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Abstract
The Hecke-Kiselman algebra of a finite oriented graphΘ over a fieldK is studied. IfΘ is an
oriented cycle, it is shown that the algebra is semiprime and its central localization is a finite
direct product of matrix algebras over the field of rational functions K(x). More generally,
the radical is described in the case of PI-algebras, and it is shown that it comes from an
explicitly described congruence on the underlying Hecke-Kiselman monoid. Moreover, the
algebra modulo the radical is again a Hecke-Kiselman algebra and it is a finite module over
its center.
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1 Introduction

Let Θ be a finite simple oriented graph with n vertices {1, . . . , n}. The Hecke–Kiselman
monoid HKΘ associated to Θ , introduced by Ganyushkin and Mazorchuk in [7], is
generated by elements x1, . . . , xn subject to the defining relations:

(i) xi = x2
i , for 1 � i � n,

(ii) xixj = xjxi if the vertices i, j are not connected in Θ ,
(iii) xixj xi = xjxixj = xixj , if i, j are connected by an arrow i → j in Θ .

Thus, HKΘ is a natural homomorphic image of the corresponding Coxeter monoid,
where relations (iii) are replaced by the braid relations xixj xi = xjxixj . Hence, information
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on the structure and representations of HKΘ in particular contributes to the understanding
of representation theory of the latter. Several combinatorial properties of HKΘ and their
representations were studied in [1, 5, 7, 9, 11]. We continue the study in [13], where the
structure of HKΘ , and of the associated algebra K[HKΘ ] over a field K , is investigated.
The case where Θ is the oriented cycle x1 → x2 → · · · → xn → x1, with n � 3,
plays a crucial role. Our first main result shows that the associated Hecke-Kiselman algebra,
denoted by K[Cn], is semiprime. It is also Noetherian, as shown in [13]. Consequently,
since K[Cn] is an algebra of Gelfand-Kirillov dimension one [10], from [16] it follows
that K[Cn] is a finite module over its center. Moreover, its classical quotient ring can be
completely described.

Theorem 1 Let n � 3. Then K[Cn] is a semiprime Noetherian PI-algebra. Moreover,
its classical quotient ring is isomorphic to

∏n−2
i=0 Mni

(K(x)), where ni = (
n

i+1

)
, for i =

0, . . . , n − 2.

Recall that the classical quotient ring of a semiprime Goldie PI-algebra is its central
localization, see [14], Theorem 1.7.34.

In particular, this result answers a question asked in [13]. Next, we apply it to derive
a description of the Jacobson radical J (K[HKΘ ]) of an arbitrary algebra K[HKΘ ], pro-
vided it satisfies a polynomial identity. The latter condition is equivalent to a simple
condition expressed in terms of the graph Θ , [10]. Namely, it is equivalent to saying that
Θ does not contain two cyclic subgraphs (i.e. subgraphs which are oriented cycles) con-
nected by an oriented path. We prove that the radical is the ideal determined by an explicitly
described congruence ρ on HKΘ , so that K[HKΘ ]/J (K[HKΘ ]) ∼= K[HKθ/ρ] is again
a Hecke-Kiselman algebra and it has a very transparent structure. For a congruence η on a
semigroup S, the kernel of the natural homomorphism K[S] −→ K[S/η] will be denoted
by I (η). So K[S/η] ∼= K[S]/I (η).

Namely, let ρ be the congruence on HKΘ generated by all pairs (xy, yx) such that
there is an arrow x → y that is not contained in any cyclic subgraph of Θ . Let Θ ′ be the
subgraph of Θ obtained by deleting all arrows x → y that are not contained in any cyclic
subgraph of Θ . Then HKΘ ′ ∼= HKΘ/ρ. (If there is no such a pair then we assume that ρ is
the trivial congruence.) Then, because of the assumption that K[HKΘ ] is a PI-algebra, the
connected components of Θ ′ are either singletons or cyclic subgraphs. Recall from [13] that
this implies that K[HKΘ ′ ] is a Noetherian algebra. Indeed, Noetherian algebras K[HKΘ ]
are characterized by the condition: each of the connected components of the graph Θ either
is acyclic or it is a cyclic graph of length n for some n � 3. Our second main result reads as
follows.

Theorem 2 Assume that Θ is a finite oriented graph such that K[HKΘ ] is a PI-algebra.
Let Θ ′ be the subgraph of Θ obtained by deleting all arrows x → y that are not contained
in any cyclic subgraph of Θ and let ρ be the congruence on HKΘ defined above. Then

1. the Jacobson radical J (K[HKΘ ]) of K[HKΘ ] is equal to the ideal I (ρ) determined
by ρ,

2. K[HKΘ ]/J (K[HKΘ ]) ∼= K[HKΘ ′ ] and it is the tensor product of algebras
K[HKΘi

] of the connected components Θ1, . . . , Θm of Θ ′, each being isomorphic to
K ⊕ K or to the algebra K[Cj ], for some j � 3,

3. K[HKΘ ′ ] is a finitely generated module over its center.
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Recall that the Jacobson radical of a finitely generated PI-algebra R is nilpotent, see [15],
Theorem 6.3.39. However, for R = K[HKΘ ] this can also be derived from our proof.

This result opens a perspective for developing representation theory of such monoids
HKΘ , which was one of the motivations in [7].

2 Some background

A Gröbner basis for Cn has been found in [11], by applying the diamond lemma, see
[2]. Consequently, the elements of Cn can be treated as words in the free monoid F =
〈x1, . . . , xn〉 that are reduced in terms of certain rewriting system in F . Let |w|i denote the
degree of a word w (treated as an element of Cn) in the generator xi . If i, j ∈ {1, . . . , n}
then xi · · · xj denotes the product of all consecutive generators from xi up to xj if i < j , or
down to xj , if i > j .

Theorem 3 Let Θ = Cn for some n � 3. Let S be the system of reductions in F consisting
of all pairs of the form

(1) (xixi, xi) for all i ∈ {1, . . . , n},
(2) (xj xi, xixj ) for all i, j ∈ {1, . . . , n} such that 1 < j − i < n − 1,
(3) (xn(x1 · · · xi)xj , xj xn(x1 · · · xi)) for all i, j ∈ {1, . . . , n} such that i +1 < j < n−1,
(4) (xiuxi, xiu) for all i ∈ {1, . . . , n} and 1 	= u ∈ F such that |u|i = |u|i−1 = 0. Here,

we write i − 1 = n if i = 1,
(5) (xivxi, vxi) for all i ∈ {1, . . . , n} and 1 	= v ∈ F such that |v|i = |v|i+1 = 0. Here

we write i + 1 = 1 if i = n.

Then the set {w − v | for (w, v) ∈ S} is a Gröbner basis of the algebra K[Cn].

It follows that an element w ∈ F is a reduced word if and only if w has no factors that are
leading terms of the reductions (1) - (5) listed above. This reduction system is compatible
with the degree-lexicographical ordering on the free monoid F defined by x1 < x2 < · · · <

xn. We will use this result from [11] several times without further comment.
Our approach heavily depends on the results of [13]. In particular, a very transparent

description of the reduced forms of almost all elements of Cn has been found in [13], The-
orem 2.1. Namely, for i = 0, 1, . . . , n − 2, the set M̃i of reduced forms of elements of Cn

that have a factor of the form xnqi = xnx1 · · · xixn−1 · · · xi+1 can be described as follows

M̃i = {a(xnqi)
kb ∈ Cn : a ∈ Ai, b ∈ Bi, k � 1}, (1)

where Ai, Bi are certain well defined sets. Moreover, if M̃ = ⋃n−2
i=0 M̃i then the set

Cn \M̃ is finite and each Mi = M̃0
i (M̃i with zero adjoined) is isomorphic to a semigroup of

matrix type M0(Si, Ai, Bi;Pi), where Si denotes the cyclic semigroup generated by si =
xnqi , Pi is a matrix of size Bi ×Ai with coefficients in 〈xnqi〉∪{θ}, where 〈si〉 is the monoid
generated by si . Recall that, if S is a semigroup, A,B are nonempty sets and P = (pba)

is a B × A - matrix with entries in S0, then the semigroup of matrix type M0(S, A,B;P)

over S is the set of all triples (s, a, b), where s ∈ S, a ∈ A, b ∈ B, with the zero ele-
ment θ , with operation (s, a, b)(s′, a′, b′) = (spba′s′, a, b′) if pba′ ∈ S and θ otherwise.
So, M0(S, A,B;P) is an order in the completely 0-simple semigroup M0(G,A,B;P)

over a cyclic infinite group, in the sense of [6]. Moreover M0(K[S], A, B;P) denotes
the corresponding algebra of matrix type. It is defined as the contracted semigroup algebra
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K0[M0(S,A,B; P)] and (if A,B are finite) it can be interpreted as the set of all A × B

- matrices over K[S] with operation αβ = α ◦ P ◦ β, where ◦ stands for the standard
matrix product. For basic results on semigroups and algebras of matrix type we refer to [12],
Chapter 5.They play a fundamental role in representation theory of semigroup algebras.

It is shown in [13] that |Ai | = |Bi | and Pi is not a zero divisor in the matrix ring
Mni

(K[si]). Therefore, Pi is invertible as a matrix in Mni
(K(si)) and hence the algebra

of matrix type M0(K(si), Ai, Bi; Pi) ∼= Mni
(K(si)); this isomorphism is accomplished

via the map x �→ x ◦ P . Moreover, the latter is a central localization of the prime algebra
K0[Mi] ∼= M0(K[Si], Ai, Bi; Pi), where Si is the cyclic semigroup generated by si .

Lemma 1 K0[Mi] is a prime algebra. Moreover, it does not have nonzero finite dimen-
sional ideals.

Proof The first assertion was proved in [13], Theorem 5.8. Suppose that J is a nonzero
ideal. Then there exist v, w ∈ Mi such that vJw 	= 0. Hence, the matrix type structure of
K0[Mi] implies easily that there exist v′, w′ ∈ Mi such that 0 	= v′vJww′ ⊆ K[xnqi].
Then, clearly, J ∩ K[xnqi] is infinite dimensional.

We start with calculating the size of the set Ai , for every i = 0, . . . , n − 2 and n � 3.

Proposition 4 For any i ∈ {0, . . . , n − 2} and n � 3 we have |Ai | = (
n

i+1

)
.

Proof For i = n − 2 the assertion follows from Lemma 2.5 in [13], so next we assume that
i � n − 3.
From the description of the set Ai from Theorem 2.1 in [13] it is clear that every element w
of Ai is exactly of one of the forms

1. w = (xks · · · xs)(xks+1 · · · xs+1) · · · (xki+1 · · · xi+1)where i+1 � s � 1, s+1 < ks+1 <

· · · < ki+1 � n− 1 and s � ks ; for s = i + 1 we assume that w = (xki+1 · · · xi+1) with
i + 1 � ki+1;

2. w = (xks · · · xs)(xks+1 · · · xs+1) · · · (xki+1 · · · xi+1) where i + 1 � s � 1, s < ks <

· · · < ki+1 � n − 1;
3. w = 1.

Choose 1 � s � i + 1 and 0 � i � n − 3. Then the elements w from Case 1. are in
a bijection with strictly increasing sequences (ks, . . . , ki+1) of natural numbers such that
1 � ks � s < s + 2 � ks+1 < · · · < ki+1 � n − 1. It is easy to see that there exist exactly
s
(
n−s−2
i−s+1

)
sequences of the above form. Similarly, elements w of the form as in Case 2. are

in a bijection with strictly increasing sequences (ks, . . . , ki+1) of natural numbers such that
s + 1 � ks < · · · < ki+1 � n − 1. There are exactly

(
n−s−1
i−s+2

)
such sequences.

It follows that

|Ai | = 1 +
i+1∑

s=1

((
n − s − 1

i − s + 2

)

+ s

(
n − s − 2

i − s + 1

))

.

Thus, it is enough to prove that 1 + ∑i+1
s=1(

(
n−s−1
i−s+2

) + s
(
n−s−2
i−s+1

)
) = (

n
i+1

)
for n � 3 and

0 � i � n − 3.
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Moreover, if i = n − 3, then by a direct calculation we get that

1 +
n−2∑

s=1

((
n − s − 1

n − s − 1

)

+ s

(
n − s − 2

n − s − 2

))

=
(

n

n − 2

)

,

as desired.
It is easy to check that

1 +
i+1∑

s=1

((
n − s − 1

i − s + 2

)

+ s

(
n − s − 2

i − s + 1

))

=
i+1∑

k=0

(i + 2 − k)

(
n − i − 3 + k

k

)

.

Indeed, substituting k = i + 1 − s in the sum in the left hand side, we get that this sum is
equal to

1 +
i∑

k=0

(
n − i − 2 + k

k + 1

)

+
i∑

k=0

(i + 1 − k)

(
n − i − 3 + k

k

)

=

= 1 +
i+1∑

k=1

(
n − i − 3 + k

k

)

+
i∑

k=0

(i + 1 − k)

(
n − i − 3 + k

k

)

=

=
i+1∑

k=0

(
n − i − 3 + k

k

)

+
i+1∑

k=0

(i + 1 − k)

(
n − i − 3 + k

k

)

=

=
i+1∑

k=0

(i + 2 − k)

(
n − i − 3 + k

k

)

,

as claimed.
We proceed by induction on n to prove that

i+1∑

k=0

(i + 2 − k)

(
n − i − 3 + k

k

)

=
(

n

i + 1

)

.

For i = 0 and arbitrary n � 3 we have 1 + (
n−2
1

) + (
n−3
0

) = (
n
1

)
and the assertion follows.

If n = 3, then we have 0 � i � 0, so the proposition holds.
Assume now that the equality is true for some n and every i � n − 3. Consider the sum

i+1∑

k=0

(i + 2 − k)

(
(n + 1) − i − 3 + k

k

)

for n − 2 > i > 0. Using
(
m+1

k

) = (
m
k

) + (
m

k−1

)
if k � 1 and

(
m+1
0

) = (
m
0

)
we get

i+1∑

k=0

(i + 2 − k)

(
(n + 1) − i − 3 + k

k

)

=

=
i+1∑

k=0

(i + 2 − k)

(
n − i − 3 + k

k

)

+
i+1∑

k=1

(i + 2 − k)

(
n − i − 3 + k

k − 1

)

.
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From the induction hypothesis it follows that the first sum is equal to
(

n
i+1

)
. Substituting

m = k − 1 and j = i − 1 we get

i+1∑

k=1

(i + 2 − k)

(
n − i − 3 + k

k − 1

)

=
j+1∑

m=0

(j + 2 − m)

(
n − j − 3 + m

m

)

.

From the induction hypothesis it follows that the above sum is equal to
(
n
i

)
. Now, using

(
n

i+1

) + (
n
i

) = (
n+1
i+1

)
we get

i+1∑

k=0

(i + 2 − k)

(
(n + 1) − i − 3 + k

k

)

=
(

n

i + 1

)

+
(

n

i

)

=
(

n + 1

i + 1

)

and the assertion follows.

3 Main results

We will identify, without further comments, elements of the monoid Cn with words in free
monoid F that are reduced with respect to the system S described in Theorem 3.

Our first main aim is to show that K[Cn] is semiprime. To prove this, we strengthen
some of the results from [13].

Consider the automorphism σ of Cn given by σ(xi) = xi+1 for i = 1, . . . , n, where
we agree that xn+1 = x1. The natural extension to an automorphism of K[Cn] also will be
denoted by σ . For basic properties of this automorphism we refer to Section 3 in [13].

We have an ideal chain in Cn

∅ = In−2 ⊆ In−3 ⊆ In−4 ⊆ · · · ⊆ I0 ⊆ I−1 (2)

where Ii = {w ∈ Cn : CnwCn ∩ 〈xnqi〉 = ∅} for i = 0, . . . , n − 2, and

I−1 = I0 ∪ Cnxnq0Cn.

In particular, using Corollary 3.17 in [13] we obtain that σ(Ik) = Ik for k = 0, . . . , n − 3.
The key structural result obtained in [13] reads as follows.

Proposition 1 Consider the ideal chain (2). Then

1. for i = 0, . . . , n − 2, the semigroups of matrix type Mi = M0(Si, Ai, Bi; Pi), satisfy
Mi ⊆ Ii−1/Ii ,

2. for i = 1, . . . , n − 2, the sets (Ii−1/Ii) \ Mi are finite;
3. I−1/I0 = M0;
4. M̃n−2 = Mn−2 \ {θ} is an ideal in Cn;
5. Cn/I−1 is a finite semigroup.

The following observation can be deduced from the results and methods of [13].

Lemma 2 Mi is a right ideal in Cn/Ii for every i = 0, 1, . . . , n − 2.

Proof Let a(xnqi)
kb ∈ M̃i and take any generator xr ∈ Cn. Assume that the element

a(xnqi)
kbxr is not in M̃i . We claim that then a(xnqi)

kbxr ∈ Ii . Let b′ be the reduced form of
bxr . If b′ = xj b̄ for some word b̄, where j � i + 1, then using reduction (4) from Theorem
3 we get that a(xnqi)

kb′ can be reduced to a(xnqi)
kb̄. Therefore we can assume that a prefix
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of b′ is equal to xj , for some j > i + 1. If j < n, then it can be calculated that a(xnqi)
kbxr

can be rewritten as a word with a factor of the form xj−1 · · · xi+2xnx1 · · · xi+1xn−1 · · · xj

and this element is in Ii by Lemma 3.8 in [13]. Let us now consider the case when xn is
a prefix of b′. As we assume that a(xnqi)

kb′ /∈ M̃i , this word can be rewritten in Cn as
an element without the factor xnqi . From Theorem 3 it is easy to see that to obtain a word
without such a factor one has to use a reduction of type (5). Therefore a(xnqi)

kb′ can be
written as a word with a prefix of the form a(xnqi)

kxnvxj , where |xnv|j = |xnv|j+1 = 0.
Moreover, for j � i or j = n − 1 the generator xj+1 occurs in xnqixn after xj , thus the
reduction of xj of type (5) is not possible in this case. Therefore n−1 > j � i+1. It follows
(see Lemma 2.3 in [13]) that such a prefix is of the form a(xnqi)

kxnx1 · · · xj . Therefore this
element has a factor xnx1 · · · xixn−1 · · · xi+1xnx1 · · · xj for some n − 1 > j � i + 1. It can
be checked (using the reductions from Theorem 3) that the latter word can be rewritten as
an element with the factor xn−1 · · · xj+1xnx1 · · · xj , which is in Ij−1 ⊆ Ii , by Lemma 3.8
in [13]. The assertion follows.

The following lemma provides a crucial step in the proof of Theorem 1. By P(K[Cn])
we denote the prime radical of K[Cn].

Lemma 3 Assume that J is a finite dimensional ideal of K[Cn]. Then J = 0. In particular,
the left annihilator A = {α ∈ K[Cn] : αK[M] = 0} of K[M] in K[Cn] is zero. Moreover,
K[Cn] is a semiprime algebra.

Proof Suppose that J 	= 0 is a finite dimensional ideal of K[Cn]. First, we claim that a
nonzero element α ∈ J can be chosen so that for every i = 1, . . . , n we have wxi = w for
all w ∈ supp(α) or αxi = 0.

Let 0 	= α ∈ J be such that |supp(α)| is minimal possible. Let supp(α) = {v1, . . . , vk}.
Since J is finite dimensional, the set Z consisting of all such k-tuples is finite.

Let R denote the Green’s relation on the monoid Cn, see [3]. Consider the R-order ≤R
on Cn; in other words, we write w ≤R v if wCn ⊆ vCn. Then define a relation � on Ck

n

by: (u1, . . . , uk) � (w1, . . . , wk) if ui ≤R wi for every i = 1, . . . , k.
Now, by the choice of α, for every x ∈ Cn we have that either αx = 0 or supp(αx) =

{v1x, . . . , vkx} and in the latter case (v1x, . . . , vkx) � (v1, . . . , vk). Since the set Z intro-
duced above is finite, we may further choose an element α for which the k-tuple (v1, . . . , vk)

is minimal possible with respect to �. Then viRvix for every i. Since the monoid Cn is J -
trivial by [4], Theorem 4.5.3, it follows that for every j we either have wxj = w for every
w ∈ supp(α) or αxj = 0, as claimed.

Next, assume that β ∈ K[Cn] is a nonzero element such that wx1 = w holds in Cn for
everyw ∈ supp(β). Then |w|1 > 0 for every suchw. Writew = w0x1w1, for some reduced
words w0, w1 such that |w1|1 = 0. We claim that then |w1|n = 0. Indeed, if w1 = uxnv

with |v|n = 0, then wx1 = w0x1uxnvx1 and then the only possible reduction that allows
to decrease the length of this word (needed in order to get wx1 = w in Cn) is of the form
x1zx1 → zx1, where z is a prefix of uxnv containing uxn. But then we do not get wx1 = w

in Cn because x1 appears after the last occurrence of xn in the reduced form of wx1), a
contradiction. So |w1|n = 0, as claimed.

Assume first that |w|n > 0. Write w = sxntx1w1, for some reduced words s, t (so
w0 = sxnt) such that |t |n = 0. Then also |t |1 = 0 because w is reduced. Hence, either
wxn = sxntx1w1xn is a reduced word with |wxn|n � 2 (if |tw1|n−1 > 0) or wxn = w in
Cn and the reduced form of wxn = w does not end with generator xn (if |tw1|n−1 = 0).
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Next, consider the case when |w|n = 0. It is clear that in this case wxn is a reduced
word, and |wxn|n = 1. Together with the previous paragraph of the proof this implies that
wxn 	= w′xn in Cn for all w,w′ ∈ supp(β) with w 	= w′.

We have proved that the hypotheses on β imply that βxn 	= 0.
Now, we apply this observation to the element α. Because of the choice of α, we get that

if αx1 = α then αxn = α. Using the automorphism σ (and noting that σ(α), as an element
of the finite dimensional ideal σ(J ) of K[Cn], inherits the hypotheses on α) we get that
σ(α)x1 = σ(α), so that σ(α)xn = σ(α), by the above argument applied to σ(α) in place of
α. Thus, αxn−1 = α, by applying α−1. Repeating this argument several times, we then get
αxj = α for every j . A similar argument shows that if αxk 	= 0 for some k, then αxj 	= 0
for every j . However, α = αxnx1x2 · · · xn−1 ∈ J ∩ K[M̃n−2], a finite dimensional ideal
of K[M̃n−2], because xnx1 · · · xn−1 ∈ M̃n−2 ⊆ M and M̃n−2 is an ideal of Cn. Therefore,
Lemma 1 implies that α = 0. This contradiction shows that we may assume that αxj = 0
for every j .

Let w ∈ supp(α) be maximal with respect to the order ≤R. If xj is the last letter of the
(reduced form of the) word w then w = wxj = w′xj in Cn, for some w′ ∈ supp(α). This
implies that w ≤R w′, so by the choice of w we get w = w′, a contradiction. Therefore
J = 0.

By Theorem 5.9 in [13], P(K[Cn]) ∩ K[M̃] = 0 because M̃ = ⋃n−2
i=0 M̃i and every

K[Mi] is prime. So, we know that A ∩ K[M̃] = 0 and therefore A and P(K[Cn]) are finite
dimensional, because Cn \ M̃ is finite. Hence, the assertion follows.

We are now in a position to prove Theorem 1.

Proof In view of Lemma 3, from Theorem 5.9 in [13] we know that K[Cn] is a Noetherian
semiprime PI-algebra.

For any fixed i = 0, . . . , n−2, let Ji be a maximal among all ideals ofK[Cn] intersecting
K[xnqi] trivially and such that K[Ii] ⊆ Ji . Then Ji is a prime ideal. By Corollary 10.16
in [8], GKdim(R) = clKdim(R) (the Gelfand-Kirillov and the classical Krull dimensions)
for every finitely generated Noetherian PI-algebra R. Since GKdim(K[Cn]) = 1, it follows
that Ji is a minimal prime ideal of K[Cn]. Clearly, the image J ′

i of Ji in K[Cn]/K[Ii] is a
prime ideal.Mi is a right ideal in Cn/Ii by Lemma 3, and thus it is a two-sided ideal because
Cn/Ii is endowed with a natural involution which preserves Mi , by Corollary 3.12 and
Lemma 3.18 in [13]. Since K[Mi] is a prime algebra, it follows that the classical quotient
rings of K[Mi] and K[Cn]/Ji are equal. Moreover, as explained in the introduction, the
classical ring of quotients of K[Mi] is naturally isomorphic to Mni

(K(x)), where ni = |Ai |
for i = 0, . . . , n − 2. Therefore, J = ⋂n−2

i=0 Ji is a semiprime ideal of K[Cn] such that
J ∩ K[M] = 0 (by the definition of the ideals Ji). Since Cn \ M is finite, J is finite
dimensional, whence J = 0 by Lemma 3. We obtain that the quotient ring Q of K[Cn]
satisfies Q ∼= ∏n−2

i=0 Mni
(K(x)), i = 0, . . . , n − 2. In view of Proposition 4, this completes

the proof.

Our second main result describes the radical of a Hecke–Kiselman algebra K[HKΘ ], as
well as the algebra modulo the radical, in the case of PI-algebras. So, assume that Θ is a
finite oriented graph such that K[HKΘ ] is a PI-algebra. This is equivalent to saying that
Θ does not contain two cyclic subgraphs (i.e. subgraphs which are cycles) connected by an
oriented path, [10]. Let ρ be the congruence on HKΘ generated by all pairs (xy, yx) such
that there is an arrow x → y that is not contained in any cyclic subgraph of Θ . (If there is
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no such a pair then we assume that ρ is the trivial congruence.) Let Θ ′ be the subgraph of
Θ obtained by deleting all arrows x → y that are not contained in any cyclic subgraph of
Θ . Then HKΘ ′ ∼= HKΘ/ρ. Then the connected components of Θ ′ are either singletons or
cyclic subgraphs.

Now, we are in a position to prove Theorem 2.

Proof Suppose that a vertex x ∈ V (Θ) is a source vertex. In other words, there is an arrow
x → y for some y ∈ V (Θ) but there are no arrows of the form z → x. For any w ∈ HKΘ

consider the element β = (xy − yx)w(xy − yx) ∈ K[HKΘ ]. Since x is a source vertex,
we know that xvx = xv in HKΘ for every v ∈ HKΘ . Hence xwxy = xwy, xwyx =
xwy. Similarly, xywxy = xywy and xywyx = xywy. Therefore β = 0. It follows that
xy − xy ∈ P(K[HKΘ ]).

If x is a sink, that is there is an arrow z → x for some z ∈ V (Θ) but there are no arrows of
the form x → y in the graph Θ , a symmetric argument shows that xz − zx ∈ P(K[HKΘ ])
for all z such that z → x in Θ . Let ρ1 be the congruence generated by all pairs (xy, yx)

such that x or y is either source or sink and there is an arrow x → y that is not contained in
any cyclic subgraph of Θ . Equivalently, we may consider the graph 	1 obtained by erasing
in Θ all such arrows x → y and z → x as above. Then K[HK	1 ] ∼= K[HKΘ ]/I (ρ1).
We have shown that I (ρ1) ⊆ P(K[HKΘ ]). Repeating this argument finitely many times
we easily get that I (ρ) ⊆ P(K[HKΘ ]) (and our argument shows that I (ρ) is nilpotent,
because Θ is finite).

Since we know that J (K[HKΘ ]) = P(K[HKΘ ]), to prove the first assertion of the
theorem it is now enough to check that K[HKΘ ′ ] is semiprime. HKΘ ′ is the direct product
of all HKΘi

, where Θi , i = 1, . . . , m, are the connected components of Θ ′ . From [10] we
know that each HKΘi

is either a band with two elements (if Θi has only one vertex) or it
is isomorphic to Ck for some k � 3. In the former case K[HKΘi

] ∼= K ⊕ K , in the latter
K[HKΘi

] is a semiprime PI-algebra (by Theorem 1) of Gelfand-Kirillov dimension one
[10], and hence it is a finitely generated module over its center [16]. It follows easily that
K[HKΘ ] is a finitely generated module over its center.

Let Qi be the classical ring of quotients of K[HKΘi
]. If HKΘi

= Cmi
for some

mi then we know that Qi is a central localization of the form described in Theorem 1.
Clearly, HKΘ ′ is the direct product

∏m
i=1 HKΘi

. Then in the localization Q = Q1 ⊗
· · · ⊗ Qm of K[HKΘ ′ ] ∼= ⊗m

i=1 K[HKΘi
] each of the factors is isomorphic to K ⊕ K

or to
∏mi−2

j=0 Mrj (K(x)), where rj = (
mi

j+1

)
. Therefore, the tensor product is semiprime.

Hence K[HKΘ ′ ] is semiprime, because Q is its central localization. It is now clear that
K[HKΘ ′ ] ∼= K[HKΘ ]/P(K[HKΘ ]). The result follows.
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