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Abstract We determine the Krull dimension of the module category of finite dimensional
tame generalized multicoil algebras over an algebraically closed field, which are domestic.
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1 Introduction and the Main Results

Let A be a finite-dimensional k-algebra over a fixed algebraically closed field k. We denote
by mod A the category of finitely generated A-modules. Here, we are interested in the
Krull dimension K-dim(modA) of the category F = F(modA) of all finitely presented
contravariant functors from modA into the category Ab of abelian groups. Following [10]
the Krull-Gabriel filtration (Fα)α of F is defined recursively as follows: F−1 = 0 and F0
is the Serre subcategory of all objects of finite length in F . In the case when α is an ordinal
number of the form β + 1 then Fα is defined to be the Serre subcategory of all objects in
F which become of finite length in F/Fβ . In the case when α is a limit ordinal, then Fα is
the union of all Fβ with β < α. If there exists an ordinal α with Fα = F , then the smallest
ordinal with this property is called the Krull dimension of F .

By a result of Auslander [5], we know that K-dim(modA) = 0 if and only if A is
representation-finite. Moreover, K-dim(modA) does not exist when A is wild hereditary
[6], and K-dim(modA) = 2 when A is representation-infinite tame hereditary [10]. Our
interest in the Krull dimension of F is also motivated by the fact that the filtration (Fα)α of
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F leads to a hierarchy of exact sequences in modA, where the Auslander-Reiten sequences
form the lowest level (see [10]). It is expected that the existence of K-dim(modA) implies
that A is domestic, that is, there is a common bound for the numbers of one-parameter
families of indecomposable A-modules of any fixed dimension.

We would like to mention that the generalized multicoil algebras (respectively, tame gen-
eralized multicoil algebras) form a prominent class of algebras of global dimension at most
3, containing the class of quasitilted algebras of canonical type [14, 30] (respectively, tame
quasitilted algebras of canonical type), and are obtained by sophisticated gluings of con-
cealed canonical algebras (respectively, tame concealed algebras) using admissible algebra
operations (see Section 3 for details). Moreover, recently the tame generalized multicoil
algebras showed to be important in describing the structure of the module category ind� of
an arbitrary cycle-finite algebra � (see [18, Theorems 7.1 and 7.2] or [19, Theorem 1.8]).
We also refer to the article [24] for the Hochschild cohomology of generalized multicoil
algebras.

The following theorem is the main result of the paper.

Theorem 1.1 Let A be a tame generalized multicoil algebra. The following statements are
equivalent:

(i) K-dim(modA) = 2.
(ii) K-dim(modA) exists.
(iii) A is domestic.

In the representation theory of algebras a prominent role is played by the algebras with
a separating family of components in the following sense. A family C = (Ci )i∈I of compo-
nents of the Auslander-Reiten quiver �A of an algebra A is called separating in modA if
the modules in indA split into three disjoint classes PA, CA = C andQA such that:

(S1) CA is a sincere generalized standard family of components;
(S2) HomA(QA,PA) = 0, HomA(QA, CA) = 0, HomA(CA,PA) = 0;
(S3) any morphism from PA toQA factors through the additive category
add CA of CA.

We then say that CA separates PA fromQA and write �A = PA ∪ CA ∪ QA. We note that
thenPA andQA are uniquely determined by CA (see [4, (2.1)] or [26, (3.1)]). Moreover, CA

is called sincere if any simple A-module occurs as a composition factor of a module in CA,
and generalized standard if rad∞(X, Y ) = 0 for all modules X and Y from CA. We refer
also to the survey article [23] for the structure of arbitrary algebras with separating families
of Auslander-Reiten components.

Frequently, we may recover A completely from the shape and categorical behaviour of
the separating family CA of components of �A. For example, the tilted algebras [12, 26], or
more generally double tilted algebras [25], are determined by their (separating) connecting
components. Further, it was proved in [13] that the class of algebras with a separating family
of stable tubes coincides with the class of concealed canonical algebras. This was extended
in [21] to a characterization of algebras with a separating family of almost cyclic coherent
Auslander-Reiten components. Recall that a component � of an Auslander-Reiten quiver
�A is called almost cyclic if all but finitely many modules in � lie on oriented cycles con-
tained entirely in �. Moreover, a component � of �A is said to be coherent if the following
two conditions are satisfied:

(C1) For each projective module P in � there is an infinite sectional path P = X1 →
X2 → · · · → Xi → Xi+1 → Xi+2 → · · · (that is, Xi �= τAXi+2 for any i ≥ 1) in �.
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(C2) For each injective module I in � there is an infinite sectional path · · · → Yj+2 →
Yj+1 → Yj → · · · → Y2 → Y1 = I (that is, Yj+2 �= τAYj for any j ≥ 1) in �.

It has been proved in [21, Theorem A] that the Auslander-Reiten quiver �A of an alge-
bra A admits a separating family of almost cyclic coherent components if and only if A is a
generalized multicoil enlargement of a (possibly decomposable) concealed canonical alge-
bra C. Moreover, for such an algebra A, we have that A is triangular, gl.dim A ≤ 3, and
pdAX ≤ 2 or idAX ≤ 2 for any module X in ind A (see [21, Corollary B and Theorem E]).

As an immediate consequence of Theorem 1.1, Theorem 3.1, the definition of separating
family of components of the Auslander-Reiten quiver �A of an algebra A, and [17, Theorem
1.1] we obtain the following fact.

Corollary 1.2 Let A be a tame algebra with a separating family of almost cyclic coherent
Auslander-Reiten components. The following statements are equivalent:

(i) K-dim(modA) = 2.
(ii) K-dim(modA) exists.
(iii) A is domestic.
(iv) (rad∞(modA))3 = 0.

2 Preliminaries

Throughout this paper, k will denote a fixed algebraically closed field. An algebra A will
always mean a basic, connected (unless otherwise specified), associative finite dimensional
k-algebra with an identity. Thus there exists a connected bound quiver (QA, IA) and an
isomorphism A ∼= kQA/IA. Equivalently, A ∼= kQA/IA may be considered as a k-linear
category, of which the object class A0 is the set of points of QA, and the set of morphisms
A(x, y) from x to y is the quotient of the k-vector space kQA(x, y) of all formal linear
combinations of paths in QA from x to y by the subspace IA(x, y) = kQA(x, y) ∩ IA (see
[7]). An algebra A with QA acyclic (without oriented cycles) is said to be triangular. A full
subcategory C of A is said to be convex if any path in QA with source and target in QC lies
entirely in QC .

By an A-module is meant a finitely generated right A-module. We denote by modA

the category of A-modules, by ind A the full subcategory consisting of a complete set
of representatives of the isomorphism classes of indecomposable A-modules, by �A the
Auslander-Reiten quiver of A and by τA the Auslander-Reiten translation in �A. We shall
agree to identify the vertices of �A with the corresponding modules in ind A, and the com-
ponents of �A with the corresponding full subcategories of ind A. A component P of �A

is called postprojective if P is acyclic and every module in P lies in the τA-orbit of a pro-
jective module. Dually, a component Q of �A is called preinjective if Q is acyclic and
every module inQ lies in the τA-orbit of an injective module. Recall also that the Jacobson
radical rad(modA) of the module category modA is the ideal of modA generated by all
noninvertible morphisms in ind A. Then the infinite radical rad∞(modA) of modA is the
intersection of all powers radi (modA), i ≥ 1, of rad(modA).

Let A be an algebra and Q be an infinite preinjective component of �A. Let S be a set
of indecomposable representatives of each infinite τA-orbit of modules from Q. Moreover,
assume that for any indecomposable module M from S there exist an indecomposable N

from S and an irreducible morphism M → N or N → M . Then we say that S is left stable
quasi-section ofQ.
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Let A be an algebra and k[x] the polynomial algebra in one variable. Following [9] A is
said to be tame if, for any dimension d , there exists a finite number of k[x]–A-bimodules
Mi , 1 ≤ i ≤ nd , which are finitely generated and free as left k[x]-modules, and all but
a finite number of isomorphism classes of indecomposable A-modules of dimension d are
of the form k[x]/(x − λ) ⊗k[x] Mi for some λ ∈ k and some i ∈ {1, . . . , nd}. Let μA(d) be
the least number of k[x]–A-bimodules satisfying the above conditions for d . Then A is said
to be domestic if there exists a positive integer m such that μA(d) ≤ m for any d ≥ 1. From
the validity of the second Brauer-Thrall conjecture we know that μA(d) = 0 for any d ≥ 1
if and only if A is representation-finite. Recall that an algebra A is said to be representation-
finite if ind A admits only a finite number of pairwise nonisomorphic modules. Otherwise,
we say that A is representation-infinite.

Let C be an abelian category. A full subcategory C ′ ⊆ C is called a Serre subcategory if it
is closed under subobjects, quotients and extensions. If C ′ ⊆ C is a Serre subcategory, then
one defines the quotient category C/C ′ as follows. The objects of C/C ′ coincide with the
objects of C, and if X and Y are objects of C, then HomC/C′(X, Y ) := lim−→HomC(X′, Y/Y ′),
where X′ and Y ′ run through all subobjects of X and Y , respectively, such that X/X′ and
Y ′ belong to C ′. Again C/C ′ is an abelian category and the quotient functor T : C → C/C ′
is exact.

Let C be a small abelian category. The Krull-Gabriel filtration (Cα)α of C is defined as
follows: C−1 = 0, C0 is the Serre subcategory of all objects of finite length in C. In the
case when α is an ordinal number of the form β + 1 then Cα is defined to be the Serre
subcategory of all objects in C which become of finite length in C/Cβ . If α is a limit ordinal,
then Cα is the union of all Cβ with β < α. If there exists an ordinal α with Cα = C, then the
smallest ordinal with this property is called the Krull dimension of C, denoted by K-dim C.
We shall also denote by T0 and T1 the quotient functors T0 : C → C/C0 and T1 : C → C/C1,
respectively.

Let D be a subcategory of modA for some algebra A. Denote by F(D) the category
of finitely presented contravariant functors from D to the category Ab of abelian groups.
Assume that F(D) is abelian. Then K-dimD is by definition the Krull dimension ofF(D).

The following result from [32, Lemma 2.1] will be applied.

Lemma 2.1 Let A be an algebra and Q be an infinite preinjective component of �A hav-
ing a left stable quasi-section S of Euclidean type. Assume also that any indecomposable
module M in S does not belong to a path of irreducible morphisms N → · · · → M , where
N is indecomposable and the τA-orbit of N is finite. Then K-dimQ = 2.

In the proof of our main result we need also the following fact.

Lemma 2.2 Let A be an algebra, M,N,U, V modules in modA, and M ⊕ U
[f,g]−−−−→

V and N
h−−−→ U monomorphisms. Then the morphism M ⊕ N

[f,gh]−−−−−→ V is a
monomorphism.

Proof The morphism M ⊕ N
[f,gh]−−−−−→ V is a monomorphism as the composition of the

following two monomorphisms M ⊕ N

[
idM 0
0 h

]

−−−−−−−−→ M ⊕ U
[f,g]−−−−−→ V.

For basic background on the representation theory of algebras applied in the paper, we
refer to the books [1, 26–28].
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3 Tame Generalized Multicoil Algebras

In this section we introduce and exhibit basic properties of the class of tame generalized
multicoil algebras, playing the fundamental role in our proof of Theorem 1.1. This is the
class of tame algebras among the class of all algebras having a separating family of almost
cyclic coherent components investigated in [21, 22]. Recall that a module X in modA is
called a brick if EndA(X) ∼= k.

It has been proved in [20, Theorem A] that a connected component � of an Auslander-
Reiten quiver �A is almost cyclic and coherent if and only if � is a generalized multicoil,
obtained from a family of stable tubes by a sequence of operations called admissible. We
recall the latter and simultaneously define the corresponding enlargements of algebras.

We start with the one-point extensions and one-point coextensions of algebras. Let A be
an algebra and M be a module in modA. Then the one-point extension of A by M is the
matrix algebra

A[M] =
[

A 0
M k

]
=

{[
a 0
m λ

]
; λ ∈ k, a ∈ A, m ∈ M

}

with the usual addition and multiplication. The quiver QA[M] of A[M] contains the quiver
QA of A as a convex subquiver, and there is an additional (extension) vertex which is a
source. The A[M]-modules are usually identified with the triples (V ,X, ϕ), where V is a
k-vector space, X an A-module and ϕ : V → HomA(M,X) is a k-linear map. An A[M]-
linear map (V ,X, ϕ) → (W, Y,ψ) is then identified with a pair (f, g), where f : V → W

is k-linear, g : X → Y is A-linear and ψf = HomA(M, g)ϕ. Dually, one defines also the
one-point coextension of A by M as the matrix algebra

[M]A =
[

k 0
D(M) A

]
.

For r ≥ 1, we denote by Tr(k) the r × r-lower triangular matrix algebra
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k 0 0 . . . 0 0
k k 0 . . . 0 0
k k k . . . 0 0
...

...
...

. . .
...

...

k k k . . . k 0
k k k . . . k k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Given a generalized standard component � of �A, and an indecomposable module X

in �, the support S(X) of the functor HomA(X,−) |� is the R-linear category defined as
follows [3]. Let HX denote the full subcategory of � consisting of the indecomposable
modules M in � such that HomA(X,M) �= 0, and IX denote the ideal ofHX consisting of
the morphisms f : M → N (with M,N in HX) such that HomA(X, f ) = 0. We define
S(X) to be the quotient category HX/IX . Following the above convention, we usually
identify the R-linear category S(X) with its quiver.

From now on let A be an algebra and � be a family of generalized standard infinite
components of �A. For an indecomposable brick X in �, called the pivot, one defines five
admissible operations (ad 1)-(ad 5) and their duals (ad 1∗)-(ad 5∗) modifying the translation
quiver � = (�, τ ) to a new translation quiver (�′, τ ′) and the algebra A to a new algebra A′,
depending on the shape of the support S(X) (see [20, Section 2] for the figures illustrating
the modified translation quivers �′).
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(ad 1) Let t ∈ N and assume S(X) consists of an infinite sectional path starting at X:

X = X0 → X1 → X2 → · · ·
If t ≥ 1 then D = Tt (k) and Y1, Y2, . . ., Yt denote the indecomposable injective D-modules
with Y = Y1 the unique indecomposable projective-injective D-module. We define the
modified algebra A′ of A to be the one-point extension

A′ = (A × D)[X ⊕ Y ]
and the modified translation quiver �′ of � to be obtained by inserting in � the rectangle

consisting of the modules Zij =
(

k, Xi ⊕ Yj ,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t , and X′

i =
(k,Xi, 1) for i ≥ 0. The translation τ ′ of �′ is defined as follows: τ ′Zij = Zi−1,j−1
if i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if j ≥ 2, Z01 is projective,
τ ′X′

0 = Yt , τ
′X′

i = Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X′
i provided Xi is not an injective A-

module, otherwise X′
i is injective in �′. For the remaining vertices of �′, τ ′ coincides with

the translation of �, or �D , respectively.
Finally, if t = 0 we define the modified algebra A′ to be the one-point extension A′ =

A[X] and the modified translation quiver �′ to be the translation quiver obtained from � by
inserting only the sectional path consisting of the vertices X′

i , i ≥ 0.
The non-negative integer t is such that the number of infinite sectional paths parallel to

X0 → X1 → X2 → · · · in the inserted rectangle equals t + 1. We call t the parameter of
the operation.

Since � is a generalized standard family of components of �A, we then have that �′ is
a generalized standard family of components of �A′ .

In case � is a stable tube, it is clear that any module on the mouth of � satisfies the
condition for being a pivot for the above operation. Actually, the above operation is, in this
case, the tube insertion as considered in [8].

(ad 2) Suppose that S(X) admits two sectional paths starting at X, one infinite and the
other finite with at least one arrow:

Yt ← · · · ← Y2 ← Y1 ← X = X0 → X1 → X2 → · · ·
where t ≥ 1. In particular, X is necessarily injective. We define the modified algebra A′ of
A to be the one-point extensionA′ = A[X] and themodified translation quiver �′ of � to be

obtained by inserting in � the rectangle consisting of the modulesZij =
(

k, Xi ⊕ Yj ,

[
1
1

])

for i ≥ 1, 1 ≤ j ≤ t , and X′
i = (k,Xi, 1) for i ≥ 1. The translation τ ′ of �′ is defined

as follows: X′
0 is projective-injective, τ ′Zij = Zi−1,j−1 if i ≥ 2, j ≥ 2, τ ′Zi1 = Xi−1

if i ≥ 1, τ ′Z1j = Yj−1 if j ≥ 2, τ ′X′
i = Zi−1,t if i ≥ 2, τ ′X′

1 = Yt , τ
′(τ−1Xi) = X′

i

provided Xi is not an injective A-module, otherwise X′
i is injective in �′. For the remaining

vertices of �′, τ ′ coincides with the translation τ of �.
The integer t ≥ 1 is such that the number of infinite sectional paths parallel to X0 →

X1 → X2 → · · · in the inserted rectangle equals t + 1. We call t the parameter of the
operation.

Since � is a generalized standard family of components of �A, we then have that �′ is
a generalized standard family of components of �A′ .

(ad 3) Assume S(X) is the mesh-category of two parallel sectional paths:

Y1 → Y2 → · · · → Yt

↑ ↑ ↑
X = X0 → X1 → · · · → Xt−1 → Xt → · · ·
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with the upper sectional path finite and t ≥ 2. In particular, Xt−1 is necessarily injective.
Moreover, we consider the translation quiver � of � obtained by deleting the arrows Yi →
τ−1
A Yi−1. We assume that the union �̂ of connected components of � containing the vertices

τ−1
A Yi−1, 2 ≤ i ≤ t , is a finite translation quiver. Then � is a disjoint union of �̂ and
a cofinite full translation subquiver �∗, containing the pivot X. We define the modified
algebra A′ of A to be the one-point extension A′ = A[X] and the modified translation
quiver �′ of � to be obtained from �∗ by inserting the rectangle consisting of the modules

Zij =
(

k, Xi ⊕ Yj ,

[
1
1

])
for i ≥ 1, 1 ≤ j ≤ t , j ≤ i, and X′

i = (k,Xi, 1) for i ≥ 1.

The translation τ ′ of �′ is defined as follows: X′
0 is projective, τ

′Zij = Zi−1,j−1 if i ≥ 2,
2 ≤ j ≤ t , τ ′Zi1 = Xi−1 if i ≥ 1, τ ′X′

i = Yi if 1 ≤ i ≤ t , τ ′X′
i = Zi−1,t if i ≥ t + 1,

τ ′Yj = X′
j−2 if 2 ≤ j ≤ t , τ ′(τ−1Xi) = X′

i , if i ≥ t provided Xi is not injective in
�, otherwise X′

i is injective in �′. For the remaining vertices of �′, τ ′ coincides with the
translation τ of �∗. We note that X′

t−1 is injective.
The integer t ≥ 2 is such that the number of infinite sectional paths parallel to X0 →

X1 → X2 → · · · in the inserted rectangle equals t + 1. We call t the parameter of the
operation.

Since � is a generalized standard family of components of �A, we then have that �′ is
a generalized standard family of components of �A′ .

(ad 4) Suppose that S(X) consists an infinite sectional path, starting at X

X = X0 → X1 → X2 → · · ·
and

Y = Y1 → Y2 → · · · → Yt

with t ≥ 1, be a finite sectional path in �A. Let r ∈ N. Moreover, we consider the translation
quiver � of � obtained by deleting the arrows Yi → τ−1

A Yi−1. We assume that the union
�̂ of connected components of � containing the vertices τ−1

A Yi−1, 2 ≤ i ≤ t , is a finite
translation quiver. Then � is a disjoint union of �̂ and a cofinite full translation subquiver
�∗, containing the pivot X. For r = 0 we define the modified algebra A′ of A to be the one-
point extension A′ = A[X ⊕ Y ] and the modified translation quiver �′ of � to be obtained

from �∗ by inserting the rectangle consisting of the modules Zij =
(

k,Xi ⊕ Yj ,

[
1
1

])
for

i ≥ 0, 1 ≤ j ≤ t , and X′
i = (k,Xi, 1) for i ≥ 1. The translation τ ′ of �′ is defined

as follows: τ ′Zij = Zi−1,j−1 if i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Yj−1 if
j ≥ 2, Z01 is projective, τ ′X′

0 = Yt , τ
′X′

i = Zi−1,t if i ≥ 1, τ ′(τ−1Xi) = X′
i provided

Xi is not injective in �, otherwise X′
i is injective in �′. For the remaining vertices of �′, τ ′

coincides with the translation of �∗.
For r ≥ 1, let G = Tr(k), U1,t+1, U2,t+1, . . ., Ur,t+1 denote the indecomposable

projective G-modules, Ur,t+1, Ur,t+2, . . ., Ur,t+r denote the indecomposable injective G-
modules, with Ur,t+1 the unique indecomposable projective-injective G-module. We define
the modified algebra A′ of A to be the triangular matrix algebra of the form:

A′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A 0 0 . . . 0 0
Y k 0 . . . 0 0
Y k k . . . 0 0
...

...
...

. . .
...

...

Y k k . . . k 0
X ⊕ Y k k . . . k k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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with r + 2 columns and rows and the modified translation quiver �′ of � to be obtained

from �∗ by inserting the rectangles consisting of the modules Usl =
(

k, Yl ⊕ Us,t+1,

[
1
1

])

for 1 ≤ s ≤ r , 1 ≤ l ≤ t , and Zij =
(

k,Xi ⊕ Urj ,

[
1
1

])
for i ≥ 0, 1 ≤ j ≤ t + r , and

X′
i = (k,Xi, 1) for i ≥ 0. The translation τ ′ of �′ is defined as follows: τ ′Zij = Zi−1,j−1 if

i ≥ 1, j ≥ 2, τ ′Zi1 = Xi−1 if i ≥ 1, τ ′Z0j = Ur,j−1 if 2 ≤ j ≤ t + r , Z01, Uk1, 1 ≤ k ≤ r

are projective, τ ′Ukl = Uk−1,l−1 if 2 ≤ k ≤ r , 2 ≤ l ≤ t + r , τ ′U1l = Yl−1 if 2 ≤ l ≤ t +1,
τ ′X′

0 = Ur,t+r , τ
′X′

i = Zi−1,t+r if i ≥ 1, τ ′(τ−1Xi) = X′
i provided Xi is not injective in

�, otherwise X′
i is injective in �′. For the remaining vertices of �′, τ ′ coincides with the

translation of �∗, or �G, respectively.
We note that the quiver QA′ of A′ is obtained from the quiver of the double one-point

extension A[X][Y ] by adding a path of length r + 1 with source at the extension vertex of
A[X] and sink at the extension vertex of A[Y ].

The integers t ≥ 1 and r ≥ 0 are such that the number of infinite sectional paths parallel
to X0 → X1 → X2 → · · · in the inserted rectangles equals t + r + 1. We call t + r the
parameter of the operation.

Since � is a generalized standard family of components of �A, we then have that �′ is
a generalized standard family of components of �A′ .

For the definition of the next admissible operation we need also the finite versions of
the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), which we denote by (fad 1), (fad 2),
(fad 3) and (fad 4), respectively. In order to obtain these operations we replace all infinite
sectional paths of the form X0 → X1 → X2 → · · · (in the definitions of (ad 1), (ad 2),
(ad 3), (ad 4)) by the finite sectional paths of the form X0 → X1 → X2 → · · · → Xs . For
the operation (fad 1) s ≥ 0, for (fad 2) and (fad 4) s ≥ 1, and for (fad 3) s ≥ t − 1. In all
above operations Xs is injective (see [20] or [21] for the details).

(ad 5) We define the modified algebra A′ of A to be the iteration of the extensions
described in the definitions of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4), and
their finite versions corresponding to the operations (fad 1), (fad 2), (fad 3) and (fad 4). The
modified translation quiver �′ of � is obtained in the following three steps: first we are
doing on � one of the operations (fad 1), (fad 2) or (fad 3), next a finite number (possibly
zero) of the operation (fad 4) and finally the operation (ad 4), and in such a way that the sec-
tional paths starting from all the new projective vertices have a common cofinite (infinite)
sectional subpath.

Since � is a generalized standard family of components of �A, we then have that �′ is a
generalized standard family of components of �A′ .

Finally, together with each of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4) and
(ad 5), we consider its dual, denoted by (ad 1∗), (ad 2∗), (ad 3∗), (ad 4∗) and (ad 5∗). These
ten operations are called the admissible operations. Following [20] a connected translation
quiver � is said to be a generalized multicoil if � can be obtained from a finite family
T1,T2, . . . ,Ts of stable tubes by an iterated application of admissible operations (ad 1),
(ad 1∗), (ad 2), (ad 2∗), (ad 3), (ad 3∗), (ad 4), (ad 4∗), (ad 5) or (ad 5∗). If s = 1, such
a translation quiver � is said to be a generalized coil. The admissible operations of types
(ad 1), (ad 2), (ad 3), (ad 1∗), (ad 2∗) and (ad 3∗) have been introduced in [2–4], the admis-
sible operations (ad 4) and (ad 4∗) for r = 0 in [16], and the admissible operations (ad 4),
(ad 4∗) for r ≥ 1, (ad 5) and (ad 5∗) in [20, 21].

Observe that any stable tube is trivially a generalized coil. A tube is a generalized coil
having the property that each admissible operation in the sequence defining it is of the form
(ad 1) or (ad 1∗). Moreover, if we apply only operations of type (ad 1) (respectively, of type
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(ad 1∗)) then such a generalized coil is a ray tube (respectively, a coray tube). Observe that
a generalized coil without injective (respectively, projective) vertices is a ray tube (respec-
tively, a coray tube). A quasi-tube is a generalized coil having the property that each of the
admissible operations in the sequence defining it is of type (ad 1), (ad 1∗), (ad 2) or (ad 2∗).
Finally, following [3] a coil is a generalized coil having the property that each of the admis-
sible operations in the sequence defining it is one of the forms (ad 1), (ad 1∗), (ad 2), (ad 2∗),
(ad 3) or (ad 3∗). We note that any generalized multicoil � is a coherent translation quiver
with trivial valuations and its cyclic part c� (the translation subquiver of � obtained by
removing from � all acyclic vertices and the arrows attached to them) is infinite, connected
and cofinite in �, and so � is almost cyclic.

Let C be the product C1 × . . . × Cm of a family C1, . . . , Cm of tame concealed algebras
and T C the disjoint union T C1 ∪ . . . ∪ T Cm of P1(k)-families T C1 , . . . ,T Cm of pairwise
orthogonal generalized standard stable tubes of �C1 , . . . , �Cm , respectively. Following [21],
we say that an algebra A is a generalized multicoil enlargement of C1, . . . , Cm if A is
obtained from C by an iteration of admissible operations of types (ad 1)-(ad 5) and (ad 1∗)-
(ad 5∗) performed either on stable tubes of T C or on generalized multicoils obtained from
stable tubes of T C by means of the operations done so far. It follows from [21, Corollary
B] that then A is a triangular algebra. In fact, in [21] generalized multicoil enlargements
of finite families of arbitrary concealed canonical algebras (generalized multicoil algebras)
have been introduced and investigated. But in the tame case we may restrict to the gener-
alized multicoil enlargements of tame concealed algebras. Namely, we have the following
consequence of [21, Theorems A and F].

Theorem 3.1 Let A be an algebra. The following statements are equivalent:

(i) A is tame and �A admits a separating family of almost cyclic coherent components.
(ii) A is a tame generalized multicoil enlargement of a finite family of tame concealed

algebras.

From now on, by a tame generalized multicoil algebra we mean a connected tame
generalized multicoil enlargement of a finite family of tame concealed algebras. As a conse-
quence of [21, Theorems C and F] and the proof of [21, Theorem C] we obtain the following
fact.

Theorem 3.2 Let A be a tame generalized multicoil algebra obtained from a family
C1, . . . , Cm of tame concealed algebras. There are full convex subcategories A(l) =
A

(l)
1 × . . . × A

(l)
m and A(r) = A

(r)
1 × . . . × A

(r)
m of A such that the following statement

hold:

(i) For each i ∈ {1, . . . , m}, A
(l)
i and A

(r)
i are representation-infinite tilted algebras of

Euclidean type or tubular algebras.
(ii) A can be obtained from A(l) by a sequence of admissible operations of types (ad 1),

(ad 2), (ad 3), (ad 4) or (ad 5).
(iii) A can be obtained from A(r) by a sequence of admissible operations of types (ad 1∗),

(ad 2∗), (ad 3∗), (ad 4∗) or (ad 5∗).
(iv) The Auslander-Reiten quiver �A of A is of the form

�A = PA ∪ CA ∪ QA,

where CA is a family of generalized multicoils separating PA fromQA such that:
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(a) CA is obtained from the P1(k)-families T C1 , . . . ,T Cm of stable tubes of �C1 , . . . , �Cm

by admissible operations corresponding to the admissible operations leading from
C1, . . . , Cm to A;

(b) PA is the disjoint union PA
(l)
1 ∪ . . . ∪ PA

(l)
m , where, for each i ∈ {1, . . . , m}, PA

(l)
i is

either the postprojective component of �
A

(l)
i

, if A
(l)
i is a representation-infinite tilted

algebra of Euclidean type, or PA
(l)
i = PA

(l)
i

0 ∪ T A
(l)
i

0 ∪
(⋃

q∈Q+ T A
(l)
i

q

)
, if A

(l)
i is

a tubular algebra;

(c) QA is the disjoint union QA
(r)
1 ∪ . . . ∪ QA

(r)
m , where, for each i ∈ {1, . . . , m}, QA

(r)
i

is either the preinjective component of �
A

(r)
i

, if A
(r)
i is a representation-infinite tilted

algebra of Euclidean type, or QA
(r)
i =

(⋃
q∈Q+ T A

(r)
i

q

)
∪ T A

(r)
i∞ ∪ QA

(r)
i∞ , if A

(r)
i is

a tubular algebra.

Remark 3.3 From the proof of [21, Theorem C] we know that A(l) = A
(l)
1 × . . . × A

(l)
m

(respectively, A(r) = A
(r)
1 × . . . × A

(r)
m ) is a unique maximal convex truncated branch

coextension (respectively, extension) of C = C1 × C2 × · · · × Cm inside A, that is, A
(l)
i

(respectively, A(r)
i ) is a unique maximal convex truncated branch coextension (respectively,

extension) of Ci inside A, i ∈ {1, . . . , m}.

It follows from [29, Theorem 4.1] and Theorem 3.2 that, if A is tame generalized
multicoil algebra, then A is cycle-finite (see Section 5 for the definition). Applying now
[29, Theorem 5.1], we obtain the following fact.

Corollary 3.4 Let A be a tame generalized multicoil algebra and �A = PA ∪CA ∪QA the
canonical decomposition of �A. The following statements are equivalent:

(i) A is domestic.
(ii) A(l) and A(r) are products of representation-infinite tilted algebras of Euclidean type.
(iii) PA is a disjoint union of postprojective components of Euclidean type and QA is

a disjoint union of preinjective components of Euclidean type.

4 Proof of Theorem 1.1

Clearly, (i) implies (ii). LetA be a tame generalized multicoil algebra obtained from a family
C1, . . . , Cm of tame concealed algebras. Assume that A is non-domestic. Then it follows
from Theorem 3.2 (i) that there are full convex subcategories A(l) = A

(l)
1 × . . . × A

(l)
m ,

A(r) = A
(r)
1 × . . . × A

(r)
m of A and i, j ∈ {1, . . . , m} such that at least one of the algebras

A
(l)
i or A

(r)
j is tubular. By [11, Theorem 1.6 and Proposition 4.1] the Krull dimension of

a tubular algebra does not exist, and hence at least one of the dimensions K-dim(modA(l))

or K-dim(modA(r)) does not exist. Moreover, applying [11, Theorem 2.1], we infer that
K-dim(modA) does not exist too. This proves that the statement (ii) implies the statement
(iii). It remains to show that (iii) implies (i). We will apply arguments similar to those
applied in the proof of [32, Proposition 2.2].

By Theorem 3.2 and Remark 3.3 there exists a unique maximal convex truncated branch
coextension A(l) = A

(l)
1 × . . . × A

(l)
m of C = C1 × C2 × · · · × Cm which is a full
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convex subcategory of A. Moreover, A is obtained from A(l) by a sequence of admissi-
ble operations of types (ad 1)-(ad 5). From Corollary 3.4 we know that A(l) is a product
of representation-infinite tilted algebras A

(l)
1 , . . . , A

(l)
m of Euclidean type. By [11, The-

orem 3.4] we get that, for each i ∈ {1, . . . , m}, K-dim(modA
(l)
i ) = 2, and hence

K-dim(modA(l)) = supi=1,...,m{K-dim(modA
(l)
i )} = 2. Let � be the first modified algebra

of A(l) made to obtain A. Let M be an indecomposable �-module. If M belongs to a post-
projective component of �� then M belongs to the postprojective component of �

A
(l)
i

for

some i = 1, . . . , m and the functor Hom�(−, M) is of finite length. Assume thatM belongs
to a generalized multicoil C. Since different generalized multicoils in mod� are pairwise
orthogonal, it follows from [11], that if C is a coray tube of �A(l) , then T1 Hom�(−, M) = 0.
Thus we may assume that M is a module from the generalized multicoil of �� different
from the coray tubes of �A(l) . If M is a directing �-module which is not an A(l)-module
then again Hom�(−, M) is of finite length. If M is a non-directing �-module which is not
an A(l)-module then we have the following three cases to consider.

(a) If � is a modified algebra of A(l) obtained by applying the admissible operation of
type (ad 1), (ad 2), (ad 3) or (ad 4) with r = 0 then M is isomorphic to Zij or X′

i (see
Section 3). Assume first thatM ∼= Zij . Then we have an obvious monomorphismXi ⊕
Yj → Zij , which induces a monomorphism of functors α : Hom�(−, Xi ⊕ Yj ) →
Hom�(−, Zij ). It follows from the description of generalized multicoils that the set
Sα of all indecomposable modules N such that cokerα(N) �= 0 is finite. Indeed, we
have:

• For (ad 1) and (ad 4) with r = 0, Sα = {Zkl | 0 ≤ k ≤ i, 1 ≤ l ≤ j}.
• For (ad 2), Sα = {X′

0, Zkl | 1 ≤ k ≤ i, 1 ≤ l ≤ j}.
• For (ad 3), Sα = {X′

0, . . . , X
′
j−1, Zkl | 1 ≤ k ≤ i, 1 ≤ l ≤ j, l ≥ k}.

Moreover, cokerα is finitely generated. Therefore, we get that cokerα is of finite
length and T0 Hom�(−, Xi ⊕ Yj ) ∼= T0 Hom�(−, Zij ). Assume now that M ∼= X′

i .
Again, we have an obvious monomorphism Xi → X′

i , which induces a monomor-
phism of functors β : Hom�(−, Xi) → Hom�(−, X′

i ) and the set Sβ of all
indecomposable modules N such that cokerβ(N) �= 0 is finite. In this subcase we get:

• For (ad 1) and (ad 4) with r = 0, Sβ = {X′
k, Zkl | 0 ≤ k ≤ i, 1 ≤ l ≤ t}.

• For (ad 2), Sβ = {X′
0, X

′
k, Zkl | 1 ≤ k ≤ i, 1 ≤ l ≤ t} and Sβ = {X′

0} when
i = 0.

Note that in the above two subcases t denotes the parameter of the suitable admissible
operation.

• For (ad 3), Sβ = {X′
0, X

′
k, Zkl | 1 ≤ k ≤ i, 1 ≤ l ≤ k} and Sβ = {X′

0} when
i = 0.

Hence cokerβ is of finite length since, moreover, it is finitely generated. Thus
T0 Hom�(−, Xi) ∼= T0 Hom�(−, X′

i ).
(b) If � is a modified algebra of A(l) obtained by applying the admissible operation of

type (ad 4) with r ≥ 1 then M is isomorphic to Ukl for 1 ≤ k ≤ r , 1 ≤ l ≤ t ,
Zij for i ≥ 0, 1 ≤ j ≤ t + r , or X′

i for i ≥ 0 (see Section 3). Assume first that
M ∼= Ukl , 1 ≤ k ≤ r , 1 ≤ l ≤ t , where t + r is the parameter of (ad 4). Then
we have a monomorphism Yl → Ukl , which induces a monomorphism of functors
γ : Hom�(−, Yl) → Hom�(−, Ukl) and the set Sγ of all indecomposable modules
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N such that coker γ (N) �= 0 is finite. Indeed, Sγ = {Uij | 1 ≤ i ≤ k, 1 ≤ j ≤ l}.
Again, coker γ is finitely generated. Therefore, we get that coker γ is of finite length
and T0 Hom�(−, Yl) ∼= T0 Hom�(−, Ukl). Assume now that M ∼= Zij , i ≥ 0, 1 ≤
j ≤ t + r . We consider two subcases.

• For i ≥ 0, 1 ≤ j ≤ t we have monomorphisms Xi ⊕ Urj → Zij and Yj →
Urj . Hence, by Lemma 2.2, we infer that Xi ⊕ Yj → Zij is a monomorphism.
Again, we get the induced monomorphism of functors δ : Hom�(−, Xi ⊕ Yj ) →
Hom�(−, Zij ), Sδ = {Upl, Zkl | 1 ≤ p ≤ r, 1 ≤ l ≤ j, 0 ≤ k ≤ i}, and
T0 Hom�(−, Xi ⊕ Yj ) ∼= T0 Hom�(−, Zij ).

• For i ≥ 0, t + 1 ≤ j ≤ t + r we have a monomorphism Xi ⊕ Urj → Zij , where
Ur,t+1, Ur,t+2, . . ., Ur,t+r are given indecomposable injective Tr(k)-modules.
Again, we get the induced monomorphism of functors ε : Hom�(−, Xi ⊕Urj ) →
Hom�(−, Zij ), Sε = {Ur,t+1, . . . , Ur,t+j , Zkl | 0 ≤ k ≤ i, 1 ≤ l ≤ j}, and
T0 Hom�(−, Xi ⊕ Urj ) ∼= T0 Hom�(−, Zij ).

Finally, assume that M ∼= X′
i , i ≥ 0. Again, we have an obvious monomor-

phism Xi → X′
i , the induced monomorphism of functors ζ : Hom�(−, Xi) →

Hom�(−, X′
i ), Sζ = {X′

k, Zkl | 0 ≤ k ≤ i, 1 ≤ l ≤ t + r}, and
T0 Hom�(−, Xi) ∼= T0 Hom�(−, X′

i ).

(c) � is a modified algebra of A(l) obtained by applying the admissible operation of type
(ad 5). Since in the definition of (ad 5) we use the finite versions (fad 1), (fad 2),
(fad 3), (fad 4) of the admissible operations (ad 1), (ad 2), (ad 3), (ad 4) and the
admissible operation (ad 4), we conclude that the required statements follows from the
above considerations.

Therefore, we may assume that M is in fact an A(l)-module. Let F = Hom�(−,M)

and G = Hom�(−, M)|modA(l) . Let I be the simple �-module corresponding to the exten-
sion vertex of A(l)[X], where X is the pivot of the suitable admissible operation. Since
Hom�(I,M) = 0 then for any A-module Z we get F(Z) = G(Z′), where Z′ is the restric-
tion of Z to A(l). Moreover, the category modA(l) is contained in the obvious way into the
category mod�. From this we conclude that, if T ′

1G = 0, then T1F = 0, where

T ′
1 : F(modA(l)) → F(modA(l))/F1(modA(l))

and

T1 : F(mod�) → F(mod�)/F1(mod�)

are the canonical quotient functors. By [11] we have T ′
1G = 0, and hence T1F = 0. Since

F is not of finite length, we get that T0F �= 0.
Let X be the full subcategory of mod� generated by all indecomposable modules

from the generalized multicoils and the postprojective components, and let Y be the full
subcategory of mod� generated by all indecomposable modules from the preinjective com-
ponents. Note that, since the projective cover of any finitely presented functor is a functor
Hom�(−, N) for some module N , it is enough to check only Hom-functors. Therefore,
by the above arguments we have K-dimX = 1. Moreover, using Lemma 2.1 we get that
K-dimY = 2. Hence, applying [11, Theorem 2.6] we obtain

K-dim(mod�) = max(K-dimX + 1,K-dimY) = 2.

Finally, we can complete the proof by an obvious induction on the number of admissible
operations leading from A(l) to A.
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5 Concluding Remarks

Since the tame quasitilted algebras of canonical type form a distinguished special class of
tame generalized multicoil algebras, we obtain the following fact.

Corollary 5.1 Let A be a tame quasitilted algebra of canonical type. The following
statements are equivalent:

(i) K-dim(modA) = 2.
(ii) K-dim(modA) exists.
(iii) A is domestic.

Let A be an algebra. Recall that a cycle in a module category modA is a sequence

X0
f1−−→ X1 → · · · → Xr−1

fr−−→ Xr = X0 of nonzero nonisomorphisms in ind A, and the
cycle is said to be finite if fi �∈ rad∞(modA) for any 1 ≤ i ≤ r . If every cycle in modA

is finite then A is said to be cycle-finite. Recall also that a component C of �A is called
semiregular if C does not contain both a projective and an injective module. It has been
proved in [15] that a semiregular component C of �A contains an oriented cycle if and only
if C is a ray tube or coray tube (see remarks after definitions of admissible operations).

As an immediate consequence of Corollary 5.1 and [31, Theorem 5.1] we obtain the
following fact.

Corollary 5.2 Let A be a cycle-finite algebra such that every component of �A is semireg-
ular, and pdAX ≤ 1 or idAX ≤ 1 for all but finitely many isomorphism classes of modules
X in ind A. Then the following statements are equivalent:

(i) K-dim(modA) = 2.
(ii) K-dim(modA) exists.
(iii) A is domestic.
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