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Abstract We study super-braided Hopf algebras � primitively generated by finite-
dimensional right crossed (or Drinfeld-Radford-Yetter) modules �1 over a Hopf algebra A

which are quotients of the augmentation ideal A+ as a crossed module by right multiplica-
tion and the adjoint coaction. Here super-bosonisation provides a bicovariant
differential graded algebra on A. We introduce �max providing the maximal prolongation,
while the canonical braided-exterior algebra �min = B−(�1) provides the Woronowicz
exterior calculus. In this context we introduce a Hodge star operator � by super-braided
Fourier transform on B−(�1) and left and right interior products by braided partial deriva-
tives. Our new approach to the Hodge star (a) differs from previous approaches in that it is
canonically determined by the differential calculus and (b) differs on key examples, having
order 3 in middle degree on k[S3] with its 3D calculus and obeying the q-Hecke relation
�2 = 1 + (q − q−1)� in middle degree on kq [SL2] with its 4D calculus. Our work also
provides a Hodge map on quantum plane calculi and a new starting point for calculi on
coquasitriangular Hopf algebras A whereby any subcoalgebra L ⊆ A defines a sub-braided
Lie algebra and �1 ⊆ L∗ provides the required data A+ → �1.
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1 Introduction

Differential exterior algebras � on quantum groups were extensively studied in the 1990s
since [39] and have a critical role as examples of noncommutative geometry more generally.
However, one problem which has remained open since that era is the general construction of
a Hodge star operator � in noncommutative geometry, even in the quantum group case. Until
now the Hodge operator has been treated mainly in an ad-hoc manner in particular examples,
motivated typically by �2 = ±id as a requirement, e.g. [7, 33]. We also note a framework
[9] based on a pair of differential structures and contraction with a generalised metric, and
[12] in another q-deformation framework. By contrast our new approach depends canon-
ically on the braided-Hopf algebra structure of the exterior algebra which applies at least
for bicovariant calculi on quantum groups and covariant calculi on quantum-braided planes.
Moreover, this new approach gives very different, and we think more interesting, answers
than the previous approaches. Specifically, Section 3.2 includes the example of k(S3), the
function algebra on the permutation group S3, with its 2-cycle calculus, where � in middle
degree obeys

�3 = id

so that � as a whole has order 6. We also cover electromagnetism on this finite group as in
[33] but using the new Hodge star and again achieving a full diagonalisation of the Laplace
operator dδ+δd. Similarly, Section 4.2 computes our Hodge operator � for kq [SL2] with its
standard 4D calculus [39] and in middle degree we find, rather unexpectedly, that it obeys
the well-known q-Hecke relation

�2 = id + (q − q−1)�

when suitably normalised. Both of these examples are very different from requiring �2 =
±id. While the nicest version of the theory assumes a central bi-invariant metric and volume
form, our Fourier approach is more general as illustrated in Section 3.1 on the quantum
plane A2

q .
Conceptually, we adopt a novel point of view [17, 29] on what the Hodge star is even

classically. Namely, at every point of a manifold of dimension n the exterior algebra of
differential forms has fibre the exterior algebra �(Rn) with generators ei = dxi in local
coordinates and the usual ‘Grassmann algebra’ relations eiej + ej ei = 0. This is a finite-
dimensional super-Hopf algebra with super coproduct �ei = ei ⊗ 1 + 1 ⊗ ei and dual
super-Hopf algebra �∗ of the same form with generators f i . It is well-known that ei1 · · · eim

with i1 < i2 < · · · < im, m ≤ n form a basis of � and one can check that f im · · · f i1

provide a dual basis where the product of�∗ is adjoint to the coproduct of�. The reversal of
order of the f i occurs here if we use categorical conventions whereby�∗⊗�∗⊗�⊗� → R

is evaluated starting from the middle factors. The canonical ‘identity’ element of � ⊗ �∗
for this pairing is

n∑

k=0

∑

j1<···<jk

ej1 · · · ejk
⊗ f jk · · · f j1 =

n∑

k=0

1

k!ej1 · · · ejk
⊗ f jk · · · f j1 (1.1)
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with summation of all repeated indices in the last expression. We also have the Berezin
integral

∫
Vol = 1 where Vol = e1 · · · en, and zero on lower degrees. With these ingredients

the super version of usual Hopf algebra Fourier transform F : � → �∗ is

F(ei1 · · · eim) =
∫ (

ei1 · · · eim

1

(n − m)!ej1 · · · ejn−m

)
⊗ f jn−m · · · f j1

= 1

(n − m)!εi1···imj1···jn−mf jn−m · · · f j1

where only k = n − m in Eq. 1.1 contributes and we sum over repeated indices. The totally
antisymmetric symbol defined by ε12···n = 1 takes care of the reordering inside the integral.
This construction extends to the whole manifold and in the presence of a metric gives the
classical Hodge operator � : �m → �n−m aside from a reversal of the order of products
in the result, which amounts to a sign that depends on m (and is due to our conventions on
the duality pairing). This point of view in [17, 29] was also recently used for the Hodge star
on supermanifolds [4]. The same approach will now be applied to bicovariant differential
exterior algebras on Hopf algebras. These are parallelizable via an exterior algebra� of left-
invariant differential forms forming a super-braided-Hopf algebra and we do super-braided
Fourier transform on this.

In algebraic terms,� in the bicovariant case is a super-Hopf algebra equipped with a split
super-Hopf algebra projection � � H . Hence by a super-version of the Radford-Majid the-
orem [23, 38] one knows that �∼=A·�<� is the super-bosonisation of � as a super-braided
Hopf algebra in the braided category of crossed (or Drinfeld-Radford-Yetter) modules [5,
38, 40, 41], where we assume that A has invertible antipode. Moreover, in the standard set-
ting � is generated by degrees 0,1 and hence � has primitively generated by the subspace
�1 of degree 1. As a result we can focus on such primitively-generated super-braided Hopf
algebras � and translate elements of noncommutative geometry in these terms. Particularly,
the exterior derivative restricts to d : � → � to make � into a differential graded alge-
bra (but not within the category, d is not a morphism) and in Section 2 we give an explicit
construction of this in the case � = �max corresponding to the maximal prolongation of
�1. Any other exterior algebra corresponds to a quotient of this and at the other extreme
we revisit the more well-known case � = �min = B−(�1) given by the canonical (super)
braided-linear space associated to an object of an Abelian braided category. This B±(�1)

construction appeared in the case where �1 is rigid in [27] while quadratic primitively gen-
erated braided-Hopf algebras appeared in [18, 24]. The B+ construction as an algebra is
often called a ‘Nichols algebra’ cf [37] or ‘Nichols-Woronowicz algebra’ cf [39] but we
note that neither of these works considered B± as braided-Hopf algebras, that structure
being introduced following the development of braided-Hopf algebras by the author. The
super-braided Hopf algebra interpretation of the Woronowicz construction of bicovariant
differential exterior algebras was in [28, 29] among other works. In this context the uni-
versal property of B− corresponds in some sense to the minimal relations needed to ensure
Poincaré duality, a remark that will be reflected in our approach to the Hodge star. It was
also observed recently [35] that the exterior derivative d on a bicovariant exterior algebra is
not only a super-derivation but also a super-coderivation in the sense

�d = (d ⊗ id + (−1)| | ⊗ d)�

where | | is the degree operator and � is the super-coproduct. This turns out to be key
to going the other way of building (�, d) from data d on �. Although these matters are
somewhat familiar, the braided approach to the differential structure requires proofs which
we provide as part of a necessary systematic treatment. Section 2.4 similarly provides a



698 S. Majid

canonical construction for the differential exterior algebra on B+(�1) as a quantum-braided
plane.

As part of this, and critical for Fourier transform on B±(�1), is the notion of braided-
exponential in our approach to these algebras (being used notably in [27] to inductively
build up the quasitriangular structure of quantum groups Uq(g) as a succession of
q-exponentials). Here [27]

B±(�1) = T±�1/ ⊕m ker[m; ±�]!

exp =
∑

m

([m, ±�]!−1 ⊗ id)coev�1⊗m

are defined in terms of braided factorials [m, �]! as in [18, 24] and the latter generalises
(1.1). We recall this theory in Section 2.2. In the B+ case we have previously proposed
braided Fourier theory on the Fomin-Kirillov algebra and its super-version as Hodge star
in[29], but without a systematic treatment.

Our central results appear in Section 3. If we have a unique bi-invariant top degree (say
of degree n) then super-braided-Hopf algebra Fourier transform gives us a map F : �m →
�∗(n−m) and in the presence of a quantum metric a Hodge star operator � : �m → �n−m.
This extends in the context above to the geometric � : �m → �n−m. Proposition 3.8
establishes in some generality that � commutes with the braided antipode S and is involutive
in degrees 0, 1, n − 1, n. This in turn follows from some general results about the super-
braided Fourier transform in Section 3.1 which build on our previous diagrammatic work,
particularly [11]. Section 3.1 also covers the Hodge operator on the well-known quantum
plane A2

q , where � = B−(�1) = A
0|2
q , the fermionic quantum plane.

In Section 4 we focus on the case of coquastriangular Hopf algebras (A,R) [5, 18,
21]. In line with the braided-Hopf algebra methods of the present paper, we first present a
starting point for the construction of �1 itself, namely as the dual of a braided-Lie algebra.
We show that every subcoalgebra L ⊆ A is a braided-Lie algebra in the sense introduced
in [26]. This gives a significantly cleaner result than previous attempts such as [8] and
builds on our recent work [35]. Everything is worked out in detail for Cq [SL2] recovering
previous ‘R-matrix’ formulae when we take the standard matrix subcoalgebra, including
the 4D braided-Lie algebra[26] and the Woronowicz 4D calculus[39] from � = L∗. We
then compute the canonical braided-Fourier transform on the latter with results as described
above.

We work over a general ground field k and q ∈ k×. In examples, we will assume char-
acteristic zero for our calculations. We use the Sweedler notation �a = a(1) ⊗ a(2) for
coproducts and �Rv = v(0̄) ⊗ v(1̄) for right coactions (summations understood). We denote
the kernel of the counit by A+ and πε : A → A+ defined by πεa = a − εa the counit pro-
jection. We will make extensive use of the theory of braided-Hopf algebras [21] including
the diagrammatic notation in [19, 22].

2 Braided Construction of Exterior Algebras on Hopf Algebras

In this preliminary section we give a self-contained braided-Hopf algebra approach to bico-
variant exterior algebras on Hopf algebras building on our recent work [35]. We recall first
that a differential graded algebra means a graded algebra� = ⊕n�

n equipped with a super-
derivation d increasing degree by 1 and squaring to 0. The standard setting is where �1 is
spanned by elements of the form adb where a, b ∈ A = �0, and � is generated by degrees
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0,1; in this case we say that we have an exterior algebra over A. Any first order differential
structure (�1, d) over A can be extended to a ‘maximal prolongation’ exterior algebra.

2.1 Maximal Prolongation on a Hopf Algebra

When A is a Hopf algebra we can ask that left and right comultiplication extends to a
bicomodule structure with coactions �L,�R on �1 and d a bicomodule map. In this case it
is known that � becomes a super-Hopf algebra with coproduct that of A on degree zero and
�L + �R on degree 1, see [3, 35]. In this case π : � → A which sends all degrees > 0 to
zero and is the identity on degree 0, forms a Hopf algebra projection split by the inclusion
of A. As a result, assuming that the antipode of A is invertible and by a super version
of [23, 38], we have �∼=A·�<� where � is a super-braided Hopf algebra in the braided
category of right A-crossed (or Drinfeld-Radford-Yetter) modules. We recall that a right A-
crossed module means a vector space �1 which is both a right module and a right comodule
such that

�R(v�a) = v(0̄)�a(2) ⊗ (Sa(1))v(1̄)a(3), ∀v ∈ �1, a ∈ A.

In this case there is an associated map � : �1⊗�1 → �1⊗�1 defined by �(v⊗w) =
w(0̄) ⊗ v�w(1̄). A similar map for any pair of crossed modules makes the category of these
braided when the antipode S is invertible. Here A+ = kerε is itself a right crossed module
by right multiplication and coaction AdR(a) = a(2) ⊗ (Sa(1))a(3) and the result in [39] that
first order calculi (�1, d) are classified by ad-stable right-ideals can be viewed as saying
that they are classified by surjective morphisms 
 : A+ → �1.

This point of view was recently used in [35] to generalise beyond the standard setting,
where we do not assume that 
 is surjective. The exterior algebra is similarly given as
bosonisation of a pair (�, d) consisting of a primitively generated (by degree 1) super-
braided Hopf algebra � in the crossed module category equipped with a super-derivation
(the restriction of d) which is a right A-comodule map and obeys d2 = 0. This is required
to have the further characteristic properties[35]

d
a + (
πεa(1))(
πεa(2)) = 0 (2.1)

(dη)�a − d(η�a) = (
πεa(1))η�a(2) − (−1)|η|(η�a(1))
πεa(2) (2.2)

�dη − (d ⊗ id + (−1)| | ⊗ d)�η = (−1)|η(1)|η(1)(0̄) ⊗ (
πεη(1)(1̄))η(2) (2.3)

for all a ∈ A+ and η ∈ �, where we underlined the braided-coproduct. It is shown in [35]
that given such (�, d), we obtain a bicovariant calculus (�, d) with da = a(1)
πεa(2)
on degree 0 and that d is also a supercoderivation. Here (2.1) is called the Maurer-Cartan
equation cf [39]. These results also clarify the surjective case:

Lemma 2.1 In the case where 
 : A+ → �1 is surjective, if d is a super-derivation on �

with d2 = 0 and obeys the Maurer Cartan equation then (2.2)–(2.3) hold.

Proof First, it is straightforward (but in the 2nd case somewhat involved) to check that
if (2.2)–(2.3) hold on ω then they hold on ωη for all η ∈ �1. In both cases we use the
super-derivation rule to break down d(ωη). For the second case we also need the super-
braided-homomorphism property of the coproduct, in the form

�(ωη) = ω(1) ⊗ ω(2)η + (−1)|ω(2)|ω(1)η(0̄) ⊗ ω(2)�η(1̄)
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We use (2.3) on degree 1 in the form

�dη = dη ⊗ 1 + 1 ⊗ dη − η(0̄) ⊗ 
πεη(1̄)

in the start of the induction and so as to be able to similarly compute �(ωdη). We omit
further details of the induction but we still need to establish both properties on degree 1.
Thus

(d
a)�b − d((
a)�b) = −((
πεa(1))(
πεa(2)))�b +(
πε(a(1)b(1)))(
πε(a(2)b(2)))

= (
πεb(1))
(ab(2)) + (
(ab(1)))(
πεb(2))

= (
πεb(1))(
(a)�b(2)) + (
(a)�b(1))(
πεb(2))

for all a ∈ A+, b ∈ A. We use πε(ab) = (πεa)b + (εa)πεb for all a, b ∈ A. For Eq. 2.3 we
check the degree 1 version as

�d
a = −�((
πεa(1))(
πεa(2)))

= d
a⊗1+1 ⊗ d
a−
πεa(1) ⊗ 
πεa(2)−(
πεa(2))(0̄)⊗(
πεa(1))�(
πεa(2))(1̄)

= d
a ⊗ 1 + 1 ⊗ d
a − 
πεa(1) ⊗ 
πεa(2) − 
πεa(3) ⊗ 
((πεa(1))Sa(2)a(4))

= d
a ⊗ 1 + 1 ⊗ d
a − 
πεa(2) ⊗ 
πε((Sa(1))a(3))

for all a ∈ A. The latter part of the calculation here amounts to the identity

�(
πε ⊗ 
πε)� = (
πε ⊗ 
πε)(� − AdR) (2.4)

for the crossed module braiding.

Hence in order to construct (�, d) in the surjective case it suffices to take (2.1) as a
definition d
a := −(
πεa(1))(
πεa(2)) and show that this is well-defined and extends
as a super-derivation of square zero. This will then make (�, d) itself into a differential
graded algebra over k.

Proposition 2.2 Let 
 : A+ � �1 be a surjective morphism in the category of right
crossed modules. Then

�max = T �1/〈(
πε ⊗ 
πε)�ker
 〉
together with d defined by the Maurer-Cartan equation gives a super-braided Hopf algebra
in the category which is also a differential graded algebra obeying (2.2)–(2.3). Its boson-
isation �max = A·�<�max is the maximal prolongation differential calculus extending
(�1, d).

Proof We quotient by the minimal subspace in degree 2 for which d : �1 → �2 is well-
defined by the Maurer-Cartan equation. Let

∂ =
m∑

j=1

(−1)j+1�j , ∂ : A⊗m → A⊗(m+1)

be the usual cobar coboundary, where �j denotes the coproduct in the i’th position, and
define d on degree m by d.(
πε)

m = − · (
πε)
⊗(m+1)∂ . This is well-defined for the same

reason as before because ∂ is the sum of terms each acting via the the coproduct. Clearly
∂ is a super-derivation and squares to 0, so d has the same features. We also need to check
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that we have a super-braided Hopf algebra. Since the algebra is quadratic, the main relation
to check is that

�((
πεa(1))(
πεa(2))) := (
πεa(1))(
πεa(2)) ⊗ 1 + 1 ⊗ (
πεa(1))(
πεa(2))

+
πεa(1) ⊗ 
πεa(2) − �(
πεa(1) ⊗ 
πεa(2))

vanlshes whenever a ∈ I = ker
πε . This is clear for the first two terms and for the remain-
ing two we use (2.4) to obtain (
πε ⊗ 
πε)AdR(a) (much as in the proof of Lemma 2.1)
which indeed vanishes as I is Ad-stable because 
 was a morphism. Hence by the lemma
we have the required data (�max, d) and obtain a bicovariant calculus after bosonisation,
something one can also check directly from I an Ad-stable right ideal and the structure of
A·�<�max . It is also clear from the construction, since we imposed the minimal relations
compatible with the Maurer-Cartan equation, that our calculus is isomorphic to the maximal
prolongation.

2.2 Braided Linear Spaces

Here we take an aside to recall the theory of braided-linear spaces introduced in [18,
24] but in a cleaner form as braided operators rather than braided matrices. Braided lin-
ear spaces was our term for primitively generated graded braided Hopf algebras, with
particular emphasis in [27] on what have later been called ‘Nichols-Woronowicz alge-
bras’[1]. If V is an object in an Abelian braided category then it inherits a morphism
� = �V,V : V ⊗ V → V ⊗ V obeying the braid relations. Our setting is categorical but
we use only the pair (V ,�) and tensor powers of V in the following definition.

Definition 2.3 [18, 24] Let (V ,�) be an object in an Abelian monoidal category and a
braiding on it. The braided binomials here are defined recursively by

[n

r
; �

]
= �r�r+1 · · ·�n−1

([
n − 1

r − 1
; �

]
⊗ id

)
+

[
n − 1

r
; �

]
⊗ id,

[n

0
; �

]
=

[n

n
; �

]
= id.

where 0 < r < n and �i denotes � acting in the i, i + 1 tensor factors. We also define
‘braided integers’

[n; �] :=
[n

1
; �

]
= �1�2 · · ·�n−1+

[
n − 1

1
; �

]
⊗id = id+�1+�1�2+· · ·+�1�2 · · ·�n−1

and ‘braided factorials’ [n, �]! = (id ⊗ [n − 1, �]!)[n, �] where [1, �]! = idV . We take
the convention [0, �]! = id1.

These are operator versions of binomial coefficients and generalise q-binomials when
applied to the category of Z-graded vector spaces with braiding given by powers of q.
Relevant to us, the braided factorials also generalise symmetrizers and antisymmetrizers.
We need the following main theorem about them:

Theorem 2.4 [24] [18, 10.4.12]

([r; �]! ⊗ [n − r; �]!)
[n

r
; �

]
= [n, �]!, 0 ≤ r ≤ n.
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The proof in [18] is written in matrix terms but immediately translates as operators in
our setting. In fact, these results amount to identities in the group algebra of the braid group
and are best done diagrammatically. The key observations are that

([r,�] ⊗ id)�r · · ·�n−1 = �r · · ·�n−1([r − 1, �] ⊗ id) + �1 · · · �n−1 (2.5)

since the first r − 1 terms in [r, �] commute with �r · · ·�n−1 and

�1 · · ·�n−1

([
n − 1

r
; �

]
⊗ id

)
=

(
id ⊗

[
n − 1

r
;�

])
�1 · · · �n−1 (2.6)

by functoriality (since the braided-binomial is a morphism) or directly by induction using
Definition 2.3 and repeated use of the braid relations. Using these properties, [18, 24] then
prove by induction on n that

([r,�] ⊗ id)
[n

r
; �

]
=

(
id ⊗

[
n − 1

r − 1
; �

])
[n, �]

from which the theorem follows by repeated application. Also, by writing the above defini-
tions as diagrams and turning the diagrams up-side down, we have co-binomial maps and
co-integers defined by
[n

r
; �

]′ =
(
id⊗

[
n − 1

r − 1
; �

]′)
�1 · · ·�r−1+id⊗

[
n − 1

r
; �

]′
,

[n

0
; �

]′ =
[n

n
; �

]′ = id.

[n, �]′ = 1 + �n−1 + �n−2�n−1 + · · · + �1 · · ·�n−1

Moreover,

[n, �]′! := [n, �]′([n − 1, �]′ ⊗ id) · · · ([2, �]′ ⊗ id) = [n, �]!
[n

r
; �

]′
([r; �]! ⊗ [n − r; �]!) = [n, �]!, 0 ≤ r ≤ n

where the factorials coincide by repeated use of the braid relations or because both cases
can be written as

∑
σ∈Sn

�i1 · · ·�il(σ)
where σ = si1 · · · sil(σ )

is a reduced expression in
terms of simple transpositions si = (i, i + 1).

Next we consider the tensor algebra T V in an Abelian braided tensor category as a direct
sum of different degrees TnV := V ⊗n and product given by concatenation of ⊗. Here
T0V = k or more precisely the unit object of the category. The unit η of the algebra T V is
the identity map from k → T0V . Thus

(V ⊗ · · · ⊗ V ) ⊗ (V ⊗ · · · ⊗ V ) → V ⊗ · · · ⊗ V

is the identity map with suitable rebracketing (with an associator � as necessary in the
general case). We also consider the identity maps

ηn : V ⊗n → TnV

with η0 = η. Although all these maps are the identity, we are viewing them in different
ways. We will consider two different braided Hopf algebra structures T±V on T V , as a
braided-Hopf algebra or as a super-braided Hopf algebra in the category.

Proposition 2.5 [24][18, Propn. 10.4.9] The tensor algebra has a braided Hopf alge-
bra/super Hopf algebra structure T±V with coproduct

�TnV =
n∑

r=0

(ηr ⊗ ηn−r ) ◦
[n

r
; ±�

]
.

for the two cases. The counit is εTnV = 0 for all n > 0.
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Proof This is the content of [24] [18, Propn 10.4.9] in the free case where we impose no
relations, but we rework the proof in the current more formal notations and we state the
super case explicitly. We start with the linear coproduct

�T1V = idV ⊗ η + η ⊗ idV

and for T+V we extend this as a Hopf algebra in the braided category, while for T−V we
extend as a super-Hopf algebra in the braided category. We do the first case; the other is
exactly the same by replacing � by −�. The proof is by induction assuming the formula
for �Tn−1V ,

�TnV = (�Tn−1V ).(idV ⊗ η + η ⊗ idV )=
(

η ⊗ idV ⊗n−1 +
n−1∑

r=1

[n

r
; �

])
·(idV ⊗ η + η ⊗ idV )

= η ⊗ idV ⊗n + (η1 ⊗ ηn−1)�1 · · ·�n−1 +
n−1∑

r=1

(ηr ⊗ ηn−r )(

[
n − 1

r
; �

]
⊗ idV )

+
n−1∑

r=1

(ηr+1 ⊗ ηn−1−r )�r+1 · · ·�n−1

[
n − 1

r
; �

]

= η ⊗ idV ⊗n + idV ⊗n ⊗ η

+
n−1∑

r=1

(ηr ⊗ ηn−r )(

[
n − 1

r
; �

]
⊗ idV ) +

n−1∑

r=1

(ηr ⊗ ηn−r )�r · · ·�n−1

[
n − 1

r − 1
; �

]

= η ⊗ idV ⊗n + idV ⊗n ⊗ η +
n−1∑

r=1

(ηr ⊗ ηn−r )
[n

r
; �

]
=

n∑

r=0

(ηr ⊗ ηn−r ) ◦
[n

r
; �

]

where in the first line we split off the r = 0 part of �Tn−1V and · is the braided tensor
product. We then compute out the latter and for the 4th equality we renumber r + 1 �→ r

in the second sum and absorb the otherwise missing r = 1 term. For the 5th equality we
use Definition 2.3 and finally combine terms to obtain the desired expression for �TnV .
Again, this is really a result at the level of the braid group algebra and can be done with
diagrams.

In this situation we are now ready to define the (super)-braided Hopf algebra quotients

B±(V ) = T±V/ ⊕m ker[m, ±�]! (2.7)

as the braided-symmetric algebra and braided exterior algebra on V respectively. That the
coproduct descends to B±(V ) follows immediately from Proposition 2.5 and Theorem 2.4.
That ⊕m[m, ±�]! is an ideal or equivalently that the product in T V descends to the quo-
tient follows from the arrow-reversed version of Theorem 2.4 where the factorials are on the
right. It is easy to see that when our construction is in a braided category and φ : V → W is
a morphism then φ⊗ (the relevant power) in each degree is a morphism B±(V ) → B±(W)

of (super)braided-Hopf algebras. This is because, by functoriality of the braidings, the braid-
ings and braided factorials are intertwined by φ on each strand in the diagrammatic picture.
The B+(V ) case is also called the Nichols-Woronowicz algebra of V due to the structure of
the algebra, but the above description and the fact that it is a (super) braided-Hopf algebra
is due to the author. The earliest examples were the braided-line and braided quantum-plane
(see [18, 24]) while other early examples were Uq(n+) in the work of Lusztig [14].
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Our own motivation to consider (2.7) to all degrees of relations was in the case when V

has a right dual V ∗. Recall that V ∗⊗n is right-dual to V ⊗n by the nested use of evV and we
use the same nesting convention for a duality pairing 〈 , 〉 on tensor products. In this case
[18, 24] the tensor algebras T±V ∗ and T±V are dually paired by

〈 , 〉|TnV ∗⊗TmV = δn,mevV ⊗n(id ⊗ [n, ±�]!) (2.8)

and B±(V ∗), B±(V ) are clearly the quotients by the kernel of the pairing. That the prod-
uct on one side is the coproduct on the other follows immediately from Theorem 2.4 and
Proposition 2.5. This means that B±(V ∗), B±(V ) are nondegenerately paired (super) Hopf
algebras in the braided category and the relations of B±(V ) are the minimal relations com-
patible with this duality. The merit of this approach is that we also have an immediate result,
which will need later:

Corollary 2.6 [27] If V has a right dual and B±(V ) has a finite top degree then it has a
right dual via ev = 〈 , 〉 and the coevaluation map coev : 1 → B±(V ) ⊗ B±(V ∗) is given by

expV := coev =
∑

m

([m, ±�]!−1 ⊗ id)coevV ⊗m

where the construction is independent of the choice of inverse image of [m, ±�]!.

This makes more precise the notion of braided-exponentials in [18, 24] without formally
assuming that the braided factorials are invertible. It was used explicitly in [27] to construct
quasitriangular structures. If we take the well-known case V = kx in the braided category of
Z/(n+1)-graded vector spaces with braiding �(v ⊗w) = qdeg(w) deg(v)w ⊗v, where x has
degree 1, and q a primitive n+1-th root of 1, we have B+(kx) = k[x]/(xn+1) and exp here
is the truncated q-exponential wherem! is replaced by [m, q]! and [m, q] = (1−qm)/(1−q)

are q-integers.

2.3 Minimal Prolongation on a Hopf Algebra

We now return to our setting of a Hopf algebra A with invertible antipode and a surjective
morphism 
 : A+ → �1 in the braided category of right A-crossed modules. The follow-
ing braided-Hopf algebra version of Woronowicz’s construction [39] is largely known eg
[28] but we provide a new direct construction for d on B−(�1) going through (2.1)–(2.3)
from [35]. This is a rather different from the approach in [39], which was to formally adjoin
an inner element θ and define d = [θ, }.

Proposition 2.7 Let 
 : A+ → �1 be a surjective morphism is the category of right
crossed modules and �min = B−(�1). This is a quotient of �max and inherits d obeying
(2.1)–(2.3). Its super-bosonisation �min = A·�<�min recovers the Woronowicz bicovariant
calculus [39] on A associated to the Ad-stable right ideal ker
 .

Proof We start with the identity (2.4) and Ad-invariance of I implies now that (
πε ⊗

πε)�(I) ⊂ ker[2, −�] = id − �, meaning that the relations (
πε ⊗ 
πε)�(I) = 0
of the maximal prolongation in Proposition 2.2 already hold among the quadratic relations
in �min = B−(�1). The latter is therefore a quotient of �max . Next we consider the
coboundary ∂m : A⊗m → A⊗(m+1) as in the proof of Proposition 2.2 and regard A as a right
crossed module by AdR and a�b = πε(a)b. Then πε becomes a morphism. Lemma 2.8
below shows that ∂ descends to B−(A) → B−(A) in each degree as it respects the
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kernels of the relevant braided-factorials. Next, πε being a crossed module morphism
induces by π⊗m

ε in degree m a map B−(A) → B−(A+), under which ∂ descends to a map

−d̃ : B−(A+) → B−(A+) given by −d̃π⊗m
ε = π

⊗(m+1)
ε ∂m because the kernel of π⊗m

ε is
spanned by elements where at least one of the tensor factors is 1. When we apply ∂m then
every term has at least one tensor factor 1 which is then killed by the final π⊗(m+1)

ε . This is
the first cell of

Similarly, 
 : A+ → �1 being a morphism of crossed modules induces B−(A+) →
B−(�1) given by 
⊗n in degree n, and d̃ descends to a map d : B−(�1) → B−(�1)

defined by d
⊗m = 
⊗(m+1)d̃. This is because the kernel of 
⊗m consists of terms where
at least one of the tensor factors is in I . When we compute the d̃ of such terms using ∂m,
either a �j does not act on this tensor factor, in which case this tensor factor is present in
the output of �j and the whole term is killed by the action of (
πε)

⊗(m+1), or �j does act
on this element. But then · · · ⊗ (
πε ⊗ 
πε)(�I) ⊗ · · · is in the kernel of id − � in the
relevant place as seen above, hence vanishes in B−(�). We are using the fact that the kernel
in each degree contains the degree 2 relations between adjacent tensor factors. In this way,
d equips �min = B−(�1) with a differential as a quotient of the construction for �max in
Proposition 2.2. One can show that if �1 is inner by θ ∈ �1 then the same applies to �, but
we are not assuming this. The algebra structure of the bosonosation � = A·�<�min is more
well-known to be isomorphic to the one in [39].

The following lemma was needed to complete the proof. Here � is the braiding for the
crossed-module structure on A whereby πε becomes a morphism.

Lemma 2.8 Let A be a Hopf algebra and �i = � the induced braiding

�(a ⊗ b) = b(2) ⊗ a(Sb(1))b(3) − ε(a)b(2) ⊗ (Sb(1))b(3)

acting in the i, i + 1 position of a tensor power, Adi = AdR , �i = � in the i’th position.
Then

[m, −�]!∂m−1 =
⎛

⎝
m−1∑

j=1

(−1)j+1Ad⊗j

1

⎞

⎠ [m − 1, −�]!

Here Ad⊗j denotes the tensor product right coaction on j copies (acting here in the first
position).

Proof Clearly

�i�j = �j�i, if i < j − 1, �i�j = �j�i−1, if i > j + 1

since the operators act on different tensor factors, just the numbering changes in the 2nd
case. We also find by direct computation in the Hopf algebra that

�i�i = �i −Adi , �i�i−1 = (� ⊗Ad)i−1 −Adi , �i(� ⊗Ad)i = (�i+1 −Adi )�i
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where Ad = AdR and � ⊗ Ad is the tensor product right coaction. As a warm-up, using
these relations, we show

[3, −�]∂2 = (1 − �1 + �1�2)(�1 − �2)

= �1 − �2 − �1�1 + �1�2 − �1�2(�2 − �1)

= �1 − �2 − �1 + Ad1 + �1�2 − �1(�2 − (� ⊗ Ad)1)

= −�2 + Ad1 + (�2 − Ad1)�1 = (Ad1 − �1 + ∂2)[2, −�]
Starting with this, we next prove by induction that

[m, −�]∂m−1 = (Ad1 − �1 + ∂m−1)[m − 1, −�]. (2.9)

Assuming this for m − 1 in the role of m, for the 2nd equality,

[m, −�]∂m−1 = [m − 1, −�]∂m−2 + [m − 1, −�](−1)m�m−1 + (−1)m−1�1 · · ·�m−1∂m−1

= (Ad1 − �1 + ∂m−2)[m − 2, −�] + (−1)m�m−1[m − 2, −�]
+�1 · · ·�m−2�m−1 − �1 · · ·�m−1�m−1 + (−1)m−1�1 · · ·�m−1∂m−2

= (Ad1 − �1 + ∂m−1)[m − 2, −�] + �1 · · ·�m−2Adm−1

+(−1)m−1�1 · · ·�m−1∂m−2

where we picked out and computed the �1 · · · �m−1�m−1 term from the sum in ∂m−1.
Looking now at the last expression, we compute

�1 · · ·�m−1∂m−2 =
m−2∑

j=1

(−1)j+1�1 · · ·�j+1�j�j+1 · · ·�m−2

=
m−2∑

j=1

(−1)j+1�1 · · ·�j ((� ⊗ Ad)j − Adj+1)�j+1 · · ·�m−2

=
m−2∑

j=1

(−1)j+1�1 · · ·�j−1((�j+1 − Adj )�j − �jAdj+1)�j+1 · · ·�m−2

= (−1)m�1 · · ·�m−2Adm−1 −
⎛

⎝Ad1 +
m−1∑

j=2

(−1)j+1�j

⎞

⎠�1 · · ·�m−2

where the Ad terms cancel between the sum and the displaced sum except for the top term
of one sum and the bottom term of the other. In the � sum all the indices of � are two or
more smaller than the index of � so commute to the right. Combining with our previous
calculation, we have

[m, −�]∂m−1 = (Ad1 − �1 + ∂m−1)[m − 2, −�]
+(Ad1 − �2 + �3 + · · · (−1)m�m−1)(−1)m−2�1 · · ·�m−2

which proves (2.9).
Next we use this result as initial base for induction on i in a formula

[m− i + 1] · · · [m]∂m−1 =
⎛

⎝
i−1∑

j=1

(−1)j+1Ad⊗j

1 +
⎛

⎝(−1)i+1Ad⊗i
1 +

m−1∑

j=i+1

(−1)j+1�j

⎞

⎠[m − i]
⎞

⎠

[m − i + 1] · · · [m − 1] (2.10)
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where [m] ≡ [m, �] for brevity and the nesting is rightmost as for braided factorials so
[m − 1] ≡ id ⊗ [m − 1, −�]. The case i = 1 is (2.9) which we have already proven while
the case i = m − 1 or i = m, suitably interpreted in the sense of absent sums or products
when out of range, proves the lemma. We use identities

�iAd
⊗i−j
j = Ad⊗i

j − Adi , �iAd
⊗k
j = Ad⊗k

j �i−1, i > j + k

where the commutation relation is due to acting in different spaces, with renumbering due
to the notation. The first equation is a direct computation. One also has

�iAd
⊗k
j = Ad⊗k

j �i, i < j − 1, �iAd
⊗k
j = Ad⊗k

j �i, j ≤ i < j + k − 1

which we do not need right now, in the first case due to different tensor products and in the
second case because � is a morphism in the crossed module category and hence commutes
with Ad applied to tensor powers that include those on which � acts. Assuming Eq. 2.10
for i − 1 in the role of i, what we need to show to prove Eq. 2.10 for i is

[m − i + 1]
⎛

⎝
i−2∑

j=1

(−1)j+1Ad⊗j

1 +
⎛

⎝(−1)iAd⊗i−1
1 +

m−1∑

j=i

(−1)j+1�j

⎞

⎠ [m − i + 1]
⎞

⎠

=
⎛

⎝
i−1∑

j=1

(−1)j+1Ad⊗j

1 +
⎛

⎝(−1)i+1Ad⊗i
1 +

m−1∑

j=i+1

(−1)j+1�j

⎞

⎠ [m − i]
⎞

⎠ [m − i + 1].

Now, the first sum commutes with [m − i + 1] since on the left this is 1 − �i +
�i�i+1 + · · · + (−1)m−i�i · · ·�m−1 due to the right-most embedding. These commute
past the Ad⊗j

1 getting changed to [m − i + 1] embedded on the right (where the number-

ing is reduced by one). Hence the first term on the left is
∑i−2

j=1(−1)j+1Ad⊗j

1 [m − i + 1].
Next �i�i+1 · · ·�m−1Ad

⊗i−1
1 = (Ad⊗i

1 − Adi )�i�i+1 · · · �m−2 as the �i+1 and higher
commute, reducing index by 1, while �i computes as shown. Hence the middle terms gives

[m−i+1](−1)iAd⊗i−1
1 [m−i+1]=(−1)iAd⊗i−1

1 [m−i+1]+(−1)i+1(Ad⊗i
1 −Adi )[m−i][m−i+1],

the first term of which completes our previous sum to give the first desired term.
Accordingly we need only show for the remaining term that

[m − i + 1]
m−1∑

j=i

(−1)j+1�j =
⎛

⎝(−1)i+1Adi +
m−1∑

j=i+1

(−1)j+1�j

⎞

⎠ [m − i].

But this is just the same identity (2.9) already proven but for [r]∂r−1, i.e. r = m − i + 1
in the role of m, for the r tensor factors numbered i, · · · ,m. This completes our proof of
Eq. 2.10 for all i and proves the lemma.

This fleshes out the braided-Hopf algebra interpretation of the Woronowicz exterior
algebra on a Hopf algebra [39] using [35] for the direct treatment of d.

2.4 Differential Calculi on Braided Linear Spaces

For completeness, we give another braided construction namely the exterior algebra �(B)

on a Hopf algebras B in a braided Abelian category. This includes braided symmetric
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algebras B = B+(�1) as above generated canonically by an object �1. The further data we
will need is a surjective morphism 
 : B → �1 in the category such that


 ◦ · = ε ⊗ 
 + 
 ⊗ ε (2.11)

This data arises naturally as follows: suppose B� is a (possibly degenerately) dually
paired braided-Hopf algebra from the right (so the pairing is ev : B ⊗ B� → 1) and L a
rigid primitive sub-object L ⊂ B� (so that the coproduct restricted to L is the additive one).
We view the duality pairing restricted to a map B ⊗ L → 1 as a map


 : B → L∗, 
 = (ev ⊗ id)(id ⊗ coevL)

which then obeys (2.11). �1 the image of 
 . In the case of B = B+(�1) or any other
graded braided Hopf algebra of the form B = 1 ⊕ �1 ⊕ B>1 generated in degree 1 by an
object �1, we simply take 
 : B → �1 as the projection to degree 1.

Proposition 2.9 Let B be a Hopf algebra in an Abelian braided category and 
 : B → �1

a surjective morphism obeying (2.11). Then

� = B⊗�, � = T �1/〈image(id + ��1,�1)〉
d|B = (id ⊗ 
)�, d|� = 0

is a differential exterior algebra on B in the category (one in which all structure maps are
morphisms).

Proof The proof is done in Fig. 1 in a diagrammatic notation where diagrams are read as
operations flowing down the page, with tensor products and the unit object 1 suppressed
[19, 22]. Two strands flowing down and merging denotes the product and one strand flowing
down and splitting denotes the coproduct. Such proofs apply generally but for convenience
of exposition we will also refer to concrete elements. The braided tensor product B⊗�1 in
concrete terms means (b ⊗ v)(c ⊗w) = b�(v ⊗ c)w and featured already in the definitiion
of a braided-Hopf algebra. Part (a) computes d(bc) using the braided coproduct homomor-
phism property and Eq. 2.11. Using the counit axioms and 
 a morphism we obtain bdc for
the first term and (db)c for the second when we remember the braided tensor product. Part

= = +

B B B B B B

B B B1 1 1

+

1 B

B

1 B

2
2B

=

1 B

B 2

1 B

B 2

+

(a)

(b)

Fig. 1 Diagrams in the proof of Proposition 2.9 for quantum differentials on braided planes
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(b) checks that d extends as a graded derivation with respect the braided tensor product. We
compute

d(ωb) + ωdb = (id ⊗ ·)(id + �−1)(something)

hence vanishes in B ⊗ �2 which agrees with dω = 0 for all ω ∈ �1. The same applies
starting in � ⊗ B.

This gives a differential structure on our braided-symmetric algebras B+(V ) regarded
as noncommutative spaces. If the category is the comodules of a coquastriangular Hopf
algebra, for examples, our construction is covariant in that all structure maps are comodule
maps. Also note that if {ei} is a basis of V , we have explicitly

d = ∂i( )ei

where ∂i are the (right handed) braided partial derivatives defined by

�b = 1 ⊗ b + ∂ib ⊗ ei + · · ·
They are given explicitly at the level of the tensor algebra by

d(v1 ⊗ ... ⊗ vn) = (ηn−1 ⊗ η1)

[
n

n − 1
, �

]
(v1 ⊗ · · · ⊗ vn)

[
n

n − 1
, �

]
= 1 + �n−1 + �n−1�n−2 + · · · + �n−1 · · ·�1

where the last tensor factor of the result is viewed in �1.

Remark 2.10 If we take the quadratic version S(V ) := B
quad
+ (V ) = T V/〈ker(id + �)〉

then our above construction gives

�(S(V )) = S(V )⊗S(V ∗)!, dv = 1 ⊗ v

where ! denotes the Koszul dual. If a quadratic algebra on a vector space W has relations
R ⊂ W ⊗ W as the subspace being set to to zero then its Koszul dual is the quadratic
algebra on W� with relations R⊥ ⊂ W� ⊗ W�. This is normally done in the category of
vector spaces but we do it here in a braided category using the right dual so that W� = V .

Example 2.11 We let B = A
2
q = B+(V ) be the quantum plane associated to the standard

corepresentation V = span{x, y} in the braided category of right kq [GL2]-comodules with
q2 �= 1. Here

�(x⊗x)=q2x⊗x, �(x⊗y)=qy⊗x,�(y⊗x)=qx⊗y+(q2−1)y⊗x,�(y⊗y)=q2y⊗y

is given by a particular non-standard normalisation of the usual R on kq [GL2] (one that
does not descend to kq [SL2]). The kernel of id + � gives us the relations yx = qxy of the

quantum plane since (id+ �)(y ⊗ x − qx ⊗ y) = 0. The algebra � = A
0|2
q = �(V ) is the

fermionic quantum plane

dx ∧ dx = 0, dy ∧ dy = 0, dy ∧ dx = −q−1dx ∧ dy

where this time the same basis is denoted {dx, dy} as a basis of �1 = V and one can check
for example that (id+�)(dx ⊗dy) = dx ⊗dx +qdy ⊗dx from the stated braiding. Indeed,
it known thatA2

q andA0|2
q as Koszul dual as first pointed out by Manin [36]. The differential

on v ∈ V ⊂ B is dv = 1 ⊗ v i.e., v viewed in the �1 copy of V ⊂ �(V ). The relations
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between B and �(V ) are the braided tensor product so (1 ⊗ v)(w ⊗ 1) = �(v ⊗ w). This
again comes from the same braiding as above but viewed now as defining the relations

(dx)x = q2xdx, (dx)y = qydx, (dy)x = qxdy + (q2 − 1)ydx, (dy)y = q2ydy.

One can check for example that d(yx − qxy) = 0 as it should. By construction,
this exterior algebra on the quantum plane is kq [GL2]-covariant. The associated partial
derivatives are

∂1(xmyn) = [m, q2]xm−1ynqn, ∂2(xmyn) = xm[n, q2]yn−1

using the braided coproduct on general monomials computed in [18] from the braided-
integers [n, �]. The partial derivatives here were first found byWess and Zumino in another
approach. They are naturally ‘braided right derivations’ with an extra qn in the first expres-
sion, in order that d is a left derivation, acting as braided q2-derivatives in each variable.
One can check that ∂2∂1 = q∂1∂2 as operators, also as per the general theory in [18].

This reworks the treatment of quantum-braided planes and their differentials in [18, Sec-
tion 10.4][24] now as an example of our above canonical construction based on B+(V ), as
opposed to a compatible pair of R-matrices R,R′ as previously.

3 Braided Fourier Transform and Application to Hodge Theory

Fourier transform on Hopf algebras is part of their classical literature. It was extended to
braided-Hopf algebras in [15] and related works and applied to braided linear spaces in [11],
though not the ones we consider here. We used diagram proofs and will do so again, while
another work from that era is [16]. We first explain the general (super) formulation and then
apply it to the Hodge operator, including k(S3) as an example.

3.1 Super-Braided Fourier Theory

In any braided category C and B ∈ C a braided Hopf algebra dually paired with a braided
Hopf algebra B�, we have three actions [19] which we will consider and which we collect in
Fig. 2 in the same diagrammatic notation as in the proof of Proposition 2.9, reading down the
page. As in Section 2 when discussing duals, we assume a pairing ev : B� ⊗ B → 1 which
we can write diagrammatically as ∪ and with respect to which the product on one side is
adjoint to the coproduct on the other. The counit of B is also adjoint to the unit η : 1 → B∗
of B∗ in the sense ev(η ⊗ ()) = εB where we use the canonical isomorphism 1 ⊗ B∼=B.
Similarly, the unit η : 1 → B of B is adjoint to ev(() ⊗ η) = εB� . In a concrete k-linear
setting we can suppose that 1 = k and η(1) = 1 to simplify the above. Reg makes B a right

B

B

=

B

B

=

B

BB

Reg =

B

BB BB

B

S

Fig. 2 Diagrammatic definitions of relevant actions, Fourier transform F and adjoint Fourier transform F∗
on a braided-Hopf algebra B with right dual B�
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B� module algebra in the braided category. The principal ingredient of Reg here is actually
a left action � making B a left B�-module algebra in the braided category. Similarly, we
have a straightforward right action � under which B� is a right B-module algebra [19].

We also need the notion of a left integral and the simplest thing is to require a morphism∫ : B → 1 in the sense (id ⊗ ∫
)� = η ⊗ ∫

. However, we do not want to be too strict
about this. For example, for the finite anyonic braided line B = k[x]/(xn+1) in the braided
category of Z/(n+1)-graded spaces with braiding given by an n+1-th root of 1 and |x| = 1,
the obvious

∫
xm = δm,n is not a morphism to 1. Our approach is to live with this and not

necessarily assume any morphism properties; we can still use the diagrammatic notation but
be careful not to pull the map through any braid crossings. A more formal approach is to
view it as a morphism B → K where K = k taken with degree n in the case of the anyonic
braided line. The uniqueness of the integral when it exists is similar to the Hopf algebra case
(see [2] for a formal proof).

For Fourier transform we need not only that B� is dually paired but that B is actually
rigid with dual object B∗. Again, this is a very strong assumption, analogous to finite-
dimensionality of B and amounting to this in the typical k-linear case. It means that there is
a coevaluation map exp = coev : 1 → B ⊗ B∗, denoted by ∩ in the diagrammatic notion,
which obeys the well-known ‘bend-straightenning axioms’ with respect to ∪. We similarly
require a right integral which is not necessarily a morphism

∫ � : B� → 1. We can live with
this or suppose formally that

∫ � : B� → K∗ where K∗ ⊗ K = 1 = K ⊗ K∗ as objects.
In our k-linear setting this will be by the identification with k. The theory below could
be generalised to include some infinite-dimensional cases or else these could be treated
formally eg in a graded case with B∗ a graded dual, each component rigid and the result a
formal power series in a grading parameter.

Definition 3.1 [11, 15] Let B be a Hopf algebra in a braided category with B rigid and
∫

a left integral as above. Then F : B → B� defined in Fig. 2 is called the braided Fourier
transform. We similarly define a dual Fourier transform F� : B� → B if B� has a right
integral.

These maps are no longer morphisms if the integrals are not, or one can say more for-
mally that F : B → K ⊗ B� and F� : B� → K∗ ⊗ B�. The following extends and
completes [11].

Proposition 3.2 In the setting of the definitions above

F ◦ Reg = · ◦ (F ⊗ id), � (F ⊗ id) = F ◦ ·
Moreover, if

∫ ∗ is a right integral on B� then

F�F = μS, μ := (

∫
⊗

∫ ∗
) exp

If the integrals are both unimodular and morphisms then FF� = μS and [F , S] = 0
when μ is invertible (see Fig. 3 for the general case).

Proof HereFReg andF�F are already covered in [11, Figs. 3–5] so we do not repeat all the
details here. We recall only the diagram proof for F∗F using the lemma in [11, Fig. 2b] at
the first equality in Fig. 3 and note that we did not need to assume that

∫
,
∫ ∗ are morphisms

to 1 as in [11] as long as we keep the integrals to the left. The second line now uses the same
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B

B

S
= = =

lemma
S =

S

B

B

B

B

= =
lemma

S
= S =

S

=

S

B

B

Fig. 3 Diagrammatic computations of F�F and FF� in Proposition 3.2

lemma but this time on B� to compute FF∗ as shown provided
∫ ∗ is also a left integral

so that the lemma applies and
∫
is also a right integral. If

∫
,
∫ ∗ are morphisms to 1 then

we can take them through braid crossings to obtain μS and then μFS = FF�F = μSF .
The general result � (F ⊗ id) = F ◦ · follows more simply from the duality pairing and
associativity of the product of B.

The map F� here is a right-integral version of the theory which is being used to define
the adjoint Fourier transform and converted to a left version via �. The braided antipode S

plays the role of the minus sign familiar in classical Fourier theory and μ plays the role of
2π . If μ and S are invertible then the stated results imply that F is invertible at least in the
k-linear setting (with F−1 = S−1F� in the unimodular trivial morphism case). Also, if we
compose F with S then the first property above becomes

SF◦ �= ·(id ⊗ SF). (3.1)

Example 3.3 For the elementary example of B = k[x]/(xn+1) we have top degree element
Vol = xn and dual B� = k[y]/(yn+1) where |y| = −1, with top degree element Vol∗ = yn

and exp = ∑n
m=0 xm ⊗ ym/[m, q]! as mentioned at the end of Section 2.2. Here q is a

primitive n + 1-th root of 1. We define integrals as 1 on the top degree elements and zero
on other degrees, giving

F(xm) = yn−m

[n − m, q]! , F�(ym) = q(n−m)2xn−m

[n − m, q]! , μ = [n, q]!−1

as well as Sxm = (−x)mq
m(m−1)

2 and ditto with x replaced by y. One can see that F�F =
μS using q

n(n+1)
2 = (−1)n. Due to the nontrivial braidings of the integrals, however, the

right hand side in Fig. 3 gives
FF� = q2D+1μS

where D is the monomial degree operator. The same method as in the proof above now
gives us FS = q2D+1SF or equivalently SF = FSq2D+1, which one may verify from the
stated F , S.
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Example 3.4 The fermionic quantum plane in Example 2.11 is a super-braided Hopf alge-
bra, i.e. we take B = A

0|2
q = B−(�1) in the category of kq [GL2]-comodules. If we now

denote the braiding in Example 2.11 as �+ adapted to B+ as a braided-Hopf algebra, we
now take a different normalization � = �− = q−2�+ (i.e. induced by another differently
normalised coquasitriangular structure) so that ker(id − �−) = image(id + �+). The �±
here are q±1 times the braiding in the standard q-Hecke normalisation. There are no new
relations in higher degree so B−(�1) = B

quad
− (�1). For brevity we let e1 = dx, e2 = dy

then �(e2⊗e1) = q−1e1⊗e2+λe2⊗e1 etc. in the new normalisation, where λ = 1−q−2.
We now develop A

0|2
q as a super-braided Hopf algebra with ei primitive and underlying

braiding � (meaning we actually transpose with super-braiding �sup having additional ±
factors according to the monomial degrees). This implies S(e1e2) = q−2e1e2 as well as
S(1) = 1, S(ei) = −ei . On the dual side we have B� = B−(�1∗) with a dual basis of
generators f 1, f 2, underlying braiding

�(f i⊗f i)=f i⊗f i, �(f 1⊗f 2)=q−1f 2⊗f 1+λf 1⊗f 2, �(f 2⊗f 1) = q−1f 1⊗f 2,

relations f 2f 1 = −qf 1f 2 and S(f 1f 2) = q−2f 1f 2. There is up to scale a unique top
degree in each case, namely Vol = e1e2 and Vol∗ = f 1f 2 and we find 〈Vol∗,Vol〉 =
ev(f 1 ⊗ f 2, [2, −�](e1 ⊗ e2)〉 = −q−1, so that

exp = 1 ⊗ 1 +
2∑

i=1

ei ⊗ f i − qVol ⊗ Vol∗

We define integrals via
∫
Vol = 1 and

∫ ∗ Vol∗ = 1 but note that these are not morphisms.
Rather we use braidings

�(f 1⊗e1) = e1⊗f 1+(1−q2)e2⊗f 2, �(f 2⊗e2) = e2⊗f 2, �(f i⊗ej ) = qej ⊗f i

for i �= j (these are obtained from the 2nd inverse R̃ as in [18, Propn. 10.3.6] for R nor-
malised to our case) to find �(f i ⊗ Vol) = qVol ⊗ f i and hence �(Vol∗ ⊗ Vol) =
q2Vol ⊗ Vol∗. We similarly have �(f i ⊗ Vol∗) = qVol∗ ⊗ f i . From these it is clear that∫
and

∫ ∗ are not morphisms in the underlying comodule category. Again, there can be fur-
ther signs according to the super degrees for the actual super-braiding �sup when we read
diagrams in the super-braided case. In particular, we find

�−1
sup exp = 1 ⊗ 1 − f 1 ⊗ e1 − q2f 2 ⊗ e2 − q−1Vol∗ ⊗ Vol

needed in the computation of F�. We now read off from the diagrammatic definitions in
Fig. 2,

F

⎧
⎪⎪⎨

⎪⎪⎩

1
e1
e2
Vol

=

⎧
⎪⎪⎨

⎪⎪⎩

−qVol∗
f 2

−q−1f 1

1

, F�

⎧
⎪⎪⎨

⎪⎪⎩

1
f 1

f 2

Vol∗
=

⎧
⎪⎪⎨

⎪⎪⎩

−q−1Vol
−q2e2
qe1
1

, μ = −q.

One can verify that F�F = μS as it must by Proposition 3.2. We also have

FF� = μq2(D−1)S

where D is the monomial degree and one can check that this agrees with the lower line in
Fig. 3 where we use the above computations to read off the right hand side. In this case
FS = q2(D−1)SF or SF = FSq2(D−1) as one can verify from the stated form of F , S.

A similar approach can be used for other quantum planes to express their differen-
tial exterior algebras as super-braided Hopf algebras with possibly a different underlying
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coquastriangular structure from one used for the coordinate algebra as a braided-Hopf alge-
bra. In the presence of an invariant quantum metric we reproduce the otherwise ad-hoc
approach to q-epsilon tensors and Hodge theory on braided-quantum planes in [18]. The
f i generate antisymmetric vectors and �, � define an interior product connected to the
exterior algebra product via F . This example should be seen as a warm-up to Section 3.2
where we look at bicovariant differentials on Hopf algebras themselves. As illustrated here,
the actual theory is read off the diagrams with the appropriate braiding including signs.
We could indeed shift all constructions to this new super-braided category and say that the
above example is an ordinary braided-Hopf algebra there, but we not do so since there will
normally be other (bosonic) objects also of interest in the original category. In our context
the nicest case is where

∫
,
∫ ∗ are morphisms to 1 when viewed in the original category

but do not necessarily respect the super-degree, for example they could be odd maps in the
super-sense in which case they are not morphisms in the super version with extra signs (so
we need the slightly more general picture as above). We assume they have the same parity
of support (both odd or both even maps). Then F ,F� also have this party.

Corollary 3.5 If
∫
,
∫ ∗ are unimodular, morphisms in the underlying category and of the

same parity p then FF� = (−1)pμS. When μ, S are invertible we have FS = (−1)pSF
and F� = μSF−1

Proof For FF� we have to compute the right hand side of the lower diagram in Fig. 3,
which now has extra signs. We can still bring out μ′ = (

∫ ∗ ⊗ ∫
)�−1

sup exp since any signs

from crossing the
∫

leg cancel with signs from crossing the
∫ � leg by our assumptions.

Next, we can lift
∫ � through the crossing at the price of (−1)p in computing μ′. We already

have F�F = μS from Proposition 3.2 and can then conclude the rest.

The behaviour ofF with respect to Reg,� has an unchanged form as these statements do
not involve additional transpositions, except that the actions themselves are computed for
the super-braided Hopf algebra eg with the super-braided coproduct and hence the super-
braided Leibniz rule expressed in super-braided module algebra structures. The property
(3.1) becomes

SF◦ �= ·((−1)pD ⊗ SF) (3.2)

due to the crossing of the first input on the right hand side with the integral in F .

3.2 Hodge Theory on Hopf Algebras

We are now going to compute our super-Fourier theory for B = �min = B−(�1) where �1

is a rigid object in the braided category of right A-crossed modules and A is a Hopf algebra
with invertible antipode. Here B is a super-braided Hopf algebra in the category and we
assume it has a top degree component K of dimension 1, i.e. up to scale a unique top form
Vol ∈ B−(�1). This gives us a unimodular integral B → k by

∫
Vol = 1 and zero for lower

degrees. We have seen this in examples, while in general we obtain an integral because the
formula in Proposition 2.5 ensures that �Vol = Vol⊗1+1⊗Vol plus terms of intermediate
degree, so that we never reach the top degree on applying � to lower degree. One can think
of this more formally as a morphism B → K with some possibly non-trivial generator. We
also have an identification B� = B−(�1∗) by extending the duality pairing �1∗ ⊗ �1 as a
braided-Hopf algebra pairing, given that this is now non-degenerate after quotienting by the
relations of B− as explained in Section 2.2. Hence we obtain a unimodular integral on this
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too. In the nicest case, the span of the top forms Vol,Vol∗ of degree n (say) are isomorphic
to the trivial object 1 so that

∫
,
∫ ∗ are morphisms to 1 but of parity n mod 2, so we are in

the setting of Corollary 3.5.
Next, in noncommutative geometry a metric is g ∈ �1 ⊗A �1 with an inverse ( , ) :

�1 ⊗A �1 → A. One can show that in this case g must be central. Normally, one also
requires the metric to be ‘quantum symmetric’ in the sense of the product ∧(g) = 0 in �2.
We are interested in left-invariant metrics where g ∈ �1 ⊗ �1.

Lemma 3.6 A bi-invariant metric on a Hopf algebra A with bicovariant calculus is equiv-
alent to an A-crossed module isomorphism g : �1∗∼=�1. The metric is quantum symmetric
if and only if �(g) = g.

Proof The metric being bi-invariant means that it is an element g ∈ �1 ⊗ �1 which is
invariant under the coaction �R on the tensor product. The existence of a bimodule map
( , ) requires g to be central which in turn requires that g is invariant under the crossed
module right action � (since this determines the cross product of A·�<�). So a metric is
equivalent to a morphism 1 → �1 ⊗ �1 in the crossed module category. Evaluation from
the left makes this equivalent a morphism as stated, which we also denote g. Here �∗ is
again a right crossed module in the usual way (via the antipode). Clearly ∧(g) = 0 if and
only if g ∈ ker[2, −�] = ker(id − �) according to the relations of B−(�1).

Given a bi-invariant metric we therefore have B±(�1∗)∼=B±(�1) hence combined with
the above remarks in the finite-dimensional case, an isomorphism which we also denote
g : B±(�1)∗ → B±(�1). We are now ready to define the Hodge operator, using the B−
version. We do it in the nicest case but the same ideas can be used more generally as we
have seen in Section 3.1.

Definition 3.7 Suppose that �1 is finite-dimensional in the category of right A-crossed
modules, g a bi-invariant metric and B−(�1) finite-dimensional with a 1-dimensional top
degree n and central bi-invariant top form Vol used to define

∫
. We define the Hodge star

� = g ◦ F : B−(�1)m → B−(�1)n−m

which we extend as a bimdodule map to �m → �n−m.

By construction our � is a morphism in the crossed-module category. In geometric terms
this means that it extends as a bimodule map and is bicovariant under the quantum group
action on �. We also define �� = (−1)D ◦ F� ◦ g−1 where D is the degree operator.

Proposition 3.8 In the setting of Definition 3.7, μ = 〈Vol,Vol〉−1 ∈ k×, � is invertible and
�S = (−1)nS�. If the metric g is quantum symmetric then S = (−1)D , �� = � and �2 = μ

on degrees D = 0, 1, n − 1, n.

Proof Here 〈Vol,Vol〉 is non-zero since otherwise Vol would be zero in B−(�1), and its
inverse supplies the coefficient of the top component of exp, which isμ. Sinceμ �= 0 we can
apply Corollary 3.5 to see in particular that �, S graded-commute. That S|0,1,n−1,n = (−1)D

i.e. on the outer degrees is clear on degrees 0,1 and then holds on degrees n, n − 1 due
to �, S graded-commuting. Next, in terms of �� with the metric identification, the result in
Corollary 3.5 becomes ��� = μ(−1)DS and �(−1)D�� = μ(−1)nS since the parity of the
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integral is n mod 2. Taking the (−1)D to the left in the latter equation makes it (−1)n−D

so that
�� = μ(−1)DS�−1

on all degrees, giving ��|0,1,n−1,n = μ�−1 on the outer degrees. On the other hand, we have

exp = 1 ⊗ 1 + g + · · · + g(n−1) + μVol ⊗ Vol

(for some element g(n−1) ∈ �n−1 ⊗ �n−1), while the definition of �� is such that it is
given by integration agains �−1 exp without any signs. Since g (by the quantum symmetry
assumption) and 1 ⊗ 1 are invariant under �, these terms are the same, and hence �� = �

on degrees n − 1, n and hence �2 = μ on these degrees. In that case ��(�ω) = μω = �2ω

on all ω of degree n − 1, n tells us that �� = � on degrees 0,1 also, and hence that �2 = μ

on these degrees also. This means that

�−1
sup exp = 1 ⊗ 1 − g + · · · + (−1)n−1g(n−1) + (−1)nμVol ⊗ Vol

for the computation of F� and similarly without the signs for ��.

We similarly define left and right interior products

�: �1 ⊗ B−(�1)m → B−(�1)m−1, �: B−(�1)m ⊗ �1 → B−(�1)m−1

by restricting the left and right actions in Section 3.1 (these are the left and right braided-
partial derivatives in the sense of [18, 24]). We then extend these to bicovariant bimodule
maps

�: �1 ⊗A �m → �m−1, �: �m ⊗A �1 → �m−1

given by

(aη) � (bω) = (aη, bω(1))ω(2), (bω) � (aη) = bω(1)(ω(2), aη), ∀a, b ∈ A, η ∈ �1, ω ∈ �

where we underline the braided-coproduct of �. In other words, we extend the braided
coproduct as a bimodule map � → � ⊗A � (not to be confused with the super-coproduct
of � as a super-Hopf algebra) and then use the quantum metric pairing to evaluate, taken as
zero when degrees do not match.

We can now interpret our Fourier theory in Section 3.1 as

S�(η � ω) = η(S�ω), �(ωη) = (�ω) � η, ∀η ∈ �1, ω ∈ � (3.3)

where S is the super-braided antipode of B−(�1) extended as a bimodule map to �. It
should not be confused with the super-coproduct of�. We also define a left Lie derivative by

Lη(ω) := η � dω + d(η � ω), ∀η ∈ �1, ω ∈ �

and associated codifferential and Hodge Laplacian

δ := (S�)−1d(S�), � := dδ + δd. (3.4)

The use of (S�)−1 here is adapted to the left handed � and left-handed partial derivatives
defined by df = ∑

a(∂
af )ea for any choice of basis {ea} of �1. One could equally well

use � but this would be adapted to � and right-handed partial derivatives. We also define the
Leibnizator

Lδ(ω, η) = δ(ωη) − (δω)η − (−1)|ω|ωδη

as in [32].
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Corollary 3.9 The codifferential and Hodge Laplacian in Eq. 3.4 obey

δ(f ω) = f δω + (df ) � ω, �(f ω) = (�f )ω + f�ω + Lδ(df, ω) + Ldf ω

for all f ∈ A and ω ∈ �. Moreover,

δα = αaδea + gab∂
aαb, �f = (∂af )δea + gab∂

a∂bf

�α=αa�ea+(�αa)ea+∂aαb(Lδ(ea, eb)+Lea eb)+∂a∂bαc ((ea �(ebec))+gbcea−gabec)

where α = αaea in a basis and gab = (ea, eb) (summation understood). If δα = 0 then

�α = αaδdea + ∂aαb(δ(eaeb) + ea � deb) + ∂a∂bαc(ea � (ebec))

Proof The formula for δ(f ω) follows immediately from the derivation property of d and
the first interior product property in Eq. 3.3. The formula for �(f ω) then follows from
this and the Leibniz rule for d as in [32]. These results then give the explicit formulae for
α = αaea .

Note concerning �α that (ea � (ebec)) + gbcea − gabec = (eaeb) � ec in the classical
case, which is antisymmetric in a, b, while Lδ(df, ω) + Ldf ω = 2∇df ω in the classical
case as shown in [32]. Here ∇ is the classical Levi-Civita connection referred back to a
derivative along 1-forms via the metric. The special case shown in Corollary 3.9 is relevant
to ‘Maxwell theory’ where F = dα and Maxwell’s equation δF = J has a degree of
freedom to change α by an exact form, which freedom can be reduced by fixing δα = 0.
Maxwell’s equation then becomes �α = J where J is required to be a coexact ‘source’.

3.3 Finite Group Case

To give a concrete example we recall that any ad-stable subset of a finite group not con-
taining the group identity defines an ad-stable ideal in k(G)+ and hence a bicovariant
calculus. There is a canonical basis of 1-forms {ea} labelled by the subset and relations
eaf = Ra(f )ea where Ra(f ) = f (( )a) is right translation. This corresponds to crossed
module action ea�f = f (a)ea . There is a natural choice of bi-invariant metric namely g =∑

a ea ⊗ ea−1 provided our subset is closed under inversion. Here the left coaction is trivial
on �1 and the right coaction is the crossed module one, namely �Rea = ∑

g∈G egag−1 ⊗δg .
The element θ = ∑

a ea is similarly bi-invariant and makes the calculus inner (so d = [θ, }
as a graded commutator). The above results therefore give us a Hodge star on any finite
group with bicovariant calculus stable under inversion and for which B−(�1) has (up to
scale) a unique top form which is bi-invariant. The braiding is �(ea ⊗ eb) = eaba−1 ⊗ ea ,
from which the braided factorials can be computed. The metric sends g(f a) = ea−1 where
{f a} is a dual basis. The interior products given by the braided-derivatives are

ea � (ebec) = gabec − ga,bcb−1eb, (eaeb) � ec = eagbc − eaba−1gac

on evaluating against the super-braided coproduct via the metric. One also has dθ = 0 and
in nice cases (when the associated quandle is locally skew and the field is characteristic
zero) it was shown in [34] that H 1(G) = kθ . If one similarly has Hn−1(G) = kθ� as an
expression of Poincaré duality (which is often the case, including in the following example)
then a source J is coexact if and only if

δJ = 0,
∫

G

(J, θ) = 0
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by elementary arguments using Eq. 3.3, where
∫
G
means a sum over the group. Here

∫ :
�n → k is defined as the tensor product of

∫
G
and

∫
on B−(�1) and

∫
dβ = 0 on any

n − 1-form β under our assumption of a unique bi-invariant top form Vol of degree n.

Example 3.10 The standard 3D calculus on the permuation group S3 on 3 elements is given
by the conjugacy class of 2-cycles. We recall that �1 = k − span{eu, ev, ew} is a k(S3)-
crossed module as above, where a = u, v,w are the 2-cycles u = (12), v = (23), w =
uvu = vuv = (13). The minimal exterior algebra in this case is known to be a super version
of the Fomin-Kirillov algebra [6, 29] with relations and exterior derivative

euev + evew + eweu = 0, eveu + ewev + euew = 0, e2u = 0, deu + evew + ewev = 0

and the two cylic rotations of these where u → v → w → u. The dimensions in the
different degrees are dim(�) = 1 : 3 : 4 : 3 : 1 so there is a unique top form up to scale,
which we take as Vol = eueveuew. This is clearly central and one can check that it is also
bi-invariant. This can be done noting that Vol = eueveuθ and computing

�R(eueveu) = eueveu ⊗ (δe + δw) + eweuew ⊗ (δu + δvu) + evewev ⊗ (δuv + δv).

Hence we have a canonical Hodge star.
The coevaluation element exp is a computation from Proposition 2.6 which in a basis

reads

exp =
n∑

m=0

·[m, −�]!−1(ea1 ⊗ · · · ⊗ eam) ⊗ f am · · · f a1

where {ea} is our basis of �1 and {f a} is a dual one and we sum repeated indices. This is
in general but in our case and using the metric identification comes out as

exp = 1 ⊗ 1 +
∑

a

ea ⊗ ea + evew ⊗ ewev+ euew ⊗ eweu − euev ⊗ euew − eveu ⊗ evew

+euevew ⊗ euevew + eveweu ⊗ eveweu + eweuev ⊗ eweuev − Vol ⊗ Vol

as one may check by verfying that this is a sum of basis and dual basis of each degree of
�m ⊗ �m paired via the metric. For example,

〈euev, ewev〉 = ev(eu ⊗ ev, ew ⊗ ev − eu ⊗ ew) = 0

〈euev, evew〉 = ev(eu ⊗ ev, ev ⊗ ew − eu ⊗ ev) = 0

〈euev, eweu〉 = ev(eu ⊗ ev, ew ⊗ eu − ev ⊗ ew) = 0

〈euev, euew〉 = ev(eu ⊗ ev, eu ⊗ ew − ev ⊗ eu) = −1

where we should remember that the ev pairing is nested starting on the inside.
The resulting Hodge operator is then computed as

�1 = −Vol, �eu = eweuev, �ev = euevew, �ew = eveweu

�(eweuev) = −eu, �(euevew) = −ev, �(eveweu) = −ew, �Vol = 1

�(euev) = eweu; �(eaeb) = eabaea = ·�(ea ⊗ eb)

We see that on the different degrees,

�2|0,1,3,4 = −id, �3|2 = id

so that � has order 6. The first of these illustrates Proposition 3.8 while we note that
� on degree 2 coincides with minus the braided-antipode S of B−(�2) (because this is
braided-multiplicative along with an extra sign for the super case, and S|1 = −id). The
cohomology for this calculus in characteristic zero is known to be H 0 = k, H 1 = k, H 2 =
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0, H 3 = k,H 4 = k and one can see that � is an isomorphism Hm∼=H 4−m as expected, the
cohomologies being spanned by 1, θ = eu+ev+ew in degrees 0,1 and their � in degrees 3,4.

Next we compute S on degree 3 as S(euevew) = − · �(Seu ⊗ S(evew)) = ·�(eu ⊗
euev) = eueweu = −euevew . A similar computation gives SVol = Vol so that S = (−1)D

on degree D �= 2 as we saw in Proposition 3.8, while we have already observed that S = −�

on degree 2.
We now compute �� := F�◦g as a check of our theory. The inverse braiding is �−1(ea ⊗

eb) = eb⊗eb−1ab in general and extends similarly to products, with the metric identification,
we have

�−1
sup exp = 1 ⊗ 1 − g + ewev ⊗ eweu + eweu ⊗ ewev − euew ⊗ evew − evew ⊗ eeew

−euevew ⊗ euevew − eveweu ⊗ eveweu − eweuev ⊗ eweuev − Vol ⊗ Vol.

Note that euevew = eweveu and so forth using the relations. Integrating against gives
�� = � on degrees 0,1,3,4 as in Proposition 3.8 while �� = id on degree 2. The latter agrees
with �� = μ(−1)DS�−1 in the proof of Proposition 3.8.

Turning to applications we compute

S�1= −Vol, S�eu = −eweuev, S�(eaeb) = −ebebab, S�(eweuev) = eu, S�Vol = 1

For the Laplace operator we note that δea = 0, for example

S�δeu = −d(eweuev) = −θeweuev − eweuevθ = −eueweuev − eweueveu = 0

using the relations. Hence by Corollary 3.9

�|0 =
∑

∂a2 = −2
∑

a

∂a

which is (-2 times) the standard graph Laplacian for the corresponding Cayley graph on S3.
It is fully diagonalised as usual by the matrix elements of irreducible representations (the
eigenvalues are 0, 6, 12 with eigenspaces of dimensions 1,4,1 respectively). We also have
δα = gab∂

aαb and if this vanishes then

�α = (�−1d)2α =
∑((

1

2
� + 3

)
αa

)
ea − (α, θ)θ −

∑
∂a(∂b + 2)αabaeb.

We note that the last term here only has contributions from a �= b. The above expression
is a short computation from Corollary 3.9 using

δ(eaeb) = eb − eaba, ea � (ebec) = δa,bec − δaba,ceb

from which we see that

δdea = 3ea − θ, δ(eaeb) + ea � deb = eb − 2eaba + δa,bθ.

Solving Maxwell theory in the form �α = J , the source J has to be coexact. From the
remarks above and H 3(S3) = kθ�, this is equivalent to

δJ = 0,
∫

S3

(J, θ) = 0

It is a useful check of our formula for � on �1 to see directly that when restricted
to coexact forms its image indeed is again coexact. Moreover, by computer one finds the
same eigenspaces (each 4-dimensional) as in [33] with eigenvalues 3,6,9, so that up to an
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overall constant the Laplacian restricted to coexact 1-forms is the same in spite of the Hodge
operators being rather different. Explicitly,

eu − ev, eu −
∑

a

(δau + δuau)ea

and their cyclic rotations under u → v → w → u have eigenvalue 3 (and along with
their cyclic rotations add up to zero). Multiplying these by the sign function on S3 gives
eigenvectors of eigenvalue 9 while for the eigenvectors of eigenvalue 6 we can use the ‘point
sources’ in [33],

Jx := (3δx − 1)θ + 3
∑

a

δxaea, x ∈ S3

where three points that share a common node in the graph have a zero sum of their sources.
These are related to the matrix elements ρij of the 2-dimensional representation. For exam-

ple, if we work over R and ρ(u) = diag(1,−1), ρ(v) = 1
2diag(−1, 1) +

√
3
2 τ where τ is

the transposition matrix, then

Je = 2ρ11eu + cyclic, Jvu − Juv = 2
√
3ρ21eu + cyclic.

This solves the ‘Maxwell theory’ on S3 for this calculus by diagonalising � on coexact
1-forms.

In [33] and all other such models until now it has been assumed that the Hodge operator
should be designed to square to ±1, whereas our canonical Hodge operator in this example
is order 6 and looks very different, but nevertheless gives the same reasonable Laplacians
in degrees 0,1. Our construction also works for S4 and S5 with their 2-cycles calculus and
can be analysed similarly, while higher Sn, n > 5 are conjectured [29] to have infinite-
dimensional B−(�1).

4 Calculus and Hodge Operator on Coquasitriangular Hopf Algebras

Here we start with a new, braided-Lie algebra, approach to the construction of bicovariant
(�1, d) on quantum groups such as kq [G] for G a complex semisimple Lie group. We recall
that these are all coquasitriangular in that they come with a convolution-invertible map
R : A ⊗ A → k obeying

b(1)a(1)R(a(2) ⊗ b(2)) = R(a(1) ⊗ b(1))a(2)b(2)

R(ab ⊗ c) = R(a ⊗ c(1))R(b ⊗ c(2)), R(a ⊗ bc) = R(a(1) ⊗ c)R(a(2) ⊗ b)

for all a, b, c ∈ A. This is just dual to Drinfeld’s theory in [5], see [18, 21]. We will need
the ‘quantum Killing form’

Q(a ⊗ b) = R(b(1) ⊗ a(1))R(a(2) ⊗ b(2)), ∀a, b ∈ A

which obeysQ(Sa ⊗ Sb) = Q(b ⊗ a) sinceR is invariant under S ⊗ S.
The construction of differential calculi on a coquasitriangular Hopf algebra A has its

roots in R-matrix constructions from the 1990s but the following general construction builds
on our recent treatment in [35]. It is shown there that A is a left A-crossed module by

AdL(a) = a(1)Sa(3) ⊗ a(2), a�b = b(2)R(b(1) ⊗ a(1))R(a(2) ⊗ b(3)). (4.1)

Then any subcoalgebra L becomes a left A-crossed module by restriction and its dual-
isation L∗ in the finite-dimensional subcoalgebra case becomes a right A-crossed module.
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It is shown that the quantum Killing form regarded by evaluation on its first input as a map
Q : A+ → L∗ is a morphism of crossed modules. This gives:

Proposition 4.1 cf [35] Let A be a coquasitriangular Hopf algebra and L ⊆ A a nonzero
finite-dimensional subcoalgebra. Then �1 = image(Q) and 
 = Q defines a bicovariant
differential calculus �1 on A.

In [35] we used a version of this to naturally construct possibly non-surjective differential
calculi with �1 = L∗, but we also see from this result that L itself is the more fundamental
object as starting point.

4.1 Braided-Lie Algebras

Our new approach is to start with a Hopf algebra B in a braided category C and find a ‘Lie
algebra’ for it. We then take its dual to define a calculus.

Definition 4.2 [26] A left braided-Lie algebra is a coalgebra L in a braided category,
together with a morphism [ , ] : L⊗L → L subject to the axioms shown diagrammatically
in Fig. 4. The associated braiding �̃ and braided-Killing form are also shown.

A principal result in the case of an Abelian braided category is the construction of the
braided-enveloping algebra U(L) as a bialgebra. This is defined by the relations of com-
mutativity with respect to the associated braiding �̃. In the category of sets a braided-Lie
algebra reduces to a quandle and this was used recently to prove the cohomology theorem
for finite group bicovariant calculi[34]. Nondegeneracy of the Killing form also turns out
to be an interesting characteristic related at one extreme to the Roth property of a finite
group [13]. The axioms themselves, however, were inspired by the properties of the braided
adjoint action of a braided-Hopf algebra on itself as also recalled in Fig. 4.

Lemma 4.3 [26] If B is a braided-Hopf algebra then [ , ] = Ad : B ⊗B → B the braided
adjoint action obeys axiom (L1). If B is cocommutative with respect to the braided-adjoint
action in the sense of [19] (we say B is Ad-cocommutative) then (L2), (L3) are also obeyed.

L L

L L

L L L L

L L L L

L L

L L

L L

L L L L

(L1) (L2) (L3)

L L L L L L

L L
L L

L L

K K

L L

S

B B

B

Ad=

Fig. 4 Axioms of a braided-Lie algebra. Read down the page. We also recall the associated braiding �̃ and
braided-Killing form, and the adjoint action of a braided-Hopf algebra on itself
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The first part was done in [26]. Braided cocommutativity with respect to a B-module is
just the axiom (L2) when specialised to [ , ] = Ad and the proof that the adjoint action then
obeys (L3) appeared in [25, Prop A.2] in dual form (turn the diagrams there up-side-down).
Clearly:

Corollary 4.4 Any subcoalgebra L ⊆ B of an Ad-cocommutative braided-Hopf algebra
closed under Ad is a braided-Lie algebra by restriction.

We next recall that if A is coquasitriangular then there is a braided Hopf algebra version
B(A) of A called its transmutation. This is also denoted A and has the same coalgebra as A

but a modified product[21]

a • b = a(2)b(3)R(a(3) ⊗ Sb(1))R(a(1) ⊗ b(2)) = a(0̄)b(2)R(a(1̄) ⊗ Sb(1)) (4.2)

and lives inMA by AdR . Its product is braided-commutative,

a • b = b(3) • a(3)R(Sb(2) ⊗ a(1))R(b(4) ⊗ a(2))R(a(4) ⊗ b(5))R(a(5) ⊗ Sb(1)) (4.3)

which can be written equivalently as

R(b(1) ⊗ a(1))a(2) • R(a(3) ⊗ b(2))b(3) = b(1) • R(b(2) ⊗ a(1))a(2)R(a(3) ⊗ b(3)) (4.4)

while its braided-antipode is

Sa = Sa(2)R((S2a(3))Sa(1) ⊗ a(4)) = (Sa(1))(0̄)R((Sa(1))(1̄) ⊗ a(2)). (4.5)

Because we have a mix of both types of structure on the same vector space, we will be
more careful to underline the braided versions where they are different.

Theorem 4.5 Let A be coquasitriangular. Then B(A) is Ad-cocommutative and [a, b] :=
Ada(b) = b(0̄)Q(a ⊗ b(1̄)) for all a, b ∈ A makes A a braided-Lie algebra in the braided

category MA. By restriction, any subcoalgebra L ⊆ A is a braided-Lie algebra in this
category. In this case there is a homomorphism

U(L) → B(A)

of bialgebras in the category.

Proof We start by computing the left braided-adjoint action by applying S to a(2) and using
the braiding to commute this past b before multiplying up with respect to •:
Ada(b) = a(1) • b(0̄) • (Sa(2))(0̄)R((Sa(2))(1̄) ⊗ b(1̄))

= a(1) •
(
b(0̄)(Sa(2))(0̄)(2)

)
R((Sa(2))(1̄) ⊗ b(1̄)(2))R(b(1̄)(1) ⊗ S(Sa(2))(0̄)(1))

= a(1)(0̄)b(0̄)(2)(Sa(2))(0̄)(3)R((Sa(2))(1̄) ⊗ b(1̄)(2))R(b(1̄)(1) ⊗ S(Sa(2))(0̄)(1))

R(a(1)(1̄) ⊗ S(b(0̄)(1)(Sa(2))(0̄)(2))

= a(1)(0̄)b(0̄)(2)(Sa(2))(0̄)(3)R((Sa(2))(1̄)(2) ⊗ a(3))R((Sa(2))(1̄)(1) ⊗ b(1̄)(2))

R(b(1̄)(1) ⊗ S(Sa(2))(0̄)(1))R(a(1)(1̄) ⊗ S(b(0̄)(1)(Sa(2))(0̄)(2)))

= a(1)(0̄)b(0̄)(2)(Sa(2))(0̄)(2)R((Sa(2))(1̄) ⊗ a(3)b(1̄)(2))

R(a(1)(1̄)(2)b(1̄)(1) ⊗ S(Sa(2))(0̄)(1))R(a(1)(1̄)(1) ⊗ Sb(0̄)(1))
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where we use the definitions, the coaction properties and the multiplicativity property ofR.
We next unpack the adjoint coactions on a, and use multiplicativity of the lastR to give the
above expression as

= a(3)b(0̄)(3)Sa(7)R(S2a(9)Sa(6) ⊗ a(10)b(1̄)(2))R(Sa(1)a(5)b(1̄)(1) ⊗ S2a(8))

R(a(2) ⊗ b(0̄)(2))R(a(4) ⊗ Sb(0̄)(1))

= b(0̄)(2)a(2)Sa(7)R(S2a(9)Sa(6) ⊗ a(10)b(1̄)(2))R(Sa(1)a(5)b(1̄)(1) ⊗ S2a(8))

R(a(3) ⊗ b(0̄)(3))R(a(4) ⊗ Sb(0̄)(1))

= b(0̄)(0̄)a(2)Sa(6)R(S2a(8)Sa(5) ⊗ a(9)b(1̄)(2))R(Sa(1)a(4)b(1̄)(1) ⊗ S2a(7))

R(a(3) ⊗ b(0̄)(1̄))

= b(0̄)a(2)Sa(6)R(S2a(8)Sa(5) ⊗ a(9)b(1̄)(3))R(Sa(1)a(4)b(1̄)(2) ⊗ S2a(7))

R(a(3) ⊗ b(1̄)(1))

= b(0̄)a(2)Sa(7)R(S2a(10)Sa(6) ⊗ b(1̄)(3))ν
−1(a(11))R(Sa(5) ⊗ a(12))

R(Sa(1)a(4) ⊗ S2a(8))R(b(1̄)(2) ⊗ S2a(9))R(a(3) ⊗ b(1̄)(1))

= b(0̄)a(2)Sa(7)R(S2a(10)Sa(6) ⊗ b(1̄)(3))R(Sa(5) ⊗ S2a(11))ν
−1(a(12))

R(Sa(1)a(4) ⊗ S2a(8))R(b(1̄)(2) ⊗ S2a(9))R(a(3) ⊗ b(1̄)(1))

= R(a(1) ⊗ Sa(8))b(0̄)a(2)Sa(7)R(Sa(5) ⊗ S2a(12))ν
−1(a(13))

R(S2a(11)Sa(6) ⊗ b(1̄)(3))R(b(1̄)(2) ⊗ S2a(10))R(a(4) ⊗ S2a(9))R(a(3) ⊗ b(1̄)(1))

= R(a(1) ⊗ Sa(8))b(0̄)a(2)Sa(7)R(Sa(6) ⊗ S2a(11))ν
−1(a(13))

R(Sa(5)S
2a(12) ⊗ b(1̄)(3))R(b(1̄)(1) ⊗ S2a(9))R(a(3) ⊗ S2a(10))R(a(4) ⊗ b(1̄)(2))

= R(a(1) ⊗ Sa(6))b(0̄)a(2)Sa(5)R(a(3) ⊗ S2a(8))R(Sa(4) ⊗ S2a(9))ν
−1(a(11))

R(S2a(10) ⊗ b(1̄)(2))R(b(1̄)(1) ⊗ S2a(7))R(a(3) ⊗ S2a(8))

= R(a(1) ⊗ Sa(4))b(0̄)a(2)Sa(3)ν
−1(a(7))R(S2a(6) ⊗ b(1̄)(2))R(b(1̄)(1) ⊗ S2a(5))

= R(a(1) ⊗ Sa(2))b(0̄)ν
−1(a(5))R(S2a(4) ⊗ b(1̄)(2))R(b(1̄)(1) ⊗ S2a(3))

= b(0̄)R(a(2) ⊗ b(1̄)(2))R(b(1̄)(1) ⊗ a(1)) = b(0̄)Q(a ⊗ b(1̄)) = [a, b]

where the 2nd equality is by quasicommutativity of A, the 3rd uses multiplicativity of R
to recognise AdR on b(0̄). We then expand out by multiplicativity to recognise ν−1(a) =
R(S2a(1) ⊗ a(2)). This is known[18, 21] to be convolution inverse to ν(a) = R(a(1) ⊗
Sa(2)) and to obey ν−1(a(1))a(2) = S2a(1)ν

−1(a(2)), which we use to move to the right.
The seventh equality uses multiplicativity of R so that we can use quasicommutativity on
S2a(11)Sa(6) and the braid or Yang-Baxter equations on the last three factors to give the 8th
equality. On this we use multiplicativity to cancel a(4)Sa(5) and obtain the 9th equality and
two mutually inverse copies of R for the 10th. We finally cancel a(2)Sa(3) and move ν−1

to the left to cancel ν. We then recognise the answer in terms of Q and take this for our
braided-Lie bracket. The Lemma tells us that we have (L1) for free. Next, we verify (L2)
for [ , ] = Ad noting that (L2) can be written in the form

��̃ = (id ⊗ [ , ])(� ⊗ id)
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where in our case � is the braiding ofMA and

�̃(a ⊗ b) = [a(1), b(0̄)] ⊗ a(2)(0̄)R(a(2)(1̄) ⊗ b(1̄))

= b(0̄) ⊗ a(2)(0̄)Q(a(1) ⊗ b(1̄)(1))R(a(2)(1̄) ⊗ b(1̄)(2))

= b(2) ⊗ a(4)R(((Sb(1))b(3))(1) ⊗ a(1))R(a(2) ⊗ ((Sb(1))b(3))(2))

R((Sa(3))a(5) ⊗ ((Sb(1))b(3))(3))

= b(2) ⊗ a(2)R(((Sb(1))b(3))(1) ⊗ a(1))R(a(3) ⊗ ((Sb(1))b(3))(2))

= b(0̄) ⊗ a(2)R(b(1̄)(1) ⊗ a(1))R(a(3) ⊗ b(1̄)(2))

using our result for Ad. We compute

��̃(a ⊗ b) = a(2)(0̄) ⊗ b(0̄)(0̄)R(b(0̄)(1̄) ⊗ a(2)(1̄))R(b(1̄)(1) ⊗ a(1))R(a(3) ⊗ b(1̄)(2))

= a(2)(0̄) ⊗ b(0̄)R(b(1̄)(1) ⊗ a(2)(1̄))R(b(1̄)(2) ⊗ a(1))R(a(3) ⊗ b(1̄)(3))

= a(2)(2) ⊗ b(0̄)R(b(1̄)(1) ⊗ a(1)(Sa(2)(1))a(2)(3))R(a(3) ⊗ b(1̄)(2))

= a(1) ⊗ b(0̄)R(b(1̄)(1) ⊗ a(2))R(a(3) ⊗ b(1̄)(2)) = a(1) ⊗ b(0̄)Q(a(2) ⊗ b(1̄))

= a(1) ⊗ [a(2), b]

as required, where we used the coaction properties of AdR and the multiplicativity property
ofR to make a cancellation. The above Lemma then tells us that we get (L3) for free. These
results then apply for an subcoalgebra L ⊆ A since, due to the form of Ad, we see that
Ad(L ⊗ L) ⊆ L, since AdR(L) ⊆ L ⊗ A because L is a subcoalgebra (in other words a
sub-coalgebra of A is also a subobject and hence a braided sub-coalgebra L ⊆ B(A)). For
the last part, we can equivalently write

�̃(a ⊗ b) = b(3) ⊗ a(3)R(Sb(2) ⊗ a(1))R(b(4) ⊗ a(2))R(a(4) ⊗ b(5))R(a(5) ⊗ Sb(1))

by expanding out our previous expression using the multiplicativity properties of R. Com-
paring with the braided-commutativity of B(A) in Eq. 4.3 we see that a • b = •�̃(a ⊗ b)

or the relations of U(L).

Proposition 4.6 When L ⊆ A is finite-dimensional (1) U(L) is Koszul dual to a right-
handed quadratic version of the bicovariant calculus in Proposition 4.1. (2) The braided-
Killing form is

K(a, b) =
∑

i

u(ei (1̄)(1))Q(a, ei (1̄)(2))Q(b, ei (1̄)(3))〈f i, ei (0̄)〉

where {ei} is a basis of L and {f i} a dual basis and u(a) = R(a(2) ⊗ Sa(1)).

Proof The braided-Killing form is obtained by reading down the diagram, as (summation
understood)

K(a, b) = Q(b, ei (1))Q(a, ei (0̄)(1))〈f i
(0̄), ei (0̄)(0̄)(0̄)〉R(ei (0̄)(0̄)(1̄) ⊗ f i

(1̄))

= Q(b, ei (1̄))Q(a, ei (0̄)(1̄))R(ei (0̄)(0̄)(1̄) ⊗ Se(0̄)(0̄)(0̄)(1̄))〈f i, ei (0̄)(0̄)(0̄)(0̄)〉
= Q(b, ei (1̄)(4))Q(a, ei (1̄)(3))R(ei (1̄)(2) ⊗ Se(1̄)(1))〈f i, ei (0̄)〉
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as stated. For the remark about the dualisation we note that A has a right crossed-module
structure given by AdR and

a�b = a(2)R(b(1) ⊗ a(1))R(a(3) ⊗ b(2)), ∀a, b ∈ A

and its crossed module braiding turns out, by similarly using the properties of R as above,
to coincide with the fundamental �̃ for the braided-Lie algebra (as computed in the proof of
Theorem 4.5). On the other hand this crossed module is the right handed version of Eq. 4.1
which dualized to give the crossed module structure defining the calculus in Proposition 4.1.
This means that U(L) is the Koszul or quadratic algebra dual of �quad (where we impose
only the degree 2 relations of B−(�1)). The braided-Lie bracket and exterior derivative
can also be related as part of a general theory of ‘quantum Lie algebras’ in [39] when
1 /∈ L. Here every bicovariant calculus gives a quantum Lie algebra in the sense of [39] and
meanwhile (one can show that) every non-unital braided-Lie algebra L gives a quantum Lie
algebra by extending by 1 and then taking the kernel of the counit.

The above theorem is a new result and is needed to complete the picture. In the special
case where L has a matrix coalgebra form on a basis {t i j } (such data defines a matrix
corepresentation of A) we recover the R-matrix braided-Lie algebra construction introduced
in [26] but now as a corollary of the above.

Corollary 4.7 cf [26] Let A be a coquasitriangular Hopf algebra and t ∈ Mn(A) a
matrix corepresentation. Then the matrix subcoalgebra L = {t i j } has braided-Lie bracket,
categorical braiding and braided Killing form

[t i j , tk l] = tk2k3R
−1k1

k2
i
i1R

k3
k4

i1
i2R

i2
i3

k4
l R̃

i3
j
k
k1

�(tij ⊗ tk l) = tk2k3 ⊗ t i2 i3R
i
i1

k1
k2R

−1i1
i2

k3
k4R

i3
i4

k4
l R̃

i4
j
k
k1

The braided enveloping algebra U(L) is generated by the {t i j } with new relations

t i j • tk l = tk2k3 • t i2 i3R
−1k1

k2
i
i1R

k3
k4

i1
i2R

i3
i4

k4
l R̃

i4
j
k
k1 .

We sum over repeated indices in these expressions.

Proof We expand out Q using the properties of R, then the above bracket can also be
written explicitly as

[a, b] = b(3)R(Sb(2) ⊗ a(1))R(b(4) ⊗ a(2))R(a(3) ⊗ b(5))R(a(4) ⊗ Sb(1)) (4.6)

and the categorical braiding inMA is

�(a ⊗b) = b(3) ⊗a(3)R(a(1) ⊗b(2))R(Sa(2) ⊗b(4))R(a(4) ⊗b(5))R(a(5) ⊗Sb(1)) (4.7)

From these we immediately read off the expressions stated, where Ri
j
k
l = R(t i j ⊗ tk l)

and R̃i
j
k
l = R(t i j ⊗ Stkl) is the ‘second inverse’. We likewise read off the relations

of U(L) from �̃ or from Eq. 4.3 to give the result stated. In all cases we can move R̃

and another R to the left hand side, for example the relations can be written compactly as
R21t1 •Rt2 = t2 •R21t1R where the suffices refer to the position in Mn ⊗Mn with values in
U(L), also clear from Eq. 4.4. These are the relations of B(R) [18, 20], the braided analog
of the more familiar FRT bialgebra A(R).

This derives the explicit R-matrix formulae needed to compute examples. This in turn
recovers the 4D braided-Lie algebra of kq [SL2] found in [26]:
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Example 4.8 [26] For A = kq [SL2] with q2 �= ±1, its standard matrix coalgebra and
rescaled generators

t =
(

α β

γ δ

)
; t = q−1α + qδ, z = λ−1(δ − α), x+ = λ−1β, x− = λ−1γ

where λ = 1− q−2 (we use different symbols for the entries of t i j to avoid confusion with
the quantum group), the nonzero braided-Lie brackets are

[z, z] = q(2)qλz, [t, t] = (2)q t, [t, ] = (q3 + q−3)id, [x+, x−] = z = −[x−, x+]
[z, x±] = ±q±1(2)q x± = −q±2[x±, z].

Here (n)q = (qn −q−n)/(q −q−1) and we used Corollary 4.7 and the standard R-matrix
for SL2 with nonzero entries R1

2
2
1 = q − q−1, R1

1
2
2 = R2

2
1
1 = 1, R1

1
1
1 = R2

2
2
2 = q.

The braided Killing form is (4)q/q13 times the nonzero values

K(z, z) = q(2)q, K(t, t) = q3(4)q − q−1(2)qλ, K(x+, x−) = 1 = q−2K(x−, x+).

The enveloping algebra U(L) = Bq [M2] is generated by α, β, γ, δ with relations

βα = q2αβ, γ α = q−2αγ, δα = αδ

[β, γ ] = λα(δ − α), [γ, δ] = λγα, [δ, β] = λαβ

where [ , ] at this point denotes commutator not Lie bracket. This is the algebra of q-
deformed 2 × 2 braided hermitian matrices which means that geometrically it should be
thought of as q-Minkowski space[18, 20]. There are two natural central elements, the
braided determinant detq = αδ − q2γβ which should be thought of as the q-Lorentzian
distance from the origin and q-trace trq = q−1α + qδ = t which should be thought
of as the ‘time’ direction. In these variables (as opposed to the rescaled ‘Lie algebra’
variables) the classical limit is commutative allowing us to think of this as a noncommu-
tative geometry. Over C our braided-Lie algebra has a natural real form or ∗-involution
α∗ = α, β∗ = γ, δ∗ = δ for real q, which fits with the mentioned geometric picture.

4.2 Calculus and Hodge Operator on kq[SL2]
In the case of a coquasitriangular Hopf algebra A with a generating matrix subscoalgebra
{t i j }, Proposition 4.1 or dualization of Corollary 4.7 recovers a version of a known R-matrix

construction[10] of quantum group bicovariant calculi. We let {Eβ
α } be the standard basis of

Mn(k) and dual to the {t i j } basis of L. This then becomes a right A-crossed module with

�RE β
α = Em

n ⊗ tmαStβn, E β
α �tab = Em

nRm a
α cR

c
b
β

n (4.8)

and

�1 = Mn(k), 
(a) = Q(a ⊗ tαβ)E β
α

defines the possibly non-surjective bicovariant calculus, which is, however typically sur-
jective for the standard quantum groups kq [G] with q generic. The E

β
α have bimodule

relations

E β
α tab = tacEm

nRm c
α dRd

b
β

n
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and the above right covariance. The calculus has an inner form with

dtab = tac(R21R)cb
α

βE β
α − tabθ = [θ, tab], θ = E α

α .

The associated right crossed-module braiding on �1 will be denoted �̃ also (it is adjoint
to the one for the braided-Lie algebra) and is computed from the right crossed module
structure as

�̃(E β
α ⊗ E δ

γ ) = Em
n〈E δ

γ , tj1 j2〉 ⊗ E β
α �tmj1Stj2n

= Em
n ⊗ Ep

q〈E δ
γ , tj2 j3〉〈E β

α , tk2k3〉R(tpk1 ⊗ tmj1Stj4n)R(tj1 j2Stj3 j4 ⊗ tk3q)

and expands out as

�̃(E β
α ⊗ E δ

γ ) = Ej2
j3 ⊗ Ek2

k3R̃k2
k1

j4
j3 Rk1 j2

α j1R
j1

γ
β

k4R
−1δ

j4
k4

k3

from which we see that �̃(E
β

α ⊗ θ) = θ ⊗ E
β

α so that, in particular, θ2 = 0 in �min =
B−(�1).

We now focus on A = kq [SL2] where the smallest nontrivial irreducible is 2-
dimensional, giving us �1 = M2(C). We write basis E1

1 = ea, E1
2 = eb, E2

1 =
ec, E2

2 = ed and use the standard SL2 R-matrix as in Example 4.8 to give the bimodule
relations of the well-known 4D calculus first found in [39],

ea

(
a b

c d

)
=

(
qa q−1b

qc q−1d

)
ea

[
eb,

(
a b

c d

)]
= qλ

(
0 a

0 c

)
ea,

[
ec,

(
a b

c d

)]
= qλ

(
b 0
d 0

)
ea

[
ed,

(
a

c

)]

q−1
= λ

(
b

d

)
eb,

[
ed,

(
b

d

)]

q

= λ

(
a

c

)
ec + qλ2

(
b

d

)
ea,

where [x, y]q := xy − qyx and λ = 1 − q−2 �= 0. The exterior differential is necessarily
inner with θ = ea + ed which implies that

d

(
a

c

)
=

(
a

c

)
((q − 1)ea + (q−1 − 1)ed) + λ

(
b

d

)
eb

d

(
b

d

)
=

(
b

d

)
((q−1 − 1 + qλ2)ea + (q − 1)ed) + λ

(
a

c

)
ec.

Note that we should scale d or θ by λ−1 in order to have the right classical limit but
we have not done this in order to follow the general construction. The right coaction on
left-invariant 1-forms is

�Rθ = θ ⊗ 1, �R(−eb, ez, q
−1ec) = (−eb, ez, q

−1ec) ⊗
⎛

⎝
a2 (2)qab b2

ca 1 + (2)qbc db

c2 (2)qcd d2

⎞

⎠
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where ez := q−2ea − ed and the calculation is from �RE
β

α with the relevant R-matrix. We
use the symmetric q-integers so that (2)q = q + q−1. The crossed module braiding comes
out as

�̃

(
ea ⊗

(
ea eb

ec ed

))
=

(
ea q2eb

q−2ec ed

)
⊗ ea,

�̃

(
eb ⊗

(
ea eb

ec ed

))
=

(
ea eb

ec ed

)
⊗ eb + λq2

(−eb 0
ez eb

)
⊗ ea

�̃

(
ec ⊗

(
ea eb

ec ed

))
=

(
ea eb

ec ed

)
⊗ ec + λ

(
ec −q2ez

0 −ec

)
⊗ ea

�̃(ed ⊗ ea) = ea ⊗ ed + λ2q2ez ⊗ ea − λ(eb ⊗ ec − ec ⊗ eb)

�̃(ed ⊗ eb) = q−2eb ⊗ ed − λez ⊗ eb

�̃(ed ⊗ ec) = q2λez ⊗ ec + (q4 − 1 + q−2)ec ⊗ ed + λ(q4 − 1)ec ⊗ ez

�̃(ed ⊗ ed) = ed ⊗ ed + λ(eb ⊗ ec − ec ⊗ eb) − λ2q2ez ⊗ ea

from which one can see for example that �̃(ei ⊗ θ) = θ ⊗ ei . This then gives the relations
of � = B−(�1) as usual Grassmann variables ea, eb, ec and[39]

eaed + edea + λeceb = 0, edec + q2eced + λeaec = 0

ebed + q2edeb + λebea = 0, e2d = λeceb

or equivalently
ebez + q2ezeb = 0, ezec + q2ecez = 0

ezea + eaez = λeceb, e2z = (1 − q−4)eceb.

The exterior derivative is

dea = λebec, dec = λq2ecez, deb = λq2ezeb, ded = λeceb; dez = (1−q−4)ebec.

As in degree 0, we note that λ−1d has the right classical limit not d itself. The dimensions
here in each degree are dim(�) = 1 : 4 : 6 : 4 : 1. The following is mostly known e.g. [30]
but we give a short proof as it is critical for us.

Proposition 4.9 For the above 4D calculus on kq [SL2] with q2 �= ±1 there is a unique
bi-invariant central metric

g = ec ⊗ eb + q2eb ⊗ ec + q3

(2)q
(ez ⊗ ez − θ ⊗ θ).

The inverse metric is

(eb, ec) = 1, (ec, eb) = q−2, (ez, ez) = q−3(2)q = −(θ, θ)

and the rest zero in this basis. In the exterior algebra there is also up to scale a unique
top form Vol = eaebeced = ebecezea and this is bi-invariant and central. Hence the super-
braided Fourier transform applies and we have a Hodge star and interior products.

Proof Using the quantum group relations one has
⎛

⎝
a2 (2)qab b2

ca 1 + (2)qbc db

c2 (2)qcd d2

⎞

⎠

⎛

⎜⎝
0 0 −q2

0 q3

(2)q
0

−1 0 0

⎞

⎟⎠

⎛

⎝
a2 (2)qab b2

ca 1 + (2)qbc db

c2 (2)qcd d2

⎞

⎠
t

=
⎛

⎜⎝
0 0 −q2

0 q3

(2)q
0

−1 0 0

⎞

⎟⎠

which gives us the unique generically q-invariant element of the tensor square of the space
spanned by {−eb, ez, q

−1ec} (the quadratic elements here generate kq [SO3]). We can add
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to this a multiple of θ ⊗ θ since this is also invariant[30], which we have now fixed so that
g is central. Thus for example,

(ec ⊗ eb+q2eb ⊗ ec)a = ec ⊗ aeb + q3λeb ⊗ bea + q2eb ⊗ aec

= a(ec ⊗ eb + q2eb ⊗ ec) + qλbea ⊗ eb + q3λbeb ⊗ ea + q4λ2aea ⊗ ea

(ez ⊗ ez − θ ⊗ θ)a = −(1 + q−2)(λea ⊗ ea + ea ⊗ ed + ed ⊗ ea)a

= a(ez⊗ ez−θ ⊗ θ)−(1−q−4)(q2λaea ⊗ ea +qbeb ⊗ ea +q−1beb ⊗ ea)

using the above commutation relations. Comparing these we see that [g, a] = 0. Similarly
for the other generators of kq [SL2]. It is also clear that ∧(g) = 0. The inverse is immediate.
For Vol the element ebecez is invariant again for reasons coming from the representation
theory of kq [SO3]. As θ is also invariant, we know that ebecezθ is invariant and hence so is
Vol being a multiple of this. For centrality, we check for example

aeaebeced = q−1eaaebeced = eaebecq
−1aed = eaebeceda

discarding unwanted terms using the wedge product relations.

We now use g to identify �1∗∼=�1 and compute � using
∫
Vol = 1.

Proposition 4.10 For kq [SL2] with its 4D calculus, μ = q6, �1 = q6Vol,

�ea = −q4eaebec, �eb = −q4eaebed, �ec = q6eaeced, �ed = q4ebeced+λq4eaebec

�(eaeb) = −q2eaeb, �(eaec) = q4eaec, �(eaed) = q2ebec + λq4eaed

�(ebec) = q4eaed, �(ebed) = q4ebed − λq3(2)qeaeb, �(eced) = −q2eced

�(eaebec) = −q2ea, �(eaebed) = −q2eb, �(eaeced) = ec, �(ebeced) = q2ed+λq2ea

and �Vol = 1, where λ = 1 − q−2 as above. Acting on degree D, this obeys

�2 = q6, (D �= 2); (� − q4)(� + q2) = 0, (D = 2).

Proof We first explicitly compute the exp element in the form

exp = 1⊗1+g+ei1ei2(2B)−1
IJ ⊗ej1ej2+ei1ei2ei3(3B)−1

IJ ⊗ej1ej2ej3+e1e2e3e4(4B)−1⊗e1e2e3e4

where ei, 1 ≤ i ≤ 4 refer in order to ea, eb, ec, ed and I = (i1, j2, · · · , im) with i1 <

i2 · · · < im labels of a basis of �m and

mBIJ = 〈ei1 · · · eim, ej1 · · · ejm〉 = ev(ei1 ⊗ ei2 · · · ⊗ eim, [m, −�̃]!(ej1 ⊗ ej2 · · · ejm))

= gi1p1 · · · gimpm [m, −�̃]!pm···p2p1
j1j2···jm

In the last line refer operators to matrices, for example [2, −�̃](em ⊗ en) = ep ⊗
eq [2, −�̃]pq

mn and we remember the metric identification where gij = (ei, ej ). This is the
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general picture but with bases labelled in the classical way in the present example for generic
q. We obtain

1B
−1 =

⎛

⎜⎜⎝

−λq2 0 0 −q2

0 0 q2 0
0 1 0 0

−q2 0 0 0

⎞

⎟⎟⎠ , 2B
−1 = q2

⎛

⎜⎜⎜⎜⎜⎜⎝

0 λq2 0 0 0 −q2

λ 0 0 0 −1 0
0 0 q2 0 0 0
0 0 0 1 0 0
0 −q2 0 0 0 0

−1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠

3B
−1 = q4

⎛

⎜⎜⎝

−λ 0 0 −1
0 0 q2 0
0 1 0 0

−1 0 0 0

⎞

⎟⎟⎠ , 4B
−1 = q6

in the basis enumerations 12,13,14,23,24,34 and 123,124,134,234 respectively for the mid-
dle cases here. In particular, we see that μ = q6. The matrix 1B

−1 here is the inverse of the
matrix gij in our basis and necessarily gives the coefficients of the metric g ∈ �1 ⊗ �1,
and we note also that μ = 1/ det(g) in this basis. We then carefully integrate against this
exp, for example

�(ebed) =
∫

ebedeaec ⊗ (λq2eaeb − q2ebed) +
∫

ebedeced ⊗ (−q2eaeb)

where we read from the 2nd row of 2B
−1 for the terms in exp of the form eaec ⊗ · · · and

from the last row for terms of the form eced ⊗ · · · . The other possibilities in our basis for
the first tensor factor of exp have zero integral. We then evaluate the first displayed integral
as −q2 and the second integral as λ on using the relations of the exterior algebra, to give
q4ebed + (1− q4)eaeb as stated. Integrating against g is easier and gives � on degree 3. We
could now deduce � on degree 1 using Proposition 3.8 that �2 = μ on degrees D �= 2 but
one can also compute it similarly by integrating against 3B−1 for a direct calculation and
then verify �2. The polynomial identify for � on degree 2 is a direct calculation.

We see that � on degree 2 is not of finite order for generic q but is a deformation of
order 2. Indeed, μ−1 = det(g) (see the proof above) suggests a geometric normalisation

to �′ = μ− 1
2 � = q−3� in our case, then �′ is involutive on degree D �= 2 and obeys the

standard q-Hecke relation
�′2 = id + (q − q−1)�′

on degree 2. This is the same relation as obeyed by the braiding in the defining represen-
tation of the quantum group, which is also the braiding on the generators of the associated
quantum plane. One can also compute �� directly and verify that it is given on degree 2 by
q6S�−1 as in Corollary 3.5 (and otherwise equals �). Here the braided antipode on degree 2
is obtained from S(eiej ) = − · �̃(ei ⊗ ej ) as

S(eaeb) = q2eaeb, S(eaec) = q−2eaec, S(eaed) = eaed − λebec

S(ebec) = ebec + λq2edea, S(ebed) = λq2eaeb − edeb, S(eced) = q2eced .

One may similarly compute S on degrees 3,4 to find S = (−1)Did on all degrees D �= 2
as must be the case by Proposition 3.8. Note that this feature of the antipode is not true for
the outer degrees of all braided exterior algebras, see Example 3.4. Finally, one can check
that [�, S] = 0 on all degrees as it must by Corollary 3.5, which in degree 2 provides a very
good cross-check of both the displayed S and � computations.
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The cohomology for this calculus in characteristic zero and for generic q is known to be
H 0 = k,H 1 = k, H 2 = 0, H 3 = k,H 4 = k, which is the same as in Example 3.10. One
can see that � is again an isomorphism Hm∼=H 4−m, the cohomologies being spanned by
1, θ = ea +ed in degrees 0,1 and their � in degrees 3,4, where �θ = −q4ebecez deforms the
classical 3-volume. Applications of this theory to q-electromagnetism will be considered
elsewhere. Here we consider only the general result in Section 3.2 for the Laplacian on
functions. We first recall from [30] that

d(ckbndm) =
(
qm+n−k − 1

)
ckbndmed + λqn(k)q ck−1bn dm+1 eb

+λq−k
(
qm−1(m + n)q ck+1bndm−1 + (n)q ckbn−1dm−1

)
ec

+λ2 q
(
(k + 1)q (m + n)q ckbndm + q−m(n)q (k)q ck−1bn−1dm

)
ea

+
(
q−m−n+k − 1

)
ckbndmea (4.9)

where (n)q = (qn − q−n)/(q − q−1). Terms with negative powers of c, b are treated as
zero. This is only part of the algebra but there is a similar formula for the other part of the
basis with a in place of d (in the classical limit this approach corresponds to patches where
d−1 and a−1 respectively are adjoined). Writing

df = (∂bf )eb + (∂cf )ec + (∂zf )ez + (∂0f )θ

as the definition of our partial derivatives in this basis, it is shown in [31] that

∂0 = q2λ2

(2)q
�q ,

where

�q(ckbndm) = q−m(k)q(n)qck−1bn−1dm +
(

k + n + m

2

)

q

(
k + n + m

2
+ 1

)

q

ckbndm

is the naturally arising q-deformed Laplace-Beltrami operator on SL2. There are general
arguments that ∂0 relates to the action of the quadratic q-Casimir of the quantum enveloping
algebra, but we will need the direct calculation as stated.

Proposition 4.11 For q2 �= ±1 and the quantum metric in Proposition 4.9 on the 4D
calculus on kq [SL2], the Hodge Laplacian on degree 0 is

�|0 = gij ∂
i∂j = 2q−1λ2�q

where gij = (ei, ej ) in our basis {eb, ec, ez, e0} and we sum over i, j .

Proof Writing ea = (θ + ez)/(1 + q−2) and ed = (θ − q2ez)/(1 + q2) we have

∂z = 1

1 + q−2
(∂a − ∂d), ∂0 = 1

1 + q−2
(∂a + q−2∂d),

in terms of the partial derivatives in our original basis read off from Eq. 4.9. The former
comes out on ckbndm as

∂z = λ

(2)q
(qm+n+2(k)q − q−k(m + n)q) + λ2

(2)q
q2−m(k)q(n)qS−

c S−
b
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where S−
c lowers the degree of c by 1, etc. A similar computation of ∂a + q−2∂d gives ∂0

as stated. We next compute on ckbndm that

∂b∂c + q−2∂c∂b =∂bλq−k+m−1(m + n)qS+
c S−

d + ∂bλq−k(n)qS−
b S−

d + q−2∂cλqn(k)qS−
c S+

d

= 2λ2qn−k−1(k)q(n)qS−
c S−

b + λ2qn−k−1+m
(
(k)q(m + n + 1)q + (m + n)q(k + 1)q

)

Next, we write for brevity

A = qm+n+2(k)q − q−k(m + n)q, B = λq2
(

k + n + m

2

)

q

(
k + n + m

2
+ 1

)

q

T = λS−
c S−

b q2−m(k)q(n)q

where k, n,m are now the degree operators for the powers of c, b, d respectively when
acting on a monomial. Then ∂z = λ

(2)q
(A + T ) and ∂0 = λ

(2)q
(B + T ) and

∂z2 − ∂02 = λ2

(2)2q

(
A2 − B2 + 2T (A − B)

)
= λ

(2)q
(A + B + 2T )

(
1 − qm+n−k

)

on noting that A − B = (2)q
λ

(1 − qm+n−k) commutes with T (since the latter changes both
k, n equally and does not change m). Putting in these results and the value of A + B we
obtain ∂b∂c + q−2∂c∂b + q−3(2)q((∂z)2 − (∂0)2) = 2q−1λ2�q . This can also be used to
expresses ∂0 or �q in terms of ∂b, ∂c, ∂z.

It remains to check that δei = 0 so that Corollary 3.9 applies and this is the Hodge
Laplacian. Indeed d(S�)−1ei = −q−6d�ei and d�ea = 0 since

θ�ea = −q4θeaebec = −q4edeaebec = q4eaebeced = q4eaebecθ = −(�ea)θ

using the relations of the exterior algebra. Meanwhile one finds more strongly that

θ�ei = (�ei)θ = 0; i = b, c, z

where �ez = q4ebecθ , again using the relations.

Note that we have been working algebraically but, over C, our constructions are
compatible with the ∗-involution corresponding to the compact real form SU2.
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