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Abstract
We prove that if the Auslander–Reiten triangles generate the relations for the Grothendieck
group of a Hom-finite Krull–Schmidt triangulated category with a (co)generator, then the
category has only finitely many isomorphism classes of indecomposable objects up to trans-
lation. This gives a triangulated converse to a theorem of Butler and Auslander–Reiten
on the relations for Grothendieck groups. Our approach has applications in the context of
Frobenius categories.
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1 Introduction

The notion of almost split sequences was introduced by Auslander and Reiten in [4], and has
played a fundamental role in the representation theory of finite dimensional algebras ever
since [5]. The theory of almost split sequences, later called Auslander–Reiten sequences or
just AR-sequences, has also greatly influenced other areas, such as algebraic geometry and
algebraic topology [2, 14].

Happel defined Auslander–Reiten triangles in triangulated categories [11]. These play a
similar role in the triangulated setting as AR-sequences do for abelian or exact categories.
While it is known that AR-sequences always exist in the category of finitely generated
modules over a finite dimensional algebra, the situation in the triangulated case turns out
to be more complicated, and the associated bounded derived category will not necessarily
have AR-triangles. In fact, Happel proved that this category has AR-triangles if and only
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if the algebra is of finite global dimension [10, 11]. Reiten and van den Bergh showed that
a Hom-finite Krull–Schmidt triangulated category has AR-triangles if and only if it admits
a Serre functor [18]. More recently, Diveris, Purin and Webb proved that if a category as
above is connected and has a stable component of the Auslander–Reiten quiver of Dynkin
tree class, then this implies existence of AR-triangles [8].

In the abelian setting, there is a well-studied relationship between AR-sequences,
representation-finiteness and relations for the Grothendieck group. From Butler [7],
Auslander–Reiten [3, Proposition 2.2] and Yoshino [21, Theorem 13.7], we know that if a
complete Cohen–Macaulay local ring is of finite representation type, then the Auslander–
Reiten sequences generate the relations for the Grothendieck group of the category of
Cohen–Macaulay modules. Here we say that our ring is of finite representation type if
the category of Cohen–Macaulay modules has only finitely many isomorphism classes
of indecomposable objects. A converse to this theorem is given by Auslander for artin
algebras [1] and by Hiramatsu in the case of a Gorenstein ring with an isolated singu-
larity [13, Theorem 1.2], where the latter is extended by Kobayashi [15, Theorem 1.2].
Results of the type described above were recently generalized to the setup of exact cate-
gories by Enomoto [9] and to certain extriangulated categories by Padrol, Palu, Pilaud and
Plamondon [16].

A natural question to ask is whether there is a similar connection between AR-triangles,
representation-finiteness and the relations for the Grothendieck group in the triangulated
case. Xiao and Zhu give a partial answer to this question. Namely, they show that if our
triangulated category is locally finite, then the AR-triangles generate the relations for the
Grothendieck group [20, Theorem 2.1]. Beligiannis generalizes and gives a converse to this
result for compactly generated triangulated categories [6, Theorem 12.1].

In this paper we consider the reverse direction of Xiao and Zhu from a different
point of view. We prove that if the Auslander–Reiten triangles generate the relations
for the Grothendieck group of a Hom-finite Krull–Schmidt triangulated category with a
(co)generator, then the category has only finitely many isomorphism classes of indecom-
posable objects up to translation. We conclude by an application in the context of Frobenius
categories. As an example, we see that our approach recovers results of Hiramatsu and
Kobayashi for Gorenstein rings.

2 Auslander–Reiten Triangles and Grothendieck Groups

Let R be a commutative ring. An R-linear category T is called Hom-finite provided that
HomT (X, Y ) is of finite R-length for every pair of objects X, Y in T . An additive category
is called a Krull–Schmidt category if every object can be written as a finite direct sum of
indecomposable objects having local endomorphism rings. In a Krull–Schmidt category, it
is well known that every object decomposes essentially uniquely in this way.

Throughout the rest of this paper, we let T be an essentially small R-linear triangulated
category. We also assume that T is a Krull–Schmidt category which is Hom-finite over R.
We let ind(T ) consist of the indecomposable objects of T , while the translation functor
of T is denoted by �. For simplicity, we use the notation (A, B) = HomT (A,B) and
[A, B] = lengthR(HomT (A,B)).

We say that T has finitely many isomorphism classes of indecomposable objects up to
translation if there is a finite subset of ind(T ) such that for any U ∈ ind(T ), there is an
integer n such that �nU is isomorphic to an object in our finite subset.
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Recall from [12] that a distinguished triangle A → B
g−→ C

h−→ �A in T is an
Auslander–Reiten triangle if the following conditions are satisfied:

(1) A,C ∈ ind(T );
(2) h �= 0;
(3) given any morphism t : W → C which is not a split-epimorphism, there is a morphism

t ′ : W → B such that g ◦ t ′ = t .

Let F(T ) denote the free abelian group generated by all isomorphism classes [A] of
objects A in T , while K0(T , 0) is the quotient of F(T ) by the subgroup generated by the
set {[A ⊕ B] − [A] − [B] | A,B ∈ T }. By abuse of notation, objects in K0(T , 0) are also
denoted by [A]. As T is a Krull–Schmidt category, the quotient K0(T , 0) is isomorphic to
the free abelian group generated by isomorphism classes of objects in ind(T ).

Let Ex(T ) be the subgroup of K0(T , 0) generated by the subset{
[X] − [Y ] + [Z]

∣∣∣∣ there exists a distinguished triangleX → Y → Z → �X in T

}
.

Similarly, we let AR(T ) denote the subgroup of K0(T , 0) generated by{
[X] − [Y ] + [Z]

∣∣∣∣ there exists an AR-triangleX → Y → Z → �X in T

}
.

Recall from for instance [12] that the Grothendieck group of T is defined as
K0(T ) = K0(T , 0)/Ex(T ).

In the proof of our main results, Theorem 2.4 and Theorem 2.5, we use the well-known
fact that an equality in K0(T , 0) can yield an equality in Z. We need this in the case of
[U, −] and [−, U ] for an object U in T , but note that the following lemma could be phrased
more generally in terms of additive functors.

Lemma 2.1 Suppose that a1[X1]+· · ·+ar [Xr ] = 0 inK0(T , 0) for integers ai and objects
Xi in T . Then a1[U, X1] + · · · + ar [U, Xr ] = 0 and a1[X1, U ] + · · · + ar [Xr, U ] = 0
in Z for any object U in T .

Proof Let a1[X1] + · · · + ar [Xr ] = 0 in K0(T , 0). If ai ≥ 0 for every i = 1, 2, . . . , r , we
use the defining relations for K0(T , 0) to obtain

a1[X1] + · · · + ar [Xr ] = [a1X1 ⊕ · · · ⊕ arXr ] = 0,

where aiXi denotes the coproduct of the object Xi with itself ai times. Consequently, the
object a1X1 ⊕ · · · ⊕ arXr is zero in T . Applying [U, −] or [−, U ] and using additivity
hence yields our desired equations.

If some of the coefficients ai are negative, we start by moving all negative terms to the
right-hand side of our equality and proceed similarly.

The lemmas below, which yield a triangulated analogue of [15, Proposition 2.8], provide
an important step in the proofs of Theorem 2.4 and Theorem 2.5. Note that parts of our
proof of Lemma 2.2 is much the same as the proof of [8, Lemma 2.2]. Observe also that
Lemma 2.3 follows from [19, Proposition 3.1] in the case whereR is an algebraically closed
field, and that the argument generalizes to our context. We include complete proofs for the
convenience of the reader.
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Lemma 2.2 Let A
f−→ B

g−→ C → �A be an AR-triangle in T . The following statements
hold for an object U in T :

(1) The morphism (U,B)
g∗−→ (U, C) is surjective if and only if C is not a direct summand

in U .

(2) The morphism (U,A)
f∗−→ (U, B) is injective if and only if �−1C is not a direct

summand in U .

(3) The morphism (B,U)
f ∗
−→ (A,U) is surjective if and only ifA is not a direct summand

in U .

(4) The morphism (C,U)
g∗
−→ (B,U) is injective if and only if �A is not a direct

summand in U .

Proof Note that C is a direct summand in U if and only if there exists a split epimorphism
U → C. By the definition of an AR-triangle, this is equivalent to g∗ not being surjective,
which proves (1).

Our triangle yields the long-exact sequence

· · · → (U, �−1B)
(�−1g)∗−−−−−→ (U, �−1C) → (U,A)

f∗−→ (U, B) → · · · .
The morphism f∗ is hence injective if and only if (�−1g)∗ is surjective. By applying part (1)
to the object �U , we see that (�−1g)∗ is surjective if and only if C is not a direct summand
in �U , which is equivalent to �−1C not being a direct summand in U . This shows (2).

The statements (3) and (4) are verified dually, using that AR-triangles equivalently can
be defined in terms of a factorization property for the leftmost morphism, see for instance
[12].

Lemma 2.3 Let A
f−→ B

g−→ C → �A be an AR-triangle in T . The following statements
hold for an indecomposable object U in T :

(1) We have [U, A] − [U, B] + [U, C] �= 0 if and only if U 
 C or U 
 �−1C.
(2) We have [A, U ] − [B,U ] + [C, U ] �= 0 if and only if U 
 A or U 
 �A.

Proof From the long exact Hom-sequence arising from our triangle, we get the exact
sequence

0 → K → (U, A)
f∗−→ (U,B)

g∗−→ (U, C) → L → 0,
where K = Ker(f∗) and L = Coker(g∗). Splitting into short exact sequences and using our
finiteness assumption, we see that the alternating sum of the lengths of the objects in the
sequence vanishes. This gives the equation

[U, A] − [U, B] + [U, C] = lengthR(K) + lengthR(L).

Consequently, we have [U, A] − [U, B] + [U, C] �= 0 if and only if the right-hand side of
the equation is also non-zero. This means that either K or L (or both) must be non-zero.
The object K is non-zero if and only if f∗ is not injective. By part Lemma 2.2 part (2), this
is the case if and only if �−1C is a direct summand in U . Similarly, the object L is non-zero
if and only if g∗ is not surjective. Using part (1) of Lemma 2.2, this is equivalent to C being
a direct summand in U . As U is indecomposable, a direct summand in U is necessarily
isomorphic to U , which finishes our proof of part (1).

Our second statement is shown dually, using part (3) and (4) of Lemma 2.2.
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We are now ready to prove our two main results, which show that we can study
representation-finiteness of our category T by considering the relations for the associated
Grothendieck group.

Theorem 2.4 Assume there is an object X in T such that HomT (Y,X) �= 0 or an object
X′ in T such that HomT (X′, Y ) �= 0 for every non-zero Y in T . If Ex(T ) = AR(T ) in
K0(T , 0), then T has only finitely many isomorphism classes of indecomposable objects.

Proof Let X be an object satisfying HomT (Y,X) �= 0 for every nonzero Y in T , and

consider the triangle �−1X → 0 → X
1X−→ X. As this is a distinguished triangle, we

have [�−1X] + [X] ∈ Ex(T ). By the assumption Ex(T ) = AR(T ), there hence exist
AR-triangles

Ai → Bi → Ci → �Ai

and integers ai for i = 1, 2, . . . , r such that

[X] + [�−1X] =
r∑

i=1

ai([Ai] − [Bi] + [Ci])

in K0(T , 0). Given an object U in T , Lemma 2.1 now yields the equality

[U, X] + [U, �−1X] =
r∑

i=1

ai([U, Ai] − [U, Bi] + [U, Ci])

in Z. If U is non-zero, our assumption on X implies that the left-hand side of this equation
is non-zero. Hence, there must for every non-zero object U be an integer i ∈ {1, . . . , r} such
that [U, Ai] − [U, Bi] + [U, Ci] �= 0. In particular, this is true for every U ∈ ind(T ). By
Lemma 2.3 part (1), this means that any indecomposable object in T is isomorphic to an
object in the finite set {Ci,�

−1Ci}ri=1, which yields our desired conclusion.
The proof in the dual case is similar, using Lemma 2.3 part (2).

In the theorem below, an object X in T is called a generator of T if

Hom∗
T (X, Y ) =

⊕
n∈Z

HomT (X,�nY ) �= 0

for any non-zero object Y in T . Dually, an object X is called a cogenerator of T if
Hom∗

T (Y,X) �= 0 for any non-zero Y .

Theorem 2.5 Assume that T has a generator or a cogenerator. If Ex(T ) = AR(T ) in
K0(T , 0), then T has only finitely many isomorphism classes of indecomposable objects up
to translation.

Proof Let X be a cogenerator and consider an indecomposable object U in T . Notice that
as X is a cogenerator, there exists an integer n such that HomT (�nU, X) �= 0. As in the
proof of Theorem 2.4, our assumption Ex(T ) = AR(T ) implies existence of a finite family
of AR-triangles

Ai → Bi → Ci → �Ai
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which yields an equality

[�nU,X] + [�nU, �−1X] =
r∑

i=1

ai([�nU, Ai] − [�nU, Bi] + [�nU,Ci])

in Z. The left-hand side of this equation is non-zero, so there is an integer i ∈ {1, . . . , r}
such that [�nU,Ai] − [�nU,Bi] + [�nU,Ci] �= 0. By applying Lemma 2.3 part (1), this
yields that either �nU 
 Ci or �n+1U 
 Ci . Consequently, every indecomposable object
in T can be obtained as a translation of an object in the finite set {Ci}ri=1, which yields our
desired conclusion.

The proof in the case where our category T has a generator is dual, using Lemma 2.3
part (2).

3 Application to Frobenius Categories

We now move on to an application of Theorem 2.4. Throughout the rest of the paper, let
C be an essentially small R-linear Frobenius category. Recall that a Frobenius category is
an exact category with enough projectives and injectives, and in which these two classes
of objects coincide. The stable category of C, i.e. the quotient category modulo projective
objects, is denoted by C. We assume C to be a Krull–Schmidt category and that the stable
category C is Hom-finite.

As C is a Frobenius category, the associated stable category is triangulated. Recall that
distinguished triangles in C are isomorphic to triangles of form X → Y → Z → �−1X,

where 0 → X → Y → Z → 0 is a short exact sequence in C and �−1X denotes the
first cosyzygy of X. Note that �−1 is a well-defined autoequivalence on the stable cate-
gory. The morphism Z → �−1X in our distinguished triangle above is obtained from the
diagram

0 X Y Z 0

0 X I (X) �−1X 0,

1X

where I (X) is injective and both rows are short exact sequences. For a more thorough
introduction to exact categories and the stable category of a Frobenius category, see for
instance [12].

Based on the correspondence between short exact sequences in a Frobenius category and
distinguished triangles in its stable category, we get results also for Frobenius categories.
In order to see this, we need to rephrase some of our terminology in the context of exact

categories. Let us first recall that a short exact sequence 0 → A → B
g−→ C → 0 in C is

an Auslander–Reiten sequence if the following conditions are satisfied:

(1) A,C ∈ ind(C);
(2) the sequence does not split;
(3) given any morphism t : W → C which is not a split-epimorphism, there is a morphism

t ′ : W → B such that g ◦ t ′ = t .

As before, let K0(C, 0) be the free abelian group generated by isomorphism classes of
objects in C modulo the subgroup generated by {[A⊕B] − [A] − [B] | A,B ∈ C}. Again,
we can define the subgroups Ex(C) and AR(C) of K0(C, 0), but now in terms of short
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exact sequences instead of distinguished triangles. Namely, we let Ex(C) be the subgroup
generated by the subset{

[X] − [Y ] + [Z]
∣∣∣∣ there exists a short exact sequence0 → X → Y → Z → 0 in C

}

and AR(C) the subgroup generated by{
[X] − [Y ] + [Z]

∣∣∣∣ there exists an AR-sequence
0 → X → Y → Z → 0 in C

}
.

The next lemma describes a well-known correspondence between AR-sequences in C
and AR-triangles in C, see [17, Lemma 3].

Lemma 3.1 An exact sequence 0 → A → B → C → 0 in C is an AR-sequence in C if
and only if the corresponding distinguished triangle A → B → C → �−1A in C is an
AR-triangle in C.

We are now ready to show the following lemma regarding the subgroups Ex(C) and
AR(C) of K0(C, 0) and the analogous subgroups of K0(C, 0).

Lemma 3.2 If Ex(C) = AR(C) in K0(C, 0), then Ex(C) = AR(C) in K0(C, 0).

Proof Assume Ex(C) = AR(C) in K0(C, 0) and consider a distinguished triangle in C. As
we work with isomorphism classes of objects, we can assume that our triangle is of the form
X → Y → Z → �−1X, where 0 → X → Y → Z → 0 is a short exact sequence in C.
Since Ex(C) = AR(C), there exist AR-sequences 0 → Ai → Bi → Ci → 0 and integers
ai for i = 1, 2, . . . , r such that

[X] − [Y ] + [Z] =
r∑

i=1

ai([Ai] − [Bi] + [Ci])

in K0(C, 0), and hence also in K0(C, 0). By Lemma 3.1, the right-hand side of this equation
is contained in AR(C). Thus, we have shown that Ex(C) ⊆ AR(C). The reverse inclusion is
clear.

We hence have the following corollary to Theorem 2.4.

Corollary 3.3 Assume there is an object X in C such that HomC(Y,X) �= 0 or an object X′
in C such that HomC(X′, Y ) �= 0 for every non-zero Y in C. If Ex(C) = AR(C) in K0(C, 0),
then the following statements hold:

(1) The category C has only finitely many isomorphism classes of non-projective indecom-
posable objects.

(2) If C has only finitely many indecomposable projective objects up to isomorphism, then
C has only finitely many isomorphism classes of indecomposable objects.

Proof As C is an essentially small R-linear Krull–Schmidt category, the same is true for the
stable category C. As Ex(C) = AR(C) in K0(C, 0), Lemma 3.2 yields that Ex(C) = AR(C)

in K0(C, 0). The result now follows from Theorem 2.4.
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Let us consider the example where R is a complete Gorenstein local ring with an isolated
singularity. Recall that the category of Cohen–Macaulay R-modules is Frobenius. As R is
an isolated singularity, the associated stable category is Hom-finite, and completeness of R

yields the Krull–Schmidt property. By [13, Lemma 2.1], our category has an object which
satisfies the assumption in the corollary above. Since R is local, there are only finitely many
isomorphism classes of indecomposable projective objects. Consequently, part (2) of Corol-
lary 3.3 yields that if the AR-triangles generate the relations for the Grothendieck group
of this category, then R has only finitely many isomorphism classes of indecomposable
Cohen–Macaulay modules. This recovers [13, Theorem 1.2] of Hiramatsu.

Note that one could, if preferred, state Theorem 2.4 and Corollary 3.3 in terms of tak-
ing the tensor product with Q, as in the result of Kobayashi [15, Theorem 1.2]. Hence,
also Kobayashi’s conclusions are recovered from our approach in the case of a complete
Gorenstein ring.
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