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Abstract
We consider the smallest triangulated subcategory of the unbounded derived module cate-
gory of a ring that contains the injective modules and is closed under set indexed coproducts.
If this subcategory is the entire derived category, then we say that injectives generate for the
ring. In particular, we ask whether, if injectives generate for a collection of rings, do injec-
tives generate for related ring constructions, and vice versa. We provide sufficient conditions
for this statement to hold for various constructions including recollements, ring extensions
and module category equivalences.
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1 Introduction

The finitistic dimension conjecture is a longstanding open problem in the representation
theory of finite dimensional algebras. Recently, Rickard proved that if the derived category
of a finite dimensional algebra is ‘generated’ by its injective modules, then the algebra
satisfies the finitistic dimension conjecture [32, Theorem 4.3]. In this paper we provide
techniques to detect if this generation property holds for rings obtained from various ring
constructions.

The finitistic dimension conjecture is prolific in the area of representation theory, not
least because if it was true, then many other conjectures would follow, including the Nunke
condition and the generalised Nakayama conjecture. Happel provides a summary of these
conjectures and the relationship between them in [15]. In a talk in 2001, Keller [22] noted
that a finite dimensional algebra satisfies both the Nunke condition and the generalised
Nakayama conjecture if its derived module category is generated, as a triangulated category
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with coproducts, by the injective modules. If this is the case, then we say that injectives gen-
erate for the algebra. Keller asked whether, ‘injectives generate’ also implied the finitistic
dimension conjecture, to which Rickard [32, Theorem 4.3] provided an affirmative answer.

Since a finite dimensional algebra satisfies the finitistic dimension conjecture if injec-
tives generate for that algebra, it is natural to ask, for which classes of algebras do
injectives generate? There are many classes of finite dimensional algebras for which injec-
tives generate, including commutative algebras, Gorenstein algebras and monomial algebras
[32, Theorem 8.1]. In fact, there is currently no known example of a finite dimensional
algebra over a field for which injectives do not generate. However, it is not the case that
injectives generate for all rings; one counterexample is the polynomial ring in infinitely
many variables [32, Theorem 3.5].

There is extensive work into finding methods that can be used to identify rings that sat-
isfy particular homological properties. One such approach is to consider a collection of
related rings and ask whether, if some of the rings have a property, do the others as well.
For example, this method has been applied to the finitistic dimension conjecture with rec-
ollements of derived categories [10, 16], ring homomorphisms [35, 37–39], and operations
defined on the quiver of a quiver algebra [8, 13, 14]. We apply the same philosophy to the
property ‘injectives generate’. This leads us to employ reduction techniques, originally used
in calculating the finitistic dimension of a ring, to check if injectives generate for a ring,
including the arrow removal for quiver algebras defined by Green, Psaroudakis and Solberg
[14, Section 4].

One of the most general ring constructions is given by two rings A and B and a ring
homomorphism f : B → A between them. In Section 5, we provide sufficient conditions
on the ring homomorphism f such that, if injectives generate for A, then injectives gen-
erate for B, and vice versa. The conditions we supply are satisfied by many familiar ring
constructions, including those shown in Theorem 1.1.

Theorem 1.1 Let A and B be rings. Suppose that injectives generate for B. If one of the
following holds, then injectives generate for A.

(i) A is the trivial extensionB�M for a (B, B)-bimoduleM such that the ideal (0,M) ≤
A has finite flat dimension as a left A-module. [Lemma 5.9, Example 5.10]

(ii) A is a Frobenius extension of B. [Lemma 5.14, Example 5.15]
(iii) A is an almost excellent extension of B. [Lemma 5.14, Example 5.15]

In particular, consider the triangular matrix ring of two rings B and C and a (C, B)-
bimodule M , denoted by

A :=
(

C CMB

0 B

)
.

The ring A is isomorphic to the trivial extension (C × B) � M . Hence, if the nilpotent
ideal (

0 CMB

0 0

)
≤ A,

has finite flat dimension as a left A-module, and injectives generate for C × B, then
Theorem 1.1 applies and injectives generate for A.

The triangular matrix ring A also induces a recollement of the derived module category
of A with respect to the derived module categories of B and C. A recollement is a diagram
of six functors between three derived module categories emulating a short exact sequence
of rings introduced by Beı̆linson, Bernstein and Deligne [6]. In Section 6, we focus on the
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interaction between rings that appear in a recollement with respect to injective generation.
In particular, we consider recollements of unbounded derived categories that restrict to rec-
ollements of bounded (above or below) derived categories. Angeleri Hügel, Koenig, Liu and
Yang provide necessary and sufficient conditions for a recollement to restrict to a bounded
(above) recollement [2]. In Proposition 6.14 we prove an analogous result to characterise
when a recollement restricts to a bounded below recollement. These characterisations can
be used to prove Theorem 1.2.

Theorem 1.2 Let (R) = (D (B) ,D (A) ,D (C)) be a recollement of unbounded derived
module categories with A a finite dimensional algebra over a field. Suppose that injectives
generate for both B and C. If one of the following conditions holds, then injectives generate
for A.

(i) The recollement (R) restricts to a recollement of bounded above derived categories.
[Proposition 6.13]

(ii) The recollement (R) restricts to a recollement of bounded below derived categories.
[Proposition 6.15]

The recollement induced by a triangular matrix algebra restricts to a recollement of
bounded above derived categories, so Theorem 1.2 can be applied to triangular matrix
algebras.

The techniques used in the proof of Theorem 1.2 can be used to prove similar results
about recollements of more general triangulated categories. In Section 7, we focus on the
recollement of triangulated categories induced from the recollement of module categories,

(Mod-(A/AeA), Mod-A, Mod-eAe),

where A is a ring and e ∈ A is an idempotent. This recollement of module categories has
been studied extensively by Green, Psaroudakis and Solberg [14, Section 3, Section 5] as a
tool to compare the finitistic dimensions of A/AeA, A and eAe. Note that the little finitistic
dimension of a finite dimensional algebra � is defined as

findim(�) = sup{proj.dim� (M�) : M� ∈ mod-�, proj.dim� (M�) < ∞},
and the big finitistic dimension is defined as

FinDim(�) = sup{proj.dim� (M�) : M� ∈ Mod-�, proj.dim� (M�) < ∞}.
In particular, in [14, Theorem B] it is shown that, when A is a finite dimensional algebra

over an algebraically closed field and the semi-simple right A-module

S = (1 − e)A/rad ((1 − e)A),

has finite injective dimension, if findim(eAe) < ∞, then findim(A) < ∞. This extends
the work of Fuller and Saorı́n [13], where they prove that if findim(eAe) < ∞, then
findim(A) < ∞ when SA has projective dimension at most one. In Section 7, we provide
similar results for injective generation. Moreover, we consider the big finitistic dimensions
of A/AeA, A and eAe when A/AeA has finite flat dimension as a left A-module.

Theorem 1.3 (Theorem 7.7) Let A be a finite dimensional algebra over a field and e ∈ A

be an idempotent. Suppose that A/AeA has finite flat dimension as a left A-module. If
FinDim(A/AeA) < ∞ and FinDim(eAe) < ∞, then FinDim(A) < ∞.
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Note that there is a ‘dual’ property to ‘injectives generate’. In particular, if the derived
module category of a ring is generated, as a triangulated category with products, by the
projective modules, then we say that projectives cogenerate for the ring. Rickard proves that,
if projectives cogenerate for a finite dimensional algebra A, then the finitistic dimension
conjecture holds for Aop [32, Proposition 5.2]. In this paper, alongside the results about
injective generation, we provide analogous results for projective cogeneration.

1.1 Layout of the Paper

In Section 2, we recall the definitions and some useful properties of localising and colocal-
ising subcategories. Section 3 showcases the techniques used in this paper to prove injective
generation statements through a straightforward example, namely, for a tensor product alge-
bra over a field. In Section 4, we show that separable equivalence preserves the property
‘injectives generate’. Section 5 considers general ring homomorphisms and includes the
proof of Theorem 1.1. The final two sections of the paper concern the interaction between
injective generation statements and rings that appear in recollements. In particular, Section 6
focuses on recollements of derived categories of rings and includes Theorem 1.2. Section 7
concerns recollements of module categories and their induced recollements of triangulated
categories, including the proof of Theorem 1.3.

2 Preliminaries

In this section, we provide the required definitions and preliminary results that will be
used throughout the paper. Section 2.2 recalls the definition of localising and colocalising
subcategories of the derived module category which we require for the definition of injec-
tive generation. In Section 2.4 we focus on showing when triangle functors of the derived
category preserve specific properties of complexes.

2.1 Notation

Firstly, we fix some notation. All rings and ring homomorphisms are unital, and modules
are right modules unless otherwise stated. For a ring A and a left A-module M , we denote
M∗ to be the right A-module HomZ (AM, Q/Z).

We use the following notation for various categories.

• Mod-A is the category of all A-modules, and mod-A is the category of all finitely
generated A-modules.

• Inj-A is the category of all injective A-modules.
• Proj-A is the category of all projective A-modules.
• K (A) is the unbounded homotopy category of cochain complexes of A-modules.
• D (A) is the unbounded derived category of cochain complexes of A-modules. D∗(A)

with ∗ ∈ {−,+, b} is the bounded above, bounded below and bounded derived category
respectively.

We shall be considering functors between derived categories and properties that they pre-
serve. For brevity, we shall often abuse terminology by writing, for example, that a functor
preserves bounded complexes of projectives when we mean that it preserves the property of
being quasi-isomorphic to a bounded complex of projectives.
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Let A and B be rings and f : B → A be a ring homomorphism. The functors induced
by f will be denoted as follows.

• Induction, IndA
B := −⊗BAA : Mod-B → Mod-A,

• Restriction, ResA
B

:= HomA (BA, −) : Mod-A → Mod-B,
• Coinduction, CoindA

B := HomB (AA, −) : Mod-B → Mod-A.

2.2 (Co)Localising Subcategories

There are many ways to generate the unbounded derived category of a ring, here we focus
on generation via localising and colocalising subcategories. First we recall their definitions.

Definition 2.1 ((Co)Localising Subcategory) Let A be a ring and S be a class of complexes
in D (A).

• A localising subcategory of D (A) is a triangulated subcategory of D (A) closed under
set indexed coproducts. The smallest localising subcategory of D (A) containing S is
denoted by LocA (S).

• A colocalising subcategory of D (A) is a triangulated subcategory of D (A) closed
under set indexed products. The smallest colocalising subcategory of D (A) containing
S is denoted by ColocA (S).

There are many well-known properties of localising and colocalising subcategories, some
of which we recall now.

Lemma 2.2 [32, Proposition 2.1] Let A be a ring and C be a triangulated subcategory of
D (A).

(i) If C is either a localising subcategory or a colocalising subcategory of D (A), then C
is closed under direct summands.

(ii) Let X = (
Xi, di

)
i∈Z ∈ D (A) be bounded. If the module Xi is in C for all i ∈ Z, then

X is in C.

Remark 2.3 If A is a ring, then every bounded complex of injective A-modules is in
LocA (Inj-A) by Lemma 2.2. Similarly, every bounded complex of projective A-modules is
in ColocA (Proj-A).

Throughout this paper we investigate when a localising subcategory or colocalising sub-
category of D (A) generated by some class of complexes S is the entire unbounded derived
module category.

Definition 2.4 Let A be a ring and S be a class of complexes in D (A).

• If LocA (S) = D (A), then we say that S generates D (A).
• If ColocA (S) = D (A), then we say that S cogenerates D (A).

It is well-known that for a ring A, its unbounded derived category D (A) is generated
by the projective A-modules and cogenerated by the injective A-modules, see, for example,
[32, Proposition 2.2]. Since a localising subcategory is closed under set indexed coproducts
and direct summands, it follows immediately that the regular module AA also generates
D (A).
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Remark 2.5 Let A be a ring and MA be a generator of Mod-A (in the sense that every A-
module is a quotient of a set indexed coproduct of copies of M). Recall that, since MA is
a generator, every projective A-module is a direct summand of a set indexed coproduct of
copies of MA. Thus MA generates D (A).

Similarly, suppose that MA is a cogenerator of Mod-A (in the sense that every A-module
is a submodule of a set indexed product of copies of MA). Then every injective A-module
is a direct summand of a set indexed product of copies of MA, and MA cogenerates D (A).
In particular, the injective cogenerator A∗

A = HomZ (AA,Q/Z) cogenerates D (A).

In this paper we investigate when the derived category is generated as a localising
subcategory by the injective modules and as a colocalising subcategory by the projective
modules.

Definition 2.6 Let A be a ring.

• If LocA (Inj-A) = D (A), then we say that injectives generate for A.
• If ColocA (Proj-A) = D (A), then we say that projectives cogenerate for A.

2.3 Functors

Many of the results in this paper rely on using functors that preserve the properties that
define localising and colocalising subcategories. Since these ideas are mentioned often, we
collate them here.

Definition 2.7 ((Pre)image) Let A and B be rings and F : D (A) → D (B) be a triangle
functor.

• Let CB be a full triangulated subcategory of D (B). The preimage of CB under F is the
smallest full subcategory of D (A) consisting of the complexes X such that F(X) is in
CB . (Note that this subcategory is a triangulated subcategory of D (A).)

• Let CA be a full triangulated subcategory of D (A). The image of F applied to CA is
the smallest full triangulated subcategory of D (B) that contains F(X) for all X in CA.
Denote the image of F by im(F ).

Lemma 2.8 Let A and B be rings and F : D (A) → D (B) be a triangle functor.

(i) If F preserves set indexed coproducts, then the preimage of a localising subcategory
of D (B) is a localising subcategory of D (A).

(ii) If F preserves set indexed products, then the preimage of a colocalising subcategory
of D (B) is a colocalising subcategory of D (A).

Proof The result follows immediately from the definition of localising and colocalising
subcategories.

Proposition 2.9 Let A and B be rings and F : D (A) → D (B) be a triangle functor. Let
S and T be classes of complexes in D (A) and D (B) respectively.

(i) Suppose that S generates D (A). If F preserves set indexed coproducts, and F(S) is
in LocB (T ) for all S in S , then im(F ) is a subcategory of LocB (T ).
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(ii) Suppose that S cogenerates D (A). If F preserves set indexed products, and F(S) is
in ColocB (T ) for all S in S , then im(F ) is a subcategory of ColocB (T ).

Proof (i) Suppose that F preserves set indexed coproducts and that F(S) is in LocB (T )

for all S in S . By Lemma 2.8, the preimage of LocB (T ) under F is a localising
subcategory. Furthermore, the preimage contains S , so it also contains LocA (S) =
D (A). Thus F(X) is in LocB (T ) for all X ∈ D (A).

(ii) This follows similarly to (i).

2.4 Adjoint Functors

Homomorphism groups in the derived category can be used to characterise certain properties
of complexes. In this subsection we consider some of these properties and their interaction
with adjoint pairs of functors. Some of these well-known results can be found in [31, Proof
of Proposition 8.1] and [23, Proof of Theorem 1].

Remark 2.10 Let A be a ring. Let X ∈ D (A) and n ∈ Z. Recall that, since A is a projec-
tive generator of Mod-A, HomD(A) (A,X[n]) = 0 if and only if Hn (X) = 0. Similarly,
since A∗ is an injective cogenerator of Mod-A, HomD(A) (X,A∗[n]) = 0 if and only if
H−n (X) = 0.

Definition 2.11 (Compact objects) Let T be a triangulated category and C ∈ T . Then C is
compact if for all sets I and objects {Xi}i∈I ⊂ T the canonical morphism

⊕
i∈I

HomT (C, Xi) → HomT

(
C,

⊕
i∈I

Xi

)
,

is an isomorphism.

Recall that the compact objects ofD (A) are the perfect complexes ofD (A), i.e. the com-
plexes that are quasi-isomorphic to bounded complexes of finitely generated projectives.
See for example [7, Proposition 6.4].

Lemma 2.12 Let A be a ring.

(i) A complex X ∈ D (A) is bounded in cohomology if and only if, for each compact
object C ∈ D (A), there exists N ∈ Z such that HomD(A) (C,X[n]) = 0 for all
|n| > N .

(ii) A complex I ∈ D (A) is quasi-isomorphic to a bounded complex of injectives if and
only if, for each complex X ∈ D (A) that is bounded in cohomology, there exists
N ∈ Z such that HomD(A) (X, I [n]) = 0 for all |n| > N .

(iii) A complex P ∈ D (A) is quasi-isomorphic to a bounded complex of projectives if
and only if, for each complex X ∈ D (A) that is bounded in cohomology, there exists
N ∈ Z such that HomD(A) (P,X[n]) = 0 for all |n| > N .

Proof (i) Let X ∈ D (A). Suppose that, for each compact object C ∈ D (A), there exists
N ∈ Z such that HomD(A) (C, X[n]) = 0 for all |n| > N . Then, as A is compact,
Hn (X) ∼= HomD(A) (A, X[n]) = 0 for all but finitely many n ∈ Z.

Now suppose that X ∈ D (A) is bounded in cohomology. Then there exists Y ∈
D (A) such that Y is bounded, and X is quasi-isomorphic to Y . Let C ∈ D (A)
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be a compact object. Then C is quasi-isomorphic to a bounded complex of finitely
generated projectives P ∈ D (A). Hence, for all n ∈ Z,

HomD(A) (C, X[n]) ∼= HomK(A) (P, Y [n]) .

Since both P and Y are bounded, HomK(A) (P, Y [n]) = 0 for all but finitely many
n ∈ Z. Hence, there exists N ∈ Z such that HomD(A) (C,X[n]) = 0 for all |n| > N .

(ii) Suppose that I ∈ D (A) is quasi-isomorphic to a bounded complex of injectives
J ∈ D (A). Let X ∈ D (A) be bounded in cohomology. Then there exists Y ∈ D (A)

such that Y is bounded, and X is quasi-isomorphic to Y . Thus

HomD(A) (X, I [n]) ∼= HomK(A) (Y, J [n]) ,

for all n ∈ Z. Moreover, both Y and J are bounded, so HomK(A) (Y, J [n]) = 0 for all
but finitely many n ∈ Z. Hence, there exists N ∈ Z such that HomD(A) (X, I [n]) = 0
for all |n| > N .

Now let us consider the converse. Let Z ∈ D (A). Suppose that for each
X ∈ D (A), such that X is bounded in cohomology, there exists N ∈ Z such that
HomD(A) (X, Z[n]) = 0 for all |n| > N . Then, taking X = A, we have that
Hn (Z) ∼= HomD(A) (A,Z[n]) = 0 for all but finitely many n ∈ Z. Consequently,
Z has a bounded below K-injective resolution I = (

I i , di
)
i∈Z ∈ D (A) that has

nonzero cohomology in only finitely many degrees. Hence, there exists N ′ ∈ Z such
that, for all n > N ′, Hn (I) = 0, and,

0 = HomD(A)

(⊕
i∈Z

ker(di), Z[n]
)

∼= HomK(A)

(⊕
i∈Z

ker(di), I [n]
)

.

In particular,

HomK(A)

(
ker(dn), I [n]) = 0,

for all n > N ′. Hence, the epimorphism dn−1 : In−1 → im(dn−1) ∼= ker(dn) splits.
Consequently, ker(dn) is an injective A-module, and the good truncation

τ≤n(I ) = · · · → 0 → I 0 → I 1 → · · · → In−1 → ker(dn) → 0 → . . . ,

is a bounded complex of injectives that is quasi-isomorphic to I .
(iii) This follows similarly to (ii).

Lemma 2.13 Let A be a ring and X ∈ D (A).

(i) The following are equivalent:

(a) X is bounded above in cohomology,
(b) For each compact object C ∈ D (A), there exists N ∈ Z such that

HomD(A) (C, X[n]) = 0 for all n > N ,
(c) For each Y ∈ D (A) that is bounded in cohomology, there exists N ∈ Z such that

HomD(A) (X, Y [n]) = 0 for all n < N .

(ii) The following are equivalent:

(a) X is bounded below in cohomology,
(b) For each compact object C ∈ D (A), there exists N ∈ Z such that

HomD(A) (C, X[n]) = 0 for all n < N ,
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(c) For each Y ∈ D (A) that is bounded in cohomology, there exists N ∈ Z such that
HomD(A) (Y,X[n]) = 0 for all n < N .

Proof (i) The equivalence of (a) and (b) is similar to the proof of Lemma 2.12 (i).
Now we show that (c) implies (a). Suppose for each Y ∈ D (A) that is bounded in

cohomology, there exists N ∈ Z such that HomD(A) (X, Y [n]) = 0 for all n < N .
Then, taking Y = A∗, we have that HomD(A) (X,A∗[n]) = 0 for all n < N . Hence,
H−n (X) = 0 for all n < N .

Finally, we show that (a) implies (c). Suppose that X ∈ D (A) is bounded above in
cohomology. Then X has a bounded above K-projective resolution P ∈ D (A). Let
Y ∈ D (A) be bounded in cohomology. Then there exists Z ∈ D (A) such that Z is
bounded, and Y is quasi-isomorphic to Z. Thus,

HomD(A) (X, Y [n]) ∼= HomK(A) (P, Z[n]) ,

for all n ∈ Z. Since P is bounded above, and Z is bounded, there exists N ∈ Z such
that HomK(A) (P, Z[n]) = 0 for all n < N .

(iii) This follows similarly to (i).

The properties that are considered in Remark 2.10, and Lemmas 2.12 and 2.13 are
defined using homomorphism groups, so they interact well with adjoint functors. Recall
that, for brevity, we shall often abuse terminology by writing, for example, that a functor
preserves bounded complexes of projectives when we mean that it preserves the property of
being quasi-isomorphic to a bounded complex of projectives.

Lemma 2.14 Let A and B be rings. Let F : D (A) → D (B) and G : D (B) → D (A) be
triangle functors such that (F,G) is an adjoint pair.

(i) If G preserves set indexed coproducts, then F preserves compact objects.
(ii) If F preserves compact objects, then G preserves complexes bounded (above or

below) in cohomology.
(iii) If F preserves complexes bounded in cohomology, then G preserves bounded

complexes of injectives and complexes bounded below in cohomology.
(iv) If G preserves bounded complexes of injectives, then F preserves complexes bounded

(above or below) in cohomology.
(v) If G preserves complexes bounded in cohomology, then F preserves bounded

complexes of projectives and complexes bounded above in cohomology.
(vi) If F preserves bounded complexes of projectives, then G preserves complexes

bounded (above or below) in cohomology.

Proof (i) Let C ∈ D (A) be a compact object, and let {Xi}i∈I ⊂ D (B) for an index
set I . Since C is compact and G preserves set indexed coproducts, there are natural
isomorphisms

HomD(B)

(
F(C),

⊕
i∈I

Xi

)
∼= HomD(A)

(
C,

⊕
i∈I

G(Xi)

)
,

∼=
⊕
i∈I

HomD(A) (C, G(Xi)),

∼=
⊕
i∈I

HomD(B) (F (C), Xi).
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Thus F(C) is compact.
The remaining claims follow from Remark 2.10, Lemmas 2.12 and 2.13 and the

adjunction

HomD(A) (X,G(Y )[n]) ∼= HomD(B) (F (X), Y [n]) ,

for appropriate choices of X or Y .

(ii) Let X run over all compact objects, and apply Lemmas 2.12 (i), 2.13 (i) and (ii).
(iii) Let X run over all complexes bounded in cohomology, and apply Lemmas 2.12 (ii)

and 2.13 (ii).
(iv) Let Y = B∗, and apply Remark 2.10.
(v) Let Y run over all complexes bounded in cohomology, and apply Lemmas 2.12 (iii)

and 2.13 (i).
(vi) Let X = A, and apply Remark 2.10.

3 Tensor Product Algebra

The first ring construction we consider is the tensor product of two finite dimensional alge-
bras A and B over a field k. In particular, we prove that if injectives generate for the two
algebras, then injectives generate for their tensor product. Firstly, we recall a description of
the injective and projective modules of a tensor product algebra.

Lemma 3.1 [9, Chapter IX, Proposition 2.3], [36, Lemma 3.1] Let A and B be finite
dimensional algebras over a field k. Let M be an A-module and N be a B-module.

(i) If M is a projective A-module and N is a projective B-module, then M⊗kN is a
projective (A⊗kB)-module.

(ii) If M is an injective A-module and N is an injective B-module, then M⊗kN is an
injective (A⊗kB)-module.

Notice that the structure of these modules is functorial in either argument. Let M be an
A-module and N be a B-module. Define

FN := −⊗kN : Mod-A → Mod-(A⊗kB),

GM := M⊗k−: Mod-B → Mod-(A⊗kB).

Since k is a field, the functors FN and GM are exact. Hence, these functors extend to
triangle functors FN : D (A) → D (A⊗kB) and GM : D (B) → D (A⊗kB).

Proposition 3.2 Let A and B be finite dimensional algebras over a field k.

(i) If injectives generate for both A and B, then injectives generate for A⊗kB.
(ii) If projectives cogenerate for both A and B, then projectives cogenerate for A⊗kB.

Proof (i) Since A is a finite dimensional algebra over the field k, every injective A-
module is a direct summand of a set indexed coproduct of copies of DAA =
Homk (AA, k). Thus LocA (Inj-A) = LocA (DA). Similarly, LocB (Inj-B) =
LocB (DB).
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Define C := A⊗kB. By Lemma 3.1, FDB(DA) = DA⊗kDB is an injective C-
module. Moreover, FDB preserves set indexed coproducts. Suppose that injectives
generate for A. Then, by Proposition 2.9, im(FDB) is a subcategory of LocC (Inj-C).
In particular, FDB(A) = A⊗kDB is in LocC (Inj-C).

Now consider the functor GA := A⊗k−. By the previous argument

GA(DB) = A⊗kDB = FDB(A) ∈ LocC (Inj-C) .

Moreover, GA preserves set indexed coproducts. Suppose that injectives generate for
B. Then, by Proposition 2.9, im(GA) is a subcategory of LocC (Inj-C). In particular,

GA(B) = A⊗kB = C ∈ LocC (Inj-C) .

Consequently, LocC (C) = D (C) is a subcategory of LocC (Inj-C), and injectives
generate for C = A⊗kB.

(ii) Both kB and DAk are finite dimensional k-modules, so FB := −⊗kB and GDA :=
DA⊗k− preserve set indexed products. Hence the projectives cogenerate statement
follows similarly to (i) by considering the functors FB and GDA.

The converse to Proposition 3.2 is shown as an application of the results about ring
homomorphisms in Section 5. In particular, the converse statement follows immediately
from Lemma 5.2.

4 Separable Equivalence

Rickard proved that if two algebras are derived equivalent, then injectives generate for one if
and only if injectives generate for the other [32, Theorem 3.4]. Here we show the statement
also holds for separable equivalence of rings, defined by Linckelmann [24, Section 3]. In
particular, we prove the result using separably dividing rings [5, Section 2].

Definition 4.1 (Separably dividing rings.) Let A and B be rings. Then B separably divides
A if there exist bimodules AMB and BNA such that

(i) The modules AM , MB , BN and NA are all finitely generated projectives,
(ii) There exists a (B, B)-bimodule Y such that BN⊗AMB and B ⊕ Y are isomorphic as

(B, B)-bimodules.

Proposition 4.2 Let A and B be rings such that B separably divides A.

(i) If injectives generate for A, then injectives generate for B.
(ii) If projectives cogenerate for A, then projectives cogenerate for B.

Proof (i) Let AMB , BNA and BYB be as in Definition 4.1. Consider the adjoint functors

−⊗BN : Mod-B → Mod-A,

HomA (N,−) : Mod-A → Mod-B.

Since both BN and NA are projective, −⊗BN and HomA (N,−) are exact and
extend to triangle functors. As HomA (N,−) has an exact left adjoint it preserves
injective modules. Furthermore, the module NA is a finitely generated projective, so
HomA (N,−) also preserves set indexed coproducts.
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Suppose that injectives generate for A. Since HomA (N,−) preserves injective
modules and set indexed coproducts, its image is a subcategory of LocB (Inj-B) by
Proposition 2.9. By adjunction

HomA (BN, HomB (MB, BB)) ∼= HomB (BN⊗AMB, BB) ,

as right B-modules, so HomB (BN⊗AMB, BB) is in LocB (Inj-B). As (B, B)-
bimodules N⊗AM is isomorphic to B ⊕ Y , so

HomB (BN⊗AMB, BB) ∼= BB ⊕ HomB (BYB, BB) ,

as right B-modules. Moreover, localising subcategories are closed under direct
summands, so B is in LocB (Inj-B), and injectives generate for B.

(ii) Both AM and MB are finitely generated projective modules, so −⊗AMB preserves set
indexed products and projective modules. Suppose that projectives cogenerate for A.
Then im(−⊗AMB) is a subcategory of ColocB (Proj-B) by Proposition 2.9. Moreover,
B∗ is a direct summand of (B∗⊗BN)⊗AM . Hence, B∗ is in ColocB (Proj-B), and
projectives cogenerate for B.

Definition 4.3 (Separable Equivalence) [24, Definition 3.1] Let A and B be rings. Then A

and B are separably equivalent if A separably divides B via bimodules AMB and BNA, and
B separably divides A via the same bimodules AMB and BNA.

Example 4.4 Let G be a finite group. Let k be a field of positive characteristic p, and H

be a Sylow p-subgroup of G. Then the group algebras kG and kH are separably equivalent
[24, Section 3].

Corollary 4.4.1 Let A and B be separably equivalent rings.

(i) Injectives generate for A if and only if injectives generate for B.
(ii) Projectives cogenerate for A if and only if projectives cogenerate for B.

Proof Since A and B are separably equivalent, A separably divides B and B separably
divides A.

5 Ring Homomorphisms

In this section we provide sufficient conditions on a ring extension f : B → A such that
if injectives generate for A, then injectives generate for B, and vice versa. In particular,
we focus on Frobenius extensions [21, 25], almost excellent extensions [40] and trivial
extensions. In Section 5.1 we apply the results in this section to the arrow removal operation
defined in [14, Section 4].

Recall that for a ring homomorphism f : B → A there exist three functors between the
module categories of A and B, denoted as follows,

• Induction, IndA
B := −⊗BAA : Mod-B → Mod-A,

• Restriction, ResA
B

:= HomA (BA, −) : Mod-A → Mod-B,
• Coinduction, CoindA

B := HomB (AA, −) : Mod-B → Mod-A.

Note that both (IndA
B, ResA

B) and (ResA
B, CoindA

B) are adjoint pairs of functors.
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Remark 5.1 If BA has finite flat dimension and M ∈ Mod-B, then TorBi (M,A) = 0 for
all but finitely many i ∈ Z. Hence, LIndA

B(M) is bounded in cohomology. Moreover, any
complex X ∈ D (B) that is bounded in cohomology is in the smallest triangulated sub-
category generated by Mod-B. Consequently, LIndA

B(X) is bounded in cohomology. Thus,
LIndA

B preserves complexes bounded in cohomology, and, by Lemma 2.14, ResA
B preserves

bounded complexes of injectives.
Similarly, if AB has finite projective dimension, then ExtiB(A, M) = 0 for all but

finitely many i ∈ Z. Thus, RCoindA
B preserves complexes bounded in cohomology, and, by

Lemma 2.14, ResA
B preserves bounded complexes of projectives.

Lemma 5.2 Let A and B be rings with a ring homomorphism f : B → A.

(i) Suppose that A has finite flat dimension as a left B-module and that ResAB(Mod-A)

generates D (B). If injectives generate for A, then injectives generate for B.
(ii) Suppose that A has finite projective dimension as a right B-module and that

ResAB(Mod-A) cogenerates D (B). If projectives cogenerate for A, then projectives
cogenerate for B.

Proof (i) If BA has finite flat dimension as a left B-module, then ResA
B preserves

bounded complexes of injectives by Remark 5.1. Furthermore, ResA
B preserves set

indexed coproducts. Hence, if injectives generate for A, then im(ResA
B) is a subcat-

egory of LocB (Inj-B) by Proposition 2.9. Thus, as ResA
B(Mod-A) generates D (B),

injectives generate for B.
(ii) This statement follows similarly to (i). In particular, if AB has finite projective dimen-

sion as right B-module, then ResA
B preserves bounded complexes of projectives by

Remark 5.1. Then we apply Proposition 2.9 to ResA
B .

There are many ways that ResA
B(Mod-A) could generate D (B). In particular, if AB is a

generator of Mod-B (in the sense that every B-module is a quotient of a set indexed coprod-
uct of copies of AB ), then, by Remark 2.5, AB generates D (B). Note that, if BB is a direct
summand of AB , then AB is a generator of Mod-B. Similarly, if BB is a direct summand of
BA, then B∗

B is a direct summand of (A∗)B , and (A∗)B is a cogenerator of Mod-B. There
are lots of examples of familiar ring extensions which satisfy both this property and the
conditions of Lemma 5.2, some of which we list here.

• Tensor product algebra.
Let A and B be finite dimensional algebras over a field k. Then the tensor prod-

uct algebra A⊗kB is an extension of both A and B. In particular, consider the ring
homomorphism f : A → A⊗kB defined by f (a) := a⊗k1B for a ∈ A. Note that
A⊗kB is free as an (A,A)-bimodule. Thus, A⊗kB is projective as both a left and
right A-module. Moreover, A is a direct summand of A⊗kB as both a left and right A-
module. Consequently, A⊗kB is a generator of Mod-A, and (A⊗kB)∗ is a cogenerator
of Mod-A.

• Frobenius extensions.
Kasch [21] defined a generalisation of a Frobenius algebra called a free Frobe-

nius extension. Nakayama and Tsuzuku [25] generalised this definition further to a
Frobenius extension.
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Definition 5.3 ((Free) Frobenius extension) Let A and B be rings with f : B → A a ring
homomorphism. Then A is a (free) Frobenius extension of B if the following are satisfied.

– AB is a finitely generated projective (respectively free) B-module.
– HomB (AA, BB) is isomorphic as a (B,A)-bimodule to BAA.

The definition of a Frobenius extension implies that the two functors, IndA
B and CoindA

B

are isomorphic. Thus, both IndA
B and CoindA

B are exact.

Example 5.4 There are well-known examples of Frobenius extensions which have the
property that AB is a generator of Mod-B and that (A∗)B is a cogenerator of Mod-B.

• Free Frobenius extensions
Since AB is a finitely generated free B-module, AB is a generator of Mod-B. More-

over, BAA and HomB (AA, BB) are isomorphic as (B,A)-bimodules, so BA is free as
a left B-module. Thus, B∗

B is a direct summand of (A∗)B , and (A∗)B is a cogenerator
of Mod-B.

• Strongly G-graded rings for a finite group G, [4, Example B].
Let G be a finite group and A be a ring graded by G. Then A is strongly graded by G

if AgAh = Agh for all g, h ∈ G. Let 1 be the identity element of G. Then A is a Frobe-
nius extension of A1. Moreover, A1 is a direct summand of A as an (A1, A1)-bimodule.
Thus, AA1 is a generator of Mod-A1, and (A∗)A1 is a cogenerator of Mod-A1. This
collection of graded rings includes skew group algebras, smash products and crossed
products for finite groups.

• Almost excellent extensions.
Almost excellent extensions were defined by Xue [40] as a generalisation of excel-

lent extensions, which were first introduced by Passman [26]. The interaction of
excellent extensions with various properties of rings has been studied in [17].

Definition 5.5 (Almost excellent extension) Let A and B be rings with f : B → A a ring
homomorphism. Then A is an almost excellent extension of B if the following hold.

• There exist a1, a2, ..., an ∈ A such that A = ∑n
i=1 aiB and aiB = Bai for all 1 ≤ i ≤

n.
• A is right B-projective.
• BA is flat, and AB is projective.

Recall the definition of right B-projective rings.

Definition 5.6 (Right B-projective) Let A and B be rings and f : B → A be a ring
homomorphism. A short exact sequence of right A-modules

0 → LA
f−→ KA

g−→ NA → 0,

is an (A,B)-exact sequence if it splits as a short exact sequence of right B-modules.
If every (A,B)-exact sequence also splits as a short exact sequence of right A-modules,

then A is right B-projective.
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By definition, BA is flat and AB is projective, thus, to apply Lemma 5.2, all that
is left to show is that ResA

B(Mod-A) generates and cogenerates D (B). By [34, Corol-
lary 4], CoindA

B(M) = 0 if and only if M = 0 for all M ∈ Mod-B. Consequently,
HomB

(
ResA

B(A),M
) = 0 if and only if M = 0 by adjunction. Since ResA

B(A) = AB

is projective, this is equivalent to AB being a generator of Mod-B. Similarly, (A∗)B is a
cogenerator for Mod-B since IndA

B(M) = 0 if and only if M = 0 [33, Proposition 2.1].

• Trivial extension ring.

Definition 5.7 (Trivial extension ring) Let B be a ring and M be a (B, B)-bimodule. The
trivial extension of B by M , denoted by B �M , is the ring with elements (b,m) ∈ B ⊕ M ,
addition defined by,

(b,m) + (b′, m′) := (b + b′,m + m′),
and multiplication defined by,

(b,m)(b′,m′) := (bb′, bm′ + mb′).

Let A := B�M . Then there exists a ring homomorphism f : B → A, defined by f (b) =
(b, 0) for all b ∈ B. Note that A is isomorphic to B ⊕ M as a (B, B)-bimodule. Thus AB is
a generator of Mod-B, and (A∗)B is a cogenerator of Mod-B. Hence, Lemma 5.2 (i) applies
if BM has finite flat dimension, and Lemma 5.2 (ii) applies if MB has finite projective
dimension.

Example 5.8 – Let A be a ring, then A � A is isomorphic to A[x]/〈x2
〉
.

– Let A and B be rings with AMB an (A,B)-bimodule. Then the triangular matrix ring(
A M

0 B

)
is isomorphic to (A × B) � M .

– Green, Psaroudakis and Solberg [14, Section 4] use trivial extension rings to define
an operation on quiver algebras called arrow removal. This operation is considered in
Section 5.1.

The examples provided so far satisfy Lemma 5.2 because AB generates Mod-B. One
example of a ring construction which satisfies Lemma 5.2 without this assumption is a
quotient ring A := B/I , where I is a nilpotent ideal of B. Since AB is annihilated by I , AB

does not generate Mod-B. However, ResA
B(Mod-A) does generate D (B).

Lemma 5.9 Let B be a ring and I be a nilpotent ideal of B.

(i) Suppose that I has finite flat dimension as a left B-module. If injectives generate for
B/I , then injectives generate for B.

(ii) Suppose that I has finite projective dimension as a right B-module. If projectives
cogenerate for B/I , then projectives cogenerate for B.

Proof The ring homomorphism we shall use is the quotient map f : B → B/I . Let
A := B/I . Then ResA

B(Mod-A) consists of the B-modules annihilated by I . Note that every
B-module M is an iterated extension of MIm/MIm+1 for m ∈ Z+ via the short exact
sequences

0 → MIm+1 −→ MIm −→ MIm/MIm+1 → 0.
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Hence, as I is a nilpotent ideal, every B-module is in the triangulated subcategory of D (B)

generated by ResA
B(Mod-A). Thus, ResA

B(Mod-A) both generates and cogenerates D (B).

(i) By the short exact sequence of left B-modules

0 → I −→ B −→ A → 0,

BA has finite flat dimension if and only if BI has finite flat dimension. Hence, (i)
follows from Lemma 5.2 (i).

(ii) Similarly, by the short exact sequence of right B-modules

0 → I −→ B −→ A → 0,

AB has finite projective dimension if and only if IB has finite projective dimension.
Hence, (ii) follows from Lemma 5.2 (ii).

Example 5.10 Lemma 5.9 can be applied to trivial extension rings. In particular, let S be a
ring and M be an (S, S)-bimodule. Let R := S � M . Then (0,M) is a nilpotent ideal of R

and S ∼= R/(0,M). Thus, if injectives generate for S, and R(0,M) has finite flat dimension,
then Lemma 5.9 (i) applies and injectives generate for R. Similarly, Lemma 5.9 (ii) applies
if (0,M)R has finite projective dimension.

5.1 Arrow Removal

Let � := kQ/I be a path algebra with admissible ideal I . Let a : ve → vf be an arrow of
Q which is not in a minimal generating set of I . Then Green, Psaroudakis and Solberg [14,
Section 4] define the algebra obtained from � by removing the arrow a as � := �/�ā�,
where ā = a + I . Moreover, they prove that this operation can be reformulated in terms of
trivial extension rings.

Proposition 5.11 [14, Proposition 4.4 (iii)] Let � := kQ/I be an admissible quotient
of the path algebra kQ over a field k. Suppose that there are arrows ai : vei

→ vfi
in

Q for i = 1, 2, . . . , t which do not occur in a set of minimal generators of I in kQ

and Hom�

(
ei�, fj�

) = 0 for all i and j in {1, 2, . . . , t}. Let āi = ai + I in �.
Let � = �/�{āi}ti=1�. Then � is isomorphic to the trivial extension � � P , where
P = ⊕t

i=1�ei⊗kfi�.

Since the arrow removal operation can be thought of as a trivial extension, we can apply
Lemmas 5.2 and 5.9 to prove that this operation preserves injective generation.

Proposition 5.12 Let � := kQ/I be an admissible quotient of the path algebra kQ over a
field k. Suppose that there are arrows ai : vei

→ vfi
in Q for i = 1, 2, . . . , t which do not

occur in a set of minimal generators of I in kQ and Hom�

(
ei�, fj�

) = 0 for all i and j

in {1, 2, . . . , t}. Let āi = ai + I in �. Let � = �/�{āi}ti=1�.

(i) Injectives generate for � if and only if injectives generate for �.
(ii) Projectives cogenerate for � if and only if projectives cogenerate for �.

Proof Firstly, note that P = ⊕t
i=1�ei⊗kfi� is projective as both a left and right �-module.

Moreover, ��� is isomorphic to � ⊕ P as a (�, �)-bimodule. Hence, � is projective as
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both a left and right �-module. Consequently, Lemma 5.2 applies with A = � and B = �.
So, if injectives generate for �, then injectives generate for �, and the equivalent statement
for projective cogeneration also holds.

Secondly, there exists a short exact sequence of (�,�)-bimodules

0 → P −→ � −→ � → 0.

By [14, Proposition 4.6 (vii)], P⊗�P = 0, so

��⊗�P ∼= ��⊗�P ∼= �P .

Consequently, since �P is projective, so is ��⊗�P ∼= �P . Similarly,

P⊗���
∼= P⊗���

∼= P�,

and P� is projective, so P� is a projective right �-module. Consequently, Lemma 5.9
applies. In particular, Example 5.10 applies with R = �, (0, SMS) = (0, �P�) = �P�,
and S = R/(0,M) = �. So, if injectives generate for �, then injectives generate for �, and
the similar statement holds for projective cogeneration.

5.2 Frobenius Extensions And Almost Excellent Extensions

To prove the converse statement to Lemma 5.2 for Frobenius extensions and almost
excellent extensions we prove a more general result that connects relatively B-injective
A-modules to injective generation. Recall the definition of (A,B)-exact sequences (see
Definition 5.6).

Definition 5.13 (Relatively projective/injective) Let A and B be rings with a ring homo-
morphism f : B → A. Let MA be an A-module.

• MA is relatively B-projective if HomA (M,−) is exact on (A, B)-exact sequences.
• MA is relatively B-injective if HomA (−,M) is exact on (A,B)-exact sequences.

Let A and B be rings with a ring homomorphism f : B → A. Then any injective A-
module I is relatively B-injective since HomA (−, I ) is exact on all short exact sequences
of A-modules. Similarly, any projective A-module is relatively B-projective. However, for
both Frobenius extensions and almost excellent extensions all projective A-modules are
relatively B-injective, see Example 5.15. This property can be used to prove the converse
statement to Lemma 5.2 for both of these ring extensions.

Lemma 5.14 Let A and B be rings with a ring homomorphism f : B → A.

(i) Suppose thatAB is a finitely generated projective B-module, and that all projectiveA-
modules are relativelyB-injective. If injectives generate forB, then injectives generate
for A.

(ii) Suppose that BA is a finitely generated projective B-module, and that all injective A-
modules are relatively B-projective. If projectives cogenerate for B, then projectives
cogenerate for A.

Proof (i) Since AB is a finitely generated projective, CoindA
B is exact and preserves both

set indexed coproducts and injective modules. Hence, if injectives generate for B, then
im(CoindA

B) is a subcategory of LocA (Inj-A) by Proposition 2.9. Let P be a projective
A-module. Since P is relatively B-injective, P is isomorphic to a direct summand of
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CoindA
B ◦ ResA

B(P ), [19, Section 4.1]. Thus Proj-A is a subcategory of LocA (Inj-A),
and injectives generate for A.

(ii) This follows similarly to (i). In particular, since BA is a finitely generated projective,
IndA

B is exact and preserves set indexed products. Moreover, if an injective A-module I

is relatively B-projective, then I is isomorphic to a direct summand of IndA
B ◦ResA

B(I),
[19, Section 4.1].

Example 5.15 Lemma 5.14 applies to both Frobenius extensions and almost excellent
extensions.

• Frobenius extensions.
Let A and B be rings such that A is a Frobenius extension of B. Let M be an A-

module. Then M is relatively B-injective if and only if M is relatively B-projective,
[19, Proposition 4.1].

• Almost excellent extensions
Recall that, if A is an almost excellent extension of B, then A is right B-projective.

Hence, every A-module is both relatively B-injective and relatively B-projective,
[40, Lemma 1.1]. Thus Lemma 5.14 applies if BA is a finitely generated projective
B-module.

6 Recollements of DerivedModule Categories

In this section we consider the interaction between rings that appear in a recollement of
derived categories with respect to injective generation statements. Firstly, recall the defini-
tion of a recollement of derived categories, introduced by Beı̆linson, Bernstein and Deligne
[6].

Definition 6.1 (Recollement) Let A, B and C be rings. A recollement is a diagram of six
triangle functors as in Fig. 1 such that the following hold:

(i) The composition j∗ ◦ i∗ = 0.
(ii) Each of the pairs (i∗, i∗), (i∗, i!), (j!, j∗) and (j∗, j∗) is an adjoint pair of functors.

(iii) The functors i∗, j! and j∗ are fully faithful.
(iv) For all X ∈ D (A), there exist triangles:

j!j∗X −→ X −→ i∗i∗X −→ j!j∗X[1]
i∗i!X −→ X −→ j∗j∗X −→ i∗i!X[1]

Fig. 1 Recollement of derived categories (R)
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We denote a recollement of the form in Fig. 1 as (R) = (D (B) ,D (A) ,D (C)). If a
recollement (R) exists, then the properties of A, B and C are often related. This allows
one to prove properties about A using B and C, and vice versa. Such a method has been
exploited by Happel [16, Theorem 2] and Chen and Xi [10, Theorem 1.1] to prove various
statements about the finitistic dimension of rings that appear in recollements. These results
can be applied to recollements (R) which restrict to recollements on derived categories
with various boundedness conditions. In this section, we say a recollement (R) restricts to
a recollement (R∗) for ∗ ∈ {−,+, b} if the six functors of (R) restrict to functors on the
essential image of D∗(Mod) in D(Mod). Note that such a restriction is not always possible,
however in [2, Section 4] there are necessary and sufficient conditions for (R) to restrict to
a recollement (R−) or (Rb). In Proposition 6.14 we provide analogous conditions for (R)

to restrict to a recollement (R+).

Example 6.2 One example of a recollement of unbounded derived module categories can be
defined using triangular matrix rings. Let B and C be rings and CMB be a (C,B)-bimodule.
Then the triangular matrix ring is defined as

A :=
(

C CMB

0 B

)
.

In this situation A, B and C define a recollement (R). The functors of (R) are defined
using idempotents of A. Let

e1 :=
(

1 0
0 0

)
, e2 :=

(
0 0
0 1

)
.

Then the recollement is defined by j! = − ⊗L
C e1A and i∗ = − ⊗L

B e2A.

This section includes results about the dependence of A, B and C on each other with
regards to ‘injectives generate’ and ‘projectives cogenerate’ statements. Theorem 6.3 is a
summary of the results in this section that use the properties of B and C to prove generation
statements about A.

Theorem 6.3 Let (R) be a recollement.

(i) Suppose that injectives generate for both B and C. If one of the following conditions
holds, then injectives generate for A.

(a) The recollement (R) is in a ladder of recollements with height greater than or
equal to 2. [Proposition 6.10]

(b) The recollement (R) restricts to a bounded below recollement (R+). [Proposi-
tion 6.15]

(c) The recollement (R) restricts to a bounded above recollement (R−), and A is a
finite dimensional algebra over a field. [Proposition 6.13]

(ii) Suppose that projectives cogenerate for both B and C. If one of the following
conditions holds, then projectives cogenerate for A.

(a) The recollement (R) is in a ladder of recollements with height greater than or
equal to 2. [Proposition 6.10]

(b) The recollement (R) restricts to a bounded above recollement (R−). [Proposi-
tion 6.13]
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(c) The recollement (R) restricts to a bounded below recollement (R+), and A is a
finite dimensional algebra over a field. [Proposition 6.15]

To prove Theorem 6.3 we require some technical results which we state and prove now.
We prove these results by using the fact that there are four pairs of adjoint functors in a
recollement that preserve many properties of complexes, these properties are summarised
in Table 1. The results in Table 1 follow from the definition of a recollement, standard
properties of adjoint functors, and Lemma 2.14.

Lemma 6.4 Let (R) be a recollement.

(i) Suppose that j∗ preserves bounded complexes of injectives. If injectives generate for
A, then injectives generate for C.

(ii) Suppose that j∗ preserves bounded complexes of projectives. If projectives cogenerate
for A, then projectives cogenerate for C.

Proof (i) Suppose that injectives generate for A. Since j∗ preserves bounded complexes
of injectives and set indexed coproducts, im(j∗) is a subcategory of LocC (Inj-C) by
Proposition 2.9. Furthermore, j∗ is essentially surjective, as it is right adjoint to j!
which is fully faithful. Hence, injectives generate for C.

(ii) This follows similarly to (i).

Proposition 6.5 Let (R) be a recollement.

(i) Suppose that im(i∗) is a subcategory of LocA (Inj-A). If injectives generate for C, then
injectives generate for A.

(ii) Suppose that im(i∗) is a subcategory of ColocA (Proj-A). If projectives cogenerate for
C, then projectives cogenerate for A.

Proof (i) Suppose that im(i∗) is a subcategory of LocA (Inj-A). Let I ∈ D (C) be a
bounded complex of injectives, and consider the triangle,

j!j∗(j∗(I )) −→ j∗(I ) −→ i∗i∗(j∗(I )) −→ j!j∗(j∗(I ))[1].
Since j∗ preserves bounded complexes of injectives, j∗(I ) is in LocA (Inj-A). Hence,
because LocA (Inj-A) is a triangulated subcategory, j!j∗(j∗(I )) is in LocA (Inj-A).

Table 1 Properties of the triangle functors in a recollement

Property preserved Functors with this property

Products i∗, i!, j∗, j∗.

Coproducts i∗, i∗, j!, j∗.

Compact objects i∗, j!.
Complexes bounded in cohomology i∗, j∗.

Complexes bounded above in cohomology i∗, i∗, j!, j∗.

Complexes bounded below in cohomology i∗, i!, j∗, j∗.

Bounded complexes of projectives i∗, j!.
Bounded complexes of injectives i!, j∗.
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Recall that j∗ is fully faithful so j!j∗j∗(I ) ∼= j!(I ). Thus, j! maps bounded complexes
of injectives to LocA (Inj-A).

Suppose that injectives generate for C. Then, by Proposition 2.9, im(j!) is a subcat-
egory of LocA (Inj-A). Since im(i∗) and im(j!) are both subcategories of LocA (Inj-A),
for all X ∈ D (A), both i∗i∗(X) and j!j∗(X) are in LocA (Inj-A). Hence, X is in
LocA (Inj-A) by the triangle

j!j∗(X) −→ X −→ i∗i∗(X) −→ j!j∗(X)[1],
and injectives generate for A.

(ii) This follows similarly to (i).

Proposition 6.6 Let (R) be a recollement.

(i) Suppose that i∗ preserves bounded complexes of injectives.

(a) If injectives generate for both B and C, then injectives generate for A.
(b) If injectives generate for A, then injectives generate for C.

(ii) Suppose that i∗ preserves bounded complexes of projectives.

(a) If projectives cogenerate for both B and C, then projectives cogenerate for A.
(b) If projectives cogenerate for A, then projectives cogenerate for C.

Proof (i) We prove the first two statements as the other two follow similarly.

(a) Suppose that injectives generate for B. Since i∗ preserves bounded complexes of
injectives and set indexed coproducts, by Proposition 2.9, im(i∗) is a subcategory
of LocA (Inj-A). Thus, if injectives generate for C, then injectives generate for A

by Proposition 6.5.
(b) We claim that if i∗ preserves bounded complexes of injectives, then j∗ also

preserves bounded complexes of injectives. Recall that j! preserves complexes
bounded above in cohomology, see Table 1. Furthermore, since i∗ preserves
bounded complexes of injectives, by Lemma 2.14, i∗ preserves complexes
bounded below in cohomology. Let X ∈ D (C) be bounded below in cohomology
and consider the triangle

j!j∗(j∗(X)) j∗(X) i∗i∗(j∗(X)) j!j∗(j∗(X))[1]

j!(X) j∗(X) i∗i∗j∗(X) j!(X)[1].
∼= = = ∼=

Since i∗, i∗ and j∗ all preserve complexes bounded below in cohomology, by
the triangle, j! also preserves complexes bounded below in cohomology. Hence,
j! preserves both complexes bounded above and bounded below in cohomology.
Consequently, j! preserves complexes bounded in cohomology, and j∗ preserves
bounded complexes of injectives by Lemma 2.14. Hence, the statement follows
from Lemma 6.14.

(ii) This follows similarly to (i).
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Fig. 2 Ladder of recollements

Lemma 6.7 Let (R) be a recollement.

(i) Suppose that injectives generate for A. Then injectives generate for B if one of the
following two conditions holds:

(a) i! preserves set indexed coproducts,
(b) i∗(Inj-A) is a subcategory of LocB (Inj-B).

(ii) Suppose that projectives cogenerate for A. Then projectives cogenerate for B if one
of the following two conditions holds:

(a) i∗ preserves set indexed products,
(b) i!(Proj-A) is a subcategory of ColocB (Proj-B).

Proof (i) Since i∗ is fully faithful, both i∗ and i! are essentially surjective. Hence, if either
im(i∗) or im(i!) is a subcategory of LocB (Inj-B), then injectives generate for B.

(a) By Proposition 2.9, this is a sufficient condition for im(i!) to be a subcategory of
LocB (Inj-B).

(b) By Proposition 2.9, this is a sufficient condition for im(i∗) to be a subcategory of
LocB (Inj-B).

(ii) This follows similarly to (i).

6.1 Ladders of Recollements

The previous results about recollements can be applied to ladders of recollements. A ladder
of recollements, [2, Section 3], is a collection of finitely or infinitely many rows of trian-
gle functors between D (A), D (B) and D (C), of the form given in Fig. 2, such that any
three consecutive rows form a recollement. The height of a ladder is the number of distinct
recollements it contains.

Proposition 6.8 [2, Proposition 3.2] Let (R) be a recollement.

(i) The recollement (R) can be extended one step downwards if and only if j∗ (equiva-
lently i!) has a right adjoint. This occurs precisely when j∗ (equivalently i∗) preserves
compact objects.
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(ii) The recollement (R) can be extended one step upwards if and only if j! (equivalently
i∗) has a left adjoint. If A is a finite dimensional algebra over a field, this occurs
precisely when j! (equivalently i∗) preserves bounded complexes of finitely generated
modules.

If the recollement (R) can be extended one step downwards, then we have a recollement
(R↓) as in Fig. 3.

Example 6.9 As seen in Example 6.2, a triangular matrix ring defines a recollement (R).
Moreover, this recollement extends one step downwards, [2, Example 3.4]. Recall that i∗ :=
−⊗L

Be2A where e2 is an idempotent of A. In particular, note that e2AA is a finitely generated
projective A-module, so i∗ preserves compact objects. Thus, by Proposition 6.8, (R) extends
one step downwards.

Proposition 6.10 Let (R) be the top recollement in a ladder of height 2.

(i) If injectives generate for both B and C, then injectives generate for A.
(ii) If injectives generate for A, then injectives generate for B.

(iii) If projectives cogenerate for both B and C, then projectives cogenerate for A.
(iv) If projectives cogenerate for A, then projectives cogenerate for C.

Proof The bottom recollement of the ladder (R↓) is a recollement as in (R) but with the
positions of B and C swapped. Hence, in this bottom recollement j∗ acts as i∗ does in the
recollement (R). Moreover, j∗ preserves bounded complexes of injectives by Table 1. Thus,
(i) and (ii) follow from Proposition 6.6.

Moreover, by Proposition 6.8, i∗ preserves compact objects. Hence, i∗ preserves bounded
complexes of projectives by Lemma 2.14. Consequently, Proposition 6.6 proves (iii) and
(iv).

Example 6.11 By Proposition 6.10 it follows that for any triangular matrix ring

A =
(

C CMB

0 B

)
,

if injectives generate for B and C, then injectives generate for A. Moreover, if injectives
generate for A, then injectives generate for B.

Note that this is the ‘injectives generate version’ of the well-known result proved by
Fossum, Griffith and Reiten [12, Corollary 4.21] that compares the finitistic dimensions of
B, C and the triangular matrix ring A.

Fig. 3 Recollement of derived categories extended one step downwards (R↓)
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Corollary 6.11.1 Let (R) be a recollement in a ladder of height ≥ 3.

(i) Injectives generate for A if and only if injectives generate for both B and C.
(ii) Projectives cogenerate for A if and only if projectives cogenerate for both B and C.

6.2 Bounded Above Recollements

In this section, we consider the case of a recollement that restricts to a bounded above
recollement. In particular, we use a characterisation by [2].

Proposition 6.12 [2, Proposition 4.11] Let (R) be a recollement. Then the following are
equivalent:

(i) The recollement (R) restricts to a bounded above recollement (R−),
(ii) The functor i∗ preserves bounded complexes of projectives.

If A is a finite dimensional algebra over a field, then both conditions are equivalent to:

(iii) The functor i∗ preserves compact objects.

Note that if i∗(B) is compact, then the recollement (R) also extends one step downwards
by Proposition 6.8 [2, Proposition 3.2].

Proposition 6.13 Let (R) be a recollement that restricts to a bounded above recollement
(R−).

(i) If projectives cogenerate for B and C, then projectives cogenerate for A.
(ii) If projectives cogenerate for A, then projectives cogenerate for C.

Moreover, suppose that A is a finite dimensional algebra over a field.

(iii) If injectives generate for B and C, then injectives generate for A.
(iv) If injectives generate for A, then injectives generate for B.

Proof Since (R) restricts to a recollement of bounded above derived categories, i∗ pre-
serves bounded complexes of projectives by Proposition 6.12. Hence, (i) and (ii) follow
from Proposition 6.6. Furthermore, if A is a finite dimensional algebra over a field, then i∗
preserves compact objects by Proposition 6.12. Then the recollement also extends one step
downwards by Proposition 6.8 so (iii) and (iv) follow from Proposition 6.10.

6.3 Bounded Below Recollements

Now we consider recollements (R) that restrict to bounded below recollements (R+). First
we prove an analogous statement to Proposition 6.12 about the conditions under which a
recollement (R) restricts to a recollement (R+).

Proposition 6.14 Let (R) be a recollement. Then the following are equivalent:

(i) The recollement (R) restricts to a bounded below recollement (R+),
(ii) The functor i∗ preserves bounded complexes of injectives.

If A is a finite dimensional algebra over a field, then both conditions are equivalent to:

(iii) The functor j! preserves bounded complexes of finitely generated modules.
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Proof First we prove that (ii) implies (i). Suppose that i∗ preserves bounded complexes
of injectives. Then, by the proof of Proposition 6.6, all six functors preserve complexes
bounded below in cohomology. Hence, the recollement (R) restricts to a bounded below
recollement (R+).

For the converse statement, suppose that (R) restricts to a bounded below recollement
(R+), that is, all six functors preserve complexes bounded below in cohomology. More-
over, recall that i∗ preserves complexes bounded above in cohomology, see Table 1. Hence,
i∗ preserves both complexes bounded above and bounded below in cohomology. Thus, i∗
preserves complexes bounded in cohomology, and, by Lemma 2.14, i∗ preserves bounded
complexes of injectives.

Now, we show that (iii) implies (ii). By Proposition 6.8, i∗ has a left adjoint i↑. The
application of Lemma 2.14 to the triple of adjoint functors (i↑, i∗, i∗) shows that i∗ preserves
bounded complexes of injectives.

Finally, we show that (i) implies (iii). Suppose that A is a finite dimensional algebra over a
field. Let X ∈ D (C) be a bounded complex of finitely generated modules. Since A is
a finite dimensional algebra over a field, j!(X) is a bounded above complex of finitely
generated modules [2, Lemma 2.10 (b)]. Suppose that (R) restricts to a bounded below
recollement (R+). Then j!(X) is also bounded below in cohomology, so we can truncate
j!(X) from below, and j!(X) is quasi-isomorphic to a bounded complex of finitely generated
modules.

We can use these results to get an analogous statement to Proposition 6.13 about bounded
below recollements.

Proposition 6.15 Let (R) be a recollement that restricts to a bounded below recollement
(R+).

(i) If injectives generate for both B and C, then injectives generate for A.
(ii) If injectives generate for A, then injectives generate for C.

Moreover, suppose that A is a finite dimensional algebra over a field.

(iii) If projectives cogenerate for both B and C, then projectives cogenerate for A.
(iv) If projectives cogenerate for A, then projectives cogenerate for B.

Proof This is an application of Propositions 6.6 and 6.10 using 6.14, in a similar way to the
proof of Proposition 6.13.

6.4 Bounded Recollements

Finally, we consider the case of a recollement (R) that restricts to a bounded recollement (Rb).

Proposition 6.16 Let (R) be a recollement that restricts to a bounded recollement (Rb).

(i) If injectives generate for both B and C, then injectives generate for A.
(ii) If injectives generate for A, then injectives generate for C.

(iii) If projectives cogenerate for both B and C, then projectives cogenerate for A.
(iv) If projectives cogenerate for A, then projectives cogenerate for C.

Moreover, suppose that A is a finite dimensional algebra over a field.

(v) Injectives generate for A if and only if injectives generate for both B and C.
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(vi) Projectives cogenerate for A if and only if projectives cogenerate for both B and C.

Proof Since (Rb) is a recollement of bounded derived categories, both i∗ and i! preserve
complexes bounded in cohomology. Hence, by Lemma 2.14, i∗ preserves both bounded
complexes of injectives and bounded complexes of projectives. So, (R) restricts to a
bounded above recollement by Proposition 6.12, and a bounded below recollement by
Proposition 6.14. Consequently, the results follow from Propositions 6.13 and 6.15.

7 Recollements of Module Categories

In this section we consider the interaction of rings that appear in a recollement of module
categories with respect to injective generation. First, we recall the definition of a recollement
of module categories, see for example [14, 28, 29].

Definition 7.1 (Recollement of module categories) Let A, B and C be rings. A recollement
of module categories is a diagram of additive functors as in Fig. 4 such that the following
hold:

1. Each of the pairs (q, i), (i, p), (l, e) and (e, r) is an adjoint pair of functors,
2. The functors i, l and r are fully faithful,
3. The composition e ◦ i is zero.

We denote a recollement of module categories as in Fig. 4 by (Mod-B, Mod-A, Mod-C).

Example 7.2 Let A be a ring and e ∈ A be an idempotent. Then there exists a recollement
of module categories

(Mod-(A/AeA), Mod-A, Mod-eAe),

with functors given by,

q := IndA/AeA
A , l := −⊗eAeeA,

i := ResA/AeA
A , e := HomA (eA,−) ∼= −⊗AAe,

p := CoindA/AeA
A , r := HomeAe (Ae,−) .

Note that q, i, and p correspond to the functors induced by the ring epimorphism
π : A → A/AeA, see Section 2.1 for the explicit descriptions.

The recollement of module categories (Mod-(A/AeA), Mod-A, Mod-eAe) induces a
recollement of triangulated categories as in Fig. 5, [11], [28, Proof of Theorem 8.3].

Fig. 4 Recollement of module categories
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Fig. 5 Recollement of triangulated categories induced from a recollement of module categories

When π : A → A/AeA is a homological epimorphism, the triangulated
category ker(−⊗AAe) is equivalent to D (A/AeA), and we get a recollement
(D (A/AeA) ,D (A) ,D (eAe)) [11], [1, Subsection 1.7], [3, Proposition 2.1]. Note that, in
general, ker(−⊗AAe) is not necessarily equivalent to the derived category of a ring. How-
ever, if, for example, A is a finite dimensional algebra over a field, then ker(−⊗AAe) is
equivalent to the derived category of a differentially graded algebra [20, Proposition 2.10].

Throughout the rest of this section we focus on proving generation statements relating
the three rings A, eAe and A/AeA. Although there is not necessarily a recollement of the
derived categories of these rings, the proofs in Section 6 can be applied to the induced
recollement in Fig. 5. To do this we focus on the relationship between the subcategories
im(i∗) = ker(j∗) and LocA

(
Res(A/AeA)

)
. First we require a well-known result about

when a complex is in the (co)localising subcategory generated by its cohomology modules.

Lemma 7.3 Let A be a ring with X ∈ D (A). Let T be a triangulated subcategory of
D (A). Suppose that all of the cohomology modules of X are in T .

(i) If X is bounded in cohomology, then X is in T .
(ii) If X is bounded below in cohomology, and T is a localising subcategory of D (A),

then X is in T .
(iii) If X is bounded above in cohomology, and T is a colocalising subcategory of D (A),

then X is in T .

Proof (i) A complex bounded in cohomology is in the triangulated subcategory of the
derived category generated by its cohomology modules.

(ii) Recall that a complex X = (
Xi, di

)
i∈Z ∈ D (A) that is bounded below in

cohomology is the colimit of its bounded above good truncations

τ≤n(X) := · · · → Xn−2 → Xn−1 → ker dn → 0 → . . . .

Moreover, the bounded above good truncations of a complex bounded below in coho-
mology are bounded in cohomology. Thus, by (i), a complex bounded below in
cohomology is in the localising subcategory of the derived category generated by its
cohomology modules.

(iii) This follows similarly to (ii) since a complex that is bounded above in cohomology is
the limit of its bounded below good truncations.

Corollary 7.3.1 Let A be a ring and e ∈ A an idempotent. Let S be a class of complexes
in D (A/AeA). Consider the functor

j∗ = −⊗AAe : D (A) → D (eAe) .
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(i) If S generates D (A/AeA), then ker(−⊗AAe) ∩ D+(A) is a subcategory of

LocA

(
ResA/AeA

A (S)
)
.

(ii) If S cogenerates D (A/AeA), then ker(−⊗AAe) ∩ D−(A) is a subcategory of

ColocA

(
ResA/AeA

A (S)
)
.

Proof (i) Denote ResA/AeA
A by Res. Let X ∈ ker(−⊗AAe) ∩ D+(A). Since −⊗AAe

is exact, the cohomology modules of X are annihilated by e, and so Hn (X) is in
Res(Mod-(A/AeA)) for all n ∈ Z. Moreover, Res preserves set indexed coprod-
ucts, and S generates D (A/AeA) so im(Res) is a subcategory of LocA

(
Res(S)

)
by

Proposition 2.9.
(ii) Follows similarly to (i).

7.1 The Big Finitistic Dimension

Recollements of module categories interact well with the finitistic dimension as seen in [14,
Section 3, Section 5]. In this section, we use a characterisation of the finitistic dimension
zconjecture by Rickard [32, Theorem 4.4] to show dependencies between the finitistic
dimensions of A, eAe and A/AeA. Recall the definition of the big finitistic dimension of a
ring.

Definition 7.4 (Big finitistic dimension) Let � be a ring. The big finitistic dimension of �

is

FinDim(�) = sup{proj.dim� (M�) : M� ∈ Mod-�, proj.dim� (M�) < ∞}.

The finitistic dimension conjecture states that, if � is a finite dimensional algebra over
a field, then FinDim(�) < ∞. An overview of the history of the finitistic dimension
conjecture is given by Huisgen-Zimmermann in [18]. Rickard proved that the finitistic
dimension conjecture has an equivalent form in terms of perpendicular subcategories of the
derived category using Bousfield localisation [32, Theorem 4.4]. Recall the definition of a
perpendicular subcategory of D (�) for a ring �.

Definition 7.5 (Perpendicular categories) Let � be a ring and X ∈ D (�). Then the right
perpendicular category of X is

X⊥ := {Y ∈ D (�) : HomD(�) (X, Y [m]) = 0 for all m ∈ Z}.
The left perpendicular category of X is

⊥X := {Y ∈ D (�) : HomD(�) (Y,X[m]) = 0 for all m ∈ Z}.

Note that X⊥ is a colocalising subcategory of D (�), and ⊥X is a localising subcategory
of D (�). In particular, if there exists Y ∈ D (A) such that Y ∈ ⊥X, then LocA (Y ) is a
subcategory of ⊥X.

Theorem 7.6 [32, Theorem 4.4] Let � be a finite dimensional algebra over a field. Then
FinDim(�) < ∞ if and only if D�⊥ ∩ D+(�) = {0}.
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Theorem 7.7 Let A be a finite dimensional algebra over a field and e ∈ A be
an idempotent. Suppose that A/AeA has finite flat dimension as a left A-module. If
FinDim(A/AeA) < ∞ and FinDim(eAe) < ∞, then FinDim(A) < ∞.

Proof Let � be a finite dimensional algebra over a field k. Then, by Theorem 7.6,
FinDim(�) < ∞ if and only if D�⊥ ∩ D+(�) = {0}, where D�� = Homk (��, k).
Hence, we prove that, if D(A/AeA)⊥ ∩D+(A/AeA) = {0}, and D(eAe)⊥ ∩D+(eAe) =
{0}, then DA⊥ ∩ D+(A) = {0}.

Let LInd, Res and RCoind denote the functors induced from the ring epimorphism
π : A → A/AeA. Suppose that X ∈ DA⊥ ∩D+(A). Then DA is in ⊥X. Also, because ⊥X

is a localising subcategory, LocA (DA) is a subcategory of ⊥X. Since A is a finite dimen-
sional algebra over a field, every injective A-module is a direct summand of a set indexed
coproduct of copies of DA, and LocA (Inj-A) = LocA (DA). Consequently, LocA (Inj-A)

is a subcategory of ⊥X.
Since Res(A/AeA) has finite flat dimension as a left A-module, Res preserves bounded

complexes of injectives by Remark 5.1. Hence, Res(D(A/AeA)) is in LocA (Inj-A).
Consequently, for all m ∈ Z,

0 = HomD(A)

(
Res(D(A/AeA)),X[m]) ∼= HomD(A/AeA)

(
D(A/AeA),RCoind(X)[m]) ,

and RCoind(X) is in D(A/AeA)⊥. Moreover, RCoind is a right derived functor, so
RCoind(X) is bounded below in cohomology, and RCoind(X) is in D(A/AeA)⊥ ∩
D+(A/AeA) = {0}.

Since RCoind(X) = 0, by adjunction,

HomD(A)

(
Res(A/AeA),X[m]) ∼= HomD(A/AeA)

(
A/AeA,RCoind(X[m])) = 0,

for all m ∈ Z, so X is in Res(A/AeA)⊥. Recall that the idempotent e ∈ A gives
rise to a recollement of triangulated categories as in Fig. 5, with j∗ = −⊗AAe. More-
over, j∗(Res(A/AeA)) = 0, so Res(A/AeA) is in ker(j∗) = im(i∗), and j∗j∗(X) is in
Res(A/AeA)⊥. Hence, by the triangle

i∗i!(X) −→ X −→ j∗j∗(X) −→ i∗i!(X)[1],
we have that i∗i!(X) is also in Res(A/AeA)⊥. Note that j∗ is a right derived functor, so
j∗j∗(X) is bounded below in cohomology, and therefore, i∗i!(X) is also bounded below in
cohomology.

Now consider ⊥i∗i!(X). Since ⊥i∗i!(X) is a localising subcategory that contains
Res(A/AeA), LocA

(
Res(A/AeA)

)
is a subcategory of ⊥i∗i!(X). Moreover, i∗i!(X) is

bounded below in cohomology, so i∗i!(X) is in LocA

(
Res(A/AeA)

)
by Corollary 7.3.1.

Hence, i∗i!(X) is in ⊥i∗i!(X), so i∗i!(X) = 0, and X ∼= j∗j∗(X).
Finally, note that j∗ preserves injective modules as j∗ = −⊗AAe is exact. Thus,

j∗(D(eAe)) is in LocA (Inj-A), and HomD(A) (j∗(D(eAe)), X) = 0. Since X ∼= j∗j∗(X),
and j∗ is fully faithful,

HomD(eAe)

(
D(eAe), j∗(X)

) ∼= HomD(A) (j∗(D(eAe)),X) = 0.

Consequently, j∗(X) ∈ D(eAe)⊥ ∩ D+(eAe) = {0}, and X ∼= j∗j∗(X) = 0.
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7.2 Recollements where Ae ⊗L
eAe eA is Bounded in Cohomology

Now we restrict to the case when j!j∗(A) = Ae ⊗L
eAe eA is bounded in cohomology.

This property is satisfied when, for example, Ae has finite flat dimension as a right eAe-
module or eA has finite flat dimension as a left eAe-module. First, we prove a similar result
to Corollary 7.3.1 concerning the interaction of LocA

(
Res(A/AeA)

)
and the subcategory

im(i∗).

Lemma 7.8 Let A be a ring and e ∈ A be an idempotent. Let S be a class of complexes in
D (A/AeA). Consider the functor

j∗ = −⊗AAe : D (A) → D (eAe) .

Suppose that Ae ⊗L
eAe eA is bounded in cohomology.

(i) If S generates D (A/AeA), then ker(−⊗AAe) = LocA

(
ResA/AeA

A (S)
)
.

(ii) If S cogenerates D (A/AeA), then ker(−⊗AAe) = ColocA

(
ResA/AeA

A (S)
)
.

Proof Denote the restriction functor ResA/AeA
A by Res. Recall that the idempotent e ∈ A

gives rise to a recollement of triangulated categories as in Fig. 5, with j∗ = −⊗AAe.
Moreover, by the definition of a recollement ker(j∗) = im(i∗).

(i) Since i∗ is fully faithful and preserves set indexed coproducts, im(i∗) is a localising
subcategory. Moreover, j∗(Res(S)) = {0}, so LocA

(
Res(S)

)
is a subcategory of

ker(j∗) = im(i∗).
Since j!j∗(A) = Ae ⊗L

eAe eA is bounded in cohomology, by the triangle

j!j∗(A) −→ A −→ i∗i∗(A) −→ j!j∗(A)[1],
we have that i∗i∗(A) is also bounded in cohomology. In particular, i∗i∗(A) is in
ker(j∗) ∩ D+(A), so, by Corollary 7.3.1, i∗i∗(A) is in LocA

(
Res(S)

)
. Moreover,

i∗i∗ : D (A) → D (A) preserves set indexed coproducts, and i∗ is essentially sur-
jective, so im(i∗) = im(i∗i∗) = LocA (i∗i∗(A)). Thus, im(i∗) is a subcategory of
LocA

(
Res(S)

)
.

(ii) Similarly to (i) ColocA

(
Res(S)

)
is a subcategory of im(i∗).

For the converse, note that for all m ∈ Z,

Hm
(
j∗j∗(A∗)

) ∼= HomD(A)

(
A, j∗j∗(A∗)[m]) ∼= HomD(A)

(
j!j∗(A),A∗[m]) .

Consequently, since j!j∗(A) is bounded in cohomology, and A∗ is an injective cogen-
erator of Mod-A, j∗j∗(A∗) is bounded in cohomology. Hence, i∗i!(A∗) is also
bounded in cohomology by the triangle

i∗i!(A∗) −→ A∗ −→ j∗j∗(A∗) −→ i∗i!(A∗)[1].
Thus, similarly to (i), im(i∗) is a subcategory of ColocA

(
Res(S)

)
by Corollary 7.3.1.

Now we prove an analogous result to Theorem 7.7 for injective generation.

Proposition 7.9 Let A be a ring and e ∈ A be an idempotent such that Ae ⊗L
eAe eA is

bounded in cohomology.

310 



Ring Constructions and Generation of the Unbounded Derived ...

(i) Suppose that A/AeA has finite flat dimension as a left A-module. If injectives
generate for both A/AeA and eAe, then injectives generate for A.

(ii) Suppose that A/AeA has finite projective dimension as a right A-module. If pro-
jectives cogenerate for both A/AeA and eAe, then projectives cogenerate for
A.

Proof Recall that there exists a recollement of triangulated categories as in Fig. 5 with
j∗ = −⊗AAe, and ker(j∗) = im(i∗).

(i) Denote ResA/AeA
A by Res and LIndA/AeA

A by LInd. If injectives generate for A/AeA,
then, by Lemma 7.8,

im(i∗) = ker(j∗) = LocA

(
Res(Inj-(A/AeA))

)
.

If A/AeA has finite flat dimension as a left A-module, then Res preserves bounded
complexes of injectives by Remark 5.1. Hence, Res(Inj-(A/AeA)) is a subcategory
of LocA (Inj-A). Thus, im(i∗) is a subcategory of LocA (Inj-A), and the result follows
from the proof of Proposition 6.5.

(ii) Follows similarly to (i).

Following the ideas of Fuller and Saoŕın [13, Section 1] and Green, Psaroudakis and Solberg
[14, Section 5] we now suppose that the semi-simple A-module (1 − e)A/rad ((1 − e)A)

has finite projective dimension or finite injective dimension, where A is a finite dimensional
algebra. Note that we can characterise the projective (injective) dimension of an A/AeA-
module in terms of the projective (injective) dimension of (1 − e)A/rad ((1 − e)A), as we
see in Lemma 7.10.

Lemma 7.10 Let A be a finite dimensional algebra over a field and e ∈ A be an idempo-
tent. Let S be the semi-simple A-module (1 − e)A/rad ((1 − e)A). Let N be an A-module
that is annihilated by e.

(i) If SA has finite injective dimension, then NA has finite injective dimension.
(ii) If SA has finite projective dimension, then NA has finite projective dimension.

Proof Since Ne is zero, the radical series of N contains only direct summands of set
indexed coproducts of S. Hence, if S has finite injective (projective) dimension, then N has
finite injective (respectively projective) dimension.

The proof of Lemma 7.10 requires that every A/AeA-module has a finite radical series
which is not necessarily true when A is not a finite dimensional algebra. In this situation we
consider a homological dimension used by Fuller and Saorı́n [13, Section 1], Psaroudakis
[27, Section 4], and Green, Psaroudakis and Solberg [14, Section 3].

Definition 7.11 (Relative projective (injective) global dimension) Let A be a ring and e ∈ A

be an idempotent. Then the A/AeA-relative projective global dimension of A is

pglA (A/AeA) := sup{proj.dimA

(
Res(M)A

) : M ∈ Mod-(A/AeA)}.
The A/AeA-relative injective global dimension of A is

iglA (A/AeA) := sup{inj.dimA

(
Res(M)A

) : M ∈ Mod-(A/AeA)}.
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Note that, for a finite dimensional algebra over a field, if the semi-simple A-module
S = (1 − e)A/rad ((1 − e)A) has finite projective dimension, then pglA (A/AeA) < ∞.
Similarly, if S has finite injective dimension, then iglA (A/AeA) < ∞.

Proposition 7.12 Let A be a ring and e ∈ A be an idempotent such that Ae ⊗L
eAe eA is

bounded in cohomology.

(i) Suppose that iglA (A/AeA) < ∞. If injectives generate for eAe, then injectives
generate for A.

(ii) Suppose that pglA (A/AeA) < ∞. If projectives cogenerate for eAe, then projectives
cogenerate for A.

Proof (i) Since Ae ⊗L
eAe eA is bounded in cohomology,

im(i∗) = LocA

(
Res(A/AeA)

)
,

by Lemma 7.8. Furthermore, as iglA (A/AeA) < ∞, Res(A/AeA) has finite injective
dimension as an A-module. Hence, Res(A/AeA) is in LocA (Inj-A), and im(i∗) is a
subcategory of LocA (Inj-A). Thus, the proof of Proposition 6.5 applies.

(ii) Follows similarly to (i).

When the induced recollement of triangulated categories in Fig. 5 is equivalent to a
recollement of rings, then the results in Section 6 apply directly. This occurs, for example,
when pglA (A/AeA) ≤ 1 [14, Proposition 3.5 (iv)].

Lemma 7.13 Let A be a ring and e ∈ A be an idempotent.

(i) Suppose that iglA (A/AeA) ≤ 1.

(a) Injectives generate for A if and only if injectives generate for eAe.

Moreover, suppose that A is a finite dimensional algebra over a field.

(a) If projectives cogenerate for eAe, then projectives cogenerate for A.

(ii) Suppose that pglA (A/AeA) ≤ 1.

(a) Projectives cogenerate for A if and only if projectives cogenerate for eAe.

Moreover, suppose that A is a finite dimensional algebra over a field.

(a) If injectives generate for eAe, then injectives generate for A.

Proof Denote the functors induced from the ring homomorphism π : A → A/AeA by
LInd, Res RCoind. If either iglA (A/AeA) ≤ 1 or pglA (A/AeA) ≤ 1, then π : A →
A/AeA is a homological ring epimorphism [14, Proposition 3.5 (iv), Remark 5.9]. More-
over, π is a homological ring epimorphism if and only if ResA/AeA

A is a homological
embedding [27, Corollary 3.13]. In this situation the recollement of module categories
(Mod-(A/AeA), Mod-A, Mod-eAe) lifts to a recollement of derived categories of the same
rings, (R) = (D (A/AeA) ,D (A) ,D (eAe)) with i∗ = Res and j∗ = −⊗AAe, [11],
[28, Theorem 8.3].

(i) Suppose that iglA (A/AeA) ≤ 1. We claim that A/AeA has finite global dimension.
Let N be an A/AeA-module. Then Res(N) has finite injective dimension as an A-
module, so RCoind ◦ Res(N) is quasi-isomorphic to a bounded complex of injectives.
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Since (R) is a recollement of derived module categories, Res is fully faithful as a
functor of derived categories. Thus RCoind ◦ Res(N) is quasi-isomorphic to N , and
N has finite injective dimension as an A/AeA-module. Consequently, A/AeA has
finite global dimension. Therefore, injectives generate for A/AeA, and projectives
cogenerate for A/AeA.

Since i∗ = Res preserves bounded complexes of injectives, Propositions 6.14 and
6.15 apply.

(ii) Similarly, if pglA (A/AeA) ≤ 1, then A/AeA has finite global dimension by con-
sidering LInd ◦ Res(N) for each A/AeA-module N . Moreover, i∗ = Res preserves
bounded complexes of projectives. Thus the statements follow from Propositions 6.12
and 6.13.

Remark 7.14 If A is a finite dimensional algebra over a field k, and A/rad (A) is separable
over k, then Qin [30] shows that the converse of Proposition 7.12 holds and, also that the
converse of Lemma 7.13 (i)(b) and (ii)(b) hold.
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