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Abstract
A pair (A, P ) is called a cover of EndA(P )op if the Schur functor HomA(P, −) is fully faith-
ful on the full subcategory of projective A-modules, for a given projective A-module P . By
definition, Morita algebras are the covers of self-injective algebras and then P is a faithful
projective-injective module. Conversely, we show that A is a Morita algebra and EndA(P )op

is self-injective whenever (A, P ) is a cover of EndA(P )op for a faithful projective-injective
module P .
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1 Introduction

Morita algebras were introduced in [8] to better understand and generalize self-injective
algebras. The definition is based on a theorem by Morita (see [9, section 16], [8, p. 185]) and
it says that a Morita algebra is the endomorphism algebra of a generator over a self-injective
algebra. Moreover, Morita showed that this generator can be chosen to be projective-
injective of the form Ae � D(eA) when regarded as a left module over the Morita algebra
A, for some idempotent e of A. Modules containing the regular module as a direct summand
are examples of generators.

Morita algebras occur in several contexts, including cover theory and the Morita-
Tachikawa correspondence.

A cover, in Rouquier’s sense [11], of an algebra B is a pair (A, P ) consisting of the
endomorphism algebra A of a generator over B and a certain projective A-module P . Covers
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are useful to transfer properties from the cover to B through a Schur functor HomA(P, −).
This construction allows us to view the module category of B as a kind of quotient of the
module category of its cover A. It follows from their definition that Morita algebras are
exactly the covers of self-injective algebras.

On the other hand, generators over self-injective algebras are also cogenerators. The
endomorphism algebras of generators-cogenerators are described by the Morita-Tachikawa
correspondence, which classifies the finite-dimensional algebras with dominant dimen-
sion at least two as the endomorphism algebras of a generator-cogenerator. The famous
Nakayama conjecture claims that finite-dimensional algebras with infinite dominant dimen-
sion are self-injective.

Many interesting covers arise as endomorphism algebras of generators-cogenerators. In
this situation, the following questions arise. Given a faithful projective-injective A-module
P :

• When is (A, P ) a cover of EndA(P )op?
• When is A a Morita algebra?
• When is EndA(P )op a self-injective algebra?

Our main result provides answers to these questions and it provides several characterisations
of Morita algebras with fewer assumptions than the theorem by Morita that motivated the
definition of Morita algebras in [8, pages 185-186]:

Theorem 1 Let A be a finite-dimensional algebra. Assume that P is a faithful projective-
injective left A-module. Then the following assertions are equivalent:

(i) (A, P ) is a cover of EndA(P )op;
(ii) A is a Morita algebra;

(iii) The endomorphism algebra EndA(P )op is a self-injective algebra and domdimA≥2;
(iv) domdimA ≥ 2 and addADA ⊗A P = addAP .
(v) domdimA ≥ 2 and the Nakayama functor restricts to DA ⊗A −: addAP → addAP .

The implications (ii) ⇔ (iii) =⇒ (i) are already known by [9, section 16] and
Morita-Tachikawa correspondence. The equivalence (v) ⇔ (iv) ⇔ (ii) is related to the
study of strongly projective modules in [4]. Here, we present a shorter proof. The proof of
Theorem 1 involves the study of double centralizer properties and a reformulation of the
definition of Morita algebras using the Nakayama functor. Prominent examples of double
centralizer properties are Soergel’s double centralizer theorem [12], classical Schur–Weyl
duality [6] and its many generalizations (see for example [2]).

As a byproduct of Theorem 1, we clarify in Remark 13 some situations where a double
centralizer property on a module Ae is equivalent to a double centralizer property on eA,
for some idempotent e of a given finite-dimensional algebra A. Further, although it does
not come as a surprise, we see in Example 17 that if P is only projective the assertion (i)

together with (A, HomA(P,A)) being a cover of EndA(P )op is not sufficient for A to be a
Morita algebra.

As application of Theorem 1, we give in Corollary 14 a criterion for a QF-1 algebra to
be a self-injective algebra.
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2 Notation

We will assume throughout this paper that k is a field and A and B are finite-dimensional
k-algebras. By A-mod (resp. mod-A) we mean the category of finitely generated left (resp.
right) A-modules and by A-proj the full subcategory of A-mod whose modules are the
finitely generated projective A-modules. We denote by (resp. addMA) (or just addM when A

is fixed) the full subcategory of A-mod (resp. mod-A) whose modules are direct summands
of finite direct sums of M ∈ A-mod (resp. M ∈ mod-A). We write A-proj to denote addA.
For any M ∈ A-mod and f, g ∈ EndA(M) the multiplication fg is the composite f ◦ g of
g and f . The opposite algebra of A will be denoted by Aop.

Given a finitely generated (A,B)-bimodule M , there is a double centralizer property
on M between A and B provided that the multiplication maps on M induce isomorphisms
A � EndB(M) and B � EndA(M)op. By the standard duality D we mean the functor
Homk(−, k) : A-mod → Aop-mod.

An algebra B is called self-injective if the regular module B is an injective left B-
module, or, equivalently, if the regular module B is a right B-module. If there exists a
(B, B)-bimodule isomorphism between DB and B then B is called a symmetric algebra.

3 Dominant Dimension

Let
0 → AA → I0 → I1 → · · · → In → · · · (1)

be a minimal injective resolution of the regular module AA. We say that the dominant
dimension of the algebra A, denoted by domdimA, is n ∈ N ∪ {∞} if I t is projective for
t < n and In is not. In particular, domdimA is infinite if all injective modules It are pro-
jective. Analogously, we can define the dominant dimension using the right regular module
AA. This (right) dominant dimension is equal to domdimA. A detailed account on domi-
nant dimension can be found in [10, 13]. A is called QF-3 algebra if domdimA ≥ 1. In
such a case, I0 is a faithful projective-injective module. Moreover, given another faithful
projective-injective module X ∈ A-mod, addX = addI0 [7, Lemma 2.3] and domdimA ≥ n

if there exists an exact sequence

0 → A → X0 → X1 → · · · → Xn−1, (2)

where Xi ∈ addX, i = 0, . . . , n − 1. This last claim follows from [13, 7.7]. In particular,
there exists an idempotent e such that Ae is a projective-injective faithful module which
is a direct sum of pairwise non-isomorphic indecomposable modules. Under these condi-
tions, Ae is called a projective-injective minimal faithful module. Furthermore, a minimal
faithful projective-injective module Ae (if it exists) has a double centralizer property if and
only if domdimA ≥ 2 (see for example [10, Theorem 2]). A module M ∈ A-mod is called
a generator if AA ∈ addAM . Analogously, a module M ∈ A-mod is called a cogenera-
tor if DA ∈ addAM . For self-injective algebras the notions of generator and cogenerator
coincide.

Theorem 2 (Morita-Tachikawa correspondence) [10, Theorem 2] There is a bijection:
⎧
⎨

⎩
(B,M) :

B finite dimensional
k-algebra

M a B-generator-cogenerator

⎫
⎬

⎭

/

∼1←→
⎧
⎨

⎩
A :

A finite dimensional
k-algebra

domdimA ≥ 2

⎫
⎬

⎭

/

∼2

1199A Characterisation of Morita Algebras in Terms of Covers



Here, A ∼2 A′ if and only if A and A′ are isomorphic, whereas, (B,M) ∼1 (B ′,M ′) if and
only if there is an equivalence of categories F : B-mod → B ′-mod such that M ′ = FM .

(B,M) �→ A = EndB(M)op

(EndA(N),N) ←� A

where N is a minimal projective-injective faithful right A-module.

Usually, the Morita-Tachikawa correspondence is formulated for basic algebras. How-
ever, the above formulation is also equivalent due to a double centralizer property being a
Morita invariant property.

Theorem 3 [13, 10.1] Let A and B be finite-dimensional k-algebras. Suppose that there
is an equivalence H : A-mod → B-mod. If there is a double centralizer property on M ∈
A-mod then there is a double centralizer property on HM ∈ B-mod.

4 Covers

The theory of covers was introduced by Rouquier [11].

Lemma 4 [11, Proposition 4.33] Let A and B be finite-dimensional k-algebras such
that B = EndA(P )op, for some P ∈ A-proj. Denote by F the Schur functor
HomA(P, −) : A-mod → B-mod and denote by G its right adjoint HomB(FA,−). The
following assertions are equivalent.

(i) The canonical map of algebras A → EndB(FA)op, given by a �→ (f �→ f (−)a),
a ∈ A, f ∈ FA, is an isomorphism of k-algebras.

(ii) For all M ∈ A-proj, the unit ηM : M → GFM is an isomorphism of A-modules.
(iii) The restriction of F to A-proj is full and faithful.

Definition 5 We say that (A, P ) is a cover of B if the restriction of
F = HomA(P, −) : A-mod → B-mod to A-proj is full and faithful.

Remark 6 In the situation of Definition 5, a double centralizer property holds on FA, but
not necessarily on P .

Before we proceed with some basic results about covers, recall the following result.

Proposition 7 Let M,N ∈ A-mod with addAM = addAN . Then the algebras B :=
EndA(M)op and C := EndA(N)op are Morita equivalent and the algebras EndB(M) and
EndC(N) are isomorphic.

Proof See for example [8, Proposition 1.3].

Proposition 8 Let A be a QF-3 algebra with a projective-injective faithful right A-module
V . If domdimA ≥ 2 then (A, HomA(V,A)) is a cover of B := EndA(V ).
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Proof Let eA be the minimal right projective-injective faithful A-module. Since
domdimA ≥ 2 there is a double centralizer property EndeAe(eA)op � A. Because of V

being faithful projective-injective, addVA = addeAA. By Proposition 7, EndeAe(eA)op �
EndB(V )op. Thus,

A � EndeAe(eA)op � EndB(V )op � EndB(HomA(HomA(V,A),A))op. (3)

The last isomorphism follows from V being right A-projective and therefore V being reflex-
ive, that is, V � HomA(HomA(V,A),A). Further, this isomorphism is also an isomorphism
of B-modules. So, the claim follows.

The definition of cover can be formulated in general for finitely generated projec-
tive algebras over commutative Noetherian rings. Unlike the general case, covers of
finite-dimensional algebras can always be reduced to covers arising from idempotents.

Proposition 9 If (A, P ) is a cover of B then there exists an idempotent e ∈ A such that
(A,Ae) is a cover of eAe and eAe is Morita equivalent to B.

Proof We can decompose P into a direct sum of projective indecomposables
P1 ⊕ · · · ⊕ Pn. By the Krull-Remak-Schmidt Theorem, there is a subset I of {1, . . . , n}
so that Q := ⊕

i∈I Pi is an A-summand of A, where the modules Pi , i ∈ I , are pair-
wise non-isomorphic and addQ = addP . Moreover, there exists an idempotent e ∈ A

such that Ae � Q. Hence, the algebras B and eAe are Morita equivalent. The func-
tor HomB(HomA(P,Ae),−) : B-mod → eAe-mod is an equivalence of categories. On
the other hand, the canonical map HomA(Ae,A) → HomB(F (Ae), FA) is bijective.
Moreover, it is an eAe-isomorphism. Therefore,

A � EndB(HomA(P,A))op � EndeAe(HomB(HomA(P,Ae), HomA(P,A)))op (4)

= EndeAe(HomB(F (Ae), FA))op � EndeAe(HomA(Ae,A))op.

As mentioned, covers can be used to obtain properties of the module category of an
algebra using one of its covers, for example, the number of blocks, or classification of simple
modules, among many others. Although we do not pursue this direction here, cover theory
really shines when the cover has finite global dimension and the algebra B has not. For
self-injective algebras B, covers of B with finite global dimension are the non-commutative
resolutions of [3]. As in their particular case, covers are non-commutative unless the cover
of B is isomorphic to B itself.

Proposition 10 Suppose that A is a finite-dimensional commutative k-algebra. If (A,Ae)

is a cover of eAe, for some idempotent e in A, then A is isomorphic to eAe.

Proof The commutativity of A implies that e is a central idempotent and eAe is commuta-
tive. If (A,Ae) is a cover of eAe then

A � EndeAe(eA) = EndeAe(e
2A) = EndeAe(eAe) � eAe.
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5 Morita Algebras and Nakayama Functor

Morita algebras were introduced by Kerner and Yamagata in [8]. A finite-dimensional k-
algebra A is called a Morita algebra if it can be written as the endomorphism ring of
a generator-cogenerator over some self-injective algebra. A detailed account on Morita
algebras and double centralizer properties can also be found in [15]. A characterization
of dominant dimension over Morita algebras in terms of cohomology over self-injective
algebras was given in [5].

For the proof of the main result, we require the following characterisation of Morita
algebras. Theorem 11 is an extension of Proposition 2.9 of [4] (formulated in a different
terminology).

Theorem 11 Let A be a QF-3 k-algebra. Let P be a faithful projective-injective left A-
module. The following assertions are equivalent.

(a) domdimA ≥ 2 and the Nakayama functor restricts to DA ⊗A −: addAP → addAP .
(b) domdimA ≥ 2 and addADA ⊗A P = addAP .
(c) The endomorphism algebra B = EndA(P )op is self-injective with generator P ∈

mod(B) and A � EndB(P ), that is, A is a Morita algebra.

(a’) The Nakayama functor restricts to−⊗ADA : addDPA → addDPA and dom dimA ≥2.
(b’) domdimA ≥ 2 and addDP ⊗A DAA = addDPA.

Proof We will show (b) =⇒ (a) =⇒ (c) =⇒ (b). The implications (b′) =⇒
(a′) =⇒ (c) =⇒ (b′) are analogous since EndB(P ) � EndB(DP)op and cogenerators
are exactly the generators for self-injective finite dimensional algebras.

The implication (b) =⇒ (a) is clear since DA ⊗A X ∈ addDA ⊗A P = addP , for all
X ∈ addAP .

Assume that (a) holds. Write B = EndA(P )op. Let Ae be a minimal faithful projective-
injective module. Then addAe = addP . By Proposition 7, EndB(P ) � EndeAe(Ae). By
Morita-Tachikawa correspondence,

EndB(P ) � EndeAe(Ae) � A, (5)

and Ae is a generator of eAe. Since equivalence of categories preserves generators, P is a
generator of B. It remains to show that B is self-injective. This follows by observing that,
as right B-modules,

B = HomA(P, P ) � HomA(P,A) ⊗A P �D(DA ⊗A P ) ⊗A P ∈ add(DP ⊗A P )B,(6)

where the third isomorphism is obtained by applying the functor −⊗A P : mod-A→mod-B
and using Tensor-Hom adjunction. Moreover, by Tensor-Hom adjunction there exists
a (B, B)-bimodule isomorphism D(DP ⊗A P ) = Homk(DP ⊗A P, k) �
HomA(P,DDP) = B. In particular, as right B-modules, DB � DD(DP ⊗A P ) �
DP ⊗A P . So, B ∈ addDBB . Hence B is B-injective.

Finally, assume that (c) holds. Let Ae be a minimal faithful projective-injective module.
Again, since addAAe = addAP , eAe is Morita equivalent to B. So Ae is a generator of eAe

and A � EndB(P ) � EndeAe(Ae). By Morita-Tachikawa correspondence, domdimA ≥ 2.
Again, since A � EndB(P ) there exists an (A,A)-bimodule isomorphism DA � P⊗BDP .
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Moreover, as left A-modules,

DA ⊗A P � P ⊗B DP ⊗A P � P ⊗B DB. (7)

Since DB is B-projective and B ∈ addDB, DB is a B-progenerator. Hence,
addADA ⊗A P = addAP . This completes the proof.

Remark 12 By Tensor-Hom adjunction, for each M,N ∈ A-mod, the
(EndA(N)op, EndA(M)op)-bimodules Homk(DM⊗AN, k) and HomA(N, Homk(DM, k))

are isomorphic.

Using the terminology of [4], Theorem 11 says that all faithful projective-injective mod-
ules over a Morita algebra are strongly projective-injective. In particular, this provides a
new and shorter proof for Proposition 2.9 of [4].

6 Proof of theMain Theorem

Proof of Theorem 1 The equivalence (ii) ⇔ (iii) follows from the definition of Morita
algebras and the Morita-Tachikawa correspondence. The equivalence (ii) ⇔ (iv) ⇔ (v) is
the content of Theorem 11.

Assume that A is a Morita algebra. By Theorem 11, addDA ⊗A P = addP . Let Ae

be a minimal projective-injective faithful module. Then addHomA(P,A)A = addDPA =
addD(Ae)A. Since domdimA ≥ 2, we can write

A � EndeAe(Ae) � EndeAe(D(Ae))op � EndB(HomA(P,A))op. (8)

This shows that (A, P ) is a cover of B.
Conversely, suppose that (A, P ) is a cover of B := EndA(P )op . By Lemma 4, there is a

double centralizer property on HomA(P,A). More precisely,

EndA(HomA(P,A)) � B EndB(HomA(P,A))op � A. (9)

In particular, HomA(P,A) is faithful-projective as right A-module. Hence, there exists an
injective A-homomorphism A → HomA(P,A)s , for some s > 0. Since DP is projective as
right A-module, there is a monomorphism DP → At → HomA(P,A)st . DP is injective
as right A-module. Hence, DP ∈ addHomA(P,A)A.

We claim now that DA ⊗A P is a left A-projective module. To see this, define P ′ to be
the direct sum of all non-isomorphic indecomposable A-modules that belong to the additive
closure of P . So, addP = addP ′ and P ′ ∈ addADA ⊗A P = addADA ⊗A P ′. By Krull-
Remak-Schmidt theorem, we can write DA ⊗A P ′ � P ′ ⊕ X, for some A-module X. On
the other hand,

EndA(P ′ ⊕ X)op � EndA(DA ⊗A P ′)op � EndA(HomA(P ′, A)) � EndA(P ′)op. (10)

So, by comparing k-dimensions, X must be the zero module. Hence, DA⊗A P ′ is a faithful
projective-injective module. Consequently, DA ⊗A P is also a faithful projective-injective
module. Now, the double centralizer property (9) implies that domdimA ≥ 2. Since both P

and DA⊗A P are faithful projective-injective modules, addAP = addADA⊗A P . So, A is
a Morita algebra by Theorem 11.
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Remark 13 For a idempotent e of A, HomA(Ae,A) � eA as (eAe,A)-bimodules. In
addition, assume that e is an idempotent so that Ae or eA is projective-injective. By The-
orem 1, a double centralizer property on Ae is not equivalent to a double centralizer
property on eA unless A is a Morita algebra. In particular, if A is a Morita algebra then
A = EndeAe(eA)op = EndeAe(Ae).

7 An Application and Two Examples

A finite-dimensional k-algebra is called QF-1 algebra if all faithful A-modules have the
double centralizer property (see [14]).

Corollary 14 Let A be a QF-1 k-algebra. Assume that P is a faithful projective-injective
left A-module. Then, A is self-injective if and only if HomA(P,A) is a faithful right A-
module.

Proof One direction is clear. Assume that HomA(P,A) is faithful. Since A is a QF-1 alge-
bra, (A, P ) is a cover of EndA(HomA(P,A)) � EndA(P )op . By Theorem 1, A is a Morita
algebra. By [1, Proposition 2.2], a Morita algebra is QF-1 if and only if it is self-injective.
Therefore, A is self-injective.

Example 15 For a QF-3 algebra A with dominant dimension two and with a projective-
injective faithful module P the pair (A, P ) is not, in general, a cover of EndA(P )op.

Let k be an algebraically closed field. Let A be the following bound quiver k-algebra

1 2 3, α2α1 = 0
α1 α2

Note that we read the arrows in a path like morphisms, that is, from right to left.
Denote by P(i) the projective indecomposable module associated with the vertex i and

denote by I (i) the indecomposable injective module associated with the vertex i.
The indecomposable projective (left) modules are given by

P(1) = I (2) = 1
2

, P (2) = I (3) = 2
3

, P (3) = 3 . (11)

0 → A → P(1) ⊕ P(2) ⊕ P(2) → P(1) → I (1) → 0 (12)

is a minimal injective resolution of A. Denote by P the projective module P(1) ⊕ P(2).
Hence, A is a QF-3 algebra with minimal faithful projective-injective left A-module P and
with domdimA ≥ 2. Here B = EndA(P )op is the path algebra with quiver

1 2.
α1

But B is not self-injective. By Theorem 1, (A, P ) is not a cover of B. But, (A, P (2)⊕P(3))

is a cover of EndA(P )op by Proposition 8. In fact, P(2) ⊕ P(3) � HomA(DA, P ) =
HomA(DP, A) as left A-modules.

This example also shows that EndB(HomA(P,A))op is not isomorphic to EndB(P ), in
general.
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Remark 16 If we drop the injectivity of Ae and of eA in Remark 13, the statement is false.
This can be seen in the next example.

Example 17 There are idempotents e and non-Morita algebras A so that there are double
centralizer properties on Ae and on eA.

Let k be an algebraically closed field. Let A be the following bound quiver k-algebra

1 2 3
α

β

γ

θ
, γ α = βθ = αβ = γ θ = 0. (13)

We are using the same notation as in the previous example. So, the indecomposable
projective (left) modules are given by

P(1) = Ae1 =
1
2
1

, P (2) = Ae2 =
2

1 3
2

, P (3) = Ae3 = 3
2

. (14)

The projective P(3) has dominant dimension zero so A cannot be a Morita algebra. We can
see that A has an involution fixing the primitive idempotents and interchanging α with β

and γ with θ . Fix e = e1 + e2. By a direct computation, we can see that (A, P (1) ⊕ P(2))

is a cover of B = eAe. Here, B is the bound quiver k-algebra

1 2
α

β

t , αβ = βt = tα = 0. (15)

Again by a direct computation or by observing that the duality of A restricts to one of B

fixing e it follows that EndeAe(Ae) � EndeAe(eA)op � A.
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