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Abstract
Let D be a finite-dimensional division algebra over its center and R = D[t; σ, δ] a skew
polynomial ring. Under certain assumptions on δ and σ , the ring of central quotients
D(t; σ, δ) = {f/g | f ∈ D[t; σ, δ], g ∈ C(D[t; σ, δ])} of D[t; σ, δ] is a central simple
algebra with reduced norm N . We calculate the norm N(f ) for some skew polynomials
f ∈ R and investigate when and how the reducibility of N(f ) reflects the reducibility of f .
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1 Introduction

Let A be a central simple algebra, R = A[t; σ, δ] and A(t; σ, , δ) = {f/g | f ∈
A[t; σ, δ], g ∈ C(A[t; σ, δ])} the ring of central quotients of R. Under certain assumptions
on δ and σ , A(t; σ, δ) is a central simple algebra with norm N . So far, this norm has been
successfully used when investigating factorizations of polynomials f ∈ Fqn [t; σ ] (cf. [2,
3]): f is irreducible in Fqn [t; σ ] if and only N(f ) is irreducible as a polynomial in Fq [x],
with x = tn [2, Proposition 2.1.17].

The idea to compute the norm of a skew polynomial and use it to check if the polynomial
is reducible or not can be employed for some families of skew polynomials in more general
rings R = D[t; σ, δ] with D a division algebra of degree d: we show that if D has a
subfield E of degree d and R = D[t; σ ] or R = D[t; δ] suitable, then N(f ) ∈ F [x] is a
polynomial in a suitably chosen polynomial ring F [x] for all f ∈ R, and f divides N(f ).
This generalizes results by Jacobson [6, (1.6.12), Proposition 1.7.1 (i)], [6, (1.6.12), p. 31].
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In particular, let K/F be a finite cyclic Galois extension of degree n with Galois group
generated by σ . Then for all f ∈ K[t; σ ], we have N(f ) ∈ F [x] where x = tn and
f divides N(f ). If f satisfies (f, t)r = 1, and either f is not right-invariant and n is
prime, or gcd(m, n) = 1, then f is irreducible in K[t; σ ] if and only N(f ) is irreducible
as a polynomial in F [x]. This indeed holds more generally for all f ∈ K[t; σ ] such that
(f, t)r = 1 that are not right-invariant with bound f ∗ of degree mn.

We extend these results to the case that R = D[t; δ], where δ is an algebraic derivation,
in particular we look at the case that R = K[t; δ], where K/F is a field extension in
characteristic p of degree pe and δ an algebraic derivation with constant field F . Any not
right-invariant f ∈ K[t; δ] of degree m and with bound f ∗ of degree mn, is irreducible in
K[t; δ] if and only N(f ) is irreducible as a polynomial in some polynomial ring F [x].

Furthermore, in some cases it is still true that a factorization of N(f ) in F [x] provides a
factorization of f .

This work is part of the second author’s PhD thesis [10].

2 Preliminaries

2.1 Skew Polynomial Rings

Let A be a unital associative ring, σ a ring endomorphism of A and δ : A → A a left σ -
derivation, i.e. an additive map such that δ(ab) = σ(a)δ(b) + δ(a)b for all a, b ∈ A. The
skew polynomial ring R = A[t; σ, δ] is the set of skew polynomials g(t) = a0 +a1t +· · ·+
ant

n with ai ∈ A, with term-wise addition and multiplication defined via ta = σ(a)t +δ(a)

for all a ∈ A [7]. Define Fix(σ ) = {a ∈ A | σ(a) = a} and Const(δ) = {a ∈ A | δ(a) = 0}.
If δ = 0, define A[t; σ ] = A[t; σ, 0]. If σ = id , define A[t; δ] = A[t; id, δ].

For f (t) = a0 + a1t + · · · + ant
n ∈ R with an �= 0, we define the degree of f as

deg(f ) = n and deg(0) = −∞. An element f ∈ R is irreducible in R if it is not a unit and
it has no proper factors, i.e if there do not exist g, h ∈ R with 1 ≤ deg(g), deg(h) < deg(f )

such that f = gh [6, p. 2 ff.].
Let D be a division algebra. Then a polynomial f (t) ∈ D[t; σ, δ] is bounded if there

exists a nonzero polynomial f ∗ ∈ D[t; σ, δ] such that D[t; σ, δ]f ∗ is the largest two-sided
ideal of D[t; σ, δ] contained in D[t; σ, δ]f . The polynomial f ∗ is uniquely determined by
f up to scalar multiplication by elements of D×. f ∗ is called the bound of f .

In this paper, D will always be a central simple division algebra of degree d over its
center C.

2.2 TheMinimal Central Left Multiple of f ∈ D [t ; σ ]
Let σ be an automorphism of D of finite order n modulo inner automorphisms, that means
that σn = iu for some inner automorphism iu(z) = uzu−1. Then the order of σ |C is n.
W.l.o.g., we choose u ∈ Fix(σ ). Let R = D[t; σ ] and define F = C ∩ Fix(σ ). Then R has
center

C(R) = F [u−1tn] = {
k∑

i=0

ai(u
−1tn)i | ai ∈ F } = F [x]

[6, Theorem 1.1.22]. All polynomials f ∈ R are bounded.
If the greatest common right divisor of f and t (denoted (f, t)r ) is one, then f ∗ ∈ C(R)

[3, Lemma 2.11]). From now on we assume that (f, t)r = 1. For any f ∈ R = D[t; σ ]
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with a bound in C(R), we can define the minimal central left multiple of f in R to be the
unique polynomial of minimal degree h ∈ C(R) = F [u−1tn] such that h = gf for some
g ∈ R, and such that h(t) = ĥ(u−1tn) for some monic ĥ(x) ∈ F [x].

Lemma 1 Let f ∈ D[t; σ ].
(i) If (f, t)r = 1, then the minimal central left multiple of f exists and is unique. It is

equal to the bound of f up to a scalar multiple from D.
(ii) If f is irreducible in R with minimal central left multiple h(t) = ĥ(u−1tn), then ĥ(x)

is irreducible in F [x].
(iii) Let (f, t)r = 1 and suppose that ĥ ∈ F [x] is irreducible. Then f = f1 · · · fr for

irreducible fi ∈ R such that fi ∼ fj for all i, j .

Proof (cf. [8])

(i) Let f ∗ be a bound of f . Then f ∗ is unique up to scalar multiplication by elements
in D× and Rf ∗ is the largest two-sided ideal of R contained in the left ideal Rf . In
particular, this implies f ∗ = gf for some g ∈ R. The assumption that (f, t)r = 1
implies that f ∗ ∈ C(R) [3, Lemma 2.11]) thus f ∗ is the unique minimal central left
multiple of f , up to some scalar.

(ii) Since f is irreducible, obviously (f, t)r = 1. Let h(t) = ĥ(u−1tn) be the minimal
central left multiple of f . Suppose ĥ is reducible in F [x]; that is, ĥ(x) = ĥ1(x)ĥ2(x)

for some ĥi (x) ∈ F [x], such that 0 < deg(ĥi) < deg(ĥ) for i = 1, 2. If f divides
h1(t) = ĥ1(u

−1tn) on the right, this contradicts the minimality of h. Moreover, as
f is irreducible the greatest common right divisor of f and h1 is 1. As R is a right
Euclidean domain, there exist p, q ∈ R such that pf + qh1 = 1. Multiplying every-
thing on the right by h2(t) = ĥ2(u

−1tn), we obtain pf h2 + qh = h2. As f is a right
divisor of h by definition, h = rf for some r ∈ R. Noting that h2(t) ∈ C(R), this
yields

h2 = ph2f + qrf = (ph2 + qr)f .

Thus h2 is a central left multiple of f of degree strictly less than h contradicting the
minimality of h. Thus ĥ(x) must be irreducible in F [x].

(iii) If ĥ ∈ F [x] is irreducible then h is a two-sided maximal element in R, hence the
irreducible factors hi of any factorization h = h1 · · ·hk of h in R are all similar. Now
h(t) = p(t)f (t) for some p(t) ∈ R and so comparing the irreducible factors of f

and h and employing [6, Theorem 1.2.9], we see that f = f1 · · · fr for irreducible
fi ∈ R such that fi ∼ fj for all i, j and r ≤ k.

The above results apply in particular to the special case that D is a field and σ ∈ Aut(K)

has order n. Then R = K[t; σ ] has center

C(R) = F [tn] = {
k∑

i=0

ai(t
n)i | ai ∈ F } = F [x]

where F = Fix(σ ) [6, Theorem 1.1.22].
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2.3 TheMinimal Central Left Multiple of f ∈ D [t ; δ]
Let R = D[t; δ] where C is a field of characteristic p (we allow D = C). Moreover, we
assume that δ is a derivation of D, such that δ|C is algebraic with minimum polynomial

g(t) = tp
e + c1t

pe−1 + · · · + cet ∈ F [t]
of degree pe, where F = Const(δ) ∩ C. Then g(δ) = idd0 is an inner derivation of D.
W.l.o.g. we choose d0 ∈ Const(δ), so that δ(d0) = 0 [6, Lemma 1.5.3]. Then R has center

C(D[t; δ]) = F [x] = {
k∑

i=0

ai(g(t) − d0)
i | ai ∈ F }

with x = g(t) − d0. The two-sided f ∈ D[t; δ] are of the form f (t) = uc(t) with u ∈ D

and c(t) ∈ C(R) [6, Theorem 1.1.32]. All polynomials f ∈ R are bounded.
For every f ∈ R = D[t; σ ] we define the minimal central left multiple of f in R to be

the unique polynomial of minimal degree h ∈ C(R) = F [x] such that h = gf for some
g ∈ R, and such that h(t) = ĥ(g(t) − d0) for some monic ĥ(x) ∈ F [x]:

Lemma 2 Let f ∈ R = D[t; δ].
(i) The minimal central left multiple of f exists and is unique. It is equal to f ∗ up to a

scalar multiple in D×.
(ii) If f is irreducible in R with minimal central left multiple h(t) = ĥ(g(t) − d0), then

ĥ(x) is irreducible in F [x].
(iii) Suppose that ĥ ∈ F [x] is irreducible. Then f = f1 · · · fr for irreducible fi ∈ R such

that fi ∼ fj for all i, j .

Proof (cf. [8])
(i) Let f ∗ be a bound of f . Then f ∗ is unique up to scalar multiplication by elements

in D× and Rf ∗ is the largest two-sided ideal of R contained in the left ideal Rf . Since f ∗
is two-sided, we know that f ∗(t) = dc(t) for some c(t) ∈ C(R) and d ∈ D×. So assume
w.l.o.g. that f ∗ ∈ C(R). The rest of the proof is identical to the one of Lemma 1.

The proofs of (ii), (iii) are identical to the one of Lemma 1 (ii), (iii).

2.4 The Algebra (A(x), σ̃ , ux)

Let C/F be a finite cyclic field extension of degree n with Gal(C/F) = 〈σ 〉. Let A be a
central simple algebra of degree d with center C and suppose that σ extends to a C-algebra
automorphism of A that we also will call σ . Then there exists an element u ∈ A× such that
σn = iu and σ(u) = u. These two relations determine u up to multiplication with elements
from F× [9, Lemma 19.7] . Let R = A[t; σ ] and

A(t; σ) = {f/g | f ∈ A[t; σ ], g ∈ C(A[t; σ ])}
be the ring of central quotients of A[t; σ ]. Then x = u−1tn is a commutative indeterminate
over A. The centers of A[t; σ ] and A(t; σ) are C(A[t; σ ]) = F [x] = F [u−1tn] and

C(A(t; σ)) = Quot(C(A[t; σ ])) = F(x),

where Quot(S) denotes the quotient field of an integral domain S. Note that C(A(t; σ)) is
a field. The ring A(x) of central quotients of A[x] is a subring of A(t; σ).
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A(t; σ) is a central simple F(x)-algebra, more precisely,

A(t; σ) ∼= (A(x), σ̃ , ux)

is a cyclic generalized crossed product [4, Theorem 2.3]. Here, σ̃ denotes the extension of
σ to A(x) that fixes x [4, Lemma 2.1.].

Note that when regarding A(t; σ) as an F(x)-algebra, the choice of u is lost: x depends
on u, and different choices of u lead to different actions of F(x) on A(t; σ). Here and in
the following we thus assume that u is fixed and x = u−1tn.

The algebra A(t; σ) has center F(x) and degA(t; σ) = dn. The reduced norm N of
(A(x), σ̃ , ux) is a nondegenerate form of degree dn over F(x). In particular, if A is a
division algebra then A(t; σ) is a division algebra [4, Theorem 2.2.].

If A contains a strictly maximal subfield that is Galois over F with Galois group G, then
A(t; σ) is a crossed product with group G. If A is a symbol algebra over a global field F ,
then A(t; σ) is a crossed product. If A is a p-algebra over a global field F , then A(t; σ) is
a cyclic crossed product [4, Corollary 2.4.].

2.5 The Algebra (D(x), ˜δ, d0 + x)

Let R = D[t; δ] and
D(t; δ) = {f/g | f ∈ D[t; σ ], g ∈ C(D[t; δ])}

the ring of central quotients of D[t; δ]. Then the center of D(t; δ) is the field

C(D(t; δ)) = Quot(C(D[t; δ])) = F(x)

with x = g(t) − d0. The ring of central quotients D(x) of D[x] is a subring of D(t; δ). Let
δ̃ denote the extension of δ to D(x) such that δ̃ = idt |D(x). Then δ̃|C(x) is algebraic with
minimum polynomial g(t), and D(t; δ) is the central simple F(x)-algebra

D(t; δ) ∼= (D(x), δ̃, d0 + x),

i.e. a generalized differential algebra of degree ped [6, p. 23]. Let N be its reduced norm.
Then N has degree ped. Moreover, (D(x), δ̃, d0 + x) contains D(x) as the centralizer of
C(x) [5, Theorem 3.1], and is free of rank pe as a left D(x)-module.

2.6 The Algebra (K(x), ˜δ, x)

Let K be a field of characteristic p and δ a derivation on K that is algebraic with F =
Const(δ). Let g(t) = tp

e + c1t
pe−1 + · · · + cet be the minimum polynomial of δ. Then

K/F is a purely inseparable extension of exponent one, and Kp ⊂ F . More precisely,
K = F(u1, . . . , ue) = F(u1) ⊗F · · · ⊗F F (ue), u

p
i = ci ∈ F , and [K : F ] = pe. Let

R = K[t; δ] then C(R) = F [x] with x = g(t) − d0, d0 ∈ F . Assume w.l.o.g. that d0 = 0.
Let δ̃ be the extension of δ to K(x) such that δ̃ = idt |K(x), then δ̃|F(x) is algebraic with

minimum polynomial g(t). The algebra K(t; δ) ∼= (K(x), δ̃, x) is a generalized differential
algebra of degree pe over F(x) [6, p. 23]. Let N be its reduced norm. N has degree pe.

3 Using the Norm of (K(x), σ̃ , x)

We start with the special case that A = C in Section 2.4 (with some small changes in
our notation): Let K/F be a cyclic field extension of degree n with Gal(K/F) = 〈σ 〉,
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R = K[t; σ ] and x = tn. Let N be the reduced norm of the cyclic algebra (K(x), σ̃ , x)

over F(x) (cf. also [6, Proposition 1.4.6]). We have σ̃ |K = σ , and N is a nondegenerate
form of degree n.

Caruso and Le Borgne [2] use N(f ) successfully to factorize skew polynomials f ∈
Fq [t, σ ] over finite fields. For certain f ∈ K[t, σ ], the norm N of (K(x), σ̃ , x) can also be
used to obtain a reducibility criterium:

For all f ∈ R, N(f ) ∈ F [x] and f divides N(f ) in R, more precisely, N(f ) =
f (t)�f (t) = f (t)f (t)� and f (t)� ∈ R [6, (1.6.12), Proposition 1.7.1 (i)]. Moreover, we
have:

Theorem 3 Let f (t) = a0 + a1t + · · · + amtm have degree m. Then

N(f (t)) = NK/F (a0) + · · · + (−1)m(n−1)NK/F (am)xm.

This is the generalized and corrected version of [6, Proposition 1.7.1 (ii)], which stated
(−1)mnNK/F (am)xm for the leading term, and also required m < n. Furthermore, our proof
fixes a small mistake in the proof of [2, Lemma 2.1.15].

Proof Write f (t) = a0 + a1t + · · · + amtm as

f (t) = P0(x) + P1(x)t + · · · + Pn−1(x)tn−1

with Pi(x) ∈ K[x]. We can use verbatim the same proof as given in [2, Lemma 2.1.15] to
obtain the matrix in Mn(K[x]) representing the left multiplication ρ(f (t)) with respect to
the basis 1, t, . . . , tn−1: we have

ρ(f (t)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0 tnσ (Pn−1) · · · tnσ n−1(P1)

P1 σ(P0) · · · · · ·
...

. . .
...

. . .
. . .

...
. . . tnσ n−1(Pn−1)

Pn−1 · · · · · · σn−1(P0)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus N(f (t)), which is the determinant of this matrix, has as constant term the con-
stant term of P0(x)σ (P0(x)) · · · σn−1(P0(x)), which is a0(x)σ (a0(x)) · · · σn−1(a0(x)) =
NK/F (a0). There are unique integers k, r , 0 ≤ r ≤ n − 1, such that we can write m as
m = kn + r . In the sum giving the determinant of this matrix, the term of highest degree is

(−1)m(n−1)Pi(x)σ (Pi(x)) · · · σn−i−1(Pi(x))tnσn−i (Pi(x)) · · · σn−1(Pi(x)).

It has degree m = k(n− i)+(k+1)i = kn+ i as polynomial in x. (The proof of [2, Lemma
2.1.15] forgot to include the factor (−1)m(n−1) here.) ThereforeN(f (t)) has as highest term
the highest term of this sum. The highest term is thus given by (−1)m(n−1)amσ(am) · · ·
σn−1(am) = (−1)m(n−1)NK/F (am).

Let f ∗ be the bound of f ∈ R. Since N(f ) ∈ F [x] is a left multiple of f that lies in
C(R), the bound f ∗ of f divides N(f ) in R, thus deg(f ∗) ≤ deg(N(f )). If (f, t)r = 1
then f ∗ ∈ C(R), that means f ∗ is up to some scalar α ∈ K× equal to the minimal central
left multiple h of f , where as before we write h(t) = ĥ(tn) with ĥ(x) ∈ F [x].
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Remark 4 In [3, Theorem 2.9, Corollary 2.12], it was proved that deg(f ∗) ≤ n · deg(f ).
We recover this result as a byproduct of the above observation that f ∗ divides N(f ) in R,

knowing that deg(N(f )) = n · deg(f ) in R by Theorem 3. If deg(f ) = m and deg(f ∗) =
mn in R, it follows immediately comparing degrees that N(f ) is the bound of f .

Lemma 5 Let f ∈ R. If N(f ) is irreducible in F [x], then f is irreducible in R.

Proof Suppose towards a contradiction that f = gp for g, p ∈ R then N(f ) = N(g)N(p)

is reducible in F [x], since both N(g) and N(p) lie in F [x], which immediately yields the
assertion.

Theorem 6 Let f (t) ∈ R be a polynomial of degree m such that (f, t)r = 1. Suppose that
deg(ĥ) = m (this is always the case if, for instance, either n is prime or gcd(m, n) = 1).

(i) If ĥ is irreducible in F [x] then f is irreducible in R.
(ii) If f is irreducible then N(f ) is irreducible in F [x].
Proof Let h ∈ R be the minimal central left multiple of f in R with deg(h) = nm. We
know that N(f ) is a two-sided multiple of f in R, therefore the bound f ∗ of f must divide
N(f ) in R. Since we assume (f, t)r = 1, we know that f ∗ ∈ C(R) and therefore f ∗
equals h up to some invertible factor in F . Thus h(t) = ĥ(tn) must divide N(f ) in R.
Write N(f ) = g(t)h(t) for some g ∈ R. By Theorem 3 we have deg(N(f )) = mn in
R. Comparing degrees in R we obtain degN(f ) = deg(g(t)) + mn = mn, which implies
deg(g) = 0, i.e. g(t) = a ∈ K×. This implies that N(f ) = ah(t) = aĥ(tn).

(i) If ĥ is irreducible in F [x] then N(f ) is irreducible in F [x] (Lemma 5), thus f is
irreducible in R.

(ii) If f is irreducible then ĥ is irreducible in F [x] and so again N(f ) is irreducible in
F [x].

Corollary 7 Let f ∈ R be a monic polynomial of degree. Suppose that (f, t)r = 1 and that
deg(ĥ) = m.

(i) If N(f (t)) = ĥ1 · · · ĥl such that ĥi ∈ F [x] is irreducible, 1 ≤ i ≤ l, then there exists
a decomposition f = f1 · · · fl of f into irreducible factors, such that N(fi) = ĥi for
all i, 1 ≤ i ≤ l. The degree of fi in R equals the degree of ĥi in F [x] for all i.

(ii) Assume thatN(f ) is the product of l distinct irreducible factors ĥ1 · · · ĥl in F [x]. Then
f has exactly l! irreducible decompositions corresponding to each possible ordering
of the factors of N(f ).

Proof (i) Let N(f ) = ĥ1 · · · ĥl with ĥi ∈ F [x] irreducible for all i, 1 ≤ i ≤ l.
Since N(f ) = af ∗ with a ∈ F× because of our assumption that deg(ĥ) = m

and knowing that deg(N(f )) = m by Theorem 3, we conclude that there is a “rough
factorization” of f given by f = g1 · · · gl where each gi has minimal central left
multiple ĥi [3, Proposition 5.2]. Thus N(f ) = N(g1) · · · N(gl) = ĥ1 · · · ĥl in the
commutative polynomial ring F [x]. F [x] is a unique factorization domain and the l

polynomials ĥi are all irreducible in F [x]. Hence we can conclude that the l factors
N(gi) on the left-hand side must all be irreducible as well.

Thus there is a permutation π such that N(gπ(i)) = ĥi for all i. Since ĥi is the
minimal central left multiple of gi and thus dividesN(gi), we can conclude that π = id .
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Moreover, if deg(gi) = mi then deg(N(gi)) = deg(ĥi) = mi in F [x], so the degrees
of all the ĥi in F [x] determine the degrees of the gi . Since (f, t)r = 1, also (gi, t)r = 1
for all i. By Lemma 5, we conclude that the gi must be irreducible for all i. Denote
them by fi to conform with our previous notation.

(ii) Assume that N(f ) is the product of l distinct irreducible factors. Then f is a prod-
uct of l irreducible factors by (i), containing exactly one each whose reduced norm
is ĥi for each irreducible ĥi in F [x]. Therefore f has exactly l! different irreducible
decompositions corresponding to each possible ordering of the distinct factors ĥi of
N(f ).

4 Using the Norm of the Twisted Function Field A(t; σ )

Let A be a central simple algebra of degree d with center C and R = A[t; σ ], where σ is an
automorphism of A of finite order n modulo inner automorphisms, i.e. σn = iu, such that
σ |C ∈ AutF (C) has order n. Let N be the reduced norm of (A(x), σ̃ , ut).

Proposition 8 Let f (t) = a0 + a1t + · · · + amtm ∈ C[t; σ ] ⊂ R, and suppose A has a
subfield E of degree d . Then

N(f (t)) = (NC/F (a0) + · · · + (−1)m(n−1)NC/F (am)xm)d

= NE/F (a0) + · · · + (−1)dm(n−1)NE/F (am)xdm.

Proof C̃ = (C(x)/F (x), σ̃ |C(x), ut) = (C(x)/F (x), σ̃ |C(x), t) is a subalgebra of
(A(x), σ̃ , ut) of degree n over F(x). Note that σ |C ∈ AutF (C) by our global assumption
on σ at the beginning of this section. In particular, this means σ̃ |C(x) ∈ Aut(C(x)). Thus

N(f (t)) = (NC̃/F(x)(f (t)))d

for all f (t) ∈ C[t; σ ] by [9, Proposition. p.304]. This yields the assertions:
NC̃/F(x)(f (t)) = NC/F (a0) + · · · + (−1)m(n−1)NC/F (am)xm by Proposition 3 and

NC/F (a0)
d = NE/F (a0), NC/F (am)d = NE/F (am).

Theorem 9 Let A have a subfield E of degree d. Let f ∈ A[t; σ ].
(i) N(f ) ∈ F [x],
(ii) f divides N(f ).

The proof works similarly as the one of [6, Proposition 1.7.1]:

Proof (i) We have [C : F ] = n, [A(x) : F(x)] = d2n, and [(A(x), σ̃ , ut) : F(x)] =
d2n2. The set {1, t, . . . , tn−1} generates A[t; σ ] over A[x]. (A(x), σ̃ , ut) is a central simple
algebra of degree dn over F(x) with subalgebra A(x). We regard (A(x), σ̃ , ut) as a left
module over its noncommutative subalgebra A(x). Since C(A[t; σ ]) = F [x] ⊂ A[x],
the set {1, t, . . . , tn−1} also generates A(t; σ) over A(x). Furthermore, we have It |K(x) =
σ , where σ denotes the extension of σ to K(x) fixing x, and A(x) ⊂ CA(t;σ)(K(x)).
[4, Lemma 1.27] therefore shows that {1, t, . . . , tn−1} is free over A(x), thus

A(t; σ) =
n−1⊕

i=0

A(x)ti .
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Since

A[t; σ ] =
n−1⊕

i=0

A[x]t i ,

and tn = ux, every f ∈ R ⊂ (A(x), σ̃ , ut) can be written as a linear combina-
tion of 1, t, . . . , tn−1 with coefficients in A[x]. We therefore obtain a representation ρ of
(A(x), σ̃ , ut) by matrices in Mn(A(x)) by writing

t if (t) =
n−1∑

j=0

ρij (f (t))tj

for all f ∈ R ⊂ (A(x), σ̃ , ut) and 0 ≤ i, j ≤ n − 1. Hence the matrix ρ(f (t))

has entries in A[x] for every f ∈ R. Since A has a subfield E of degree d, we can
regard A as a left module over E. Let {v1, . . . , vd} be a basis for A over E(x). Then
{v1, . . . , vd , v1t, . . . , vd t, . . . vd tn−1} is a basis of (A(x), σ̃ , ut) = A(t; σ) as a left module
over E and we now analogously obtain a representation ρ of (A(x), σ̃ , ut) by matrices in
Mdn(E(x)) with respect to that basis.

For f (t) ∈ R, the matrix ρ(f (t)) has entries in E[x], therefore it follows that
N(f (t)) = det(ρ(f (t))) ∈ E[x] ∩ F(x) = F [x].

(ii) Similarly as in (i), it can be shown that all the coefficients of the characteristic polyno-
mial of ρ(f (t)) are contained in F [x] (cf. also [9, Proposition, p. 295]) and thus f (t)� ∈ R

by [6, (1.6.12)]. Since N(f (t)) = f (t)f (t)� = f (t)�f (t), it follows that f (t) divides
N(f ) in R.

Let f ∈ R = A[t; σ ] have degree m and bound f ∗. Observe that since N(f ) ∈
F [x] = C(R) is a left multiple of f by Lemma 9, f ∗ divides N(f ) in R, so that
deg(f ∗) ≤ deg(N(f )), as also shown in [3, Theorem 2.9, Corollary 2.12].

The next result further generalizes [6, Proposition 1.7.1], i.e. Theorem 3.

Theorem 10 Let A = D be a division algebra which has a subfield E of degree d. Then
for any f ∈ D[t; σ ] of degree m, N(f ) has degree dm.

Proof Write m = kn + r for some 0 ≤ r < n. Substituting tn = ux, we obtain f (t) =
P0(x) + P1(x)t + · · · + Pn−1(x)tn−1 ∈ D[x][t; σ ] where

Pi(x) =
{

ai + · · · + ai+kn(ux)k for i ≤ r ,

ai + · · · + ai+(k−1)n(ux)k−1 for i > r .

Computing the left regular representation of ρ : D[t; σ ] → Mn(D(x)), we have

ρ(f (t)) =
⎛

⎜⎝
Q1,1(x) · · · Q1,n(x)

...
...

Qn,1(x) · · · Qn,n(x)

⎞

⎟⎠

for some Qi,j (x) ∈ D[x] satisfying

t i−1f =
n∑

j=1

Qij (x)tj−1, 1 ≤ i ≤ n,
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[6, Proposition 1.6.9]. Moreover, it follows that

deg(Qi,j ) =
{
deg(Pj−i ) for i ≤ j ,

deg(Pn+j−i ) + 1 for i > j .

Comparing the above equation with the expressions for Pi(x), it follows that

deg(Qi,j ) ≤

⎧
⎪⎨

⎪⎩

k − 1 for i ≤ j and j − i > r ,

k for i ≤ j ≤ r + i or j < i < n − r + j ,

k + 1 for i > j and i − j ≥ n − r .

with Qi,j (x) = σ i−1(am)ukxk + . . . for j − i = r and Qi,j (x) = σ i−1(am)uk+1xk+1+ . . .

for i − j = n − r .
This means the bottom left r × r minor of ρ(f (t)) has elements of degree at most k + 1

in lower triangular entries (including the diagonal which attains this maximum degree) and
the top right n − r × n − r minor of ρ(f (t)) has elements of degree at most k − 1 in the
upper triangular entries (excluding the diagonal which has elements of exactly degree k).
Every other element of ρ(f (t)) has degree at most k.

As D has a subfield of degree d, there exists a left regular representation ω : D →
Md(E) which extends to D[x] by setting ω(x) = xId. The d × d block matrices represent-
ing Qi,j (x) are inserted for every entry Qi,j (x) in ρ(f (t)) to obtain a representation for
D[t; σ ] in Mdn(E[x]).

As ω is additive and ω(x) is a diagonal matrix, ω(σ j (g(x))) = ω(σ j (gk)u
k)(xId)k +

· · · + ω(σ j (g0)) for any polynomial g(x) = ∑k
i=0 gix

i ∈ D[x]. As we are computing the
determinant only to find the degree of N(f (t)), it is sufficient to only consider the term
of highest degree in Qi,j (x) and ignore all terms of lower degree. We truncate Qi,j (x)

at the highest term and apply ω to all the entries of the matrix. To determine the term of
highest degree, we expand the determinant along the columns and consider only the portion
of the determinant expansion which yields the maximum possible degree. As ω(amuk) =
ω(am)ω(u)k is invertible, there are no zero columns in ω(amuk) so it is always possible to
find an expansion of the matrix yielding the highest degree. Hence the degree of N(f (t))

is at most dr(k + 1) + d(n − r)k = d(kn + r) = dm. We wish to show the coefficient of
xdm in N(f (t)) is non-zero: following a suitable expansion of ω ◦ ρ(f (t)) the coefficient
of xdm is equal to

±det(ω(amuk))det(ω(σ (amuk)) · · · det(ω(σn−r−1(amuk))det(ω(σn−r (amuk+1)) · · ·

det(ω(σn−1(amuk+1)).

As σ is an automorphism, det(ω(σ i(amuk)) �= 0 by our assumption on ω(amuk). Thus the
coefficient of xdm is non-zero and deg(N(f (t)) = dm.

Example 11 We show the details of the above calculations for d = 2, n = 3 and m = 7; an
actual computation of the matrix becomes difficult for any d, n,m. For f (t) = a0 + a1t +
· · · + a7t

7 ∈ D[t; σ ], where we assume D has a subfield E of degree d, and t3 = ux, we
obtain

ρ(f (t)) =
⎛

⎝
a0 + a3ux + a6u

2x2 a1 + a4ux + a7u
2x2 a2 + a5ux

σ(a2ux + a5u
2x2) σ (a0 + a3ux + a6u

2x2) σ (a1 + a4ux + a7u
2x2)

σ 2(a1ux + a4u
2x2 + a7u

3x3) σ 2(a2ux + a5u
2x2) σ 2(a0 + a3ux + a6u

2x2)

⎞

⎠ .
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Truncate the polynomials in the matrix at their highest terms and apply ω : D → M2(E)

to get
⎛

⎝
ω(a6u

2x2) ω(a7u
2x2) ω(a5ux)

ω(σ(a5u
2)x2) ω(σ (a6u

2)x2) ω(σ (a7u
2)x2)

ω(σ 2(a7u
3)x3) ω(σ 2(a5u

2)x2) ω(σ 2(a6u
2)x2)

⎞

⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(1,1)
1,1 x2 a

(1,2)
1,1 x2 a

(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,1 x2 a

(2,2)
1,1 x2 a

(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,1 x2 a

(1,2)
2,1 x2 a

(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,1 x2 a

(2,2)
2,1 x2 a

(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

a
(1,1)
3,1 x3 a

(1,2)
3,1 x3 a

(1,1)
3,2 x2 a

(1,2)
3,2 x2 a

(1,1)
1,3 x2 a

(1,2)
3,3 x2

a
(2,1)
3,1 x3 a

(2,2)
3,1 x3 a

(2,1)
3,2 x2 a

(2,2)
3,2 x2 a

(2,1)
1,3 x2 a

(2,2)
3,3 x2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for some a
(i,j)
k,l ∈ E for i, j ∈ {1, 2} and k, l ∈ {1, 2, 3}. Then the determinant of the above

matrix is equal to

a
(1,1)
3,1 x3

∣∣∣∣∣∣∣∣∣∣∣

a
(1,2)
1,1 x2 a

(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,2)
1,1 x2 a

(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,2)
2,1 x2 a

(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,2)
2,1 x2 a

(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

a
(2,2)
3,1 x3 a

(2,1)
3,2 x2 a

(2,2)
3,2 x2 a

(2,1)
1,3 x2 a

(2,2)
3,3 x2

∣∣∣∣∣∣∣∣∣∣∣

− a
(2,1)
3,1 x3

∣∣∣∣∣∣∣∣∣∣∣

a
(1,2)
1,1 x2 a

(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,2)
1,1 x2 a

(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,2)
2,1 x2 a

(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,2)
2,1 x2 a

(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

a
(1,2)
3,1 x3 a

(1,1)
3,2 x2 a

(1,2)
3,2 x2 a

(1,1)
1,3 x2 a

(1,2)
3,3 x2

∣∣∣∣∣∣∣∣∣∣∣

+ . . .

= a
(1,1)
3,1 a

(2,2)
3,1 x6

∣∣∣∣∣∣∣∣∣

a
(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

∣∣∣∣∣∣∣∣∣

− a
(2,1)
3,1 a

(1,2)
3,1 x6

∣∣∣∣∣∣∣∣∣

a
(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

∣∣∣∣∣∣∣∣∣

+ . . .

= (a
(1,1)
3,1 a

(2,2)
3,1 − a

(2,1)
3,1 a

(1,2)
3,1 )x6

∣∣∣∣∣∣∣∣∣

a
(1,1)
1,2 x2 a

(1,2)
1,2 x2 a

(1,1)
1,3 x a

(1,2)
1,3 x

a
(2,1)
1,2 x2 a

(2,2)
1,2 x2 a

(2,1)
1,3 x a

(2,2)
1,3 x

a
(1,1)
2,2 x2 a

(1,2)
2,2 x2 a

(1,1)
2,3 x2 a

(1,2)
2,3 x2

a
(2,1)
2,2 x2 a

(2,2)
2,2 x2 a

(2,1)
2,3 x2 a

(2,2)
2,3 x2

∣∣∣∣∣∣∣∣∣

+ . . . .

Comparing this to the matrix in terms of ω, this is equal to

det(ω(σ 2(a7u
3))x6

∣∣∣∣
ω(a7u

2x2) ω(a5ux)

ω(σ(a6u
2)x2) ω(σ (a7u

2)x2)

∣∣∣∣ + . . . .

Repeating this with the remaining block matrices, this yields

N(f (t)) = det(ω(σ 2(a7u
3))det(ω(σ (a7u

2))det(ω(a7u
2))x14 + terms of lower degree.

From now on, we assume that

A = (E/C, γ, a) is a cyclic algebra over C of degree d,

σ |E ∈ Aut(E) such that γ ◦ σ = σ ◦ γ and u ∈ E.

Then σ |E has order n. Write m = kn + r for some 0 ≤ r < n.

Theorem 12 For f (t) = a0 + a1t + · · · + amtm ∈ E[t; σ ] ⊂ A[t; σ ], we have
N(f (t)) = NE/F (a0) + · · · + (−1)dr(n−1)NE/F (am)NE/C(u)rxdm.
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Proof The proof is similar to the proof of Theorem 10. Using the same notation as in that
proof, the entries Qi,j (x) ∈ D[x] of ρ(f (t)) are determined by the relation t i−1f =∑n

j=1 Qij (x)tj−1, 1 ≤ i ≤ n, and

ρ(f (t)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P0(x) P1(x) · · · Pn−1(x)

σ (Pn−1(x))ux σ(P0(x)) · · · σ(Pn−2(x))
...

. . .
...

σn−m(Pr(x))ux
. . . σn−m(Pr−1(x))

...
. . .

...
σn−1(P1(x))ux σn−1(P2(x))ux · · · σn−1(P0(x))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Pi(x) ∈ E[x] for all i. Let {v1, . . . , vd} be a canonical basis forA as a leftE-module.
Then {v1, . . . , vd , v1t, . . . , vd t, . . . vd tn−1} is a basis of (A(x), σ̃ , ut) as a left module over
E(x) and we now analogously obtain a representation ρ of (A(x), σ̃ , ut) by matrices in
Mdn(E(x)) with respect to that basis. This representation is given by an nd × nd matrix
obtained as follows:

Let ω be the representation of A in Md(E) which is extended to a representation of A[x]
in Md(E[x]) by setting ω(x) = xId . The d × d block matrices representing the entries of
ρ(f (t)) are inserted for every entry of the previous n×n matrix (cf. for instance [9, p. 298])
with σ extended to Md(E) by acting entry-wise. For all a ∈ E, the matrix ω(a) ∈ Md(E)

is a d × d diagonal matrix given by

⎛

⎜⎜⎜⎝

a 0 . . . 0
0 γ (a) 0
...

. . .
0 0 . . . γ d−1(a)

⎞

⎟⎟⎟⎠ .

As a consequence, we note that ω(aix) = ω(ai)ω(x) = ω(ai)(xId) and ω(aiaj ) =
ω(ai)ω(aj ) for all ai, aj ∈ E. Thus we have

ω ◦ ρ(f (t)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω(P0(x)) ω(P1(x)) · · · ω(Pn−1(x))

ω(σ (Pn−1)(x))ω(u)xId ω(σ(P0(x))) · · · ω(Pn−2(x))

...
. . .

...

ω(σn−m(Pr (x)))ω(u)xId
. . . ω(σn−m(Pr−1(x)))

...
. . .

...
ω(σn−1(P1(x)))ω(u)xId ω(σn−1(P2(x)))ω(u)xId · · · ω(σn−1(P0(x)))

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ω ◦ ρ(f (t)) is a dn × dn matrix in Mdn(E[x]).
As the ω(σ j (Pi(x))) are pairwise commutative matrices, we may calculate the determi-

nant of ω ◦ ρ(f (t)) by first evaluating the n × n determinant with entries in Md(E), then
evaluating the resulting d × d matrix which has entries in E [1, Lemma 1, p. 546]. Thus we
obtain det(ω ◦ ρ(f (t))) = det(H), where

H = ω(P0(x))σ (ω(P0(x))) . . . σ n−1(ω(P0(x))) + . . .

+ (−1)r(n−r)ω(Pr(x))σ (ω(Pr(x))) . . . σ n(ω(Pr(x)))ω(u)r (xId)r .
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As each ω(Pi(x)) is a diagonal matrix in Md(E) for all 0 ≤ i ≤ n − 1, H is the diagonal
matrix in Md(E) given by the entries

Hii = γ i−1[P0(x)σ (P0(x)) . . . σ n−1(P0(x)) + . . .

+ (−1)r(n−1)Pr (x)σ (Pr(x)) . . . σ n−1(Pr(x))ur ]xr .

Hence

det(H) =
d∏

i=1

γ i−1[P0(x)σ (P0(x)) . . . σ n−1(P0(x)) + . . .

+ (−1)m(n−1)Pr (x)σ (Pr(x)) . . . σ n−1(Pr(x))urxr )].
We obtain the constant term of N(f (t)) by substituting x = 0. Thus the constant term
equals

d∏

i=1

γ i−1(a0σ(a0) . . . σ n−1(a0)) =
n∏

i=1

σ i−1(a0γ (a0) . . . γ d−1(a0)),

since γ commutes with σ . As a0 ∈ E, this is equal to
∏n

i=1 σ i−1(NE/C(a0)) =
NC/F (NE/C(a0)) = NE/F (a0). Similarly, the leading term of N(f (t)) is given by the
leading term of

d∏

i=1

γ i−1[(−1)r(n−1)Pr (x)σ (Pr(x)) . . . σ n−1(Pr(x))urxr ],

which is given by

d∏

i=1

γ i−1[(−1)r(n−1)amσ(am) . . . σ n−1(am)urxknxr )]

= (−1)dm0(n−1)

[
d∏

i=1

γ i−1(amσ(am) . . . σ n−1(am))

]
NE/C(u)m0xd(kn+m0)

since u ∈ E. As σ and γ commute and am ∈ E, we can express this as

(−1)dm0(n−1)

[
n∏

i=1

σ i−1(amγ (am) . . . γ d−1(am))

]
NE/C(u)m0xd(kn+m0)

= (−1)dr(n−1)

[
n∏

i=1

σ i−1(NE/C(am))

]
NE/C(u)m0xd(kn+m0)

= (−1)dm0(n−1)NC/F (NE/C(am))NE/C(u)rxd(kn+r).

As d(kn + r) = dm, this implies the assertion.

If (f, t)r = 1 then f ∗ ∈ C(R), that means f ∗ is up to some scalar α ∈ D× equal
to the minimal central left multiple h of f , where h(t) = ĥ(u−1tn) with ĥ(x) ∈ F [x].
Analogously as Lemma 5 we obtain:

Lemma 13 Let f ∈ R = A[t; σ ], where A has a subfield E of degree d. If N(f ) is
irreducible in F [x], then f is irreducible in R.
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Theorem 14 Let A = (E/C, γ, a) be a cyclic algebra over C of degree d such that σ |E ∈
Aut(E), u ∈ E, and γ ◦ σ = σ ◦ γ . Let f ∈ R be a polynomial such that (f, t)r = 1.
Suppose that deg(ĥ) = dm.

(i) If ĥ is irreducible in F [x] then f is irreducible in R.
(ii) If f is irreducible then N(f ) is irreducible in F [x].

Proof N(f ) is a two-sided multiple of f in R, therefore the bound f ∗ of f must divide
N(f ) in R. Since (f, t)r = 1, we know that f ∗ ∈ C(R) and therefore f ∗ equals h up to
some invertible factor in F . Thus h(t) = ĥ(u−1tn) must divide N(f ) in R. Write N(f ) =
g(t)h(t) for some g ∈ R. By Theorem 12 we have deg(N(f )) = dmn in R. Comparing
degrees in R we obtain degN(f ) = deg(g(t)) + dmn = dmn, which implies deg(g) = 0,
i.e. g(t) = a ∈ A×. This gives N(f ) = ah(t) = aĥ(u−1tn).

(i) If ĥ is irreducible in F [x] then N(f ) is irreducible in F [x] (Lemma 13), thus f is
irreducible in R.

(ii) If f is irreducible then ĥ is irreducible in F [x] (Lemma 1), and so again N(f ) is
irreducible in F [x].

We can therefore again determine the similarity classes of irreducible polynomials
appearing in a factorization of certain f , and show that any order is possible for the
appearance of these similarity classes:

Corollary 15 Let A = (E/C, γ, a) be a cyclic algebra over C of degree d such that
σ |E ∈ Aut(E), u ∈ E, and γ ◦ σ = σ ◦ γ . Let f ∈ A[t; σ ] be a monic polynomial, such
that (f, t)r = 1 and that deg(ĥ) = dm.

(i) If N(f (t)) = ĥ1 · · · ĥl such that ĥi ∈ F [x] is irreducible, 1 ≤ i ≤ l, then there exists
a irreducible decomposition f = f1 · · · fl of f into irreducible factors fi , such that
N(fi) = ĥi for all i, 1 ≤ i ≤ l. Moreover, deg(fi) = deg(N(fi))/d.

(ii) Assume that N(f ) is the product of l distinct irreducible factors ĥ1 · · · ĥl in F [x]. Then
f has exactly l! factorizations into irreducible factors corresponding to each possible
ordering of the factors of N(f ).

The proof is analogous to the one of Corollary 7.
Corollaries 7 (i) and 15 (i) generalize [2, Lemma 2.1.18] which uses a different method

of proof.

Theorem 16 Let A = (E/C, γ, a) be a cyclic algebra over C of degree d , and f (t) =
a0 + a1t + · · · + amtm ∈ C[t; σ ] ⊂ R be a polynomial of degree m, such that (f, t)r = 1
and deg(ĥ) = dm. Then f is reducible in R and has at least d irreducible factors.

Proof By Proposition 8,

N(f (t)) = (NC/F (a0) + · · · + (−1)m(n−1)NC/F (am)xm)d

is clearly reducible in F [x]. Since deg(ĥ) = dm, f is reducible in R. The at least d irre-
ducible divisors ĝ1, . . . , ĝl of N(f (t)) correspond to a decomposition f = f1 · · · fl of f

into irreducible factors, such that N(fi) = ĝj for some suitable j , for all i, 1 ≤ i ≤ l. The
degree of fi in R equals the degree of ĝj in F [x] for a suitable j .
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Note that if σ is an inner automorphism (i.e. n = 1 and so R = D[t] by a change of
indeterminants), d is prime and f not right-invariant, then any f of degree m will satisfy
deg(ĥ) = dm.

More generally, we also have by [9, Proposition, p. 304]:

Proposition 17 LetA = (E/C, γ, a) be a cyclic algebra. LetB be a central simple algebra
over K(x) that is a subalgebra of (A(x), σ, ut) and assume that K(x)/F (x) is a finite field
extension. Then every f (t) ∈ A[t; σ ] ∩ B with deg(h) = dmn is reducible.

Proof Let K(x)/F (x) be a finite field extension of degree c and B be a cen-
tral simple algebra over K(x) of degree b. For all f (t) ∈ B ∩ A[t; σ ] we have
N(f (t)) = NK(x)/F (x)(NB/K(x)(f (t)))e for a suitable integer e with d = bce [9, Propo-
sition, p. 304]. Thus N(f ) is reducible and hence so is f , since we assumed that
deg(h) = dmn.

5 The Norm Condition for Differential Polynomials in Characteristic p

5.1 The Case that R = K [t ; δ]
We use the notation from Section 2.6: let F be a field of characteristic p and K/F be a field
extension which is purely inseparable of exponent one. Let δ be a derivation on K that is
algebraic with Const(δ) = F , and g(t) = tp

e + c1t
pe−1 + · · · + cet ∈ F [t] the minimum

polynomial of δ. Let R = K[t; δ] and C(R) = F [x], where x = g(t). Let N be the norm
of (K(x), δ̃, x).

Theorem 18 (i) For all f ∈ R we have N(f ) ∈ F [x] and f divides N(f ).
(ii) If f (t) = a0 + a1t + · · · + amtm ∈ R = K[t; δ] has degree m, then

N(f (t)) = (−1)m(pe−1)a
pe

m xm + . . . .

Part (i) of this proof follows by an analogous argument to Theorem 9. More precisely,
actually N(f ) = f (t)�f (t) = f (t)f (t)� and f (t)� ∈ R, cf. [6, (1.6.12) and p. 31].

Part (ii) follows similarly to Theorem 3. This generalizes and refines [6, p. 31], which
states that for f (t) = a0 + a1t + · · · + amtm ∈ R we have N(f (t)) = ±a

pe

m xm + . . . , if
m < pe, where the omitted terms are of lower degree than m in x (no proof was given).

To find the constant term of N(f ) in Theorem 18 is difficult, let us look at one example:

Example 19 Let pe = 5, f (t) = t4 + a for some a ∈ K×, and g(t) = t5 + t . Computing
ρ(f (t)) yields

⎛

⎜⎜⎜⎜⎝

a 0 0 0 1
δ(a) + x a − 1 0 0 0

δ2(a) 2δ(a) + x a − 1 0 0
δ3(a) 3δ2(a) 3δ(a) + x a − 1 0
δ4(a) 4δ3(a) 6δ2(a) 4δ(a) + x a − 1

⎞

⎟⎟⎟⎟⎠
.
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Setting x = 0 and taking the determinant of ρ(f (t)) shows that the constant term of
N(f (t)) is

a5 − 4a4 + a3[6 + δ4(a)] − a2[4 + 3δ4(a) + 8δ(a)δ3(a) + 6δ2(a)2]
+a[1 + 3δ4(a) + 12δ2(a)216δ(a)δ3(a) + 36δ(a)2δ2(a)]
−[δ4(a0) + 8δ(a)δ3(a) + 6δ2(a)2 + 36δ(a)2δ2(a) + 24δ(a)4].

It is possible to compute special cases though:

Proposition 20 For f (t) = g(t) + a for some a ∈ K ,

N(f (t)) = (x + a)p
e

.

Proof Following the proof of Theorem 18, we substitute x = g(t) so f (t) = x + a ∈
K[x][t; δ]. Computing the left regular representation ρ : K[t; σ ] → Mpe(K[x]), it fol-
lows that ρ(f (t)) is a lower triangular matrix where each diagonal entry is equal to x + a.
As the determinant of a triangular matrix is the product of its diagonal entries, the result
follows.

Since N(f ) ∈ F [x] = C(R), f ∗ divides N(f ) in F [x]. Thus deg(f ∗) ≤ pe · deg(f ),

because the degree of N(f ) as a polynomial in R is m · pe by Theorem 18 (ii). In partic-
ular, if deg(f ∗) = m in F [x], comparing degrees in F [x] shows that N(f ) is the bound
of f .

The bound f ∗ is up to some scalar α ∈ K× equal to the minimal central left multiple h

of f , where as before we write h(t) = ĥ(g(t)) with ĥ(x) ∈ F [x] monic.

Lemma 21 Let f ∈ R. If N(f ) is irreducible in F [x], then f is irreducible in R.

The proof is identical to the one of Lemma 13.

Theorem 22 Let f ∈ R be a polynomial of degree m. Suppose that deg(ĥ) = m.

(i) If ĥ is irreducible in F [x] then f is irreducible in R.
(ii) If f is irreducible then N(f ) is irreducible in F [x].

The proof is identical to the one of Theorem 14, using Theorem 18, Proposition 2 and
Lemma 21.

Corollary 23 Let f ∈ R be a monic polynomial of degree m. Suppose that deg(ĥ) = m.

(i) If N(f (t)) = ĥ1 · · · ĥl such that ĥi ∈ F [x] is irreducible, 1 ≤ i ≤ l, then there exists
a decomposition f = f1 · · · fl of f into irreducible factors, such that N(fi) = ĥi for
all i, 1 ≤ i ≤ l. The degree of fi in R equals the degree of ĥi in F [x] for all i.

(ii) Assume thatN(f ) is the product of l distinct irreducible factors ĥ1 · · · ĥl in F [x]. Then
f has exactly l! irreducible decompositions corresponding to each possible ordering
of the factors of N(f ).
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The proof is identical to the one of Corollary 7, using Theorem 18 and Lemma 21.

5.2 The Case that R = D [t ; δ]
Let C be a field of characteristic p and D a central division algebra over C of degree d. Let
δ be a derivation of D, such that δ|C is algebraic with minimum polynomial g(t) = tp

e +
c1t

pe−1 +· · ·+cet ∈ F [t] of degree pe, where F = Const(δ)∩C. Write g(t) = tp
e +g0(t).

Then g(δ) = idd0 is an inner derivation of D and w.l.o.g. we choose d0 ∈ Const(δ) so that
δ(d0) = 0. R = D[t; δ] has center C(R) = F [x] = F [(tpe + g0(t) + d0)].

Let N be the reduced norm of D(t; δ) ∼= (D(x), δ̃, d0 + x) of degree ped [6, p. 23].

Proposition 24 Let f (t) = a0 + a1t + · · · + amtm ∈ C[t; δ] ⊂ R, then

N(f (t)) = ((−1)m(pe−1)a
pe

m xm + · · · )d .

Proof C̃ = (C(x), δ̃|C(x), d0 + x) = (C(x), δ̃, x) is a subalgebra of degree pe of
(D(x), δ̃, d0 + x) over F(x). Note that δ̃|C(x) : C(x) −→ C(x) is well-defined: since δ|C
is an algebraic derivation on C by our assumption, we can canonically extend it to get the
algebraic derivation δ̃|C(x) : C(x) −→ C(x). Thus

N(f (t)) = (NC̃/F(x)(f (t)))d

for all f (t) ∈ C[t; σ ] by [9, Proposition. p. 304]. This yields the assertion.

Theorem 25 Let D have a subfield E of degree d.

(i) For all f ∈ R we have N(f ) ∈ F [x].
(ii) f divides N(f ).

Proof (i) The set {1, t, . . . , tpe−1} generates D[t; δ] over D[x]. The algebra
(D(x), δ̃, d0 + x) is central simple of degree ped over F(x) with subalgebra D(x). We
regard (D(x), δ̃, d0+x) as a left module over D(x). Since C(D[t; δ]) = F [x] ⊂ D[x],
the set {1, t, . . . , tn−1} also generates D(t; δ) as a left D(x)-module, and hence is a
basis. Since

D[t; δ] =
pe−1⊕

i=0

D[x]t i ,

and by substituting x = g(t) = tp
e + g0(t), every f ∈ R ⊂ (D(x), δ̃, d0 + x) can be

written as a polynomial 1, t, . . . , tp
e−1 with coefficients in D[x]. We therefore obtain

a representation ρ of (D(x), δ̃, d0 + x) by matrices in Mpe(D(x)) by writing

t if (t) =
n−1∑

j=0

ρij (f (t))tj

for all f ∈ R ⊂ (A(x), δ̃, d0 + x) and 0 ≤ i ≤ n − 1, where ρij (f (t)) is the (i, j)th

entry of ρ(f (t)). The matrix ρ(f (t)) then has entries in D[x] for every f ∈ R.
Let {v1, . . . , vd} be a canonical basis of D as a left E-module. Then the set

{v1, . . . , vd , v1t, . . . , vd t, . . . vd tp
e−1} is a basis of (D(x), δ̃, d0 + x) as a left module

over E(x). We can therefore analogously obtain a representation ρ of (D(x), δ̃, d0 +x)

by matrices in Mdpe(E(x)) with respect to that basis. For f (t) ∈ R, the matrix ρ(f (t))
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has entries in E[x], therefore it follows that N(f (t)) = det(ρ(f (t))) ∈ E[x]∩F(x) =
F [x].

(ii) Similarly as in (i) (and similar to [9, Proposition, p. 295]), it can be shown that all the
coefficients of the characteristic polynomial of ρ(f (t)) are contained in F [x] and thus
f (t)� ∈ R by [6, (1.6.12)]. Since N(f (t)) = f (t)f (t)� = f (t)�f (t), it follows that
f (t) divides N(f ) in R.

Theorem 26 Let D have a subfield E of degree d and let ω : D → Md(E) be the left
regular representation of D. Then for any f ∈ R of degree m,

N(f ) = ±det(ω(am))p
e

xdm + . . .

In particular, N(f ) has degree dm.

The proof follows analogously to the proof of Theorem 10.

Corollary 27 Let D = (E, δ0, a) be a differential algebra, δ|E be a derivation on E, and
let f ∈ D[t; δ] have coefficients in E and be monic. Then N(f (t)) = ±xdm + . . . .

Proof Through direct computations of the left regular representation of D, we see that for
each a ∈ E, ω(a) is a lower triangular matrix with each entry on the lead diagonal equal to
a. Hence the result follows analogously to Theorem 26.

Since N(f ) ∈ F [x] = C(R), the bound f ∗ of f divides N(f ) in F [x], so that if
deg(f ∗) = dm in F [x], it follows again immediately that N(f ) is the bound of f .

Lemma 28 Let f ∈ R. If N(f ) is irreducible in F [x], then f is irreducible in R.

Theorem 29 Let f ∈ R be a polynomial of degree m. Suppose that deg(ĥ) = dm.

(i) If ĥ is irreducible in F [x] then f is irreducible in R.
(ii) If f is irreducible then N(f ) is irreducible in F [x].

Corollary 30 Let f ∈ R be a monic polynomial of degree m. Suppose that deg(ĥ) = dm.

(i) If N(f (t)) = ĥ1 · · · ĥl such that ĥi ∈ F [x] is irreducible, 1 ≤ i ≤ l, then there exists
a decomposition f = f1 · · · fl of f into irreducible factors, such that N(fi) = ĥi for
all i, 1 ≤ i ≤ l. The degree of fi in R equals the degree of ĥi in F [x] for all i.

(ii) Assume thatN(f ) is the product of l distinct irreducible factors ĥ1 · · · ĥl in F [x]. Then
f has exactly l! irreducible decompositions corresponding to each possible ordering
of the factors of N(f ).

The proofs of the above results are identical to the ones of Lemmata 13, 21, Theorem 14
and Corollary 23.
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