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Abstract We determine the Krull-Gabriel dimension of the cycle-finite categories of
finitely generated modules over artin algebras and derive some consequences.
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1 Introduction and the Main Results

Throughout the paper, by an algebra we mean an artin algebra over a commutative artin ring
K . For an algebra A, we denote by Mod A the category of right A-modules, by mod A the
category of finitely generated right A-modules, and by ind A the full subcategory of mod A

formed by the indecomposable modules. The radical radA of mod A is the ideal generated by
all nonisomorphisms between modules in ind A. Then the infinite radical rad∞

A of mod A is
the intersection of all powers radi

A, i ≥ 1, of rad A. By a result of Auslander [3], rad∞
A = 0

if and only if A is of finite representation type, that is, there are in ind A only finite many
modules up to isomorphism. On the other hand, if A is of infinite representation type then
(rad∞

A )2 �= 0, by a result proved in [13]. Moreover, we denote by ΓA the Auslander-Reiten
quiver [6] of A and by τA the Auslander-Reiten translation D Tr. We do not distinguish
between a module X in ind A and the corresponding vertex {X} in ΓA.
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A prominent role in the representation theory of algebras is played by cycles of
indecomposable modules. Recall that a cycle in ind A is a sequence

M0
f1−→ M1 → · · · → Mr−1

fr−→ Mr = M0

of nonzero nonisomorphisms in ind A [49], and such a cycle is said to be finite if the homo-
morphisms f1, . . . , fr do not belong to rad∞

A (see [1, 2]). Following Ringel [49], a module
M in ind A which does not lie on a cycle in ind A is said to be directing. It has been proved
independently in [39] and [56] that the Auslander-Reiten quiver ΓA of an algebra A admits
at most finitely many τA-orbits containing directing modules. Moreover, if all modules in
ind A are directing then A is of finite representation type [49]. Following [1, 2], by a cycle-
finite algebra we mean an algebra A for which all cycles in ind A are finite. The class of
cycle-finite algebras is wide and contains the following distinguished classes of algebras: the
algebras of finite representation type, the tame tilted algebras [24, 49], the tame double tilted
algebras [46], the tame generalized double tilted algebras [47], the tubular algebras [49,
50], the tame quasi-tilted algebras [63], the tame generalized multicoil algebras [36], and
the strongly simply connected algebras of polynomial growths [61]. Moreover, frequently
interesting algebras admit Galois coverings by cycle-finite locally bounded categories, and
applying covering techniques we may reduce their representation theory to that for the cor-
responding cycle-finite algebras (see [1, 16, 38, 54, 62, 64, 66]). The study of cycle-finite
algebras has attracted much attention. We refer to [9, 10, 32–34, 37, 58–60, 67, 68] for some
general results on cycle-finite algebras and their module categories.

Let A be an algebra. We denote by F(A) the category of all finitely presented contravari-
ant functors from mod A to the category Ab of abelian groups. The category F(A) was
intensively studied over the last 40 years, and is considered to be one of the important topics
of the modern representation theory of algebras. It is a hard problem to describe the cate-
gory F(A) even if the category mod A is well understood. A natural approach to study the
structure of F(A) is via the associated Krull-Gabriel filtration

0 = F(A)−1 ⊆ F(A)0 ⊆ F(A)1 ⊆ · · · ⊆ F(A)n−1 ⊆ F(A)n ⊆ · · ·
of F(A) by Serre subcategories, where, for each n ∈ N, F(A)n is the subcategory of all
functors F in F(A) which become of finite length in the quotient category F(A)/F(A)n−1
[18, 40]. Following Geigle [22], we define KG(A) = min{n ∈ N |F(A)n = F(A)} if such
a minimum exists, and set KG(A) = ∞ if it is not the case. Then KG(A) is called the Krull-
Gabriel dimension of A. We note that it is a finitely presented version of a definition due
to Gabriel [21, IV.1]. The interest in the Krull-Gabriel dimension KG(A) is motivated by
the fact that the above filtration of F(A) leads to a hierarchy of exact sequences in mod A,
where the almost split sequences form the lowest level (see [22]). Auslander proved that
KG(A) = 0 if and only if A is of finite representation type (see [4, Corollary 3.14]). It was
shown in [26, 11.4] that there exists no algebra A with KG(A) = 1. Further, KG(A) = ∞
for every wild hereditary algebra [7] and KG(A) = 2 for any tame hereditary algebra
[22, 4.3]. There exist also tame algebras with infinite Krull-Gabriel dimension [23, 4.1].
Finally, it was shown independently in [12] and [52] that for any natural number n ≥ 2 there
exists a special biserial algebra (over an algebraically closed field K) with Krull-Gabriel
dimension n. There is a strong relation between the Krull-Gabriel dimension KG(A) of
an algebra A and the transfinite powers radα

A of the radical radA of mod A (see [27, 51–
53]). In particular, Krause proved in [27, Corollary 8.14] that, if an algebra A has finite
Krull-Gabriel dimension KG(A) = n, then radω(n+1)

A = 0, where ω is the first limit number.



The Krull-Gabriel Dimension of Cycle-Finite Artin Algebras 217

The following general conjecture was posed in [53].

Conjecture 1.1 (Schröer) Let n ≥ 2 be a natural number and A an algebra. Then
KG(A) = n if and only if radω(n−1)

A �= 0 and radωn
A = 0.

In particular, for n = 2, we have the following special case of Schröer’s conjecture: for
an algebra A of infinite representation,

KG(A) = 2 if and only if
⋂

m≥1(rad∞
A )m = 0.

It has been confirmed for the following classes of algebras: the tilted algebras of
Euclidean type [22, 23], the algebras stably equivalent to tame hereditary algebras [23],
the algebras with directing indecomposable projective modules [65], the enveloping alge-
bras of restricted Lie algebras [19] (more generally, the infinitesimal group schemes [20])
in odd characteristic, the strongly simply connected algebras [61, 69], the 1-domestic string
algebras [44, 45, 51], and recently the tame generalized multicoil algebras [31].

The following main result of the paper provides a characterization of cycle-finite algebras
with finite Krull-Gabriel dimension, and confirms the special case of Schröer’s conjecture.

Theorem 1.2 Let A be a cycle-finite algebra of infinite representation type. The following
statements are equivalent:

(i) KG(A) < ∞.

(ii) KG(A) = 2.
(iii)

⋂
m≥1(rad∞

A )m = 0.
(iv) rad∞

A is nilpotent.
(v) All but finitely many components of ΓA are stable tubes of rank one.

(vi) A does not admit a tubular quotient algebra.

An important tool in study of the Krull-Gabriel dimension of an algebra A is the Ziegler
spectrum ZgA of A, introduced by Ziegler in his paper [71] on the model theory of mod-
ules. The Ziegler spectrum ZgA is a topological space whose points are the isomorphism
classes of indecomposable pure-injective modules in Mod A. Moreover, one associates to A

the Cantor-Bendixson rank CB(A) which measures the degree of isolation of points in the
Ziegler spectrum ZgA. As was noted by Prest [43], for an artin algebra A, the isolated points
of ZgA are exactly the modules from ind A. In particular, one obtains that CB(A) = 0 if and
only if A is of finite representation type. Further, it has been proved by Ziegler in [71] that
if KG(A) = n < ∞ then CB(A) = n. Moreover, if A is countable and CB(A) = n < ∞,
then KG(A) = n. We refer to [41, 42] for model theoretic, topological and geometric
aspects of the Ziegler spectrum of an algebra.

The following corollary is a direct consequence of Theorem 1.2 and the Ziegler’s result.

Corollary 1.3 Let A be a cycle-finite algebra of infinite representation type and without a
tubular quotient algebra. Then CB(A) = 2.

From the remarkable Tame and Wild Theorem of Drozd [17] (see also [14]) the class of
finite dimensional algebras over an algebraically closed field K may be divided into two
disjoint classes. The first class is formed by the tame algebras for which the indecompos-
able modules occur in each dimension in a finite number of discrete and a finite number of
one-parameter families. The second class is formed by the wild algebras whose representa-
tion theory comprises the representation theories of all finite dimensional algebras over K .
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Accordingly, we may realistically hope to classify the indecomposable finite dimensional
modules only for the tame algebras. More precisely, a finite dimensional K-algebra A over
an algebraically closed field K is called tame if for any dimension d, there exists a finite
number of K[x]-A-bimodules Mi , 1 ≤ i ≤ nd , which are free of finite rank as left modules
over the polynomial algebra K[x] in one variable and all but finitely many isomorphism
classes of modules in ind A of dimension d are of the form K[x]/(x − λ) ⊗K[x] Mi for
some λ ∈ K and some i. Moreover, let μA(d) be the least number of K[x]-A-bimodules
satisfying the above condition for d. Then A is said to be domestic if there exists a positive
integer m such that μA(d) ≤ m for any d ≥ 1 (see [15], [48], [55]). We also note that A is
of finite representation type if and only if A is domestic with μA(d) = 0 for any d ≥ 1 (by
the validity of the second Brauer-Thrall Conjecture [8, 11]).

We have the following conjecture (see [53, p.420]):

Conjecture 1.4 (Prest) A finite dimensional algebra A over an algebraically closed field
K is domestic if and only if KG(A) < ∞.

The following direct consequence of Theorem 1.2 and [60, Theorem 5.1] confirms this
conjecture for the cycle-finite algebras.

Corollary 1.5 Let A be a finite dimensional cycle-finite algebra over an algebraically
closed field K . Then A is domestic if and only if KG(A) < ∞.

In the course of our proof of Theorem 1.2 we establish also the following result on the
structure of module categories of cycle-finite algebras of finite Krull-Gabriel dimension.

Theorem 1.6 Let A be a cycle-finite algebra of infinite representation type and without a
tubular quotient algebra. Then there exist tame concealed quotient algebras C1, . . . , Cm

of A and domestic generalized multicoil enlargements B1, . . . , Bm of C1, . . . , Cm, respec-
tively, such that the following statements hold:

(i) B1, . . . , Bm are quotient algebras of A.
(ii) mod B1, . . . , mod Bm are functorially finite subcategories of mod A.

(iii) All but finitely many modules in ind A belong to
⋃m

i=1 ind Bi .

Recall that a full subcategory X of mod A is called contravariantly finite (respectively,
covariantly finite) if, for each module M in mod A, the family of all homomorphisms f :
X → M (respectively, g : M → X) in mod A with X in X is finitely generated [4, 5]. Then
X is called functorially finite if it is both contravariantly and covariantly finite.

The paper is organized as follows. In Section 2 we present some concepts and results
on module categories of algebras, essential for further considerations. Section 3 contains
known results on the module categories of cycle-finite algebras, which are applied in the
proofs of our main theorems. Sections 4 and 5 are devoted to the proofs of Theorems 1.6
and 1.2, respectively.

2 Preliminaries

We recall some notation, concepts and results on algebras and module categories needed in
our further considerations.
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Throughout the article we will assume (without loss of generality) that algebras are basic.
Recall that an algebra A is basic if A/ rad A is a product of division algebras.

Let A be an algebra and e1, . . . , en be a set of pairwise orthogonal primitive idempotents
of A such that e1 + · · · + en is the identity of A. Then Si = eiA/ei rad A, i ∈ {1, . . . , n},
form a complete set of pairwise nonisomorphic simple modules in mod A. For each i ∈
{1, . . . , n}, let Fi = EndA(Si) be the associated division algebra. The quiver QA of A is the
valued quiver defined as follows:

• the vertices of QA are the indices 1, . . . , n of the chosen set e1, . . . , en of primitive
idempotents of A;

• for two vertices i and j in QA, there is an arrow i → j from i to j in QA if and only
if ei(rad A)ej /ei(rad A)2ej �= 0. Moreover, one associates to an arrow i → j in QA

the valuation (dij , d
′
ij ), so we have in QA the valued arrow

i
(dij ,d ′

ij )−−−−→ j,

where the valuation numbers are dij = dimFj

(
ei(rad A)ej /ei(rad A)2ej

)
and d ′

ij =
dimFi

(
ei(rad A)ej /ei(rad A)2ej

)
.

We denote by K0(A) the Grothendieck group of A. Given a module M in mod A, we denote
by [M] its image in K0(A). We note that [S1], . . . , [Sn] form a Z-basis of K0(A). Hence,
for two modules M and N in mod A, [M] = [N ] if and only if M and N have the same
composition factors including the multiplicities. Moreover, for a module X in mod A, |X|
denotes the length of X over the commutative artin ring K .

The following fact from [59, Proposition 4.1] will be essential for our proof of
Theorem 1.2.

Proposition 2.1 Let A be an algebra, M,N,X be modules in ind A, and assume that
[M] = [N ]. Then the following equalities hold:
(i) | HomA(X,M)| − | HomA(M, τAX)| = | HomA(X,N)| − | HomA(N, τAX)|.

(ii) | HomA(M,X)| − | HomA(τ−1
A X,M)| = | HomA(N,X)| − | HomA(τ−1

A X, N)|.

Let A be an algebra. By a component of ΓA we mean a connected component of the
quiver ΓA. A component C of ΓA is called regular if C contains neither a projective mod-
ule nor an injective module. It has been proved independently by Liu [29] and Zhang [70]
that a regular component C of ΓA contains an oriented cycle if and only if C is a sta-
ble tube, that is, a component of the form ZA∞/(τ r ), for some r ≥ 1, called the rank
of C. The τA-orbit of a stable tube C of ΓA formed by the modules having exactly one
direct predecessor is called the mouth of C. For a module X lying in a stable tube C of
ΓA, there is exactly one sectional path X1 → X2 → · · · → Xs = X with X1 lying
on the mouth of C, and s is called the quasi-length of X in C which we shall denote
by ql(X). Moreover, Liu proved in [30] that a component C without injective modules
(respectively, projective modules) contains an oriented cycle if and only if C is a ray tube
(respectively, a coray tube), which is obtained from a stable tube by a finite number (pos-
sibly zero) ray insertions (respectively, coray insertions). A component C of ΓA is called
almost cyclic if all but finitely many modules in C are cyclic (lie on oriented cycles).
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Further, a component C of ΓA is called coherent [35] if the following two conditions are
satisfied:

(C1) For each projective module P in C there is an infinite sectional path

P = X1 → X2 → · · · → Xi → Xi+1 → Xi+2 → . . .

(C2) For each injective module I in C there is an infinite sectional path

· · · → Yj+2 → Yj+1 → Yj → · · · → Y2 → Y1 = I.

We note that all ray tubes and coray tubes are almost cyclic and coherent. It has been
proved in [35] that a component C of ΓA is almost cyclic and coherent if and only if C is
a generalized multicoil, which is obtained from a finite family of stable tubes by a finite
sequence of admissible operations (ad1)–(ad5) and their duals (ad1*)–(ad5*). Following
[57], a subqiver D of ΓA is said to be generalized standard if rad∞

A (X, Y ) = 0 for all inde-
composable modules X and Y in D. Finally, an indecomposable module M in ΓA is said to
be left stable (respectively, right stable) if τn

AM is nonzero for any n > 0 (respectively, for
any n < 0).

Let A be an algebra and C = (Ci )i∈I a family of components of ΓA. Then C is
called sincere if every simple module in mod A is a composition factor of a module in
C. Then C is said to be a separating family in mod A if the components in ΓA split into
three disjoint families, PA, CA = C and QA, such that the following conditions are
satisfied:

(S1) CA is a sincere family of pairwise orthogonal generalized standard components;

(S2) HomA(QA,PA) = 0, HomA(QA, CA) = 0, HomA(CA,PA) = 0;

(S3) every homomorphism from PA to QA in mod A factors through the additive category
add(CA) of CA.

Moreover, if (S1), (S2) and the condition

(S3*) every homomorphism from PA to QA in mod A factors through add(Ci ) for any
i ∈ I

are satisfied, then C is said to be a strongly separating family in mod A (see [35, 49]). We
then say that CA separates (respectively, strongly separates) PA from QA.

Let A be an algebra. Following [35], we denote by cΓA the cyclic quiver of A obtained
from ΓA by removing all acyclic vertices (vertices not lying on oriented cycles in ΓA)
and the arrows attached to them. Then the connected components of the translation quiver
cΓA are said to be cyclic components of ΓA. We have the following fact proved in
[35, Proposition 5.1].

Proposition 2.2 LetA be an algebra andM,N be modules in ind A. ThenM andN belong
to a cyclic component Γ of ΓA if and only if there is an oriented cycle in ΓA containing M

and N .

Let A be an algebra and Γ be a subquiver of ΓA. We denote by annA(Γ ) the inter-
section of the annihilators annA(X) = {a ∈ A | Xa = 0} of all indecomposable
modules X in Γ . Then annA(Γ ) is a two-sided ideal of A, and the quotient algebra
B(Γ ) = A/ annA(Γ ) is said to be the faithful algebra of Γ . Observe that Γ is a subquiver
of ΓB(Γ ).
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3 Cycle-Finite Algebras

In this section we recall known results on the structure of module categories of cycle-finite
algebras, playing a prominent role in the proofs of Theorems 1.2 and 1.6.

By a tame concealed algebra we mean a tilted algebra C = EndH (T ), where H is a
hereditary algebra of Euclidean type Ã11, Ã12, Ãn, B̃n, C̃n, B̃Cn, B̃Dn, C̃Dn, D̃n, Ẽ6, Ẽ7,
Ẽ8, F̃41, F̃42, G̃21, or G̃22, and T is a (multiplicity-free) tilting H -module from the additive
category of the postprojective component of ΓH . The Auslander-Reiten quiver ΓC of a tame
concealed algebra C is of the form

ΓC = PC ∪ T C ∪ QC,

where

• PC is a postprojective component of Euclidean type containing all indecomposable
projective C-modules;

• QC is a preinjective component of Euclidean type containing all indecomposable
injective C-modules;

• T C is an infinite family of stable tubes, and all but finitely many tubes in T C have rank
one;

• T C strongly separates PC from QC .

More generally, by a tilted algebra of Euclidean type we mean a tilted algebra B =
EndH (T ), where H is a hereditary algebra of Euclidean type and T is a (multiplicity-
free) tilting module in mod H . Assume that B is a representation-infinite tilted algebra of
Euclidean type. Then one of the following holds:

(1) B is a domestic tubular extension of a tame concealed algebra C and

ΓB = PB ∪ T B ∪ QB,

where

• PB = PC is the postprojective component of ΓC ;
• QB is a preinjective component of Euclidean type containing all indecompos-

able injective B-modules and all indecomposable modules from the preinjective
component QC of ΓC ;

• T B is an infinite family of ray tubes, obtained from the family T C of stable tubes
of ΓC by ray insertions;

• T B strongly separates PB from QB ;

(2) B is a domestic tubular coextension of a tame concealed algebra C and

ΓB = PB ∪ T B ∪ QB,

where

• PB is a postprojective component of Euclidean type containing all indecompos-
able projective B-modules and all indecomposable modules from the postprojec-
tive component PC of ΓC ;

• QB = QC is the preinjective component of ΓC ;
• T B is an infinite family of coray tubes, obtained from the family T C of stable

tubes of ΓC by coray insertions;
• T B strongly separates PB from QB .
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By a tubular algebra we mean a tubular extension (equivalently, tubular coextension) of
a tame concealed algebra, with the Euler quadratic form positive semidefinite of corank 2
(see [28], [49], [50]). By general theory, a tubular algebra B admits two different tame con-
cealed quotient algebras C0 and C∞ such that B is a tubular extension of C0 and a tubular
coextension of C∞, and the Auslander-Reiten quiver ΓB has a disjoint union decomposition

ΓB = PB
0 ∪ T B

0 ∪
( ⋃

q∈Q+
T B

q

)

∪ T B∞ ∪ QB∞,

where Q
+ is the set of positive rational numbers, and

• PB
0 = PC0 is the postprojective component of ΓC0 ;

• T B
0 is an infinite family of ray tubes with at least one projective B-module, obtained

from the family T C0 of stable tubes of ΓC0 by ray insertions;
• QB∞ = QC∞ is the preinjective component of ΓC∞ ;
• T B∞ is an infinite family of coray tubes with at least one injective B-module, obtained

from the family T C∞ of stable tubes of ΓC∞ by coray insertions;
• for each q ∈ Q

+, T B
q is an infinite family of stable tubes, containing at least one stable

tube of rank bigger than one;
• for each q ∈ Q

+ ∪ {0, ∞}, the family T B
q strongly separates PB

0 ∪ (
⋃

p<q T B
p ) from

(
⋃

p>q T B
p ) ∪ QB∞;

• ⋃
q∈Q+ T B

q is the family of all sincere stable tubes of ΓB and contains all sincere inde-

composable C0-modules from the preinjective component QC0 of ΓC0 and all sincere
indecomposable C∞-modules from the postprojective component PC∞ of ΓC∞ .

The following characterization of tame concealed algebras has been established in
[60, Theorem 4.1].

Theorem 3.1 Let A be an algebra. The following statements are equivalent:

(i) A is cycle-finite and ΓA admits a sincere stable tube;
(ii) A is a tame concealed algebra or a tubular algebra.

We have also the following consequence of [58, Theorem 4.1].

Theorem 3.2 Let A be a cycle-finite algebra. The following statements are equivalent:

(i) A is a tame concealed algebra;
(ii) for every nonzero idempotent e of A, the algebra A/AeA is of finite representation

type.

In particular, we obtain the following useful fact (see [58, Corolary 4.3]).

Corollary 3.3 Let A be a cycle-finite algebra. The following statements are equivalent:

(i) A is of infinite representation type;
(ii) there is an idempotent e of A such that A/AeA is a tame concealed algebra.

We also mention that Theorem 3.1 describes the structure of all regular compo-
nents of the Auslander-Reiten quivers of cycle-finite algebras (see [9, Proposition 2.4] or
[59, Proposition 3.3] for a proof).
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Proposition 3.4 Let A be a cycle-finite algebra and C be a regular component of ΓA. Then
the following statements hold:

(i) C is a stable tube;

(ii) B(C) is a tame concealed algebra or a tubular algebra.

Let C1, . . . , Cm be a family of tame concealed algebras. Following [36], by a general-
ized multicoil enlargement of C1, . . . , Cm we mean an algebra A obtained by a sequence
of algebra admissible operations of types (ad1)–(ad5) and their duals (ad1*)–(ad5*) using
modules from the separating families T C1 , . . . ,T Cm of stable tubes ΓC1 , . . . , ΓCm . Then
there are a unique quotient algebra A(l) of A being a product of algebras having separating
families of coray tubes (the left quasitilted algebra of A) and a unique quotient algebra A(r)

of A being a product of algebras having separating families of ray tubes (the right quasitilted
algebra of A) such that ΓA has a disjoint union decomposition (see [36, Theorems C and E])

ΓA = PA ∪ CA ∪ QA,

where

• PA is the left part PA(l)
in a decomposition ΓA(l) = PA(l) ∪T A(l) ∪QA(l)

of ΓA(l) , with

T A(l)
a family of coray tubes strongly separating PA(l)

from QA(l)
;

• QA is the right part QA(r)
in a decomposition ΓA(r) = PA(r) ∪ T A(r) ∪ QA(r)

of ΓA(r) ,

with T A(r)
a family of ray tubes strongly separating PA(r)

from QA(r)
;

• CA is a family of generalized multicoils separating PA from QA, obtained from the
families T C1 , . . . ,T Cm of stable tubes of ΓC1 , . . . , ΓCm by a sequence of translation
quiver admissible operations of types (ad1)–(ad5) and their duals (ad1*)–(ad5*), cor-
responding to the algebra admissible operations of types (ad1)–(ad5) and their duals
(ad1*)–(ad5*) leading from C1, . . . , Cm to A;

• CA contains all indecomposable modules of the cyclic parts of T A(l)
and T A(r)

;

• PA contains all indecomposable modules of PA(r)
;

• QA contains all indecomposable modules of QA(l)
.

We also mention that gl. dim A ≤ 3 and every module X in ind A satisfies pdA X ≤ 2 or
idA X ≤ 2 (see [36, Theorem E]).

By a tame generalized multicoil algebra we mean a generalized multicoil enlargement
A of a finite family of tame concealed algebras such that A(l) and A(r) are products of
tilted algebras of Euclidean type or tubular algebras. Moreover, a tame generalized multicoil
algebra is said to be domestic if A(l) and A(r) are products of tilted algebras of Euclidean
type.

The following theorem provides a characterization of tame generalized multicoil algebras
(see [36, Theorems A and F]).

Theorem 3.5 Let A be an algebra. The following statements are equivalent:

(i) A is a tame generalized multicoil algebra;

(ii) A is cycle-finite and ΓA admits a separating family of almost cyclic coherent
components.

The following special case of [34, Theorem 1.2] will be crucial for our investigations.
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Theorem 3.6 Let A be a cycle-finite algebra and Γ be an infinite cyclic component of ΓA.
Then there exist infinite full translation subquivers Γ1, . . . , Γr of Γ such that the following
statements hold.

(i) For each i ∈ {1, . . . , r}, Γi is a cyclic coherent subquiver of ΓA.

(ii) For each i ∈ {1, . . . , r}, B(Γi) is a tame generalized multicoil algebra.

(iii) Γ1, . . . , Γr are pairwise disjoint full translation subquivers of Γ and
Γ cc = Γ1 ∪ · · · ∪ Γr is a maximal cyclic coherent and cofinite full translation
subquiver of Γ .

(iv) B(Γ \ Γ cc) is of finite representation type.

We recall also the following known facts, and their simple proofs.

Lemma 3.7 Let A be an algebra, B a quotient algebra, T a stable tube of ΓB , and C a
stable tube of ΓA containing all indecomposable modules of T . Then C = T .

Proof Observe that there is a coray in C containing infinitely many modules from T . Then
for any indecomposable module X in C there are a sequence of irreducible monomorphisms

X = X0
f1−→ X1 → · · · → Xr−1

fr−→ Xr = Y

and a sequence of irreducible epimorphisms

Z = Ys
gs−→ Ys−1 → · · · → Y1

g1−→ Y0 = Y

in mod A between indecomposable modules in C and with Z from T . Then X is isomorphic
to a submodule of Y and Y is isomorphic to a quotient module of Z. Therefore, X is a
B-module, because Z is a B-module.

Lemma 3.8 Let A be a cycle-finite algebra, B a quotient algebra of A, and T a stable
tube of ΓB . Then there exists a cyclic component Γ of ΓA containing all indecomposable
modules of T .

Proof Since T is a stable tube, for any modules X and Y in T there exists a cycle of
irreducible homomorphisms

X
f1−→ X1 → · · · → Xr−1

fr−→ Y
gs−→ Ys−1 → · · · → Y1

g1−→ X

in mod B between indecomposable modules in T . Since A is cycle-finite, the homomor-
phisms f1, . . . , fr , g1, . . . , gs do not belong to rad∞

A , and consequently there exists an
oriented cycle of irreducible homomorphisms between modules in ind A containing X and
Y . Hence there is an oriented cycle in ΓA containing X and Y . This shows that all indecom-
posable modules of the stable tube T of ΓB belong to a common cyclic component Γ of
ΓA, by Proposition 2.2.

The following propositions are consequences of Theorems 3.1, 3.6 , Proposition 3.4, and
Lemmas 3.7, 3.8.

Proposition 3.9 Let A be a cycle-finite algebra, C a tame concealed quotient algebra of
A, and T C the family of all stable tubes of ΓC . Then all but finitely many tubes of T C are
stable tubes of ΓA.
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Proposition 3.10 Let A be a cycle-finite algebra, B a tubular quotient algebra of A, and

ΓB = PB
0 ∪ T B

0 ∪
( ⋃

q∈Q+
T B

q

)

∪ T B∞ ∪ QB∞

the canonical decomposition of ΓB . Then all tubes in
⋃

q∈Q+ T B
q are stable tubes of ΓA. In

particular, ΓA contains infinitely many stable tubes of rank bigger than one.

We end this section with some results towards the proof of Theorem 1.2.
The following fact has been proved in [25, 1.5] (see also [61, Proposition 3.5]).

Proposition 3.11 Let B a tubular algebra. Then
⋂

m≥1(rad∞
B )m �= 0. In particular, rad∞

B

is not nilpotent.

We have also the following consequence of [36, Theorems A and C].

Proposition 3.12 Let B a domestic generalized multicoil algebra. Then (rad∞
B )3 = 0.

The next proposition is due to Geigle [23, Proposition 4.1].

Proposition 3.13 Let B a tubular algebra. Then KG(B) = ∞.

We will need also the following result by Malicki [31, Theorem 1.1], extending a result
proved in [69, Proposition 2.2].

Proposition 3.14 Let B a domestic generalized multicoil algebra. Then KG(B) = 2.

Finally, we present the following consequence of recent results proved in [9, Propositions
2.10 and 2.11].

Theorem 3.15 Let A be a cycle-finite algebra of infinite representation type and without a
tubular quotient algebra. Moreover, let C be a tame concealed quotient algebra of A. Then
the following statements hold.

(i) All but finitely many indecomposable modules from the postprojective component PC

of ΓC are directing modules.
(ii) All but finitely many indecomposable modules from the preinjective componentQC of

ΓC are directing modules in ind A.

4 Proof of Theorem 1.6

Throughout this section we assume that A is a cycle-finite algebra of infinite representation
type and without a tubular quotient algebra. Moreover, let e1, . . . , en be a fixed set of pair-
wise orthogonal primitive idempotents in A such that e1 + · · · + en is the identity 1A of A.
It follows from Corollary 3.3 that there is an idempotent fC in A such that C = A/AfCA

is a tame concealed algebra. Further, it follows from Proposition 3.9 that there is a stable
tube T in ΓC which remains a stable tube in ΓA. Moreover, C is the faithful algebra B(T )

of T , considered as a component of ΓA. We note that T is a cyclic component of ΓA. Then,
applying [34, Theorem 1.2 and Propositions 2.3, 2.4], we conclude that there is a convex full
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subquiver ΔC of the quiver QA of A such that fC = 1A − eC with eC = ei1 + · · · + eir , for
i1, . . . , ir being the vertices of ΔC . Moreover, C is isomorphic to the algebra eCAeC (see
[34, Corollary 1.3]). Since the quiver QA of A has only finitely many convex subquivers,
we conclude that A admits only a finite number of tame concealed quotient algebras.

Let C1, . . . , Cm be the family of all tame concealed quotient algebras of A. Fix i ∈
{1, . . . , m}. Let e(i) = eCi

and f (i) = fCi
be idempotents of A such that 1A = e(i) + f (i)

and Ci = A/Af (i)A. We identify mod Ci with the full subcategory of mod A formed by
all modules M in mod A such that Mf (i) = 0, or equivalently, M = Me(i). Moreover, let
resi : mod A → mod Ci be the restriction functor which assigns to a module X in mod A

the module resi (X) = Xe(i) in mod Ci and to a homomorphism f : X → Y in mod A the
restriction resi (f ) : resi (X) → resi (Y ) of f to Xe(i). Consider the decomposition

ΓCi
= PCi ∪ T Ci ∪ QCi

of the Auslander-Reiten quiver ΓCi
of Ci , where PCi is the unique postprojective compo-

nent of Euclidean type, QCi is the unique preinjective component of Euclidean type, and
T Ci = (T Ci

λ )λ∈Λi
is an infinite family of stable tubes, strongly separating PCi from QCi .

We denote by r
(i)
λ the rank of the stable tube T Ci

λ , for any λ ∈ Λi . By general theory,

we have r
(i)
λ = 1 for all but finitely many λ ∈ Λi . Moreover, by Proposition 3.9, all but

finitely many stable tubes in T Ci are components of ΓA. Assume now that T Ci

λ , for some
λ ∈ Λi , is not a component of ΓA. Then, applying Lemma 3.8, we conclude that there
exists a cyclic component Γ

(i)
λ of ΓA containing all indecomposable modules of T Ci

λ , and

Γ
(i)
λ is a full translation subquiver of a nonregular component C(i)

λ of ΓA, by Proposition 3.4

and Lemma 3.7. Hence, there is a cofinite subset Λ′
i of Λi such that the stable tubes T Ci

λ ,
λ ∈ Λ′

i , are all regular components of ΓA containing an indecomposable module from T Ci .
We set Λ′′

i = Λi \ Λ′
i . We note that we may have Λi = Λ′

i , and then Λ′′
i is empty. Assume

Λ′′
i is nonempty, and take λ ∈ Λ′′

i . Then, according to Theorem 3.6, there is a unique max-

imal cyclic coherent translation subquiver Ω
(i)
λ of the cyclic component Γ

(i)
λ containing

all indecomposable modules of the stable tube T Ci

λ of ΓCi
. Further, by general theory (see

[35, Section 2] and [34, Proposition 3.4]), the translation quiver Ω
(i)
λ admits a left border

Δ
(i)
λ and a right border Σ

(i)
λ having the following properties:

• Δ
(i)
λ and Σ

(i)
λ are finite, disjoint, and unions of sectional paths of ΓA;

• Ω
(i)
λ is a maximal coherent cyclic subquiver of ΓA consisting of modules which are

both successors of modules lying on Δ
(i)
λ and predecessors of modules lying on Σ

(i)
λ ;

• every path in ΓA from a module in C(i)
λ \ Ω

(i)
λ to a module in Ω

(i)
λ contains a module

from Δ
(i)
λ ;

• every path in ΓA from a module in Ω
(i)
λ to a module in C(i)

λ \ Ω
(i)
λ contains a module

from Σ
(i)
λ .

We also mention that Ω
(i)
λ consists of all indecomposable modules Z in Γ

(i)
λ such that

resi (Z) contains an indecomposable direct summand from T Ci

λ , and equivalently, with

resi (Z) being an indecomposable module in T Ci

λ . We define

Δ(i) =
⋃

λ∈Λ′′
i

Δ
(i)
λ and Σ(i) =

⋃

λ∈Λ′′
i

Σ
(i)
λ .
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In particular, we obtain that, if λ and μ are different elements in Λ′′
i , then the quivers Ω

(i)
λ

and Ω
(i)
μ are disjoint. We would like to stress that we may have Γ

(i)
λ = Γ

(i)
μ for λ �= μ in

Λ′′
i . We set also Ω

(i)
λ = T Ci

λ for any λ ∈ Λ′
i , and define

Ω(i) =
⋃

λ∈Λi

Ω
(i)
λ .

We observe that, for any different elements i and j in {1, . . . , m}, the translation quivers
Ω(i) and Ω(j) are disjoint. Moreover, it follows from Theorem 3.6 that all but finitely many
indecomposable modules of the cyclic quiver cΓA belong to the translation quiver

Ω =
m⋃

i=1

Ω(i).

In particular, all finite cyclic components of ΓA are contained in cΓA \ Ω (see [34, Theo-
rem 1.2] for the structure of such components).

Since A does not admit a tubular quotient algebra, applying Proposition 3.4, we conclude
that the stable tubes Ω

(i)
λ = T Ci

λ , for i ∈ {1, . . . , m} and λ ∈ Λ′
i , form the family of all

regular components of ΓA.
We shall discuss now the structure of left stable acyclic subquivers and right stable

acyclic subquivers of ΓA. Fix i ∈ {1, . . . , m}. We know from Theorem 3.15 that all but
finitely many indecomposable modules from the postprojective component PCi and the
preinjective component QCi of ΓCi

are directing modules in ind A. Then it follows from the
proofs of [9, Propositions 3.2 and 3.4] that there exist indecomposable modules Mi in PCi

and Ni in QCi such that the following statements hold:

• the full translation subquiver Di = (Mi →) of ΓA formed by all successors of Mi in
ΓA is right stable, acyclic, and contains all but finitely many indecomposable modules
of PCi ;

• the full translation subquiver Ei = (→ Ni) of ΓA formed by all predecessors of Ni in
ΓA is left stable, acyclic, and contains all but finitely many indecomposable modules
of QCi .

We note that Di and Ei consist entirely of directing modules, because every cycle in ind A

is finite. In particular, Di and Ei have only finitely many τA-orbits. In fact, there exists a
hereditary algebra Hi of Euclidean type and a tilting module Ti in mod Hi without indecom-
posable direct summands from the postprojective component PHi of ΓHi

such that the tilted
algebra Bi = EndHi

(Ti) is a quotient algebra of A andDi is the image ofPHi via the functor
Fi = Ext1Hi

(Ti, −) : mod Hi → mod Bi (see the dual of [33, Theorem 2.2]). In particular,

the images of the indecomposable projective modules in PHi via Fi form a Euclidean sec-
tion Φi in Di having the module Mi as a unique source. Similarly, there exists a hereditary
algebra H ∗

i of Euclidean type and a tilting module T ∗
i in mod H ∗

i without indecomposable
direct summands from the preinjective component QH ∗

i of ΓH ∗
i

such that the tilted algebra

B∗
i = EndH ∗

i
(T ∗

i ) is a quotient algebra of A and Ei is the image of QH ∗
i via the functor

F ∗
i = HomA(T ∗

i ,−) : mod H ∗
i → mod B∗

i (see [33, Theorem 2.2]). Moreover, the images
of the indecomposable injective modules in QH ∗

i via F ∗
i form a Euclidean section Ψi in Ei

having the module Ni as a unique sink. By general theory, Bi is a tubular coextension of Ci

and B∗
i is a tubular extension of Ci , and hence there are at most finitely many isomorphism

classes of modules Z in ind Bi (respectively, in ind B∗
i ) with resi (Z) = 0. Therefore, we

may assume that resi (Z) �= 0 for all modules X in Di and resi (Y ) �= 0 for all modules Y in
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Ei . It follows from [33, Theorem 2] and its dual that all but finitely many acyclic modules
of ΓA (equivalently, directing modules in ind A) belong to the union of translation quivers

D1 ∪ · · · ∪ Dm ∪ E1 ∪ · · · ∪ Em.

Fix i ∈ {1, . . . , m}. Let X be a module in ind A which does not belong to Ω(i). We claim
that resi (X) belongs to the additive category add(PCi ∪ QCi ). Assume to the contrary that
resi (X) is nonzero and admits an indecomposable direct summand U from T Ci

λ , for some
λ ∈ Λi . Observe that then HomA(U, X) = HomCi

(U, resi (X)) �= 0. Since Ci is a quo-
tient algebra of A, we may consider the largest right Ci-submodule Y of X. Clearly, then
HomA(U, X) = HomCi

(U, Y ), and hence Y is nonzero. Let Y = V ⊕W be a decomposition
of Y in mod Ci such that W is a maximal direct summand of Y with all indecompos-
able direct summands from the family T Ci . Recall that ΓCi

= PCi ∪ T Ci ∪ QCi , where
T Ci = (T Ci

 )∈Λi
strongly separates PCi from QCi . Since Λ′

i is infinite, we may choose
an element μ ∈ Λ′

i \ {λ} such that HomCi
(R,W) = 0 for any indecomposable module R in

T Ci
μ . By general theory, the stable tubes T Ci

λ and T Ci
μ have common composition factors,

that is, there exist indecomposable modules M in T Ci

λ and N in T Ci
μ with [M] = [N ]. We

note that then r
(i)
λ divides ql(M) and r

(i)
μ divides ql(N) (see [59, Corollary 4.6]). Moreover,

we may choose M and N with [M] = [N ] such that HomCi
(M,U) �= 0, and consequently

HomA(M,X) �= 0 (see [59, Theorem 4.3 and Corollary 4.6]). Let L be an indecompos-
able module in QCi . Then τ−1

Ci
L is either 0 or an indecomposable module in QCi , and

hence HomCi
(τ−1

Ci
L,M) = 0 and HomCi

(τ−1
Ci

L,N) = 0. Then it follows from Proposi-
tion 2.1 that | HomCi

(M,L)| = | HomCi
(N,L)|. Clearly, we have HomCi

(M, T ) = 0 and
HomCi

(N, T ) = 0 for any indecomposable module T in PCi . Therefore, we obtain that
| HomCi

(M, V )| = | HomCi
(N, V )|. Observe that then HomA(τ−1

A X,M) = 0. Indeed, if
HomA(τ−1

A X,M) �= 0, then we have in ind A a cycle of the form

M → X → E → τ−1
A X → M,

and hence a contradiction, because M belongs to Ω
(i)
λ , X does not belong to Ω

(i)
λ , and A is

cycle-finite. Applying Proposition 2.1 again, we obtain the equality

| HomA(M,X)| = | HomA(N,X)| − | HomA(τ−1
A X,N)|,

and hence HomA(N,X) �= 0. We note that X does not belong to T Ci
μ = Ω

(i)
μ , because

HomA(M,X) �= 0 and the stable tubes T Ci

λ and T Ci
μ are orthogonal. Then we infer as

above that HomA(τ−1
A X,N) = 0. Therefore, we have | HomA(M,X)| = | HomA(N,X)|.

We have also the equalities

| HomA(M,X)| = | HomCi
(M, Y )| = | HomCi

(M, V )| + | HomCi
(M,W)|,

| HomA(N,X)| = | HomCi
(N, Y )| = | HomCi

(N, V )| + | HomCi
(N,W)|,

and hence | HomCi
(M,W)| = | HomCi

(N,W)| = 0, by the choice of μ. This is a con-
tradiction because U is a direct summand of W and HomA(M,U) �= 0. Therefore, indeed
resi (X) is a module in add(PCi ∪ QCi ).

Consider now the faithful algebra B(Ω) of the cyclic quiver Ω . Then it follows from The-
orem 3.6, the theory of generalized multicoil algebras [36], and the assumption imposed on
A, that B(Ω) is a tame generalized multicoil enlargement (not necessarily indecomposable)
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of the family C1, . . . , Cm of all tame concealed quotient algebras of A such that the
following statements hold:

• the left quasitilted algebra B(Ω)(l) of B(Ω) is a product B
(l)
1 × · · · × B

(l)
m of tilted

algebras B
(l)
1 , . . . , B

(l)
m of Euclidean type such that, for any i ∈ {1, . . . , m}, the transla-

tion quiver Di = Fi(PHi ) is a cofinite full translation subquiver of the postprojective

component PB
(l)
i of Γ

B
(l)
i

, which is closed under successors in ΓA;

• the right quasitilted algebra B(Ω)(r) of B(Ω) is a product B
(r)
1 × · · · × B

(r)
m of tilted

algebras B
(r)
1 , . . . , B

(r)
m of Euclidean type such that, for any i ∈ {1, . . . , m}, the trans-

lation quiver Ei = F ∗
i (QH ∗

i ) is a cofinite full translation subquiver of the preinjective

component QB
(r)
i of Γ

B
(r)
i

, which is closed under predecessors in ΓA;

• Ω is the cyclic part of the family CB(Ω) of generalized multicoils of ΓB(Ω), separating

PB(Ω) = PB(Ω)(l) = PB
(l)
1 ∪· · ·∪PB

(l)
m from QB(Ω) = QB(Ω)(r) = QB

(r)
1 ∪· · ·∪QB

(r)
m .

Moreover, it follows from the structure of generalized multicoils [35, 36] that, for any i ∈
{1, . . . , m}, there is a quotient algebra Bi of B(Ω) such that the following statements hold:

• Bi is a generalized multicoil enlargement of the tame concealed algebra Ci ;
• B

(l)
i is the left quasitilted algebra of Bi ;

• B
(r)
i is the right quasitilted algebra of Bi ;

• Ω(i) = ⋃
λ∈Λi

Ω
(i)
λ is the family of all maximal cyclic coherent translation subquivers

of the Auslander-Reiten quiver ΓBi
of Bi .

In particular, we obtain that the translation quiver

Bi = Di ∪ Ω(i) ∪ Ei

is a cofinite full translation subquiver of ΓBi
.

For each i ∈ {1, . . . , m}, we denote by Xi the full additive subcategory of mod A gen-
erated by all indecomposable modules in Bi . Moreover, denote by X0 the full additive
subcategory of mod A generated by the family B0 of all indecomposable modules in mod A

which are not in B1, . . . ,Bm. Observe that B0 contains only finitely many indecomposable
modules. In particular, we obtain that X0 is a functorially finite subcategory of mod A. We
will prove now that X1, . . . ,Xm are functorially finite subcategories of mod A.

Fix i ∈ {1, . . . , m}. We denote by Ri the direct sum of all indecomposable modules
in Ω(i) lying on the union Σ(i) of the right borders Σ

(i)
λ of the maximal cyclic coherent

translation quivers Ω
(i)
λ , λ ∈ Λ′′

i , if Λ′′
i is not empty, and Ri = 0 otherwise. Moreover, we

denote by Vi the direct sum of all indecomposable modules in Ei lying on the Euclidean
subquiver Ψi . Dually, we denote by Li the direct sum of all indecomposable modules in Ω(i)

lying on the union Δ(i) of the left borders Δ
(i)
λ of the maximal cyclic coherent translation

quivers Ω
(i)
λ , λ ∈ Λ′′

i , if Λ′′
i is not empty, and Li = 0 otherwise. Finally, we denote by Ui

the direct sum of all indecomposable modules in Di lying on the Euclidean subquiver Φi .
Let X be a module in ind A which does not belong to Xi . Moreover, let Y be an inde-

composable module in Xi and g : Y → X a nonzero homomorphism in mod A. We will
prove that g factors through a module of the form (Ri ⊕ Vi)

s , for some positive integer s.
Let Z be the image of g. Consider a decomposition Z = Z1

⊕
Z2, where Z1 is a maxi-

mal direct summand of Z with resi (Z1) = 0, and the homomorphisms g1 : Y → Z1 and
g2 : Y → Z2 induced by g. It follows from the previous considerations that resi (X) is



230 A. Skowroński

a module from add(PCi ∪ QCi ), because X does not belong to Ω(i). Assume first that Y

belongs to Di . Then Z is a right B
(l)
i -submodule of X. Moreover, there is a positive integer

a such that, for any integer b ≥ a, g factors through a direct sum of modules lying on the
Euclidean subquiver τ−b

A Φi of Di . In particular, we conclude that resi (Z2) is a direct sum
of indecomposable modules from QCi . Then we conclude that g1 factors through a module
Rk

i and g2 factors through a module V t
i for some positive integers k and t . Assume now

that Y belongs to Ω(i). Then resi (Z2) is a direct sum of modules lying in QCi , because

HomBi
(Ω(i),PB

(l)
i ) = 0, and hence Z2 is a right B

(r)
i -module from the additive category

of QB
(r)
i . Thus we conclude that g2 factors through a module V t

i for some positive inte-

ger t . Clearly, we have resi (g1) = 0. Assume g1 �= 0. Then Y belongs to Ω
(i)
λ for some

λ ∈ Λ′′
i . But then g1 factors through a module of the form Rk

i ⊕ V t
i for some positive

integers k and t . Finally, assume that Y belongs to Ei . Obviously then g factors through a
module V t

i for some positive integer t . Summing up, we conclude that g factors through a
module of the form (Ri ⊕Vi)

s for some positive integer s. Moreover, HomA(Ri ⊕Vi, X) is
a finitely generated module over the commutative artin ring K . Then we conclude that the
restriction HomA(−, X)|Xi

of the contravariant functor HomA(−, X) : (mod A)op → Ab

to Xi is a finitely generated functor, being an epimorphic image of a contravariant func-
tor HomA

(−, (Ri ⊕ Vi)
p
) : X op

i → Ab, for some positive integer p. Therefore, Xi is a
contravariantly finite subcategory of mod A. Dually, we conclude that every nonzero homo-
morphism f : X → Y in mod A with Y an indecomposable module in Xi factors through a
module of the form (Li ⊕ Ui)

t , for some positive integer t . Moreover, HomA(X,Li ⊕ Ui)

is a finitely generated module over the commutative artin ring K . Then we conclude that
the restriction HomA(X,−)|Xi

of the covariant functor HomA(X,−) : mod A → Ab

to Xi is a finitely generated functor, being an epimorphic image of a covariant functor
HomA

(
(Li ⊕ Ui)

q,−) : Xi → Ab, for some positive integer q. Hence, Xi is a covariantly
finite subcategory of mod A. Therefore, we proved that Xi is a functorially finite subcate-
gory of mod A. Finally, since Xi is a full subcategory of mod Bi containing all but finitely
many modules of ind Bi , we obtain that mod Bi is also a functorially finite subcategory of
mod A.

Summing up, we conclude that mod B1, . . . , mod Bn are functorially finite subcategories
of mod A and all but finitely many modules in ind A belong to

⋃m
i=1 ind Bi . This finishes

the proof of Theorem 1.6.

5 Proof of Theorem 1.2

The implications (v) ⇒ (vi), (iii) ⇒ (vi), (i) ⇒ (vi) follow from Propositions 3.10, 3.11,
3.13, respectively. The implications (ii) ⇒ (i) and (iv) ⇒ (iii) are obvious. Hence, it remains
to prove that (vi) implies (ii), (iv), (v).

Let A be a cycle-finite algebra of infinite representation type and without a tubular quo-
tient algebra. Let C1, . . . , Cm be the family of all tame concealed quotient algebras of A.
We keep the notation introduced in Section 4.

It follows from Proposition 3.4, and the assumption imposed on A, that the stable tubes
Ω

(i)
λ = T Ci

λ , for i ∈ {1, . . . , m} and λ ∈ Λ′
i , form the family of all regular components

of ΓA. Moreover, all but finitely many stable tubes in this family have rank one. Since the
number of nonregular components of ΓA is finite, we conclude that all but finitely many
components of ΓA are stable tubes of rank one. Hence, (vi) implies (v).
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We know from Section 4 that there exist domestic generalized multicoil enlargements
B1, . . . , Bm of C1, . . . , Cm, respectively, satisfying the the following properties:

• for each i ∈ {1, . . . , m}, the translation quiver Bi = Di ∪ Ω(i) ∪ Ei is a cofinite full
translation subquiver of ΓBi

;
• the family B0 of all modules in ind A which do not belong to B1 ∪ · · · ∪ Bm is finite;
• for each i ∈ {0, 1, . . . , m}, the additive category Xi of mod A generated by the

indecomposable modules in Bi is contravariantly finite.

We will show now that KG(A) = 2, and hence (vi) implies (ii). Observe first that
the projective cover of any functor in F(A) is a functor HomA(−,M) for a module M in
mod A. Hence it is enough to consider contravariant Hom-functors. It follows from Propo-
sition 3.14 that KG(Bi) = 2, and hence KG(Xi ) = 2 for any i ∈ {1, . . . , m}. Clearly,
we have KG(X0) = 0. Take now an indecomposable module X in ind A and the asso-
ciated contravariant functor HomA(−, X) from mod A to Ab. Since X0,X1, . . . ,Xm are
contravariantly finite subcategories of mod A, generating the whole category mod A, we
conclude that F becomes of finite length in the quotient category F(A)/F(A)1. This
shows that KG(A) ≤ 2. On the other hand, we have 2 = KG(Bi ) ≤ KG(A), for any
i ∈ {1, . . . , m}. Therefore, indeed KG(A) = 2.

Finally, we prove that rad∞
A is nilpotent, and hence (vi) implies (iv). Let W0 be the direct

sum of all indecomposable modules in X0. Then EndA(W0) is an artin algebra, and hence
the radical of EndA(W0) is nilpotent, say (rad EndA(W0))

l = 0 for some positive integer l.
Let n be a natural number such that n ≥ l + 4m. We claim that (rad∞

A )n = 0. Suppose it is
not the case. Then there exists a sequence

Z0
f1−→ Z1

f2−→ Z2 → · · · → Zn−1
fn−→ Zn

of homomorphisms in rad∞
A between modules in ind A such that fn . . . f2f1 �= 0. It fol-

lows from the choice of n that there are p < q < r < s in {0, 1, . . . , n} such that
Zp, Zq, Zr, Zs belong to Xi , for some i ∈ {1, . . . , m}. Let u = fq . . . fp+1 : Zp → Zq ,
v = fr . . . fq+1 : Zq → Zr , w = fs . . . fr+1 : Zr → Zs . Since Xi is a subcate-
gory of mod Bi , the homomorphisms u, v, w belong to rad∞

Bi
, and hence wvu is a nonzero

homomorphism in (rad∞
Bi

)3. This contradicts Proposition 3.12. Therefore, rad∞
A is nilpotent.
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54. Skowroński, A.: Selfinjective algebras of polynomial growth. Math. Ann 285, 177–199 (1989)
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56. Skowroński, A.: Regular Auslander-Reiten components containing directing modules. Proc. Amer.

Math. Soc. 120, 19–26 (1994)
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