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Abstract
Birge Huisgen-Zimmermann calls a finite dimensional algebra homologically tame pro-
vided the little and the big finitistic dimension are equal and finite. The question formulated
in the title has been discussed by her in the paper “Representation-tame algebras need not
be homologically tame”, by looking for any r ≥ 1 at a sequence of algebras �m with big
finitistic dimension r + m. As we will show, also the little finitistic dimension of �m is
r + m. It follows that contrary to her assertion, all the algebras �m are homologically tame.
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Birge Huisgen-Zimmermann calls a finite dimensional algebra homologically tame pro-
vided the little and the big finitistic dimension are equal and finite. The question formulated
in the title has been discussed by her in the paper [1], by looking for any r ≥ 1 at a
sequence of algebras �m with big finitistic dimension r + m. She presented a quite sur-
prising infinite-dimensional �m-module with projective dimension r + m, stressing that
related finite-dimensional modules have infinite projective dimension. Nonetheless, as we
will show, there do exist finite-dimensional �m-modules with projective dimension r + m.
Thus, also the little finitistic dimension of �m is r + m. It follows that contrary to her
assertion, all the algebras �m are homologically tame.

Notation Let k be a field and r ≥ 1 a fixed natural number. We will deal with a sequence
of finite-dimensional k-algebras �m with m ≥ 0, with �m being a factor algebra of �m+1
for all m (thus, �m-modules can be considered as �m+1-modules) such that the projec-
tive �m-modules are also projective as �m+1-modules. The modules to be considered are
(not necessarily finitely generated, left) �m-modules for some m. Given any module M , we
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denote by PM a projective cover, by �M the first syzygy module and by pdM the projec-
tive dimension of M . If x is a vertex of a quiver Q, the corresponding simple representation
will also be denoted by x.

Outline In Section 1, we recall the definition of the special biserial algebras �m considered
in [1]. In Section 2, we exhibit for any m a finite-dimensional �m-module Zm of projec-
tive dimension r + m. Thus the little finitistic dimension fin. dim. �m of �m is at least
r + m. Section 3 presents a proof of the assertion in [1] that the big finitistic dimension
Fin. dim. �m of �m is at most r + m. Combining these results, we get

r + m ≤ fin. dim. �m ≤ Fin. dim. �m ≤ r + m.

It follows that both the little and the big finitistic dimension are equal to r + m.

1 The Algebras�m

As we mentioned, we consider the algebras �m exhibited in [1]. This means, we deal with
the following quiver with relations. The labels of the vertices are those used in [1], but we
denote all arrows just by α or β, so that αβ = 0 = βα (and so that at any vertex, at most
one α-arrow and at most one β-arrow start, and similarly, at most one α-arrow and at most
one β-arrow end; finally, the arrow a1 → d0 is an α-arrow). The α-arrows are drawn as
solid arrows, the β-arrows are the dashed ones.
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The path starting at d0 is an alternating β-α-path of length r with vertices d0, d1, . . . , dr .
The α-path of length 2 ending at am with m ≥ 3 starts in bm+2. Similarly, the α-path of
length 2 ending at bm with m ≥ 2 starts in am+2.

There are the following additional relations: the square of any loop is zero, and we have
αn = βm, whenever this makes sense.

It is easily seen that pd di = r − i (in particular pd d0 = r) and that pdu = pd v =
pdw = pd c−1 = pd b−1 = ∞.

The algebra �m with m ≥ 0 is given by the full subquiver with vertices ai, bi, ci where
i ≤ m and all the vertices u, v,w, d0, . . . , dr .

2 A Finite-Dimensional�m-Module Zm of Projective Dimension r + m

We are going to exhibit a sequence of �m-modules Zm. All are direct sums of string
modules.

For Zm with m even, the southeast arrows are α-arrows; for m odd, the southeast arrows are
β-arrows.

Proposition For m ≥ 0, we have �Zm+1 = Zm, and pdZm = r + m.
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Proof The first assertion is easily verified. Since pd d0 = r and pd d1 = r − 1, the second
assertion is an immediate consequence, using induction.

Remark The modules Zm with m ≥ 1 are finite dimensional �m-modules, but not �m−1-
modules. Since the projective dimension of any Zm is finite, the modules Zm with m ≥ 2
are counter-examples to Claim 2 of [1].

3 The Big Finitistic Dimension of�m

Let �′
1 be obtained from �2 by deleting the vertices a2 and b2. We note the following: Let

M be a �m-module. If m = 1 or m ≥ 3, then �M is a �m−1-module. If m = 2, then �M

is a �′
1-module.

LetX be the set of the following 10 isomorphism classes of �′
1-modules; these are string

modules X with Xc2 �= 0.

Lemma 1 The modules in X have infinite projective dimension.

Proof For the modules X in the first row, c−1 is a direct summand of �2X. For the modules
X in the second row, v is a direct summand of �3X.

Lemma 2 Any �′
1-module is the direct sum of a �1-module, of copies of P(c2), and of

copies of modules in X .

Proof Let M be a �′
1-module without a direct summand of the form P(c2). Let U be the

subquiver of the quiver of �′
1 with vertices d0, a1, a0, c1, c2, b1.

Since U is a Dynkin quiver, any representation of U is a direct sum of finite-dimensional
indecomposable representations. We decompose the restriction M|U of M to U as follows:
M|U = X ⊕ Y , where X is a direct sum of copies of modules in X and Yc2 = 0.

We claim that X is a submodule of M . For the proof, we use that the maps α : Xc2 →
Xc1 , α : Xc1 → Xa0 , α : Xa1 → Xd0 , and β : Xc2 → Xb1 are surjective. Since
M has no direct summand of the form P(c2), we have α3Mc2 = β2Mc2 = 0, thus
αXa0 = 0 and βXb1 = 0. The relations αβ = 0 = βα show that also the subspaces
βXd0 , βXa0 , βXc1 , αXb1 all are zero.

Let M ′ be defined by M ′|U = Y and M ′
x = Mx for those vertices x in the quiver of �′

1
which do not belong to U . Clearly, M ′ is a submodule of M and we have M = X ⊕ M ′. By
construction, M ′

c2
= 0, thus M ′ is a �1-module.

Corollary If M is a �2-module of finite projective dimension, then �M is a �1-module.
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Proof The syzygy-module �M is a �′
1-module of finite projective dimension, thus

according to Lemma 1 and Lemma 2 a �1-module.

Proposition Any �m-module of finite projective dimension has projective dimension at
most r + m.

Proof Let M be a �m-module of finite projective dimension.
First, let m = 0. The algebra �0 is the product of an algebra of global dimension r

(with vertices d0, . . . , dr ) and an algebra (with vertices a0, c0, b0, u, v, w, b−1, c−1) whose
non-projective modules have infinite projective dimension. Thus pdM ≤ r .

Now, let m ≥ 1. Then �M is a �m−1-module of finite projective dimension. By
induction pd�M ≤ r + m − 1, thus pdM ≤ r + m.

4 Direct Limits

The abstract of [1] claims that there exist infinite dimensional �-modules of finite pro-
jective dimension which are not direct limits of finitely generated representations of finite
projective dimension. Apparently, the author refers to the �m-modules labelled Mm which
are presented in Claim 4 of [1] (these are the only infinite dimensional �-modules exhib-
ited in the paper; they are used in order to show that Fin. dim. �m ≥ r + m). Indeed, these
modules Mm have finite projective dimension, namely pdMm = r + m. However, the mod-
ules Mm are direct limits of finitely generated modules of finite projective dimension, as we
will show.

For m ≥ 0 and t ≥ 1, let us introduce a �m-module Zm[t] such that Zm[1] = Zm, with
a submodule Umt ⊂ Zm[t], as well as a map φmt : Zm[t] → Zm[t +1] with kernel Umt .
Below, we display the modules Zm[t] with t = 3. The submodule Umt is the zero module
in case m ≥ 3, and is the shaded part in case m ≤ 2. The module X = Zm[t]/Umt has a
filtration 0 ⊆ X0 ⊂ X1 ⊂ · · · ⊂ Xt ⊆ Zm[t]/Umt with isomorphic subfactors Xs/Xs−1
for 1 ≤ s ≤ t . In our display, we enclose the subfactors Xs/Xs−1 with 1 ≤ s ≤ 3 by dotted
lines.
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The map φmt is given by the obvious embedding of Zm[t]/Umt into Zm[t+1] and we define
Mm = limt (Zm[t], φmt ). For m ≥ 1, the modules Mm are those presented in [1], Claim 4.
As in Section 2, one easily checks that �(Zm+1[t]) = Zm[t] for any m ≥ 0 and t ≥ 1, so
that pdZm[t] = r + m. Also, �Mm+1 = Mm, and therefore pdMm = r + m.

Remark For m ≥ 3, the module Mm is just a Prüfer module for its support algebra (which
is hereditary).

Appendix: The shape of the Indecomposable Projective�5-Modules

These graphical displays can be found in [1]. But the referee has suggested to provide the
pictures also here.
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