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Abstract
We study the simple connectedness of the class of finite-dimensional algebras over an alge-
braically closed field for which the Auslander–Reiten quiver admits a separating family of
almost cyclic coherent components. We show that a tame algebra in this class is simply
connected if and only if its first Hochschild cohomology space vanishes.
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1 Introduction and theMain Results

Throughout the paper k will denote a fixed algebraically closed field. By an algebra is meant
an associative finite-dimensional k-algebra with an identity, which we shall assume (without
loss of generality) to be basic. Then such an algebra has a presentation A ∼= kQA/I , where
QA = (Q0,Q1) is the ordinary quiver of A with the set of vertices Q0 and the set of
arrows Q1 and I is an admissible ideal in the path algebra kQA of QA. If the quiver QA has
no oriented cycles, the algebra A is said to be triangular. For an algebra A, we denote by
modA the category of finitely generated right A-modules, and by indA a full subcategory
of modA consisting of a complete set of representatives of the isomorphism classes of
indecomposable modules. We shall denote by radA the Jacobson radical of modA, and by
rad∞

A the intersection of all powers radi
A, i ≥ 1, of radA. Moreover, we denote by �A

the Auslander–Reiten quiver of A, and by τA and τ−
A the Auslander–Reiten translations
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D Tr and TrD, respectively. We will not distinguish between a module in indA and the
vertex of �A corresponding to it. Following [45], a family C of components is said to be
generalized standard if rad∞

A (X, Y ) = 0 for all modules X and Y in C . We note that
different components in a generalized standard family C are orthogonal, and all but finitely
many τA-orbits in C are τA-periodic (see [45, (2.3)]). We refer to [37] for the structure and
homological properties of arbitrary generalized standard Auslander–Reiten components of
algebras.

Following Assem and Skowroński [7], a triangular algebra A is called simply connected
if, for any presentation A ∼= kQA/I of A as a bound quiver algebra, the fundamental group
π1(QA, I) of (QA, I) is trivial (see Section 2). The importance of these algebras follows
from the fact that often we may reduce (using techniques of Galois coverings) the study
of the module category of an algebra to that for the corresponding simply connected alge-
bras. Let us note that to prove that an algebra is simply connected seems to be a difficult
problem, because one has to check that various fundamental groups are trivial. Therefore,
it is worth looking for a simpler characterization of simple connectedness. In [44, Problem
1] Skowroński has asked, whether it is true that a tame triangular algebra A is simply con-
nected if and only if the first Hochschild cohomology space H 1(A) of A vanishes. This
equivalence is true for representation-finite algebras [3, Proposition 3.7] (see also [12] for
the general case), for tilted algebras (see [5] for the tame case and [25] for the general
case), for quasitilted algebras (see [3] for the tame case and [26] for the general case), for
piecewise hereditary algebras of type any quiver [25], and for weakly shod algebras [4].

A prominent role in the representation theory of algebras is played by the algebras
with separating families of Auslander–Reiten components. A concept of a separating fam-
ily of tubes has been introduced by Ringel in [40, 41] who proved that they occur in the
Auslander–Reiten quivers of hereditary algebras of Euclidean type, tubular algebras, and
canonical algebras. In order to deal with wider classes of algebras, the following more
general concept of a separating family of Auslander–Reiten components was proposed by
Assem, Skowroński and Tomé in [10] (see also [33]). A family C = (Ci )i∈I of components
of the Auslander–Reiten quiver �A of an algebra A is called separating in modA if the
components of �A split into three disjoint families PA, C A = C andQA such that:
(S1) C A is a sincere generalized standard family of components;
(S2) HomA(QA,PA) = 0, HomA(QA,C A) = 0, HomA(C A,PA) = 0;
(S3) any homomorphism from PA to QA in modA factors through the additive category

add(C A) of C A.
Then we say that C A separates PA from QA and write �A = PA ∪ C A ∪ QA. We

note that then PA and QA are uniquely determined by C A (see [10, (2.1)] or [41, (3.1)]).
Moreover, C A is called sincere if any simple A-module occurs as a composition factor of a
module in C A. We note that if A is an algebra of finite representation type that C A = �A is
trivially a unique separating component of �A, with PA and QA being empty. Frequently,
we may recover A completely from the shape and categorical behavior of the separating
familyC A of components of �A. For example, the tilted algebras [24, 41], or more generally
double tilted algebras [39](the strict shod algebras in the sense of [15]), are determined
by their (separating) connecting components. Further, it was proved in [28] that the class
of algebras with a separating family of stable tubes coincides with the class of concealed
canonical algebras. This was extended in [29] to a characterization of all quasitilted algebras
of canonical type, for which the Auslander–Reiten quiver admits a separating family of
semiregular tubes. Then, the latter has been extended in [33] to a characterization of algebras
with a separating family of almost cyclic coherent Auslander–Reiten components. Recall
that a component � of an Auslander–Reiten quiver �A is called almost cyclic if all but
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finitely many modules in � lie on oriented cycles contained entirely in �. Moreover, a
component � of �A is said to be coherent if the following two conditions are satisfied:
(C1) For each projective module P in � there is an infinite sectional path

P = X1 → X2 → · · · → Xi → Xi+1 → Xi+2 → · · · (that is, Xi �= τAXi+2 for
any i ≥ 1) in �;

(C2) For each injective module I in � there is an infinite sectional path
· · · → Yj+2 → Yj+1 → Yj → · · · → Y2 → Y1 = I (that is, Yj+2 �= τAYj for
any j ≥ 1) in �.

We are now in position to formulate the first main result of the paper, which answers
positively the above mentioned question of Skowroński [44, Problem 1] for tame algebras
with separating almost cyclic coherent Auslander–Reiten components.

Theorem 1.1 Let A be a tame algebra with a separating family of almost cyclic coherent
components in �A. Then A is simply connected if and only if H 1(A) = 0.

It has been proved in [33, Theorem A] that the Auslander–Reiten quiver �A of an alge-
bra A admits a separating family C A of almost cyclic coherent components if and only
if A is a generalized multicoil enlargement of a finite product of concealed canonical
algebras C1, . . . , Cm by an iterated application of admissible algebra operations of types
(ad 1)–(ad 5) and their duals. These algebras are called generalized multicoil algebras
(see Section 3 for details). Note that for such an algebra A, we have that A is triangular,
gl. dimA ≤ 3, and pdA M ≤ 2 or idA M ≤ 2 for any module M in indA (see [33, Corollary
B and Theorem E]). Moreover, let �A = PA ∪ C A ∪ QA be the induced decomposi-
tion of �A. Then, by [33, Theorem C], there are uniquely determined quotient algebras
A(l) = A

(l)
1 ×· · ·×A

(l)
m and A(r) = A

(r)
1 ×· · ·×A

(r)
m of A which are the quasitilted algebras

of canonical type such that PA = PA(l)
andQA = QA(r)

.
Let A be a generalized multicoil algebra obtained from a concealed canonical algebra

C = C1 × · · · × Cm and C = A0, A1, . . . , An = A be an admissible sequence for A (see
Section 3). In order to formulate the next result we need one more definition. Namely, if
the sectional paths occurring in the definitions of the operations (ad 4), (fad 4), (ad 4∗),
(fad 4∗) come from a component or two components of the same connected algebra Ai ,
i ∈ {0, . . . , n − 1}, then we will say that �Ai+1 contains an exceptional configuration of
modules.

The following theorem is the second main result of the paper.

Theorem 1.2 Let A be a generalized multicoil algebra obtained from a family C1, . . . , Cm

of simply connected concealed canonical algebras. Assume moreover that �A does not
contain exceptional configurations of modules. Then there are quotient algebras A(l) =
A

(l)
1 × · · · × A

(l)
m and A(r) = A

(r)
1 × · · · × A

(r)
m of A such that the following statements are

equivalent:

(i) A is simply connected.
(ii) A

(l)
i and A

(r)
i are simply connected, for any i ∈ {1, . . . , m}.

(iii) H 1(A) = 0.
(iv) H 1(A

(l)
i ) = 0 and H 1(A

(r)
i ) = 0, for any i ∈ {1, . . . , m}.

(v) A is strongly simply connected.

This paper is organized as follows. In Section 2 we recall some concepts and facts from
representation theory, which are necessary for further considerations. Section 3 is devoted to
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describing some properties of almost cyclic coherent components of the Auslander–Reiten
quivers of algebras, applied in the proofs of the preliminary results and the main theorems.
In Section 4 we present and prove several results applied in the proof of the first main result
of the paper. Sections 5 and 6 are devoted to the proofs of Theorem 1.1 and Theorem 1.2,
respectively. The aim of the final Section 7 is to present examples illustrating the main
results of the paper.

For basic background on the representation theory of algebras we refer to the books [6,
41–43], for more information on simply connected algebras we refer to the survey article [2],
and for more details on algebras with separating families of Auslander–Reiten components
and their representation theory to the survey article [35].

2 Preliminaries

2.1 Let A be an algebra and A ∼= kQA/I be a presentation of A as a bound quiver algebra.
Then the algebra A = kQA/I can equivalently be considered as a k-linear category, of
which the object class A0 is the set of points of QA, and the set of morphisms A(x, y) from
x to y is the quotient of the k-vector space kQA(x, y) of all formal linear combinations
of paths in QA from x to y by the subspace I (x, y) = kQA(x, y) ∩ I (see [11]). A full
subcategory B of A is called convex (in A) if any path in A with source and target in B lies
entirely in B. For each vertex v ofQA we denote by Sv the corresponding simple A-module,
and by Pv (respectively, Iv) the projective cover (respectively, the injective envelope) of Sv .

2.2 One-point Extensions and Coextensions Frequently an algebra A can be obtained
from another algebra B by a sequence of one-point extensions and one-point coextensions.
Recall that the one-point extension of an algebra B by a B-module M is the matrix algebra

B[M] =
[
B 0
M k

]

with the usual addition and multiplication of matrices. The quiver of B[M] contains QB as
a convex subquiver and there is an additional (extension) point which is a source. B[M]-
modules are usually identified with triples (V ,X, ϕ), where V is a k-vector space, X a
B-module and ϕ : V → HomB(M,X) a k-linear map. A B[M]-linear map (V ,X, ϕ) →
(V ′, X′, ϕ′) is then identified with a pair (f, g), where f : V → V ′ is k-linear, g : X → X′
is B-linear and ϕ′f = HomB(M, g)ϕ. One defines dually the one-point coextension [M]B
of B by M (see [41]).

2.3 Tameness and Wildness Let A be an algebra and K[x] the polynomial algebra in one
variable x. Following [17], the algebra A is said to be tame if, for any positive integer d,
there exists a finite number of K[x] − A-bimodules Mi , 1 ≤ i ≤ nd , which are finitely
generated and free as left K[x]-modules, and all but a finite number of isoclasses of inde-
composable A-modules of dimension d are of the form K[x]/(x − λ) ⊗K[x] Mi for some
λ ∈ K and some i ∈ {1, . . . , nd}. Recall that, following [17], the algebra A is wild if
there is a k〈x, y〉-A-bimodule M , free of finite rank as left k〈x, y〉-module, and the functor
−⊗k〈x,y〉M : mod k〈x, y〉 → modA preserves the indecomposability of modules and sends
nonisomorphic modules to nonisomorphic modules. From Drozd’s Tame and Wild Theo-
rem [17] the class of algebras may be divided into two disjoint classes. One class consists
of the tame algebras and the second class is formed by the wild algebras whose representa-
tion theory comprises the representation theories of all finite dimensional algebras over k.
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Hence, a classification of the finite dimensional modules is only feasible for tame algebras.
It has been shown by Crawley-Boevey [16] that, if A is a tame algebra, then, for any positive
integer d ≥ 1, all but finitely many isomorphism classes of indecomposable A-modules of
dimension d are invariant on the action of τA, and hence, by a result due to Hoshino [23],
lie in stable tubes of rank one in �A.

2.4 Hochschild Cohomology of Algebras Let A be an algebra. Denote by C•A the
Hochschild complex C• = (Ci, di)i∈Z defined as follows: Ci = 0, di = 0 for i < 0,
C0 = AAA, Ci = Homk(A

⊗i , A) for i > 0, where A⊗i denotes the i-fold tensor product
over k of A with itself, d0 : A → Homk(A,A) with (d0x)(a) = ax − xa for x, a ∈ A,
di : Ci → Ci+1 with

(dif )(a1⊗· · ·⊗ai+1) = a1f (a2⊗· · ·⊗ai+1)+
i∑

j=1

(−1)j f (a1⊗· · ·⊗ajaj+1⊗· · ·⊗ai+1)

+(−1)i+1f (a1 ⊗ · · · ⊗ ai)ai+1

for f ∈ Ci and a1, a2, . . . , ai+1 ∈ A. Then Hi(A) = Hi(C•A) is called
the i-th Hochschild cohomology space of A (see [14, Chapter IX]). Recall that the
first Hochschild cohomology space H 1(A) of an algebra A is isomorphic to the
space Der(A,A)/Der0(A,A) of outer derivations of A, where Der(A,A) = {δ ∈
Homk(A,A) | δ(ab) = aδ(b) + δ(a)b, for a, b ∈ A} is the space of k-linear derivations of
A and Der0(A,A) is the subspace {δx ∈ Homk(A,A) | δx(a) = ax − xa, for a ∈ A} of
inner derivations of A.

2.5 Concealed Canonical AlgebrasAn important role in our considerations will be played
by certain tilts of canonical algebras introduced by Ringel [41]. Let p1, p2, . . . , pt be a
sequence of positive integers with t ≥ 2, 1 ≤ p1 ≤ p2 ≤ . . . ≤ pt , and p1 ≥ 2 if t ≥ 3.
Denote by �(p1, . . . , pt ) the quiver of the form

◦
α11

����
��

��
�

◦α12�� · · ·�� ◦�� ◦α1p1−1��

◦ ◦α21�� ◦α22�� · · ·�� ◦�� ◦α2p2−1�� ◦α2p2��

α1p1

���������

αtpt����
��

��
�

◦
αt1

���������
◦

αt2
�� · · ·�� ◦�� ◦

αtpt −1
��

For t ≥ 3, consider a (t + 1)-tuple of pairwise different elements of P1(k) = k ∪ {∞},
normalized such that λ1 = ∞, λ2 = 0, λ3 = 1, and the admissible ideal I (λ1, λ2, . . . , λt )

in the path algebra k�(p1, . . . , pt ) of �(p1, . . . , pt ) generated by the elements

αipi
. . . αi2αi1 + α2p2 . . . α22α21 + λiα1p1 . . . α12α11, 3 ≤ i ≤ t .

Then the bound quiver algebra 
(p, λ) = k�(p1, . . . , pt )/I (λ1, λ2, . . . , λt ) is said to be
the canonical algebra of type p = (p1, . . . , pt ). Moreover, for t = 2, the path algebra

(p) = k�(p1, p2) is said to be the canonical algebra of type p = (p1, p2). It has been
proved in [41, Theorem 3.7] that if 
 is a canonical algebra of type (p1, . . . , pt ) then
�
 = P
 ∪ T 
 ∪ Q
 for a P1(k)-family T 
 of stable tubes of tubular type (p1, . . . , pt ),
separating P
 from Q
. Following [27], a connected algebra C is called a concealed
canonical algebra of type (p1, . . . , pt ) if C is the endomorphism algebra End
(T ), for
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some canonical algebra 
 of type (p1, . . . , pt ) and a tilting 
-module T whose indecom-
posable direct summands belong to P
. Then the images of modules from T 
 via the
functor Hom
(T ,−) form a separating family T C of stable tubes of �C , and in particular
we have a decomposition �C = PC ∪ T C ∪ QC . It has been proved by Lenzing and de
la Peña [28, Theorem 1.1] that the class of (connected) concealed canonical algebras coin-
cides with the class of all connected algebras with a separating family of stable tubes. It is
also known that the class of concealed canonical algebras of type (p1, p2) coincides with
the class of hereditary algebras of Euclidean types Ãm, m ≥ 1 (see [22]). Recall also that
the canonical algebras of types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) and (2, 3, 6) are called the
tubular canonical algebras, and an algebra which is tilting-cotilting equivalent to a tubular
canonical algebra is called a tubular algebra (see [18, 21, 41]).

2.6 Simple Connectedness Let (Q, I) be a connected bound quiver. A relation � =∑m
i=1 λiwi ∈ I (x, y) is minimal if m ≥ 2 and, for any nonempty proper subset J ⊂

{1, . . . , m}, we have
∑

j∈J λjwj /∈ I (x, y). We denote by α−1 the formal inverse of an
arrow α ∈ Q1. A walk in Q from x to y is a formal composition α

ε1
1 α

ε2
2 . . . α

εt
t (where

αi ∈ Q1 and εi ∈ {−1, 1} for all i) with source x and target y. We denote by ex the triv-
ial path at x. Let ∼ be the homotopy relation on (Q, I), that is, the smallest equivalence
relation on the set of all walks in Q such that:
(a) If α : x → y is an arrow, then α−1α ∼ ey and αα−1 ∼ ex .
(b) If � = ∑m

i=1 λiwi is a minimal relation, then wi ∼ wj for all i, j .
(c) If u ∼ v, then wuw′ ∼ wvw′ whenever these compositions make sense.
Let x ∈ Q0 be arbitrary. The set π1(Q, I, x) of equivalence classes ũ of closed walks u

starting and ending at u has a group structure defined by the operation ũ · ṽ = ũv. Since Q

is connected, π1(Q, I, x) does not depend on the choice of x. We denote it by π1(Q, I) and
call it the fundamental group of (Q, I).

Let A ∼= kQA/I be a presentation of a triangular algebra A as a bound quiver algebra.
The fundamental group π1(QA, I) depends essentially on I , so is not an invariant of A.
A triangular algebra A is called simply connected if, for any presentation A ∼= kQA/I

of A as a bound quiver algebra, the fundamental group π1(QA, I) of (QA, I) is trivial
[7].

Example 2.7 Let A = kQ/I be the bound quiver algebra given by the quiver Q of the
form

3
γ

������������

5 1
λ�� 2

β
��

α��
4

δ��

and I the ideal in the path algebra kQ of Q over k generated by the elements γβ, δα − aδβ,
αλ, where a ∈ k \{0}. Then π1(Q, I) is trivial. Moreover, the triangular algebra A is simply
connected. Indeed, any choice of a basis of radA /rad2A will lead to at least one minimal
relation with target 1 and source i ∈ {3, 4} or with target 5 and source 2.

Remark 2.8 It is known, for example, that the following important classes of algebras are
simply connected: the iterated tilted algebras of Dynkin type (see [1, Proposition 3.5]), the
iterated tilted algebras of Euclidean types D̃n, Ẽp, n ≥ 4, p = 6, 7, 8, the tubular algebras
(see [7, Corollary 1.4]), and the pg-critical algebras (see [38, Corollary 3.3]).
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3 Almost Cyclic Coherent Auslander–Reiten components

3.1 Generalized Multicoil Algebras It has been proved in [32, Theorem A] that a con-
nected component � of an Auslander–Reiten quiver �A of an algebra A is almost cyclic and
coherent if and only if � is a generalized multicoil, that is, can be obtained, as a translation
quiver, from a finite family of stable tubes by a sequence of operations called admissible.
We recall briefly the generalized multicoil enlargements of algebras from [33, Section 3].

Given a generalized standard component � of �A, and an indecomposable module X

in �, the support S(X) of the functor HomA(X, −)|� is the k-linear category defined as
follows [9]. Let HX denote the full subcategory of � consisting of the indecomposable
modules M in � such that HomA(X,M) �= 0, and IX denote the ideal ofHX consisting of
the morphisms f : M → N (with M,N in HX) such that HomA(X, f ) = 0. We define
S(X) to be the quotient category HX/IX . Following the above convention, we usually
identify the k-linear category S(X) with its quiver.

Recall that a module X in modA is called a brick if EndA(X) ∼= k.
Let A be an algebra and � be a family of generalized standard infinite components

of �A. For an indecomposable brick X in �, called the pivot, five admissible operations
are defined, depending on the shape of the support S(X) of the functor HomA(X, −)|� .
These admissible operations yield in each case a modified algebra A′ such that the mod-
ified translation quiver �′ is a family of generalized standard infinite components in the
Auslander–Reiten quiver �A′ of A′ (see [32, Section 2] or [35, Section 4] for the figures
illustrating the modified translation quiver �′).

(ad 1) Assume S(X) consists of an infinite sectional path starting at X:

X = X0 → X1 → X2 → · · ·
Let t ≥ 1 be a positive integer,D be the full t×t lower triangular matrix algebra, and Y1, . . .,
Yt denote the indecomposable injectiveD-modules with Y = Y1 the unique indecomposable
projective-injective D-module. We set A′ = (A×D)[X⊕Y ]. In this case, �′ is obtained by
inserting in � the rectangle consisting of the modules Zij = (

k,Xi ⊕ Yj ,
[
1
1

])
for i ≥ 0,

1 ≤ j ≤ t , and X′
i = (k,Xi, 1) for i ≥ 0. If t = 0 we set A′ = A[X] and the rectangle

reduces to the sectional path consisting of the modules X′
i , i ≥ 0.

(ad 2) Suppose that S(X) admits two sectional paths starting at X, one infinite and the
other finite with at least one arrow:

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·
where t ≥ 1. In particular, X is necessarily injective. We set A′ = A[X]. In this case, �′ is
obtained by inserting in � the rectangle consisting of the modules Zij = (

k,Xi ⊕ Yj ,
[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t , and X′

i = (k,Xi, 1) for i ≥ 0.
(ad 3) Assume S(X) is the mesh-category of two parallel sectional paths:

Y1 → Y2 → · · · → Yt

↑ ↑ ↑
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·

with the upper sectional path finite and t ≥ 2. In particular, Xt−1 is necessarily injective.
Moreover, we consider the translation quiver � of � obtained by deleting the arrows Yi →
τ−1
A Yi−1. We assume that the union �̂ of connected components of � containing the modules

τ−1
A Yi−1, 2 ≤ i ≤ t , is a finite translation quiver. Then � is a disjoint union of �̂ and
a cofinite full translation subquiver �∗, containing the pivot X. We set A′ = A[X]. In this
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case, �′ is obtained from �∗ by inserting the rectangle consisting of the modules Zij =(
k,Xi ⊕ Yj ,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ i, and X′

i = (k,Xi, 1) for i ≥ 0.
(ad 4) Suppose that S(X) consists of an infinite sectional path, starting at X

X = X0 → X1 → X2 → · · · and Y = Y1 → Y2 → · · · → Yt

with t ≥ 1, is a finite sectional path in �A. Let r be a positive integer. Moreover, we
consider the translation quiver � of � obtained by deleting the arrows Yi → τ−1

A Yi−1. We
assume that the union �̂ of connected components of � containing the vertices τ−1

A Yi−1,
2 ≤ i ≤ t , is a finite translation quiver. Then � is a disjoint union of �̂ and a cofinite
full translation subquiver �∗, containing the pivot X. For r = 0 we set A′ = A[X ⊕ Y ].
In this case, �′ is obtained from �∗ by inserting the rectangle consisting of the modules
Zij = (

k,Xi ⊕ Yj ,
[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t , and X′

i = (k,Xi, 1) for i ≥ 0.
For r ≥ 1, let G be the full r × r lower triangular matrix algebra, U1,t+1, U2,t+1,

. . ., Ur,t+1 denote the indecomposable projective G-modules, Ur,t+1, Ur,t+2, . . ., Ur,t+r

denote the indecomposable injective G-modules, with Ur,t+1 the unique indecomposable
projective-injective G-module. We define the matrix algebra

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 . . . 0 0
Y k 0 . . . 0 0
Y k k . . . 0 0
...

...
...
. . .

...
...

Y k k . . . k 0
X ⊕ Y k k . . . k k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with r +2 columns and rows. In this case, �′ is obtained from �∗ by inserting the following
modules

Usl =
⎧⎨
⎩

(k, Yl, 1) for s = 1, 1 ≤ l ≤ t,

(k, Us,l−1, 1) for 2 ≤ s ≤ r , 1 ≤ l < t + s,

(k, 0, 0) for 2 ≤ s ≤ r , l = t + s,

Zij =
(

k, Xi ⊕ Urj ,

[
1
1

])
for i ≥ 0 and
1 ≤ j ≤ t + r,

and X′
i = (k,Xi, 1) for i ≥ 0. In the above formulas Usl is treated as a module over the

algebra As = As−1[Us−1,1], where A0 = A and U01 = Y (in other words As is an algebra
consisting of matrices obtained from the matrices belonging to A′ by choosing the first s+1
rows and columns).

We note that the quiver QA′ of A′ is obtained from the quiver of the double one-point
extension A[X][Y ] by adding a path of length r + 1 with source at the extension vertex of
A[X] and sink at the extension vertex of A[Y ].

For the definition of the next admissible operation we need also the finite versions of
the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), which we denote by (fad 1), (fad 2),
(fad 3) and (fad 4), respectively. In order to obtain these operations we replace all infinite
sectional paths of the form X0 → X1 → X2 → · · · (in the definitions of (ad 1), (ad 2),
(ad 3), (ad 4)) by the finite sectional paths of the form X0 → X1 → X2 → · · · → Xs .
For the operation (fad 1) s ≥ 0, for (fad 2) and (fad 4) s ≥ 1, and for (fad 3) s ≥ t − 1. In
all above operations Xs is injective (see the figures for (fad 1)–(fad 4) in [32, Section 2] or
[35, Section 4]).

(ad 5) We define the modified algebra A′ of A to be the iteration of the extensions
described in the definitions of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), and
their finite versions corresponding to the operations (fad 1), (fad 2), (fad 3) and (fad 4). In
this case, �′ is obtained in the following three steps: first we are doing on � one of the
operations (fad 1), (fad 2) or (fad 3), next a finite number (possibly zero) of the operation
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(fad 4) and finally the operation (ad 4), and in such a way that the sectional paths starting
from all the new projective modules have a common cofinite (infinite) sectional subpath.
By an (ad 5)-pivot we mean an indecomposable brick X from the last (ad 4) operation used
in the whole process of creating (ad 5).

Moreover, together with each of the admissible operations (ad 1)–(ad 5), we consider
its dual, denoted by (ad 1∗)–(ad 5∗). These dual operations are also called admissible. Fol-
lowing [32], a connected translation quiver � is said to be a generalized multicoil if � can
be obtained from a finite family T1,T2, . . . ,Ts of stable tubes by an iterated application of
admissible operations (ad 1), (ad 1∗), (ad 2), (ad 2∗), (ad 3), (ad 3∗), (ad 4), (ad 4∗), (ad 5)
or (ad 5∗). If s = 1, such a translation quiver � is said to be a generalized coil. The admis-
sible operations of types (ad 1)–(ad 3), (ad 1∗)–(ad 3∗) have been introduced in [8–10], and
the admissible operations (ad 4) and (ad 4∗) for r = 0 in [30].

Finally, let C be a (not necessarily connected) concealed canonical algebra and T C a
separating family of stable tubes of �C . Following [33] we say that an algebra A is a gen-
eralized multicoil enlargement of C using modules from T C if there exists a sequence of
algebras C = A0, A1, . . . , An = A such that Ai+1 is obtained from Ai by an admissi-
ble operation of one of the types (ad 1)–(ad 5), (ad 1∗)–(ad 5∗) performed either on stable
tubes of T Ai , or on generalized multicoils obtained from stable tubes of T Ai by means of
operations done so far. The sequence C = A0, A1, . . . , An = A is then called an admissi-
ble sequence for A. Observe that this definition extends the concept of a coil enlargement
of a concealed canonical algebra introduced in [10]. We note that a generalized multicoil
enlargement A of C invoking only admissible operations of type (ad 1) (respectively, of type
(ad 1∗)) is a tubular extension (respectively, tubular coextension) of C in the sense of [41].
An algebra A is said to be a generalized multicoil algebra if A is a connected generalized
multicoil enlargement of a product C of connected concealed canonical algebras.

Proposition 3.2 [33, Proposition 3.7] Let C be a concealed canonical algebra, T C a sep-
arating family of stable tubes of �C , and A a generalized multicoil enlargement of C using
modules from T C . Then �A admits a generalized standard family C A of generalized mul-
ticoils obtained from the family T C of stable tubes by a sequence of admissible operations
corresponding to the admissible operations leading from C to A.

The following theorem, proved in [33, Theorem A], will be crucial for our further
considerations.

Theorem 3.3 Let A be an algebra. The following statements are equivalent:
(i) �A admits a separating family of almost cyclic coherent components.
(ii) A is a generalized multicoil enlargement of a concealed canonical algebra C.

Remark 3.4 The concealed canonical algebra C is called the core of A and the number m

of connected summands of C is a numerical invariant of A. We note that m can be arbitrary
large, even if A is connected. Let us also note that the class of algebras with generalized
standard almost cyclic coherent Auslander–Reiten components is large (see [34, Proposition
2.9] and the following comments).

We note that the class of tubular extensions (respectively, tubular coextensions) of con-
cealed canonical algebras coincides with the class of algebras having a separating family
of ray tubes (respectively, coray tubes) in their Auslander–Reiten quiver (see [27, 29]).
Moreover, these algebras are quasitilted algebras of canonical type.
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We recall also the following theorem on the structure of the module category of an
algebra with a separating family of almost cyclic coherent Auslander–Reiten components
proved in [33, Theorems C and F].

Theorem 3.5 Let A be an algebra with a separating family C A of almost cyclic coherent
components in �A, and �A = PA ∪ C A ∪ QA the associated decomposition of �A. Then
the following statements hold.

(i) There is a unique full convex subcategory A(l) = A
(l)
1 × · · · × A

(l)
m of A which is

a tubular coextension of a concealed canonical algebra C = C1 × . . .×Cm such
that �A(l) = PA(l) ∪ T A(l) ∪ QA(l)

for a separating family T A(l)
of coray tubes

in �A(l) , PA = PA(l)
, and A is obtained from A(l) by a sequence of admissible

operations of types (ad 1)–(ad 5) using modules from T A(l)
.

(ii) There is a unique full convex subcategory A(r) = A
(r)
1 × · · · × A

(r)
m of A which is

a tubular extension of a concealed canonical algebra C = C1 × . . . × Cm such
that �A(r) = PA(r) ∪ T A(r) ∪ QA(r)

for a separating family T A(r)
of ray tubes

in �A(r) , QA = QA(r)
, and A is obtained from A(r) by a sequence of admissible

operations of types (ad 1∗)–(ad 5∗) using modules from T A(r)
.

(iii) A is tame if and only if A(l) and A(r) are tame.

In the above notation, the algebras A(l) and A(r) are called the left and right quasitilted
algebras of A. Moreover, the algebras A(l) and A(r) are tame if and only if A(l) and A(r) are
products of tilted algebras of Euclidean type or tubular algebras.

Recall that an algebra A is strongly simply connected if every convex subcategory of A

is simply connected (see [44]). Clearly, if A is strongly simply connected then A is simply
connected. We need the following result proved in [31, Theorem 1.1].

Theorem 3.6 Let A be an algebra with a separating family of almost cyclic coherent
components in �A without exceptional configurations of modules. Then there are quotient
algebras A(l) = A

(l)
1 × · · · × A

(l)
m and A(r) = A

(r)
1 × · · · × A

(r)
m of A such that the following

statements are equivalent:
(i) A is strongly simply connected.
(ii) A

(l)
i and A

(r)
i are strongly simply connected, for any i ∈ {1, . . . , m}.

4 Preliminary Results

4.1 Branch Extensions and Coextensions Let A be an algebra and A ∼= kQA/I be a pre-
sentation of A as a bound quiver algebra. For a given vertex v in QA, we denote by v→
(respectively, by →v) the set of all arrows of the quiver QA starting at v (respectively, ter-
minating at v). Let now K be a branch at a vertex v ∈ QA and E ∈ modA. Recall that
the branch extension A[E,K] by the branch K [41, (4.4)] is constructed in the follow-
ing way: to the one-point extension A[E] with extension vertex w (that is, radPw = E)
we add the branch K by identifying the vertices v and w. If E1, . . . , En ∈ modA and
K1, . . . , Kn is a set of branches, then the branch extension A[Ei,Ki]ni=1 is defined induc-
tively as: A[Ei,Ki]ni=1 = (A[Ei, Ki]n−1

i=1 )[En, Kn]. The concept of branch coextension is
defined dually.
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Lemma 4.2 LetA be a generalized multicoil enlargement of a concealed canonical algebra
C = C1 × · · · × Cm. Moreover, let C = A0, . . . , Ap = A(l), Ap+1, . . . , An = A be an
admissible sequence for A, j ≥ p, X ∈ indAj be an (ad 2) or (ad 3)-pivot, and Aj+1 be
the modified algebra of Aj . If v is the corresponding extension point then there is a unique
vertex u ∈ A(l) \ A(r) that satisfies:

(i) Each α ∈ v→ is the starting point of a nonzero path ωα ∈ A(v, u).
(ii) There are at least two different arrows in v→. Moreover, if α, β ∈ v→, and α �= β,

then ωα − ωβ ∈ I .

Proof We know from [33, Section 4] that A(l) is a unique maximal convex branch coex-
tension of C = C1 × · · · × Cm inside A, that is, A(l) = B

(l)
1 × · · · × B

(l)
m , where B

(l)
i is a

unique maximal convex branch coextension of Ci inside A, i ∈ {1, . . . , m}. More precisely,
B

(l)
i = ti

j=1[Kj , Ej ]Ci , where K1, . . . , Kti are branches, i ∈ {1, . . . , m}. Then there exists

s ∈ {1, . . . , m} such that u ∈ B
(l)
s and Aj+1 = Aj [X]. If X is an (ad 2)-pivot (respectively,

(ad 3)-pivot), then in the sequence of earlier admissible operations, there is an operation of
type (ad 1∗) or (ad 5∗) which contains an operation (fad 1∗) which gives rise to the pivot X
of (ad 2) (respectively, to the pivot X of (ad 3) and to the modules Y1, . . . , Yt in the sup-
port of HomA(X, −) restricted to the generalized multicoil containing X - see definition
of (ad 3)). The operations done after must not affect the support of HomA(X, −) restricted
to the generalized multicoil containing X. Note that in general, in the sequence of earlier
admissible operations, there can be an operation of type (ad 5) which contains an opera-
tion (fad 4) which gives rise to the pivot X of (ad 2) (respectively, to the pivot X of (ad 3))
but from Lemma [33, Lemma 3.10] this case can be reduced to (ad 5∗) which contains an
operation (fad 1∗).

Let X be an (ad 2)-pivot, Aj+1 = Aj [X], and u, u1, . . . , ut (where X = Iu, Yi =
Iui

for i ∈ {1, . . . , t} - see definition of (ad 2)) be the points in the quiver QAj
of Aj

corresponding to the new indecomposable injective Aj -modules obtained after performing
the above admissible operation (ad 1∗) or the operation (fad 1∗). Then u, u1, . . . , ut ∈
A(l). Since X = radPv , there must be a nonzero path from v to each vertex w which is a
predecessor of u. Hence, each α ∈ v→ is the starting arrow of a nonzero path from v to
u, and there are at least two arrows in v→, namely: one from v to ut and one from v to a
point in SuppX1, where X1 is the immediate successor of X on the infinite sectional path
in S(X) (see definition of (ad 2)). Moreover, since Pv(u) = X(u) = k, all paths from v to
u are congruent modulo Ij+1. The bound quiver QAj+1 of Aj+1 is of the form

QAj

u SuppX1��

v

����������

�������������

u1

��

· · ·�� ut
��

where Aj+1(v, u) is one-dimensional. From the proofs of [33, Theorems A and C], we
have u ∈ A(l) \ A(r), v ∈ A(r) \ A(l), and u1, . . . , ut ∈ A(l) ∩ A(r).

Let now X be an (ad 3)-pivot, Aj+1 = Aj [X], and assume that we had r consecutive
admissible operations of types (ad 1∗) or (fad 1∗), the first of which had Xt as a pivot, and
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these admissible operations built up a branch K in Aj with points u, u1, . . . , ut in QAj
, so

that Xt−1 and Yt are the indecomposable injective Aj -modules corresponding respectively
to u and u1, and both Y1 and τ−1

Aj
Y1 are coray modules in the generalized multicoil con-

taining the (ad 3)-pivot X (where X,Xt−1, Xt , Y1 and Yt are as in the definition of (ad 3)).
Then u, u1 ∈ A(l) and X is the indecomposable Aj -module given by: X(w) = 0 if w < u1,
X(w) = k if u1 < w, and X(w) = Xt−1(w) in any other case. Since X = radPv , there
must be a nonzero path from v to each vertex w which is a predecessor of u, but those which
are predecessors of u1. Hence, each α ∈ v→ is the starting arrow of a nonzero path from v

to u, and there are at least two arrows in v→, namely: one from v to u1 and one from v to
a point in SuppXt , where Xt is the immediate successor of Xt−1 on the infinite sectional
path in S(X) (see definition of (ad 3)). Moreover, since Pv(u) = Xt−1(u) = k, all paths
from v to u are congruent modulo Ij+1. The bound quiver QAj+1 of Aj+1 is of the form

QAj

SuppXt
�������u v

		���������


												

u1

��








rest of K

where Aj+1(v, u) is one-dimensional. Again, from the proofs of [33, Theorems A and C],
we have u ∈ A(l) \ A(r), v ∈ A(r) \ A(l), u1 and the vertices of the branch K belong to
A(l) ∩ A(r).

Lemma 4.3 LetA be a generalized multicoil enlargement of a concealed canonical algebra
C = C1 × · · · × Cm. Moreover, let C = A0, . . . , Ap = A(l), Ap+1, . . . , An = A be an
admissible sequence for A, j ≥ p, X ∈ indAj be an (ad 1)-pivot, Aj+1 be the modified
algebra of Aj , and v be the corresponding extension point. Then the following statements
hold.

(i) If there is a vertex u ∈ A(l) \ A(r) such that each α ∈ v→ is the starting point of a
nonzero path ωα ∈ A(v, u), then:
(a) The vertex u is unique.
(b) There are at least two different arrows in v→.
(c) If α, β ∈ v→, and α �= β, then ωα − ωβ ∈ I .

(ii) If X|Ci
= 0 for any i ∈ {1, . . . , m}, then X is uniserial.

Proof Since X is an (ad 1)-pivot, the support S(X) consists of an infinite sectional path
X = X0 → X1 → X2 → · · · starting at X. Let t ≥ 1 be a positive integer, D be the full
t × t lower triangular matrix algebra, and Y1, . . ., Yt be the indecomposable injective D-
modules with Y1 the unique indecomposable projective-injective D-module (see definition
of (ad 1)).

(i) Again, we know from [33, Section 4] that A(l) is a unique maximal convex branch
coextension of C = C1 × · · · × Cm inside A, that is, A(l) = B

(l)
1 × · · · × B

(l)
m , where

B
(l)
i is a unique maximal convex branch coextension of Ci inside A, i ∈ {1, . . . , m}. More

precisely, B(l)
i = ti

j=1[Kj ,Ej ]Ci , where K1, . . . , Kti are branches, i ∈ {1, . . . , m}. Assume

that there is a vertex u ∈ A(l) \ A(r) such that each α ∈ v→ is the starting point of a

934 P. Malicki



nonzero path ωα ∈ A(v, u). Then there exists s ∈ {1, . . . , m} such that u ∈ B
(l)
s . Moreover,

Aj+1 = (Aj × D)[X ⊕ Y1] and the bound quiver QAj+1 |SuppX is of the form

�������	
Q

B
(l)
s

◦
�� ��

��

u v



���������

����������� �� v1 �� · · · �� vt��
��

��
�	


�
�
������������������ !"#$%&'()

*+,-
./01

2345
67

89
:;

<=
>?

◦
�� 23 23

where v1, . . . , vt are the points in the quiver QAj+1 of Aj+1 corresponding to the new

indecomposable projective Aj+1-modules. Then Aj+1 is the extension of B
(l)
s at X by

the extension branch K consisting of the points v, v1, . . . , vt , that is, we have Aj+1 =
Aj [X, K]. Since u does not belong to A(r) and for any α ∈ v→ it is the starting point of a
nonzero path ωα ∈ A(v, u), we get that u is the coextension point of the admissible oper-
ation (ad 2∗) or (ad 3∗). By [10, Lemma 3.1] the admissible operations (ad 2∗) and (ad 3∗)
commute with (ad 1), so we can apply (ad 2∗) after (ad 1) (respectively, (ad 3∗) after (ad 1)).
Using now [10, Lemma 3.3] (respectively, [10, Lemma 3.4]), we are able to replace (ad 1)
followed by (ad 2∗) (respectively, (ad 1) followed by (ad 3∗)) by an operation of type (ad 1∗)
followed by an operation of type (ad 2) (respectively, (ad 1∗) followed by an operation of
type (ad 3)). Therefore, the statements (a), (b) and (c) follow from Lemma 4.2.

(ii) A case by case inspection (which admissible operation gives rise to the (ad 1)-pivot
X) shows that X is either simple module or the support of X is a linearly ordered quiver of
type At .

Lemma 4.4 LetA be a generalized multicoil enlargement of a concealed canonical algebra
C = C1 × · · · × Cm. Moreover, let C = A0, . . . , Ap = A(l), Ap+1, . . . , An = A be an
admissible sequence for A, j ≥ p, X ∈ indAj be an (ad 4) or (ad 5)-pivot, Aj+1 be the
modified algebra of Aj , and v be the corresponding extension point. If there is a vertex
u ∈ A(l) \ A(r) such that for pairwise different arrows α1, . . . , αq ∈ v→, q ≥ 2 there are
paths ωα1 , . . . , ωαq ∈ A(v, u), then for arbitrary f, g ∈ {1, . . . , q}, f �= g, one of the
following cases holds:

(i) At least one of ωαf
, ωαg is zero path.

(ii) The paths ωαf
, ωαg are nonzero and ωαf

− ωαg ∈ I .

Proof It follows from [33, Section 4] that A(l) is a unique maximal convex branch coex-
tension of C = C1 × · · · × Cm inside A, that is, A(l) = B

(l)
1 × · · · × B

(l)
m , where B

(l)
i is a

unique maximal convex branch coextension of Ci inside A, i ∈ {1, . . . , m}. More precisely,
B

(l)
i = ti

j=1[Kj ,Ej ]Ci , where K1, . . . , Kti are branches, i ∈ {1, . . . , m}. Assume that there

is a vertex u ∈ A(l) \ A(r) such that for pairwise different arrows α1, . . . , αq ∈ v→, q ≥ 2,

there are paths ωα1 , . . . , ωαq ∈ A(v, u). Then there exists s ∈ {1, . . . , m} such that u ∈ B
(l)
s .

Let X be an (ad 4)-pivot and Y1 → Y2 → · · · → Yt with t ≥ 1, be a finite sectional path
in �Aj

(as in the definition of (ad 4)). Note that this finite sectional path is the linearly ori-
ented quiver of type At and its support algebra 
 (given by the vertices corresponding to
the simple composition factors of the modules Y1, Y2, . . . , Yt ) is a tilted algebra of the path
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algebra D of the linearly oriented quiver of type At . From [41, (4.4)(2)] we know that 
 is a
bound quiver algebra given by a branch in x, where x corresponds to the unique projective-
injective D-module. Let � be a generalized multicoil of �Aj+1 obtained by applying the
admissible operation (ad 4), where X is the pivot contained in the generalized multicoil �1,
and Y1 is the starting vertex of a finite sectional path contained in the generalized multicoil
�1 or �2. So, � is obtained from �1 or from the disjoint union of two generalized multi-
coils �1, �2 by the corresponding translation quiver admissible operations. In general, �1
and �2 are components of the same connected algebra or two connected algebras. Hence,
we get two cases. In the first case X, Y1 ∈ �1 or X ∈ �1, Y1 ∈ �2 and �1, �2 are two
components of the same connected algebra. In the second case X ∈ �1, Y1 ∈ �2 and �1,
�2 are two components of two connected algebras. Therefore, the bound quiver QAj+1 of
Aj+1 in the first case is of the form

QAj

u SuppX�� v��

α��













wd

βd+1
��

· · ·
βd

�� w1
β2

�� w
β1

��

for r = 0 and

QAj

u SuppX�� v�� �� v1
��

wd

βd+1
��

· · ·
βd

�� w1
β2

�� w
β1

�� vrα
�� · · ·�� v2��

for r ≥ 1, where the index r is as in the definition of (ad 4), v is the extension point of
Aj [X], w is the extension point of Aj [Y1], w1, . . . , wd belong to the branch in w generated
by the support of Y1 ⊕ · · · ⊕ Yt , and αβ1 . . . βh = 0 for some h ∈ {1, . . . , d + 1}. In the
second case the bound quiver QAj+1 of Aj+1 is of the form

QAj

u SuppX�� v��

α��������������

y wd
βd+1

�� · · ·
βd

�� w1
β2

�� w
β1

��

for r = 0 and

QAj

u SuppX�� v�� �� v1
��

y wd
βd+1

�� · · ·
βd

�� w1
β2

�� w
β1

�� vrα
�� · · ·�� v2��
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for r ≥ 1, where the index r is as in the definition of (ad 4), v is the extension point of
Aj [X], w is the extension point of Aj [Y1], w1, . . . , wd belong to the branch in w generated
by the support of Y1 ⊕ · · · ⊕ Yt , αβ1 . . . βh = 0 for some h ∈ {1, . . . , d + 1}, and y is
the coextension point of Aj such that y ∈ A(l) \ A(r). More precisely, y ∈ B

(l)

s′ , where
s′ ∈ {1, . . . , m} and s′ �= s. Moreover in both cases, we have Pv(u) = X(u) = k or
Pv(u) = X(u) = 0, and hence all nonzero paths from v to u are congruent modulo Ij+1. So,
Aj+1(v, u) is at most one-dimensional. We note that in the first case, the definition of (ad 4)
(see the shape of the bound quiver QAj+1 of Aj+1) implies that if the paths ωαf

, ωαg ∈
Aj+1(v, u) are nonzero and ωαf

−ωαg ∈ I , then there is also a zero path ωαh
∈ Aj+1(v, u)

for some h ∈ {1, . . . , q}, h �= f �= g.
Let X be an (ad 5)-pivot and � be a generalized multicoil of �Aj+1 obtained by apply-

ing this admissible operation with pivot X. Then � is obtained from the disjoint union of
the finite family of generalized multicoils �1, �2, . . . , �e by the corresponding translation
quiver admissible operations, 1 ≤ e ≤ l, where l is the number of stable tubes of �C used
in the whole process of creating �. Since in the definition of admissible operation (ad 5)
we use the finite versions (fad 1)–(fad 4) of the admissible operations (ad 1)–(ad 4) and the
admissible operation (ad 4), we conclude that the required statement follows from the above
considerations.

Remark 4.5 Let A be a generalized multicoil enlargement of a concealed canonical algebra
C. We know from Theorems 3.3 and 3.5 that A can be obtained from A(l) by a sequence of
admissible operations of types (ad 1)–(ad 5) or A can be obtained from A(r) by a sequence
of admissible operations of types (ad 1∗)–(ad 5∗). We note that all presented above lemmas
can be formulated and proved for dual operations (ad 1∗)–(ad 5∗) in a similar way.

4.6 The Separating Vertex Let A be a triangular algebra. Recall that a vertex v of QA is
called separating if the radical of Pv is a direct sum of pairwise nonisomorphic indecom-
posable modules whose supports are contained in different connected components of the
subquiver Q(v) of QA obtained by deleting all those vertices u of QA being the source of a
path with target v (including the trivial path from v to v).

We have the following lemma which follows from the proof of [44, Proposition 2.3] (see
also [2, Lemma 2.3]).

Lemma 4.7 Let A be a triangular algebra and assume that A = B[X], where v is the
extension vertex and X = radA Pv . If B is simply connected and v is separating, then A is
simply connected.

Let D be the same as in the definition of (ad 1), that is, the full t × t lower triangular
matrix algebra. Denote by Y1, . . ., Yt the indecomposable injective D-modules with Y = Y1
the unique indecomposable projective-injective D-module.

Lemma 4.8 Let A be a triangular algebra and assume that A = (B ×D)[X ⊕Y ], where v

is the extension vertex and X ⊕ Y = radA Pv . If B is simply connected and v is separating,
then A is simply connected.

Proof Since the module Pv is a sink in the full subcategory of indA consisting of projec-
tives, the vertex v is a source in QA. Moreover, A = (B × D)[X ⊕ Y ], where X is the
indecomposable direct summand of radA Pv that belongs to modB and Y is a directing
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module (that is, an indecomposable module which does not lie on a cycle in indA) such that
radA Pv = X ⊕ Y . Therefore, the proof follows from the proof of [44, Proposition 2.3] (see
also the proof of Lemma 2.3 in [2]).

4.9 The Pointed Bound Quiver In order to carry out the construction of the free product
of two fundamental groups of bound quivers, and in analogy with algebraic topology where
pointed spaces are considered, one can define a pointed bound quiver (Q, I, x), that is, a
bound quiver (Q, I) together with a distinguished vertex x (see [13, Section 3]). Given two
pointed bound quivers Q′ = (Q′, I ′, x′) and Q′′ = (Q′′, I ′′, x′′), we can assume, without
loss of generality, that Q′

0 ∩ Q′′
0 = Q′

1 ∩ Q′′
1 = ∅. We define the quiver Q = Q′ � Q′′

as follows: Q0 is Q′
0 ∪ Q′′

0 in which we identify x′ and x′′ to a single new vertex x, and
Q1 = Q′

1∪Q′′
1. Then,Q

′ andQ′′ are identified to two full convex subquivers ofQ, so walks
on Q′ or Q′′ can be considered as walks on Q. Thus, I ′ and I ′′ generate two-sided ideals of
kQ which we denote again by I ′ and I ′′. We define I to be the ideal I ′+I ′′ of kQ. It follows
from this definition that the minimal relations of I are precisely the minimal relations of I ′
together with the minimal relations of I ′′ give the minimal relations needed to determine the
homotopy relation on (Q, I). Moreover, we can consider an element w̃ ∈ π1(Q

′, I ′, x′) as
an element w̃ ∈ π1(Q, I, x) (we denote by w̃ the homotopy class of a walk w). Conversely,
any (reduced) walk w in Q has a decomposition w = w′

1w
′′
1w

′
2w

′′
2 . . . w′

nw
′′
n , where w′

i and
w′′

i are walks in Q′ and Q′′ for i ∈ {1, . . . , n}, respectively. Moreover, this decomposition
is unique, up to reduced walk, and compatible with the homotopy relations involved. This
leads us to the following proposition.

Proposition 4.10 [13, Proposition 3.1] With the notations above we have:
(i) (Q, I, x) is the coproduct of (Q′, I ′, x′) and (Q′′, I ′′, x′′) in the category of

pointed bound quivers.
(i) π1(Q, I, x) ∼= π1(Q

′, I ′, x′) � π1(Q
′′, I ′′, x′′).

5 Proof of Theorem 1.1

The aim of this section is to prove Theorem 1.1 and recall the relevant facts.
We know from Theorem 3.3 that the Auslander–Reiten quiver �A of A admits a separat-

ing family of almost cyclic coherent components if and only if A is a generalized multicoil
enlargement of a concealed canonical algebra C. Let C = C1×C2×· · ·×Cl ×Cl+1×· · ·×
Cm be a decomposition of C into product of connected algebras such that C1, C2, . . . , Cl

are of type (p1, p2) and Cl+1, Cl+2, . . . , Cm are of type (p1, . . . , pt ) with t ≥ 3. Following
[36], by hi we denote the number of all stable tubes of rank one from �Ci

with 1 ≤ i ≤ l,
used in the whole process of creating A from C, and hi = 0, if l +1 ≤ i ≤ m. Moreover, let

ei =

⎧⎪⎪⎨
⎪⎪⎩

0 if Ci is of type (p1, . . . , pt ) with t ≥ 3
1 if Ci is of type (p1, p2) with p1, p2 ≥ 2
2 if Ci is of type (p1, p2) with p1 = 1, p2 ≥ 2
3 if Ci is of type (p1, p2) with p1 = p2 = 1,

for i ∈ {1, . . . , m}. We define also fCi
= max{ei − hi, 0}, for i ∈ {1, . . . , m} and set

fA = ∑m
i=1 fCi

= ∑l
i=1 fCi

. Note that we can apply the operations (ad 4), (fad 4), (ad 4∗),
(fad 4∗) in two ways. The first way is when the sectional paths occurring in the definitions
of these operations come from a component or two components of the same connected
algebra. The second one is, when these sectional paths come from two components of two
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connected algebras. By dA we denote the number of all operations (ad 4), (fad 4), (ad 4∗) or
(fad 4∗) which are of the first type, used in the whole process of creating A from C.

The Hochschild cohomology of a connected generalized multicoil algebra A has been
described in [36, Theorem 1.1] using the numerical invariants of A (fA, dA and the others),
depending on the types of admissible operations (ad 1)–(ad 5) and their duals, leading from
a product C of concealed canonical algebras to A. Here, we will only need information
about the first Hochschild cohomology of A, namely from [36, Theorem 1.1(iii)] we have:

Theorem 5.1 Let A be a connected generalized multicoil algebra. Then dimk H 1(A) =
dA + fA.

We are now able to complete the proof of Theorem 1.1.
Since A is tame, we may restrict to the generalized multicoil enlargements of tame

concealed algebras. Namely, we have the following consequence of Theorem 3.3 and
[33, Theorem F]: A is tame and �A admits a separating family of almost cyclic coherent
components if and only if A is a tame generalized multicoil enlargement of a finite family
C1, . . . , Cm of tame concealed algebras (concealed canonical algebras of Euclidean type).

We first show the necessity. Suppose that A is simply connected. We must show that the
first Hochschild cohomology H 1(A) of A vanishes. Assume to the contrary that H 1(A) �=
0. Then by Theorem 5.1, dA + fA �= 0. If dA �= 0, then it follows from the proof of
Lemma 4.4 (and its dual version) that A is not simply connected, a contradiction. Therefore,
we may assume that dA = 0 and fA �= 0. Since fA = ∑l

i=1 max{ei − hi, 0} �= 0, we get
that max{ej −hj , 0} �= 0 for some j ∈ {1, . . . , l}. Note that, from Lemmas 4.2, 4.3, 4.4 and
their proofs (and also from their dual versions - see Remark 4.5), we know how the bound
quiver algebra changes after applying a given admissible operation. We have three cases to
consider:

(1) Assume that the algebra Cj is of type (p1, p2) with p1, p2 ≥ 2. Then ej = 1 and
hj = 0. The bound quiver algebra A = kQ/I is given by the quiver Q which can be
visualized as follows:

◦
γ2

��

◦ε2��

ε1

��

part B �� ◦

◦ ◦
α1

�����������
γ1�� ◦α2�� · · ·�� ◦��

ω

��

◦αp1−1�� part D

◦ ◦
β1

��

ξ

��

◦
β2

�� · · ·�� ◦�� ◦
βp2−1

�� ◦
βp2

��

αp1

����������
◦δ��

��

partA �� ◦ ◦

��

◦
ϕ

�� ◦
σ3

�� ◦
σ1

��

σ2
��

◦ �� ◦ Ci
��

where I the ideal in the path algebra kQ of Q over k generated by the elements ε1α1, α2γ1,
ε1γ1 − ε2γ2, β2ξ , αp1−1ω, δαp1 , σ1βp2−1, σ2σ3ϕ, elements from parts A, B, D of Q, and
elements from Ci . Therefore, π1(Q, I) is not trivial and so A is not simply connected. More
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precisely, it follows from Proposition 4.10 that π1(Q, I) = Z�π1(A)�π1(B)�π1(D)�
π1(Ci).

(2) Assume that the algebra Cj is of type (p1, p2) with p1 = 1, p2 ≥ 2. Then ej = 2,
hj = 0 or hj = 1 and we have two subcases to consider. If ej = 2 and hj = 0, then
the bound quiver algebra A = kQ/I is given by the quiver Q which can be visualized as
follows:

◦ ◦α1��

βp2����
��

��
��

�

◦
β1

���������
◦

β2

�� · · ·�� ◦��

ω

��

◦
βp2−1

�� ◦
γ

��

ε

��
◦

σ1

��

σ2

��

partA �� ◦ part B

◦
σ3

�� ◦
ϕ

�� ◦ Ci
��

where I the ideal in the path algebra kQ of Q over k generated by the elements γβp2 ,
βp2−1ω, σ1β1, σ2σ3ϕ, elements from parts A, B of Q, and elements from Ci . There-
fore, π1(Q, I) is not trivial and so A is not simply connected. More precisely, it follows
from Proposition 4.10 that π1(Q, I) = Z � π1(A) � π1(B) � π1(Ci). If ej = 2 and
hj = 1, then the bound quiver algebra A = kQ/J is given by the quiver Q which can
be visualized as in the previous subcase with the ideal J of kQ generated by the elements
γα1 − aγβp2 . . . β2β1, βp2−1ω, σ1β1, σ2σ3ϕ, elements from partsA, B of Q, and elements
fromCi , where a ∈ k\{0}. Note that in general, we can apply to a stable tube T of one of the
following admissible operations: (ad 1), (ad 4), (ad 5) or their dual versions (with an infinite
sectional path belonging to T ). Since hj = 1, we applied (in the above visualization) an
admissible operation from the set S = {(ad 1), (ad 4), (ad 5)} to the algebra Cj with pivot
the regular Cj -module corresponding to the indecomposable representation of the form

k k
1��

1����
��

��

k
a

��������
k

1
�� · · ·�� k�� k

1
��

lying in a stable tube of rank 1 in �Cj
(see [42, XIII.2.4(c)]), where a ∈ k \ {0}. More

precisely, if we apply (ad 1) with parameter t = 0, then we have to remove the arrow
ε and the part B. Observe also that A is not simply connected, because A is isomorphic
to the algebra A′ = kQ/J ′, where the ideal J ′ of kQ is generated by the elements of
J \ {γα1 − aγβp2 . . . β2β1} ∪ {γα1} and π1(Q, J ′) is not trivial. Again, it follows from
Proposition 4.10 that π1(Q, J ′) = Z�π1(A)�π1(B)�π1(Ci). If we apply an admissible
operation from the set S∗ = {(ad 1∗), (ad 4∗), (ad 5∗)} to the algebra Cj , the proof follows
by dual arguments.

(3) Assume that the algebra Cj is of type (p1, p2) with p1 = p2 = 1. Then ej = 3,
hj = 0, hj = 1 or hj = 2 and we have three subcases to consider. Note that in this case all
stable tubes in �Cj

have ranks equal to 1. Now, if ej = 3 and hj = 0, then j = l = 1 and

the path algebra A = kQ is given by the Kronecker quiver Q: ◦ ◦
β

��
α�� . Therefore,
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π1(Q) ∼= Z and so A is not simply connected. If ej = 3 and hj = 1, then the bound quiver
algebra A = kQ/J is given by the quiver Q which can be visualized as follows:

◦ ◦
β

��
α�� ◦γ�� ε �� partA

with the ideal J in the path algebra kQ of Q over k generated by the element γα − aγβ

and elements from part A (the rest of Q), where a ∈ k \ {0}. Since hj = 1, we applied
(in the above visualization) an admissible operation from the set S to the algebra Cj with
pivot the regular Cj -module corresponding to the indecomposable representation of the

form k k
a

��
1�� lying in a stable tube of rank 1 in �Cj

(see [42, XIII.2.4(c)]), where

a ∈ k \ {0}. More precisely, if we apply (ad 1) with parameter t = 0, then we have to
remove the arrow ε and the part A. Observe also that A is not simply connected, because
A is isomorphic to the algebra A′ = kQ/J ′, where the ideal J ′ of kQ is generated by
the elements of J \ {γα − aγβ} ∪ {γα} and π1(Q, J ′) is not trivial. Again, it follows
from Proposition 4.10 that π1(Q, J ′) = Z � π1(A). Moreover, if we apply an admissible
operation from the set S∗ to the algebra Cj , the proof follows by dual arguments. If ej = 3
and hj = 2, then the bound quiver algebra A = kQ/L is given by the quiver Q which can
be visualized as follows:

partA λ �� ◦ ◦δ�� ◦
β

��
α�� ◦γ�� ε �� part B

with the ideal L of kQ generated by the elements γα − aγβ, αδ − bβδ, γαδ and elements
from parts A, B of Q, where a, b ∈ k \ {0} and a �= b. Since hj = 2, we applied (in
the above visualization) one admissible operation from the set S and one from the set S∗
to the algebra Cj with pivots the regular Cj -modules corresponding to the indecomposable
representations of the form

k k
a

��
1�� and k k

b
��

1��

lying in different stable tubes of rank 1 in �Cj
(see [42, XIII.2.4(c)]), where a, b ∈ k \ {0}

and a �= b. More precisely, if we apply (ad 1) (respectively, (ad 1∗)) with parameter t = 0,
then we have to remove the arrow ε and the part B (respectively, the arrow λ and the part
A). Observe also that A is not simply connected, because A is isomorphic to the algebra
A′ = kQ/L′, where the ideal L′ of kQ is generated by the elements of L\{γα−aγβ, αδ−
bβδ} ∪ {γα, αδ} and π1(Q,L′) is not trivial. Again, it follows from Proposition 4.10 that
π1(Q,L′) = Z � π1(A) � π1(B). In a similar way, one can show all the cases of applying
two admissible operations from the set S ∪ S∗ to any two stable tubes of rank one from the
Auslander–Reiten quiver of the Kronecker algebra.

We now show the sufficiency. We know from Theorem 3.5 that there is a unique full
convex subcategory A(l) = A

(l)
1 × · · · × A

(l)
m of A which is a tubular coextension of the

product C1 × . . . × Cm = C of a family C1, . . . , Cm of tame concealed algebras (see
remarks immediately after Theorem 5.1) such that A is obtained from A(l) by a sequence
of admissible operations of types (ad 1)–(ad 5). We shall prove our claim by induction on
the number of admissible operations leading from A(l) to the algebra A. Note that we can
apply an admissible operation (ad 2), (ad 3), (ad 4) or (ad 5) if the number of all successors
of the module Yi (which occurs in the definitions of the above admissible operations) is
finite for each 1 ≤ i ≤ t . Indeed, if this is not the case, then the family of generalized
multicoils obtained after applying such admissible operation is not sincere, and then it is not
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separating. Let C = A0, . . . , Ap = A(l), Ap+1, . . . , An = A be an admissible sequence for
A and assume that Ap = A. In this case A is tame quasitilted algebra and our claim follows
from [3, Theorem A]. Let k ≥ p, A = Ak+1 and assume that Ak is simply connected.
Moreover, let v be the extension point of Ak and X ∈ indAk be the pivot of the admissible
operation. Since H 1(A) = 0, the vertex v is separating, by [44, Lemma 3.2]. Note that if
the admissible operation leading from Ak to A is of type (ad 1), (ad 2) or (ad 3), then Ak is
a connected algebra.

If X is an (ad 1)-pivot, then A = Ak[X] or A = (Ak × D)[X ⊕ Y ], where radA Pv = X

or radA Pv = X ⊕ Y respectively, D is the full t × t lower triangular matrix algebra over
k for some t ≥ 1, and Y is the unique indecomposable projective-injective D-module (see
definition of (ad 1)). Applying Lemma 4.7 or Lemma 4.8 respectively, we conclude that A

is simply connected.
If X is an (ad 2)-pivot or (ad 3)-pivot, then A = Ak[X], where radA Pv = X. Applying

Lemma 4.7, we conclude that A is simply connected.
Let X be an (ad 4)-pivot and Y = Y1 → Y2 → · · · → Yt with t ≥ 1 be a finite sectional

path in �Ak
. Then, for r = 0, A = Ak[X ⊕ Y ], and for r ≥ 1,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ak 0 0 . . . 0 0
Y k 0 . . . 0 0
Y k k . . . 0 0
...

...
...
. . .

...
...

Y k k . . . k 0
X ⊕ Y k k . . . k k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

with r+2 columns and rows (see definition of (ad 4)). We note that Yi is directingA-module
for each 1 ≤ i ≤ t . Indeed, since H 1(A) = 0, we get dA = 0, and so Ak is not connected.

Now, if r = 0, then A = Ak[X ⊕ Y ] and radA Pv = X ⊕ Y . Then it follows from
Lemma 4.7 that A is simply connected.

If r ≥ 1, then observe that the modified algebra A of Ak can be obtained by applying
r + 1 one-point extensions in the following way: A

(0)
k = Ak[U01], A

(1)
k = A

(0)
k [U11],

A
(2)
k = A

(1)
k [U21], . . ., A(r−1)

k = A
(r−2)
k [Ur−1,1] and finally A = A

(r)
k = A

(r−1)
k [X ⊕ Ur1],

where U01 = Y , Uj1 is a projective A
(j−1)
k -module such that rad

A
(j−1)
k

Uj1 = Uj−1,1, for

r ≥ 1, 1 ≤ j ≤ r . We denote by vj the extension vertex of A
(j−1)
k , for 1 ≤ j ≤ r . Since the

vertex v1 of Q
A

(0)
k

is separating and rad
A

(0)
k

Pv1 = U01, applying Lemma 4.7, we conclude

that the algebra A
(0)
k is simply connected. Further, since the vertex v2 of Q

A
(1)
k

is separating,

rad
A

(1)
k

Pv2 = U11, and A
(0)
k is simply connected, it follows from Lemma 4.7 that A

(1)
k is

simply connected. Iterating a finite number of times the same arguments, we get that A(r−1)
k

is simply connected. Finally, since the vertex v of QA is separating and radA Pv = X⊕Ur1,
applying again Lemma 4.7, we get that A is simply connected.

Let X be an (ad 5)-pivot. Since in the definition of admissible operation (ad 5) we use
the finite versions (fad 1)–(fad 4) of the admissible operations (ad 1)–(ad 4) and the admis-
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sible operation (ad 4), we conclude that the required statement follows from the above
considerations.

This finishes the proof of Theorem 1.1.

6 Proof of Theorem 1.2

Let A be a generalized multicoil algebra. Then A is a connected generalized multicoil
enlargement of a concealed canonical algebra C. Let C = C1×C2×· · ·×Cl ×Cl+1×· · ·×
Cm be a decomposition of C into product of connected algebras such that C1, C2, . . . , Cl

are of type (p1, p2) and Cl+1, Cl+2, . . . , Cm are of type (p1, . . . , pt ) with t ≥ 3. Since Ci ,
i ∈ {1, . . . , m}, are simply connected, we get l = 0. Moreover, by the assumption, the sec-
tional paths occuring in the definitions of the operations (ad 4), (fad 4), (ad 4∗), (fad 4∗)
come from two components of two connected algebras. Applying Theorems 3.3 and 3.5 we
infer that there exists a unique factor algebra A(l) = A

(l)
1 × · · · × A

(l)
m of A which is a tubu-

lar coextension of a concealed canonical algebra C = C1 × . . . × Cm, and a unique factor
algebra A(r) = A

(r)
1 × · · · × A

(r)
m of A which is a tubular extension of a concealed canoni-

cal algebra C = C1 × . . . × Cm. Since A(l) and A(r) are quasitilted algebras (of canonical
types), the equivalence (ii) and (iv) follows from [26, Theorem 1]. Clearly, (v) implies (i).

We now show that (i) implies (iii). Since all algebrasC1, . . . , Cm are of type (p1, . . . , pt )

with t ≥ 3 (l = 0), we get fA = 0. Assume to the contrary that H 1(A) �= 0. Then, by
Theorem 5.1, dA + fA �= 0. Therefore, dA �= 0 and it follows from the proof of Lemma 4.4
(and its dual version) that A is not simply connected, a contradiction with (i).

We show that (iii) implies (iv). Assume to the contrary that there exists i ∈ {1, . . . , m}
such that H 1(A

(l)
i ) �= 0 or H 1(A

(r)
i ) �= 0. Without loss of generality, we may assume

that H 1(A
(l)
i ) �= 0 for some i ∈ {1, . . . , m}. Since A

(l)
i is a tubular coextension of a con-

cealed canonical algebra Ci , we have that A
(l)
i is a generalized multicoil enlargement of Ci ,

and so, by Theorem 5.1, dimk H 1(A
(l)
i ) = d

A
(l)
i

+ f
A

(l)
i

. Moreover, by our assumption on

Ci , we have f
A

(l)
i

= 0. Hence d
A

(l)
i

�= 0. Since dA ≥ d
A

(l)
i

, we get a contradiction with

(iii).
In order to finish the proof we will show that (iv) implies (v). Assume that H 1(A

(l)
i ) =

0 and H 1(A
(r)
i ) = 0, for any i ∈ {1, . . . , m}. We know that for each i ∈ {1, . . . , m},

A
(l)
i (respectively, A

(r)
i ) is a tubular coextension (respectively, extension) of a concealed

canonical algebra Ci of type (p1, . . . , pt ), t ≥ 3 and H 1(Ci) = 0, by [20, Theorem 2.4].
ThenH 1(B) = 0 for every full convex subcategoryB ofA(l)

i (respectively,A(r)
i ). Therefore,

it follows from [44, Theorem 4.1] that A(l)
i and A

(r)
i are strongly simply connected, for any

i ∈ {1, . . . , m}. Moreover, by our assumption on A, the Auslander–Reiten quiver �A does
not contain exceptional configurations of modules. Applying now Theorems 3.3 and 3.6 we
infer that A is strongly simply connected.

7 Examples

We start this section with the following remark.
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Remark 7.1 We can apply Theorem 1.1 to important classes of algebras. For example, to the
cycle-finite algebras with separating families of almost cyclic coherent Auslander–Reiten
components. Indeed, it is known (see [8]) that every cycle-finite algebra is tame.

Example 7.2 Let A = kQ/I be the bound quiver algebra given by the quiver Q of the form

1

��

5

18
ν ��

��

2
α �� 4

β
��

�� 6

��

��
3

��

8

��

7

19

��

9

δ

��

10
γ��

11

��

15

η
��

12 13
��� 14

λ��

ε
��

17
κ��

16

20 �� 21 �� 22

ξ

��

and I the ideal in the path algebra kQ of Q over k generated by the elements αβ, γ δ,
ηε, κλ�, ξκλ, να. Then A is a generalized multicoil enlargement of a concealed canonical
algebra C, where C is the hereditary algebra of Euclidean type D̃6 given by the vertices
1, 2, . . . , 7. Indeed, consider the dimension-vectors

a1 = 0 0
010
0 0

, a2 = 0 0
010
010

, a3 =
0 0
010
010
10
0

, a4 =
0 0
000
000
00
00

001

, a5 =
0 0
000
000
00
00

011
1

, a6 =
0 0
100
000
00
00

0000
0

.

We apply (ad 1∗) with pivot the simple regularC-module with vector a1, and with parameter
t = 0. The modified algebra B1 is given by the quiver with vertices 1, 2, . . . , 8 bound by
αβ = 0. Now, we apply (ad 1∗) with pivot the indecomposable B1-module with vector a2,
and with parameter t = 2. The modified algebra B2 is given by the quiver with vertices
1, 2, . . . , 11 bound by αβ = 0. Next, we apply (ad 1∗) with pivot the indecomposable B2-
module with vector a3, and with parameter t = 3. The modified algebra B3 is given by
the quiver with vertices 1, 2, . . . , 15 bound by αβ = 0, γ δ = 0. In the next step we apply
(ad 1∗) with pivot the indecomposable B3-module with vector a4, and with parameter t = 0.
The modified algebra B4 is given by the quiver with vertices 1, 2, . . . , 16 bound by αβ = 0,
γ δ = 0, ηε = 0. Next, we apply the admissible operation (ad 5) in two steps. The first
step: we apply the operation (fad 3) with pivot the indecomposable B4-module with vector
a5, and with parameters t = 3, s = 2. The modified algebra B5 is given by the quiver with
vertices 1, 2, . . . , 17 bound by αβ = 0, γ δ = 0, ηε = 0, κλ� = 0. The second step: we
apply the operation (ad 4) with pivot the indecomposable B5-module with vector a6, and
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with a finite sectional path consisting of the indecomposable B5-modules with dimension-
vectors

0 0
000
000
00
00

0011
1

→
0 0
000
000
00
00

0011
0

→
0 0
000
000
00
01

0011
0

→
0 0
000
000
00
00

0001
0

and with parameter r = 4. The modified algebra is equal to A.
Then the left quasitilted algebra A(l) of A is the convex subcategory of A being the

bound quiver algebra kQ(l)/I (l), where Q(l) is a full subquiver of Q given by the vertices
1, 2, . . . , 16 and I (l) = kQ(l) ∩ I is the ideal in kQ(l). The right quasitilted algebra A(r) of
A is the convex subcategory of A being the bound quiver algebra kQ(r)/I (r), where Q(r) is
a full subquiver of Q given by the vertices 1, 2, . . . , 7, 14, 15, . . . , 18 and I (r) = kQ(r) ∩ I

is the ideal in kQ(r). Note that A(l) and A(r) are tame.
It follows from Theorems 3.3, 3.5(iii) and the above construction that the Auslander–

Reiten quiver �A of the tame algebra A = kQ/I admits a separating family of almost
cyclic coherent components. Further, π1(Q, I) ∼= Z and hence A is not simply connected.
Moreover, by Theorem 5.1, the first Hochschild cohomology space H 1(A) ∼= k (dA =
1, fA = 0). We also note that, since A(l) and A(r) are tame tilted algebras of Euclidean
type D̃ such that H 1(A(l)) = 0 and H 1(A(r)) = 0, it follows from [5, Theorem] that A(l)

and A(r) are simply connected (and even strongly simply connected from [5, Corollary]).
We refer to [33, Example 4.1] (see also [35, Example 9.13]) for a more extensive example
of the tame algebra with a separating family of almost cyclic coherent components which
is not simply connected. Finally, we also mention that A is a generalized multicoil algebra
such that �A contains the exceptional configurations of modules.

Example 7.3 We borrow the following example from [31]. Let A = kQ/I be the bound
quiver algebra given by the quiver Q of the form

1

��

5 20 23
ϕ3

����
��

��

2
α

�� 4

β
��

�� 6

��

��

25 22

ϕ1
��������

ϕ2

����
��

��

ψ��

3

��

8

��

7 19
ν ��

��

26

ξ1

��

21 32

ζ1

��

ζ2
��

24

ϕ4
��������

9

δ

��

10
γ�� 18

μ

��

27

ξ2

��

ω1

��

28
ξ3��

11

��

15

η

��

33

π1
��������

π2
��

12 13
��� 14

λ��

ε
��

17
κ�� 29 30

ω2
�� 31��

16

and I the ideal in the path algebra kQ of Q over k generated by the elements αβ, γ δ, ηε,
κλ�, ϕ3ψ , ϕ4ψ , ξ3ω1, ζ1ϕ1, ζ1ϕ2, ζ2ξ3ξ2ξ1−ζ1ψ , π1ξ2, π1ω1−π2ω2, μκλ, νξ1. Then A is
a generalized multicoil enlargement of a concealed canonical algebra C = C1 × C2, where
C1 is the hereditary algebra of Euclidean type D̃6 given by the vertices 1, 2, . . . , 7, and C2
is the hereditary algebra of Euclidean type D̃5 given by the vertices 20, 21, . . . , 24. Indeed,
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we apply (ad 1∗) to C1 with pivot the simple regular C1-module S4, and with parameter
t = 0. The modified algebra B1 is given by the quiver with the vertices 1, 2, . . . , 8 bound
by αβ = 0. Next, we apply (ad 1∗) to B1 with pivot the indecomposable injective B1-
module I8, and with parameter t = 2. The modified algebra B2 is given by the quiver with
the vertices 1, 2, . . . , 11 bound by αβ = 0. Now, we apply (ad 1∗) to B2 with pivot the
indecomposable B2-module τB2S10, and with parameter t = 3. The modified algebra B3
is given by the quiver with the vertices 1, 2, . . . , 15 bound by αβ = 0, γ δ = 0. Next, we
apply (ad 1∗) to B3 with pivot the simple B3-module S14, and with parameter t = 0. The
modified algebra B4 is given by the quiver with the vertices 1, 2, . . . , 16 bound by αβ = 0,
γ δ = 0, ηε = 0. In the next step we apply (ad 1∗) to C2 with pivot the simple regular
C2-module S22, and with parameter t = 3. The modified algebra B5 is given by the quiver
with the vertices 20, 21, . . . , 28 bound by ϕ3ψ = 0, ϕ4ψ = 0. Now, we apply (ad 1∗) to
B5 with pivot the simple B5-module S27, and with parameter t = 2. The modified algebra
B6 is given by the quiver with the vertices 20, 21, . . . , 31 bound by ϕ3ψ = 0, ϕ4ψ = 0,
ξ3ω1 = 0. Next, we apply (ad 2) to B6 with pivot the indecomposable injective B6-module
I25, and with parameter t = 3. The modified algebra B7 is given by the quiver with the
vertices 20, 21, . . . , 32 bound by ϕ3ψ = 0, ϕ4ψ = 0, ξ3ω1 = 0, ζ1ϕ1 = 0, ζ1ϕ2 = 0,
ζ2ξ3ξ2ξ1 = ζ1ψ . Now, we apply (ad 3) to B7 with pivot the indecomposable B7-module
τB7S30, and with parameter t = 2. The modified algebra B8 is given by the quiver with the
vertices 20, 21, . . . , 33 bound by ϕ3ψ = 0, ϕ4ψ = 0, ξ3ω1 = 0, ζ1ϕ1 = 0, ζ1ϕ2 = 0,
ζ2ξ3ξ2ξ1 = ζ1ψ , π1ξ2 = 0, π1ω1 = π2ω2. Finally, we apply (ad 5) to B4 × B8 in two
steps. The first step: we apply (fad 3) with pivot the indecomposable B4-module τB4S14,
and with parameters t = 3, s = 2. The modified algebra B9 is given by the quiver with
the vertices 1, 2, . . . , 17 bound by αβ = 0, γ δ = 0, ηε = 0, κλ� = 0. The second step:
we apply (ad 4) with pivot the simple B8-module S26, and with the finite sectional path
I16 → τB9S15 → I14 → S17 consisting of the indecomposable B9-modules, and with
parameters t = 4, r = 1. The modified algebra is equal to A.

Then the left quasitilted algebra A(l) of A is the convex subcategory of A being the
product A(l) = A

(l)
1 × A

(l)
2 , where A

(l)
1 = kQ

(l)
1 /I

(l)
1 is the branch coextension of the tame

concealed algebra C1, Q
(l)
1 is a full subquiver of Q given by the vertices 1, 2, . . . , 16 and

I
(l)
1 = kQ

(l)
1 ∩I is the ideal in kQ

(l)
1 ,A(l)

2 = kQ
(l)
2 /I

(l)
2 is the branch coextension of the tame

concealed algebra C2, Q
(l)
2 is a full subquiver of Q given by the vertices 20, 21, . . . , 31 and

I
(l)
2 = kQ

(l)
2 ∩ I is the ideal in kQ

(l)
2 . The right quasitilted algebra A(r) of A is the convex

subcategory ofA being the productA(r) = A
(r)
1 ×A

(r)
2 , whereA

(r)
1 = C1,A

(r)
2 = kQ

(r)
2 /I

(r)
2

is the branch extension of the tame concealed algebra C2, Q
(r)
2 is a full subquiver of Q given

by the vertices 14, 15, . . . , 24, 26, 27, 28, 30, 31, 32, 33 and I
(r)
2 = kQ

(r)
2 ∩ I is the ideal in

kQ
(r)
2 . Note that A(l)

1 , A(l)
2 , A(r)

1 and A
(r)
2 are tame.

It follows from Theorems 3.3, 3.5(iii) and the above construction that A is tame and
�A admits a separating family of almost cyclic coherent components. Moreover, by Theo-
rem 5.1, the first Hochschild cohomology space H 1(A) = 0 (dA = 0, fA = 0). Then, a
direct application of Theorem 1.1 shows that the algebra A is simply connected. In fact, it
follows from [31, Theorem 1.2] thatA is strongly simply connected. We also note that, since

A
(l)
1 ,A(l)

2 ,A(r)
1 andA

(r)
2 are tame tilted algebras of Euclidean type D̃ such thatH 1(A

(l)
1 ) = 0,

H 1(A
(l)
2 ) = 0,H 1(A

(r)
1 ) = 0 andH 1(A

(r)
2 ) = 0 it follows from [5, Theorem] thatA(l)

1 ,A(l)
2 ,

A
(r)
1 and A

(r)
2 are simply connected (and even strongly simply connected from [5, Corol-

lary]). Finally, we mention that C1, C2 are simply connected, A is a generalized multicoil
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algebra, �A does not contain exceptional configurations of modules, and so this example
illustrates also Theorem 1.2.

Example 7.4 Let A = kQ/I be the bound quiver algebra given by the quiver Q of the form

13

ψ
��

14
ϕ�� 15��

ζ
��

16 1
λ�� 2

α�� 3
β�� ε �� 11 12

κ�� 6 7
μ�� 8

ν��

5

�

��

4
δ

��

γ

��

10

ξ

��

9
η

��
ω

��

17
π

��

and I the ideal in the path algebra kQ of Q over k generated by the elements aγβαλ− δ�λ,
γ ε, bπωνμ − πηξ , ζμ, ϕψκ , where a, b ∈ k \ {0}. Then A is a generalized multicoil
enlargement of a concealed canonical algebra C = C1 × C2, where C1 is the hereditary
algebra of Euclidean type Ã4 given by the vertices 1, 2, . . . , 5, and C2 is the hereditary
algebra of Euclidean type Ã4 given by the vertices 6, 7, . . . , 10. Indeed, we apply (ad 1∗)
to C1 with pivot the simple regular C1-module S3, and with parameter t = 2. The modified
algebra B1 is given by the quiver with the vertices 1, 2, . . . , 5, 11, 12, 13 bound by γ ε = 0.
Next, we apply (ad 4) to B1 × C2 with pivot the simple regular C2-module S7 and with
the finite sectional path I12 → S13 consisting of the indecomposable B1-modules, and
with parameters t = 2, r = 1. The modified algebra B2 is given by the quiver with the
vertices 1, 2, . . . , 15 bound by γ ε = 0, ζμ = 0, ϕψκ = 0. Now, we apply (ad 1∗) with
parameter t = 0 to the algebra B2 with pivot the regular C1-module corresponding to the
indecomposable representation of the form

k k
a�� k

1��

k

1

��

k
1

��
1

��

lying in a stable tube of rank 1 in �C1 (see [42, XIII.2.4(c)]). The modified algebra B3 is
given by the quiver with the vertices 1, 2, . . . , 16 bound by γ ε = 0, ζμ = 0, ϕψκ =
0, aγβαλ = δ�λ, where a ∈ k \ {0}. Finally, we apply (ad 1) with parameter t = 0
to the algebra B3 with pivot the regular C2-module corresponding to the indecomposable
representation of the form

k k
b�� k

1��

k

1

��

k
1

��
1

��

lying in a stable tube of rank 1 in �C2 (see [42, XIII.2.4(c)]). The modified algebra is then
equal to A.

Then the left quasitilted algebra A(l) of A is the convex subcategory of A being the
product A(l) = A

(l)
1 × A

(l)
2 , where A

(l)
1 = kQ

(l)
1 /I

(l)
1 is the branch coextension of C1,

Q
(l)
1 is a full subquiver of Q given by the vertices 1, 2, . . . , 5, 11, 12, 13, 16 and I

(l)
1 =

kQ
(l)
1 ∩ I is the ideal in kQ

(l)
1 , A

(l)
2 = C2. The right quasitilted algebra A(r) of A is the

convex subcategory of A being the product A(r) = A
(r)
1 × A

(r)
2 , where A

(r)
1 = C1, A

(r)
2 =

kQ
(r)
2 /I

(r)
2 is the branch extension of C2, Q

(r)
2 is a full subquiver of Q given by the vertices
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6, 7, . . . , 10, 12, 13, 14, 15, 17 and I
(r)
2 = kQ

(r)
2 ∩ I is the ideal in kQ

(r)
2 . Note that A

(l)
1 ,

A
(l)
2 , A(r)

1 and A
(r)
2 are tame.

It follows from Theorems 3.3, 3.5(iii) and the above construction that A is tame and
�A admits a separating family of almost cyclic coherent components. Moreover, we have
h1 = 1, e1 = 1, h2 = 1, e2 = 1, fC1 = 0, fC2 = 0, fA = fC1 + fC2 = 0, and
dA = 0. Therefore, by Theorem 5.1, the first Hochschild cohomology space H 1(A) = 0.
Then, a direct application of Theorem 1.1 shows that the algebra A is simply connected. We
note that, by [19, Proposition 1.6], H 1(A

(l)
2 ) ∼= k, H 1(A

(r)
1 ) ∼= k. Since A

(l)
1 and A

(r)
2 are

generalized multicoil algebras, we get by Theorem 5.1 that H 1(A
(l)
1 ) = 0, H 1(A

(r)
2 ) = 0.

We also mention that A(r)
1 = C1, A

(l)
2 = C2 are not simply connected, A(l)

1 , A(r)
2 are simply

connected, by [3, Theorem A], and so A is not strongly simply connected. Moreover, by
the above construction we know that A is a generalized multicoil algebra, such that �A

does not contain exceptional configurations of modules. Therefore, this example shows that
simple connectedness assumption imposed on the considered concealed canonical algebras
is essential for the validity of Theorem 1.2.

We end this section with an example of a wild generalized multicoil algebra, illustrating
Theorem 1.2.

Example 7.5 Let A = kQ/I be the bound quiver algebra given by the quiver Q of the form

20

ν1
��

ν2 �� 21

θ1
��

23 26
ϕ4

����
��

��

1
γ2

���������������
θ2 �� 22 32

κ2

���
��

��
��

��
��

31
η2�� η1 �� 25

ψ1

��

ϕ2

����
��

��

ϕ3
��������

0 2
β4�� 3

β3�� 4
β2�� 8

α1

����
��

��
�

β1��

γ1



�������������
34

ω2

��

��

24 27

ϕ1
��������

19 5
ρ1��

α4
���������

6
α3��

σ1
��

7
α2��

δ1
��

18

ε2
��

ε1�� 35

��

33 28
κ1

��

17

ρ2

��

16
ξ2

��
ξ1

��

12 9 10
δ2

�� 11�� 36

��

29

ψ2

��

13

σ2

��

14
σ3

�� 15
σ4

�� 38
ω1

�� 37�� 30

��

and I the ideal in the path algebra kQ of Q over k generated by the elements α1α2α3α4 +
β1β2β3β4 + γ1γ2, α1δ1, α2σ1, ξ1α4, ε1α2, ε1δ1 − ε2δ2, α3ρ1, ξ1ρ1 − ξ2ρ2, ν1γ2, γ1θ2,
ν1θ2 − ν2θ1, ϕ1ψ1, ϕ4ψ1, η1ϕ2, η1ϕ3, ψ2κ1, η2κ2 − η1ψ1κ1, ω2κ2, ω1σ4σ3σ2. Then A is a
generalized multicoil algebra. Indeed, A is a generalized multicoil enlargement of a canon-
ical algebra C = C1 × C2, where C1 is the tubular canonical algebra of type (2, 4, 4) given
by the vertices 0, 1, . . . , 8 bound by α1α2α3α4 + β1β2β3β4 + γ1γ2 = 0, and C2 is the
canonical algebra of Euclidean type D̃4 given by the vertices 23, 24, . . . , 27. It is known
that �C1 admits an infinite family T C1

λ , λ ∈ P1(k), of pairwise orthogonal stable tubes, hav-

ing a stable tube, say T C1
1 , of rank 4 with the mouth formed by the modules S5 = τC1S6,

S6 = τC1S7, S7 = τC1E, E = τC1S5, where E is the unique indecomposable C1-module

with the dimension vector dimE = 1
11111
000

, and a unique stable tube, say T C1
2 , of rank 2 with
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the mouth formed by the modules S1 = τC1F , F = τC1S1, where F is the unique indecom-

posable C1-module with the dimension vector dimF = 0
11111
111

(see [41, (3.7)]). Moreover,

�C2 admits an infinite family T C2
μ , μ ∈ P1(k), of pairwise orthogonal stable tubes, hav-

ing a stable tube, say T C2
1 , of rank 2 with the mouth formed by the modules S25 = τC2G,

G = τC2S25, where G is the unique indecomposable C2-module with the dimension vec-

tor dimG = 1 1
1
1 1

. We have the following sequence of the modified algebras. First, we apply

(ad 1∗) to C1 with pivot the simple regular C1-module S7, and with parameter t = 2. The
modified algebraB1 is given by the quiver with the vertices 0, 1, . . . , 11 bound by α1δ1 = 0.
Next, we apply (ad 1∗) to B1 with pivot the simple B1-module S6, and with parameter
t = 3. The modified algebra B2 is given by the quiver with the vertices 0, 1, . . . , 15 bound
by α1δ1 = 0, α2σ1 = 0. Now, we apply (ad 1) to B2 with pivot the simple B2-module S5,
and with parameter t = 1. The modified algebra B3 is given by the quiver with the ver-
tices 0, 1, . . . , 17 bound by α1δ1 = 0, α2σ1 = 0, ξ1α4 = 0. Next, we apply (ad 3) to B3
with pivot the indecomposable B3-module τB3I10, and with parameter t = 2. The modi-
fied algebra B4 is given by the quiver with the vertices 0, 1, . . . , 18 bound by α1δ1 = 0,
α2σ1 = 0, ξ1α4 = 0, ε1α2 = 0, ε1δ1 = ε2δ2. Further, we apply (ad 2∗) to B4 with pivot the
indecomposable projective B4-module P16, and with parameter t = 1. The modified alge-
bra B5 is given by the quiver with the vertices 0, 1, . . . , 19 bound by α1δ1 = 0, α2σ1 = 0,
ξ1α4 = 0, ε1α2 = 0, ε1δ1 = ε2δ2, α3ρ1 = 0, ξ1ρ1 = ξ2ρ2. Now, we apply (ad 1) to B5
with pivot the simple regular B5-module S1, and with parameter t = 1. The modified alge-
bra B6 is given by the quiver with the vertices 0, 1, . . . , 21 bound by α1δ1 = 0, α2σ1 = 0,
ξ1α4 = 0, ε1α2 = 0, ε1δ1 = ε2δ2, α3ρ1 = 0, ξ1ρ1 = ξ2ρ2, ν1γ2 = 0. Next, we apply
(ad 2∗) to B6 with pivot the indecomposable projective B6-module P21, and with parameter
t = 1. The modified algebra B7 is given by the quiver with the vertices 0, 1, . . . , 22 bound
by α1δ1 = 0, α2σ1 = 0, ξ1α4 = 0, ε1α2 = 0, ε1δ1 = ε2δ2, α3ρ1 = 0, ξ1ρ1 = ξ2ρ2,
ν1γ2 = 0, γ1θ2 = 0, ν1θ2 = ν2θ1. Now, we apply (ad 1∗) to C2 with pivot the simple regular
C2-module S25, and with parameter t = 2. The modified algebra B8 is given by the quiver
with the vertices 23, 24, . . . , 30 bound by ϕ1ψ1 = 0, ϕ4ψ1 = 0. Next, we apply (ad 1) to
B8 with pivot the indecomposable B8-module τB8S29, and with parameter t = 1. The mod-
ified algebra B9 is given by the quiver with the vertices 23, 24, . . . , 32 bound by ϕ1ψ1 = 0,
ϕ4ψ1 = 0, η1ϕ2 = 0, η1ϕ3 = 0. Now, we apply (ad 2∗) to B9 with pivot the indecomposable
projective B9-module P31, and with parameter t = 1. The modified algebra B10 is given
by the quiver with the vertices 23, 24, . . . , 33 bound by ϕ1ψ1 = 0, ϕ4ψ1 = 0, η1ϕ2 = 0,
η1ϕ3 = 0, ψ2κ1 = 0, η2κ2 = η1ψ1κ1. Next, we apply (ad 4) to B7 × B10 with pivot the
simple B10-module S32, and with the finite sectional path I13 → I14 → S15 consisting of
the indecomposable B7-modules, and with parameters t = 3, r = 4. The modified algebra
is then equal to A.

Then the left quasitilted algebra A(l) of A is the convex subcategory of A being the
product A(l) = A

(l)
1 ×A

(l)
2 , where A

(l)
1 = kQ

(l)
1 /I

(l)
1 is the branch coextension of C1, Q

(l)
1 is

a full subquiver of Q given by the vertices 0, 1, . . . , 15, 17, 19, 21, 22 and I
(l)
1 = kQ

(l)
1 ∩ I

is the ideal in kQ
(l)
1 , A

(l)
2 = kQ

(l)
2 /I

(l)
2 is the branch coextension of C2, Q

(l)
2 is a full

subquiver of Q given by the vertices 23, 24, . . . , 30, 33 and I
(l)
2 = kQ

(l)
2 ∩ I is the ideal

in kQ
(l)
2 . The right quasitilted algebra A(r) of A is the convex subcategory of A being the

product A(r) = A
(r)
1 × A

(r)
2 , where A

(r)
1 = kQ

(r)
1 /I

(r)
1 is the branch extension of C1, Q

(r)
1 is

a full subquiver of Q given by the vertices 0, 1, . . . , 8, 10, 11, 16, 17, 18, 20, 21 and I
(r)
1 =

kQ
(r)
1 ∩ I is the ideal in kQ

(r)
1 , A(r)

2 = kQ
(r)
2 /I

(r)
2 is the branch extension of C2, Q

(r)
2 is a
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full subquiver of Q given by the vertices 13, 14, 15, 23, 24, . . . , 27, 31, 32, 34, 35, . . . , 38
and I

(r)
2 = kQ

(r)
2 ∩ I is the ideal in kQ

(r)
2 . Then, A(l)

1 and A
(r)
1 are the quasitilted algebras

of wild types (4, 4, 13), (4, 4, 9), respectively. Moreover, A(l)
2 and A

(r)
2 are tame.

It follows from [7, Corollary 1.4] that C1 is simply connected. Moreover, C2 is also sim-
ply connected. By the above construction we know that A is a generalized multicoil algebra
obtained from C1, C2 and �A does not contain exceptional configurations of modules. Fur-
ther, by Theorem 5.1, the first Hochschild cohomology space H 1(A) = 0 (dA = 0, fA = 0)
and H 1(A

(l)
1 ) = 0, H 1(A

(l)
2 ) = 0, H 1(A

(r)
1 ) = 0, H 1(A

(r)
2 ) = 0. Then, a direct application

of Theorem 1.2 shows that the algebras A
(l)
1 , A(l)

2 , A(r)
1 , A(r)

2 and A are simply connected.
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37. Malicki, P., Skowroński, A.: The structure and homological properties of generalized standard
Auslander-Reiten components. J. Algebra 518, 1–39 (2019)
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