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In Section 3.2 of our article [2], the choice of Chevalley basis elements xα : α ∈ � together
with the corresponding structure constants of g is not compatible with the conventions in
[3]. We would like to thank Bill Casselman to pointing out to us this issue.

Instead, we refer to [1]. We obtain slightly different formulas but the only significant
change is in 3.3, Lemma 3.4 and Proposition 3.5 in which simple coroots must be replaced
by simple roots. This is more natural and in particular does not wrongly mislead one into
thinking that the Langlands dual is involved.

In the setting of 3.3, choose Chevalley basis elements xα : α ∈ �. Let α, γ ∈ �+ such
that α + γ ∈ �+. Then α + γ + (−α − γ ) = 0, and hence

Nα,−(α+γ )

(γ, γ )
= Nγ,α

(α + γ, α + γ )

by [1, 4.1(ii)]. Since Nγ,α = −Nα,γ , we conclude that

Nα,−(α+γ ) = − (γ, γ )

(α + γ, α + γ )
Nα,γ .

Thus xα acts on S(b−)/Iη as the differential operator

η(α∨)∂/∂x−α −
∑

γ∈�+ |α+γ∈�+

(γ, γ )

(α + γ, α + γ )
Nα,γ x−γ ∂/∂x−(α+γ ).

The online version of the original article can be found at http://dx.doi.org/10.1007/s10468-009-9159-0.
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Consequently, in the proof of Lemma 3.3 we obtain that

xαi
· a−γ =

(
niη(α∨

i ) − 2
∑

j |αi+αj ∈�+
ci,j

(αj , αj )

(αi + αj , αi + αj )
Nαi ,αj

)
mi

+other terms

(1)

for all i. The converse of Lemma 3.3(ii) implies that for all i the coefficient of mi is
zero in (1). By multiplying (1) with (αi, αi) and summing up over all i we conclude that∑

i (αi, αi)niη(α∨
i ) = 0, which is a contradiction to η ∈ h∗

d reg and γ �= 0.
In Section 3.4 we identify first δM(0)|U(b) with S(b−)/Iη with the left linear action of

b, where η ∈ h∗
d reg . The right action of xα : α ∈ π on S(b−)/Iη is a derivation. Using the

commutativity of the left and right actions of n we obtain that this derivation takes the form

η(α∨)∂/∂x−α + (α, α)

(α + α′, α + α′)
Nα,α′

η(α∨)

η(α′∨)
x−α′∂/∂x−(α+α′ )

up to terms in S(n−)∂/∂x−γ : o(γ ) ≥ 2. Therefore Lemma 3.4 has to be modified:

Lemma 1 One has x−γ · e2 = 0, γ ∈ �+
2 , if and only if η takes a fixed positive value on

the simple roots.

Indeed, if γ = xα + xα′ with α, α′ ∈ π , then

x−γ · e2 = Nα,α′

(γ, γ )

(
(α, α)η(α∨) − (α′, α′)η(α′∨)

)
,

which implies the claim.
Also, Proposition 3.5 has to be adapted:

Proposition 1 Assume g simple. The filtrations Fη, F ′
e coincide on δM(0), if and only if

η ∈ h∗
d reg takes a fixed positive value on the simple roots.

The other parts of the paper are not affected by this corrigendum.
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