−module:

H 1,0(GA◦(0, 0)) ∼= Q

(
1, 0, −1

2
,

1

2

)

Moreover:

M2 := H 1,0(GA◦(1, 0)) + H 1,0(GA◦(0, 1)).

By relation (42) in the proof of Lemma 6.13, as a g0−module:

H 1,0(GA◦(1, 0)) + H 1,0(GA◦(0, 1)) ∼= Q

(
0, 1, −3

2
,

1

2

)

Finally, let n = 1. Equation 44 reduces to:

H 1,1(GA◦) = H 1,1(GA◦(1, 1)). (47)

By relation (42) in the proof of Lemma 6.13, as a g0−module:

H 1,1(GA◦(1, 1)) ∼= Q
(
0, 0, −2, 0

)
.

6.2 Homology of Complexes MX

We are now able to compute the homology of the complexes MX’s.

Proposition 6.15

Hm,n(MA) = 0 f or all (m, n) : m > 1 or (m = 1 and n �= 1) or (m, n) = (0, 1),

Hm,n(MC) = 0 f or all (m, n) �= (0, 0), (−1,−1),

Hm,n(MD) = 0 f or all (m, n).

Proof By Remarks 6.7, 6.8 and Proposition 6.14 we know that:

Hm,n(GA) = Hm,n(GA◦) = 0 if m > 1 or (m = 1 and n ≥ 2),

Hm,n(GC) = Hm,n(GC◦) = 0 if m < −1 or (m = −1 and n ≤ −2),

Hm,n(GD) = Hm,n(GD◦) = 0 if m > 0 and n ≤ 0.

Therefore we obtain, by Proposition 6.6, that:

Hm,n(MA) = 0 if m > 1 or (m = 1 and n ≥ 2),

Hm,n(MC) = 0 if m < −1 or (m = −1 and n ≤ −2),

Hm,n(MD) = 0 if m > 0 and n ≤ 0.

Let us compute H 0,n(GX◦) for X = C,D. By Proposition 6.14 it follows that H 0,n(GD◦) ∼=
H 0,n−2(GC◦) as g0−modules for n ≤ 0, indeed:

H 0,n(GD◦) ∼=
2∑

i=0

Q

(
ri ,−n + i, −i − 1

2
n + 1, −1

2
n + 1

)
,

H 0,n−2(GC◦) ∼=
2∑

i=0

Q

(
ri ,−n + i, −i − 1

2
n + 1, −1

2
n + 1

)
.
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By Remark 6.7, we know that

H 0,n(GD◦) = G
0,n
D

Im(∇ : G
1,n+1
D → G

0,n
D )

for n ≤ −1,

H 0,0(GD◦) = G
0,0
D◦ ,

H 0,n−2(GC◦) = Ker
(
∇ : G

0,n−2
C → G

−1,n−3
C

)
.

We want to show that the map induced by ∇̃2 between H 0,n(GD◦) and H 0,n−2(GC◦), for
n ≤ 0, is an isomorphism. Indeed the kernel of the map induced by ∇̃2 between H 0,n(GD◦)
and H 0,n−2(GC◦), for n ≤ 0, is isomorphic to

Ker
(
∇̃2 : G

0,n
D → G

0,n−2
C

)

Im
(
∇ : G

1,n+1
D → G

0,n
D

) = H 0,n(GD) for n ≤ −1,

Ker
(
∇̃2 : G

0,0
D◦ → G

0,−2
C

)
= H 0,0(GD).

Moreover the image of the map induced by ∇̃2 between H 0,n(GD◦) and H 0,n−2(GC◦), for
n ≤ 0, is

Im
(
∇̃2 : G

0,n
D◦ → G

0,n−2
C◦

)
= Im

(
∇̃2 : G

0,n
D → G

0,n−2
C

)
.

Therefore, in order to show that H 0,n(MD) = H 0,n−2(MC) = 0 for n ≤ 0, it is sufficient to
show that the map induced by ∇̃2 between H 0,n(GD◦) and H 0,n−2(GC◦) is an isomorphism
for n ≤ 0. In order to do that, since H 0,n(GD◦) ∼= H 0,n−2(GC◦) as g0−modules for n ≤ 0,
it is sufficient to show that the map induced by ∇̃2 is different from 0 on the highest weight
vectors of H 0,n(GD◦). By Proposition 6.14, we know that the highest weight vectors in
H 0,n(GD◦) are ∂−n

y2
, w11 ⊗ ∂−n

y2
, w11w21 ⊗ ∂−n

y2
; we obtain that:

∇̃2(∂
−n
y2

) = w11w21 ⊗ ∂2
y1

∂−n
y2

+ w11w22 ⊗ ∂y1∂
−n+1
y2

+ w12w21 ⊗ ∂y1∂
−n+1
y2

+ w12w22 ⊗ ∂−n+2
y2

,

∇̃2(w11 ⊗ ∂−n
y2

) = w11w12w21 ⊗ ∂y1∂
−n+1
y2

+ w11w12w22 ⊗ ∂−n+2
y2

,

∇̃2(w11w21 ⊗ ∂−n
y2

) = w11w21w12w22 ⊗ ∂−n+2
y2

.

By Proposition 6.14, we have that H 0,1(GA◦) ∼= H−1,0(GC◦) as g0−modules, indeed:

H 0,1(GA◦) ∼= Q

(
0, 1, −1

2
,−1

2

)
+ Q

(
1, 0, −3

2
, −1

2

)
,

H−1,0(GC◦) ∼= Q

(
0, 1, −1

2
,−1

2

)
+ Q

(
1, 0, −3

2
, −1

2

)
.

With an analogous argument, in order to obtain that H 0,1(MA) = H−1,0(MC) = 0, it is
sufficient to show that the map induced by ∇3 between H 0,1(GA◦) and H−1,0(GC◦) is an
isomorphism.

We show that the map induced by ∇3 is different from 0 on the highest weight vectors of
H 0,1(GA◦). By Proposition 6.14 we know that the highest weight vectors in H 0,1(GA◦) are
y1 and w12 ⊗ y1; we obtain that:

∇3(y1) = w11w21w12∂x1 + w11w21w22∂x2 ,

∇3(w12 ⊗ y1) = w12w11w21w12∂x1 + w12w11w21w22∂x2 = w12w11w21w22∂x2 .
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Finally, by Proposition 6.14 we have that H 1,0(GA◦) ∼= H 0,−1(GC◦) as g0−modules,
indeed:

H 1,0(GA◦) ∼= Q

(
1, 0, −1

2
,

1

2

)
+ Q

(
0, 1, −3

2
,

1

2

)
,

H 0,−1(GC◦) ∼= Q

(
1, 0, −1

2
,

1

2

)
+ Q

(
0, 1, −3

2
,

1

2

)
.

With an analogous argument, in order to obtain that H 1,0(MA) = H 0,−1(MC) = 0, it is
sufficient to show that the map induced by ∇̃3 between H 1,0(GA◦) and H 0,−1(GC◦) is an
isomorphism.
We show that the map induced by ∇̃3 is different from 0 on the highest weight vectors of
H 1,0(GA◦). By Proposition 6.14 we know that the highest weight vectors in H 1,0(GA◦) are
x1, w11 ⊗ x2 − w22 ⊗ x1; we obtain that:

∇̃3(x1) = w11w12w21∂y1 + w11w12w22∂y2 ,

∇̃3(w11 ⊗ x2 − w22 ⊗ x1) = w11w21w12w22∂y2 − w22w11w12w21∂y1 .

We are now able to compute the homology for MB using Remark 3.8, together with
Propositions 2.19 and 6.15.

Proposition 6.16

Hm,n(MA) = 0 f or all (0, n) : n > 1;
Hm,n(MB) = 0 f or all (m, n).

Proof We first compute Hm,n(MB). We consider the following sequence for m < 0 and
n > 0, represented in quadrant B of Fig. 1:

M
m+1,n+1
B

∇−→ M
m,n
B

∇−→ M
m−1,n−1
B .

By Remark 3.8, this sequence is the dual of

M
−m+1,−n+1
D

∇−→ M
−m,−n
D

∇−→ M
−m−1,−n−1
D .

Indeed we recall that M
m,n
B

∼= M
(−m, n, 1 − m+n

2 ,−1 + m−n
2

)
and M

−m,−n
D

∼=
M
(−m, n, 1 + m+n

2 , 1 + n−m
2

)
. By Proposition 6.15, the previous sequence is exact in

M
−m,−n
D and M

−m−1,−n−1
D . Therefore

M
−m,−n
D

Im ∇ ∼= M
−m,−n
D

Ker ∇ is isomorphic to a submodule

of the free module M
−m−1,−n−1
D . Therefore

M
−m,−n
D

Im ∇ is a finitely generated torsion free

C[�]−module. The same holds for
M

−m−1,−n−1
D

Im ∇ . Hence, by Remark 3.8 and Proposition
2.19, we obtain exactness in M

m,n
B for m < 0 and n > 0. Now, let us consider the following

sequence for n > 0, represented from quadrant A to quadrant B in Fig. 1:

M
0,n+2
A

∇̃2−→ M
0,n
B

∇−→ M
−1,n−1
B .

By Remark 3.8, this sequence is the dual of

M
1,−n+1
D

∇−→ M
0,−n
D

∇̃2−→ M
0,−n−2
C .

2674



Computation of the Homology of the Complexes of Finite Verma Modules for K ′
4

Analogously, by Proposition 6.15, the previous sequence is exact in M
0,−n
D and M

0,−n−2
C .

Therefore
M

0,−n
D

Im ∇ and
M

0,−n−2
C

Im ∇̃2
are finitely generated torsion free C[�]−modules. Hence, by

Remark 3.8 and Proposition 2.19, we obtain exactness in M
0,n
B for n > 0.

Using the same reasoning, we obtain exactness in M
0,0
B and M

m,0
B , for m < 0, using

respectively the sequences M
0,2
A

∇̃2−→ M
0,0
B

∇2−→ M
−2,0
C and M

m+1,1
B

∇−→ M
m,0
B

∇2−→ M
m−2,0
C .

Finally, using the same argument, we obtain exactness in M
0,n
A , for n > 1, using the

sequence M
1,n+1
A

∇−→ M
0,n
A

∇̃2−→ M
0,n−2
B .

Let us now focus on the remaining four cases, that are H 0,0(MC), H−1,−1(MC),
H 0,0(MA) and H 1,1(MA).

Proposition 6.17

H 0,0(MC) ∼= 0,

H−1,−1(MC) ∼= C.

In order to prove Proposition 6.17, we need the following results and the theory
of spectral sequences. So far we have shown that E0(MC)0,0 = H 0,0(Gr MC) =
S(g−2) ⊗ H 0,0(GC) and E0(MC)−1,−1 = H−1,−1(Gr MC) = S(g−2) ⊗ H−1,−1(GC) as
W−modules.

Lemma 6.18 Let

z = iw11w21�
−∂y1 + (iw12w21 + iw11w22)�

−∂y2 .

be an element in M
−1,−1
C = M(1, 1, 3, 0). The following hold:

(1) ∇z = 0,
(2) g0.z = 0,
(3) (tξ1 + itξ2).z ∈ Im ∇, (ξ1ξ3ξ4 + iξ2ξ3ξ4).z ∈ Im ∇,
(4) z /∈ Im ∇,
(5) [z] is a basis for the g0−module H−1,−1(GC).

Proof (1),(2),(3) These properties follow from direct computations. In particular (tξ1 +
itξ2).z = ∇(2w22 ⊗ 1) and (ξ1ξ3ξ4 + iξ2ξ3ξ4).z = ∇(2iw22 ⊗ 1).

(4) Let us show that z /∈ Im ∇. Let us consider ∇ : M(0, 0, 2, 0) −→ M(1, 1, 3, 0).
Since M(0, 0, 2, 0) is irreducible by Proposition 3.14 and ∇ is not identically zero, then ∇
is injective. Let us suppose that there exists v ∈ M(0, 0, 2, 0) such that z = ∇(v). Due to
injectivity and (2) we obtain that g0.v = 0. In particular v has weight 0 with respect to t .
Then:

v = a1� ⊗ 1 + a2w11w22 ⊗ 1 + a3w11w12 ⊗ 1 + a4w11w21 ⊗ 1

+a5w22w12 ⊗ 1 + a6w22w21 ⊗ 1 + a7w12w21 ⊗ 1.

Imposing that gss
0 .v = 0 we obtain that a2 = a3 = a4 = a5 = a6 = a7 = 0. Hence

v = a1� ⊗ 1. We compute ∇v:

∇v = a1�w11 ⊗ ∂x1∂y1 + a1�w21 ⊗ ∂x2∂y1 + a1�w12 ⊗ ∂x1∂y2 + a1�w22 ⊗ ∂x2∂y2 .

We focus on the coefficient of ∂x1∂y1 in ∇v and z, that should be the same. We get
a1�w11 = iw11w21w12 that is impossible.
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(5) Let us show also that [z] �= 0 in H−1,−1(GC) because z does not lie in the image of
∇ : G

0,0
C −→ G

−1,−1
C . Indeed if z lies in the image of ∇ : G

0,0
C −→ G

−1,−1
C , therefore

[z] = 0 in H−1,−1(MC) since H−1,−1(GrC) = S(g−2) ⊗ H−1,−1(GC) is the first step of
the spectral sequence; this holds a contradiction using (4). By Proposition 6.14, we know
that H−1,−1(GC) is one−dimensional. By the previous properties 0 �= [z] ∈ H−1,−1(GC);
hence [z] is a basis for the g0−module H−1,−1(GC).

Corollary 6.19 The vector z is a highest weight singular vector in the quotient
M(1, 1, 3, 0)/ Im ∇.

Lemma 6.20 Let

k = 1

2
iw11w21w12w22 ⊗ 1 + i�w12w21 ⊗ 1 + i�w11w22 ⊗ 1

be an element in M
0,0
C = M(0, 0, 2, 0). The following hold:

(1) x1∂x2 .k = 0 and y1∂y2 .k = 0,
(2) [k] is a basis for the g0−module H 0,0(GC).

Proof It is a straightforward computation that x1∂x2 .k = y1∂y2 .k = 0. We point out that
∇k is a cycle in Gr MC since k ∈ F4MC and ∇k ∈ F4MC . Indeed in MC , by direct com-
putations, ∇k = �z. Moreover [k] lies in H 0,0(GC) since the terms of k that include
� are in F3M , the other is in F4MC . By Proposition 6.14, we know that H 0,0(GC) is
one−dimensional. By the previous computations 0 �= [k] ∈ H 0,0(GC); hence [k] is a basis
for the g0−module H 0,0(GC). We have also that ∇[k] = �[z].

Proof of Proposition 6.17 By Eq. 30 and Lemmas 6.18, 6.20 we know that as W−modules

E0(MC)0,0 = H 0,0(Gr MC) ∼= S(g−2) ⊗ H 0,0(GC) = S(g−2) ⊗ 〈[k]〉,
E0(MC)−1,−1 = H−1,−1(Gr MC) ∼= S(g−2) ⊗ H−1,−1(GC) = S(g−2) ⊗ 〈[z]〉.

By Lemma 6.20, the morphism ∇(0) : E0(MC)0,0 −→ E0(MC)−1,−1 maps [k] to �[z].
Therefore ∇(0) is injective and E1(MC)0,0 ∼= 0, E1(MC)−1,−1 ∼= C. Thus E∞(MC)0,0 ∼=
E1(MC)0,0 = 0 and E∞(MC)−1,−1 ∼= E1(MC)−1,−1 ∼= C as W−modules, and hence as
g−modules.

Finally we focus on the two remaining cases for MA.

Proposition 6.21

H 0,0(MA) ∼= C,

H 1,1(MA) ∼= 0.

Remark 6.22 By straightforward computation we show that H 0,0(MA) ∼= M
0,0
A / Im ∇ ∼= C.

Indeed Im ∇ is the g−module generated by the singular vector w11 ⊗ 1 and we have that:

x2∂x1 .(w11 ⊗ 1) = w21 ⊗ 1, y2∂y1 .(w11 ⊗ 1) = w12 ⊗ 1,

y2∂y1 .(x2∂x1 .(w11 ⊗ 1)) = w22 ⊗ 1, w12.(w21 ⊗ 1) + w21.(w12 ⊗ 1) = −4� ⊗ 1.

Therefore all the elements of positive degree of M(0, 0, 0, 0) lie in the image of ∇ and
M

0,0
A / Im ∇ ∼= F(0, 0, 0, 0).
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In order to prove Proposition 6.21 we need the following lemma.

Lemma 6.23 Let

s = (w11 ⊗ x2 − w21 ⊗ x1)y2 − (w12 ⊗ x2 − w22 ⊗ x1)y1

be an element in M
1,1
A = M(1, 1, −1, 0). The following hold:

(1) s is a highest weight vector of weight (0,0,-2,0),
(2) [s] is a basis for the g0−module H 1,1(GA).

Proof (1) This property follows by direct computations.
(2) Let us show that s is a cycle in Gr MA. By direct computations, using Eq. 8, ∇s =

8� ⊗ 1 ∈ F1MA. Since s ∈ F1MA, then ∇[s] = 0 in Gr MA. By its definition, s lies
in G

1,1
A . Moreover s does not lie in Im(∇ : G

2,2
A −→ G

1,1
A ). Indeed let us suppose

that there exists v ∈ G
2,2
A such that ∇v = s. Since t .s = −2s, then t .v = −2v.

Therefore v ∈ F(2, 2, −2, 0). Imposing that ∇v = s we get a contradiction. Hence
0 �= [s] ∈ H 1,1(GA). By Proposition 6.14 H 1,1(GA) is one−dimensional; therefore
[s] is a basis for the g0−module H 1,1(GA).

Proof of Proposition 6.21 By Eq. 30, Remark 6.22 and Lemma 6.23, we know that as
W−modules

E0(MA)0,0 = H 0,0(Gr MA) ∼= S(g−2) ⊗ H 0,0(GA) = S(g−2) ⊗ 〈1〉,
E0(MA)1,1 = H 1,1(Gr MA) ∼= S(g−2) ⊗ H 1,1(GA) = S(g−2) ⊗ 〈[s]〉.

By Lemma 6.23, the morphism ∇(0) : E0(MA)1,1 −→ E0(MA)0,0 maps [s] to 8� ⊗ [1].
Therefore ∇(0) is injective and E1(MA)1,1 ∼= 0. Thus E∞(MA)1,1 ∼= E1(MA)1,1 = 0 as
W−modules, and hence as g−modules.

Remark 6.24 We point out that for C = 0, the study of finite irreducible modules over
K ′

4 reduces to the study of finite irreducible modules over K4, already studied in [3]. In
particular, for C = 0, the diagram of maps between finite Verma modules reduces to the
diagonal m = n in the quadrants A and C of Fig. 1. For K4 the homology had been already
computed in [3, Propositions 6.17, 6.21] using de Rham complexes. Propositions 6.2 and
6.4 are coherent with the results of [3, Propositions 6.2, 6.4] for K4.

Proof of Theorem 6.1 The proof follows combining the results of Propositions 6.15, 6.16,
6.17 and 6.21.

7 Size

The aim of this section is to compute the size of the irreducible quotients I (m, n, μt , μC),
where (m, n, μt , μC) occurs among the weights in Theorems 3.9, 3.10, 3.11. This compu-
tation is an application of Theorem 6.1. For a S(g−2)−module V , we define its size as (see
[18]):

size(V ) = 1

4
rkS(g−2) V .
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Proposition 7.1

A) size
(
I (m, n, −m+n

2 , m−n
2 )
) = 2mn + m + n,

B) size
(
I (m, n, 1 + m−n

2 ,−1 − m+n
2 )
) = 2(m + 1)(n − 1) + n − 1 + 3m + 3 + 2 =

2mn + m + 3n + 2,

C) size
(
I (m, n, m+n

2 + 2, n−m
2 )
) = 2(m+1)(n+1)+m+n+2 = 2mn+3m+3n+4,

D) size
(
I (m, n, 1 + n−m

2 , 1 + m+n
2 )
) = 2mn + n + 3m + 2.

In order to prove Proposition 7.1 we need some preliminary results. We will say that
I (m, n, μt , μC) is of type X if M(m, n, μt , μC) is represented in quadrant X in Fig. 1.
In the following we will also use the notation ∇m,n

X for the morphism ∇|Mm,n
X

: M
m,n
X →

M
m−1,n−1
X defined as in Eq. 14, in order to make explicit the dependence on the domain.

Remark 7.2 We point out that it is sufficient to compute the size for modules
I (m, n, −m+n

2 , m−n
2 ) of type A and I

(
m, n, 1 + n−m

2 , 1 + m+n
2

)
of type D and use

conformal duality, since conformal dual modules have the same size.
Let us show that the module I

(
m, n, m+n

2 + 2, n−m
2

)
of type C is the conformal

dual of I
(
m + 1, n + 1, −m+n+2

2 , m−n
2

)
of type A, , when (m, n) �= (0, 0). Indeed, by

Remarks 3.7 and 3.8, we have the following dual maps, for m, n ≥ 0:

∇m+1,n+1
A : M

m+1,n+1
A −→ M

m,n
A ,

∇−m,−n
C : M

−m,−n
C −→ M

−m−1,−n−1
C .

We use Remark 3.8 and Theorem 2.18 with T := ∇−m,−n
C , M := M

−m,−n
C and N :=

M
−m−1,−n−1
C . We point out that we can apply Theorem 2.18, because we know that

M
−m−1,−n−1
C / Im

(
∇−m,−n

C

)
is a finitely generated torsion−free C[�]−module. Indeed,

by Theorem 6.1, the complex of type C is exact in M
−m−1,−n−1
C if and only if (−m −

1, −n − 1) �= (−1, −1). Therefore:

M
−m−1,−n−1
C

Im
(
∇−m,−n

C

) = M
−m−1,−n−1
C

Ker
(
∇−m−1,−n−1

C

) ∼= Im(∇−m−1,−n−1
C )

and Im(∇−m−1,−n−1
C ) is a submodule of the free module M

−m−2,−n−2
C , thus it

is torsion−free as a C[�]−module. We have that M/ Ker T = M
−m,−n
C / Ker(

∇−m,−n
C

) ∼= I
(
m, n, m+n

2 + 2, n−m
2

)
is the dual of N∗/ Ker T ∗ ∼= Im T ∗ ∼=

I
(
m + 1, n + 1, −m+n+2

2 , m−n
2

)
.

Using the same argument, it is possible to show that the mod-
ule I

(
m, n, 1 + m−n

2 ,−1 − m+n
2

)
of type B is the conformal dual of

I
(
m + 1, n − 1, 1 + n−m−2

2 , 1 + m+n
2

)
of type D.
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7.1 The Character

We now introduce the notion of character, that will be used for the computation of the size.
Let s be an indeterminate. We define the character of a g−module V , following [18], as:

ch V = trV s−t .

The character is a Laurent series in the indeterminate s; the coefficient of sk is the dimension
of the eigenspace of V of eigenvalue k with respect to the action of −t ∈ g0.

Remark 7.3 Let V be a g−module and W a g−submodule of V . It is straightforward that
ch V/W = ch V − ch W .

We now compute directly the character of a Verma module M(m, n,μt , μC) ∼=
U(g<0) ⊗ F(m, n,μt , μC). Using that −t acts on elements of g−2 as the multiplication by
2 and on elements of g−1 as the multiplication by 1 and that if |s|2 < 1:

∞∑

k=0

s2k = 1

1 − s2
,

we obtain that, if −1 < s < 1:

ch M(m, n, μt , μC) = s−μt dim F(m, n,μt , μC) · (1 + s)4

1 − s2
. (48)

For the computation of the size of a g−module V we use that (see [18]):

size(V ) = 1

4
lim
s→1

(1 − s2) ch V . (49)

Proposition 7.4 The character of I
(
m, n, −m+n

2 , − n−m
2

)
of type A is, if (m, n) �= (0, 0):

ch I

(
m, n,−m + n

2
,
m − n

2

)
= s

m+n
2

(1 + s)4

1 − s2

[ 2

(1 + s)3
+ m + n − 1

(1 + s)2
+ mn

1 + s

]
.

The character of I
(
m, n, 1 + n−m

2 , 1 + m+n
2

)
of type D is:

ch I

(
m, n, 1 + n − m

2
, 1 + m + n

2

)
= s−1− n−m

2
(1 + s)4

1 − s2

[ −2

(1 + s)3
+ 3 + n − m

(1 + s)2
+ mn + 2m

1 + s

−(−1)n+1sn+1
( −2

(1 + s)3
+ −m − n + 1

(1 + s)2
+ m + n + 1

1 + s

)]

+s
m+n+2

2
(1 + s)4

1 − s2
(−1)n+1

(
2

(1 + s)3
+ m + n + 1

(1 + s)2

)
.

Proof We compute the character of modules I (m, n, μt , μC) using the character of
M(m, n, μt , μC). Let us now focus on the case I

(
m, n,−m+n

2 ,− n−m
2

)
of type A. By

Theorem 6.1, the following is an exact sequence, if (m, n) �= (0, 0):

. . . −→ M

(
m + j, n + j,−m + n + 2j

2
,
m − n

2

)

−→ . . . −→ M

(
m + 1, n + 1, −m + n + 2

2
,
m − n

2

)

−→ M
(
m, n,−m + n

2
,
m − n

2

)
−→ I

(
m, n, −m + n

2
,
m − n

2

)
−→ 0.
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Hence, using the exactness of the previous sequence, Remark 7.3 and Eq. 48, we obtain that:

ch I
(
m, n,−m + n

2
,
m − n

2

)
= s

m+n
2

(1 + s)4

1 − s2

∞∑

j=0

(−1)j sj (j + m + 1)(j + n + 1).

We need the following identity, that holds if |s| < 1 and is a consequence of the binomial
series:

∞∑

j=0

(−1)j sj

(
j + m

m

)
= 1

(1 + s)m+1
. (50)

By the fact that (j + m + 1)(j + n + 1) = (j + 2)(j + 1) + (j + 1)(m + n − 1) + mn and
Eq. 50, we get:

ch I

(
m, n, −m + n

2
,
m − n

2

)
= s

m+n
2

(1 + s)4

1 − s2

(
2

(1 + s)3
+ m + n − 1

(1 + s)2
+ mn

1 + s

)
.

Now we compute the character for modules I (m, n, 1 + n−m
2 , 1 + m+n

2 ) of type D. By
Theorem 6.1 the following is an exact sequence:

→ M

(
m + n + 2 + j, j,−m + n + 2 + 2j

2
,
m + n + 2

2

)

→ · · · → M

(
m + n + 2, 0, −m + n + 2

2
,
m + n + 2

2

)

→ M

(
m + n, 0, 1 + −m − n

2
, 1 + m + n

2

)

→ M

(
m + n − 1, 1, 1 + −m − n + 2

2
, 1 + m + n

2

)
→ . . .

→ M

(
m, n, 1 + n − m

2
, 1 + m + n

2

)
→ I

(
m, n, 1 + n − m

2
, 1 + m + n

2

)
→ 0,

where the first row is composed of modules of type A and the following terms are of type D.
Hence, by the exactness of the previous sequence, Remark 7.3 and Eq. 48, we obtain that:

ch I

(
m, n, 1 + n − m

2
, 1 + m + n

2

)
= s−1− n−m

2
(1 + s)4

1 − s2

n∑

j=0

(−1)j sj (j + m + 1)(n − j + 1)

+s
m+n+2

2
(1 + s)4

1 − s2

∞∑

i=0

(−1)n+1+i si (i + m + n + 2 + 1)(i + 1).

We use the identity:
n∑

j=0

(−1)j sj (j+m+1)(n−j+1) =
∞∑

j=0

(−1)j sj (j + m + 1)(n − j + 1)

−
∞∑

j=n+1

(−1)j sj (j + m + 1)(n − j + 1). (51)

Let us compute the first series in the RHS of Eq. 51; by the fact that (j +m+1)(n−j +1) =
−(j + 1)(j + 2) + (3 + n − m)(j + 1) + 2m + mn and Eq. 50, we obtain that if |s| < 1:

∞∑

j=0

(−1)j sj (j + m + 1)(n − j + 1) = −2

(1 + s)3
+ 3 + n − m

(1 + s)2
+ mn + 2m

1 + s
.
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Let us compute the second series in the RHS of Eq. 51; we have that:

−
∞∑

j=n+1

(−1)j sj (j + m + 1)(n − j + 1)

= −
∞∑

k=0

(−1)k+n+1sk+n+1(k + n + 1 + m + 1)(n − k − n − 1 + 1).

By the fact that (k +n+ 1 +m+ 1)(n− k −n− 1 + 1) = −(k + 2)(k + 1)+ (k + 1)(−m−
n + 1) + m + n + 1 and Eq. 50, we obtain that if |s| < 1:

−
∞∑

j=n+1

(−1)j sj (j + m + 1)(n − j + 1) = −
∞∑

k=0

(−1)k+n+1sk+n+1(k + n + m + 2)(−k)

= −(−1)n+1sn+1
( −2

(1 + s)3
+ −m − n + 1

(1 + s)2
+ m + n + 1

1 + s

)
.

Finally, we sum up the previous computations and get:

ch I

(
m, n, 1 + n − m

2
, 1 + m + n

2

)
= s−1− n−m

2
(1 + s)4

1 − s2

[ −2

(1 + s)3
+ 3 + n − m

(1 + s)2
+ mn + 2m

1 + s

−(−1)n+1sn+1
( −2

(1 + s)3
+ −m − n + 1

(1 + s)2
+ m + n + 1

1 + s

)]

+s
m+n+2

2
(1 + s)4

1 − s2
(−1)n+1

(
2

(1 + s)3
+ m + n + 1

(1 + s)2

)
.

Proof of Proposition 7.1 We first focus on I (0, 0, 0, 0) of type A. We have that
size(I (0, 0, 0, 0)) = 0. Indeed by Theorem 6.1 the following is an exact sequence:

→ M(j, j,−j, 0) → · · · → M(1, 1, −1, 0)
∇−→ M(0, 0, 0, 0)

φ−→ I (0, 0, 0, 0) → 0,

where φ is the projection to the quotient I (0, 0, 0, 0) ∼= M(0,0,0,0)
Im ∇ . Therefore

size(I (0, 0, 0, 0)) = 0 follows by the same computations used in Proposition 7.4 for case A.
Now let us compute the size of I (0, 0, 2, 0) of type C. Since M(0, 0, 2, 0) is irreducible by
Proposition 13.4, we obtain that size(I (0, 0, 2, 0)) = size(M(0, 0, 2, 0)) = 4 by Eq. 48.
Finally the sizes of I (m, n, μt , μC) of type A for (m, n) �= (0, 0) and of type D fol-
low directly from Proposition 7.4 and Eq. 49. The sizes of I (m, n, μt , μC) of type C for
(m, n) �= (0, 0) and of type B follow from Remark 7.2.
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