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Abstract A triangular matrix ring � is defined by a triplet (R, S, M) where R and S
are rings and R MS is an S-R-bimodule. In the main theorem of this paper we show
that if TS is a tilting S-module, then under certain homological conditions on the
S-module MS, one can extend TS to a tilting complex over � inducing a derived
equivalence between � and another triangular matrix ring specified by (S′, R, M′),
where the ring S′ and the R-S′-bimodule M′ depend only on M and TS, and S′ is
derived equivalent to S. Note that no conditions on the ring R are needed. These
conditions are satisfied when S is an Artin algebra of finite global dimension and MS

is finitely generated. In this case, (S′, R, M′) = (S, R, DM) where D is the duality
on the category of finitely generated S-modules. They are also satisfied when S is
arbitrary, MS has a finite projective resolution and ExtnS(MS, S) = 0 for all n > 0. In
this case, (S′, R, M′) = (S, R, HomS(M, S)).

Keywords Triangular matrix ring · Derived equivalence · Tilting complex

Mathematics Subject Classifications (2000) 18E30 · 16S50 · 18A25

1 Introduction

Triangular matrix rings and their homological properties have been widely studied,
see for example [4, 7, 8, 16, 18]. The question of derived equivalences between differ-
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ent such rings was explored in the special case of one-point extensions of algebras [2].
Another aspect of this question was addressed by considering examples of triangular
matrix algebras of a simple form, such as incidence algebras of posets [14]. In this
paper we extend the results of [14] to general triangular matrix rings.

A triangular matrix ring � is defined by a triplet (R, S, M) where R and S are
rings and R MS is an S-R-bimodule. The category of (right) �-modules can be viewed
as a certain gluing of the categories of R-modules and S-modules, specified by four
exact functors. This gluing naturally extends to the bounded derived categories. We
note the similarity to the classical “recollement” situation, introduced by Beilinson,
Bernstein and Deligne [3], involving six functors between three triangulated cate-
gories, originally inspired by considering derived categories of sheaves on topological
spaces, and later studied for derived categories of modules by Cline, Parshall and
Scott [5, 6], see also [13].

In Section 2 we show that triangular matrix rings arise naturally as endomorphism
rings of certain rigid complexes over abelian categories that are glued from two
simpler ones. Here, a complex T ∈ Db (C ) is rigid if HomDb (C )(T, T[n]) = 0 for all
n �= 0, where Db (C ) denotes the bounded derived category of an abelian category
C . Similarly, an object T ∈ C is rigid if it is rigid as a complex.

Indeed, when C is glued from the abelian categories A and B, we construct,
for any projective object of A and a rigid object of B satisfying some homological
conditions, a new rigid complex in Db (C ) whose endomorphism ring is a triangular
matrix ring.

In particular, as demonstrated in Section 3, this construction applies for comma
categories defined by two abelian categories A , B and a right exact functor F :
A → B. In this case, any projective P of A and a rigid object TB ∈ B satisfying
ExtnB(F P, TB) = 0 for all n > 0, give rise to a rigid complex T over the comma
category, whose endomorphism ring is a triangular matrix ring which can be explicitly
computed in terms of P, TB and F P, as

EndDb (C )(T) �
(

EndB(TB) HomB(F P, TB)

0 EndA (P)

)
.

In Section 4 we apply this construction for categories of modules over triangular
matrix rings. For a ring �, denote by Mod � the category of all right �-modules,
and by Db (�) its bounded derived category. Recall that a complex T ∈ Db (�) is a
tilting complex if it is rigid and moreover, the smallest full triangulated subcategory
of Db (�) containing T and closed under forming direct summands, equals per �, the
full subcategory in Db (�) of complexes quasi-isomorphic to perfect complexes, that
is, bounded complexes of finitely generated projective �-modules. If, in addition,
Hn(T) = 0 for all n �= 0, we call T a tilting module and identify it with the module
H0(T).

Two rings � and �′ are derived equivalent if Db (�) and Db (�′) are equivalent
as triangulated categories. By Rickard’s Morita theory for derived equivalence [19],
this is equivalent to the existence of a tilting complex T ∈ Db (�) such that
EndDb (�)(T) = �′.

When � is a triangular matrix ring defined by two rings R, S and a bimodule
R MS, the category Mod � is the comma category of Mod R, Mod S with respect to the
functor − ⊗ M : Mod R → Mod S. In this case, starting with the projective R-module
R and a tilting S-module TS, the complex T constructed in Section 3 is not only rigid,
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but also a tilting complex, hence we deduce a derived equivalence between � and
the triangular matrix ring EndDb (�)(T), as expressed in the theorem below, repeated
as Theorem 4.5 in the body of the paper.

Theorem Let R, S be rings and TS a tilting S-module. Let R MS be an S-R-bimodule
such that as an S-module, MS ∈ per S and ExtnS(MS, TS) = 0 for all n > 0. Then the
triangular matrix rings

� =
(

R M
0 S

)
and �̃ =

(
EndS(TS) HomS(M, TS)

0 R

)

are derived equivalent.

We note that the assumption that TS is a tilting module implies that the rings S
and EndS(TS) are derived equivalent, hence the triangular matrix ring specified by
the triplet (R, S, M) is derived equivalent to one specified by (S′, R, M′) where S′ is
derived equivalent to S. We note also that no conditions on the ring R (or on M as a
left R-module) are necessary.

The above theorem has two interesting corollaries, corresponding to the cases
where TS is injective or projective.

For the first corollary, let S be an Artin algebra, and let D : mod S → mod Sop

denote the duality. When S has finite global dimension, one can take TS to be the
module DS which is then an injective tilting module.

Corollary Let R be a ring, S an Artin algebra with gl.dim S < ∞ and R MS an S-R-
bimodule which is finitely generated as an S-module. Then the triangular matrix rings

� =
(

R M
0 S

)
and �̃ =

(
S DM
0 R

)

are derived equivalent, where D is the duality on mod S.

This corollary is repeated as Theorem 4.9. The ring �̃ depends only on R, S and
M, hence it may be considered as a derived equivalent mate of �.

The second corollary of the above theorem is obtained by taking the tilting S-
module to be S.

Corollary Let R, S be rings and R MS an S-R-bimodule such that as an S-module,
MS ∈ per S and ExtnS(MS, S) = 0 for all n > 0. Then the triangular matrix rings

� =
(

R M
0 S

)
and �̃ =

(
S HomS(M, S)

0 R

)

are derived equivalent.

This corollary, repeated as Corollary 4.11, applies to the following situations, listed
in descending order of generality; the ring S is self-injective (that is, S is injective as a
module over itself) and MS is finitely generated projective; the ring S is semi-simple
and MS is finitely generated; the ring S is a division ring and M is finite dimensional



60 S. Ladkani

over S. The latter case implies that a triangular matrix ring which is a one-point
extension is derived equivalent to the corresponding one-point co-extension.

In Section 5 we conclude with three remarks concerning the specific case of finite
dimensional triangular matrix algebras over a field.

First, in the case when R and S are finite dimensional algebras over a field and
both have finite global dimension, an alternative approach to show the derived
equivalence of the triangular matrix algebras specified by (R, S, M) and its mate
(S, R, DM) is to prove that the corresponding repetitive algebras are isomorphic and
then use Happel’s Theorem [9, (II,4.9)]. However, in the case that only one of R and
S has finite global dimension, Happel’s Theorem cannot be used, but the derived
equivalence still holds. Moreover, as we show in Example 5.3, there are cases when
none of R and S have finite global dimension and the corresponding algebras are not
derived equivalent, despite the isomorphism between their repetitive algebras.

Second, one can directly prove, using only matrix calculations, that when at least
one of R and S has finite global dimension, the Cartan matrices of the triangular
matrix algebra (R, S, M) and its mate are equivalent over Z, a result which is a direct
consequence of Theorem 4.9.

Third, we note that in contrast to triangular matrix algebras, in the more general
situation of trivial extensions of algebras, the mates A � M and A � DM for an
algebra A and a bimodule A MA, are typically not derived equivalent.

2 The Gluing Construction

Let A , B, C be three abelian categories. Similarly to [3, (1.4)], we view C as glued
from A and B if there exist certain functors i−1, i∗, j−1, j! as described below. Note,
however, that we start by working at the level of the abelian categories and not
their derived categories. In addition, the requirement in [3] of the existence of the
additional adjoint functors i!, j∗ is replaced by the orthogonality condition (2.6).

Definition 2.1 A quadruple of additive functors i−1, i∗, j−1, j! as in the diagram

A

i∗
��
C

i−1

��

j−1

��
B

j!

��

is called gluing data if it satisfies the four properties (2.1.1)–(2.1.4) below.

2.1.1 Adjunction

i−1 is a left adjoint of i∗ and j−1 is a right adjoint of j!. That is, there exist bi-functorial
isomorphisms

HomA (i−1C, A) � HomC (C, i∗ A) (2.1)

HomB(B, j−1C) � HomC ( j! B, C) (2.2)

for all A ∈ ob A , B ∈ ob B, C ∈ ob C .



Derived Equivalences of Triangular Matrix Rings 61

2.1.2 Exactness

The functors i−1, i∗, j−1, j! are exact.
Note that by the adjunctions above, we automatically get that the functors i∗, j−1

are left exact while i−1, j! are right exact.

2.1.3 Extension

For every C ∈ ob C , the adjunction morphisms j! j−1C → C and C → i∗i−1C give rise
to a short exact sequence

0 → j! j−1C → C → i∗i−1C → 0 (2.3)

2.1.4 Orthogonality

i−1 j! = 0 j−1i∗ = 0 (2.4)

i−1i∗ � IdA j−1 j! � IdB (2.5)

and in addition,

HomC (i∗ A, j! B) = 0 for all A ∈ ob A , B ∈ ob B (2.6)

Using the adjunctions (2.1) and (2.2), the assumptions of Eqs. 2.4, 2.5 can be
rephrased as follows. First, the two conditions of Eq. 2.4 are equivalent to each other
and each is equivalent to the condition

HomC ( j! B, i∗ A) = 0 for all A ∈ ob A , B ∈ ob B (2.7)

Similarly, the conditions in Eq. 2.5 are equivalent to the requirement that i∗ and j!
are fully faithful functors, so that one can think of A and B as embedded in C .
Moreover, from Eqs. 2.3 and 2.7 we see that (B,A ) is a torsion pair [10, (I.2)] in C .

Observe also that Eq. 2.6 could be replaced with the assumption that the functor
(i−1, j−1) : C → A × B is faithful. Indeed, one implication follows from Eqs. 2.4
and 2.5, and the other follows using Eq. 2.3.

From now on assume that (i−1, i∗, j−1, j!) form a gluing data.

Lemma 2.2 If P is a projective object of C , then i−1 P is projective in A . Similarly, if
I an injective object of C , then j−1 I is injective in B.

Proof A functor which is a left adjoint to an exact functor preserves projectives,
while a right adjoint to an exact functor preserves injectives [8, Corollary 1.6]. 
�

The exact functors i−1, i∗, j−1, j! give rise to triangulated functors between the
corresponding bounded derived categories. We use the same notation for these
derived functors:

Db (A )

i∗
��
Db (C )

i−1

��

j−1

��
Db (B)

j!

��
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Note that adjunctions and orthogonality relations analogous to Eqs. 2.1, 2.2, 2.4, 2.5
(but not Eq. 2.6) hold also for the derived functors. In particular, i∗ and j! are fully
faithful.

Definition 2.3 An object T in an abelian category A is called rigid if ExtnA (T, T) = 0
for all n > 0.

Proposition 2.4 Let P be a projective object of C and TB be a rigid object of B such
that ExtnB( j−1 P, TB) = 0 for all n > 0. Consider the complex

T = i∗i−1 P ⊕ j!TB[1]
in Db (C ). Then HomDb (C )(T, T[n]) = 0 for n �= 0 and

EndDb (C )(T) �
(

EndB(TB) Ext1C (i∗i−1 P, j!TB)

0 EndA (i−1 P)

)

is a triangular matrix ring.

Proof Since T has two summands, the space HomDb (C )(T, T[n]) decomposes into
four parts, which we now consider.

Since i∗ is fully faithful and i−1 P is projective,

HomDb (C )(i∗i−1 P, i∗i−1 P[n]) � HomDb (A )(i
−1 P, i−1 P[n]) (2.8)

vanishes for n �= 0. Similarly, since j! is fully faithful and TB is rigid,

HomDb (C )( j!TB, j!TB[n]) � HomDb (B)(TB, TB[n])
vanishes for n �= 0. Moreover, by orthogonality,

HomDb (C )( j!TB, i∗i−1 P[n]) = 0

for all n ∈ Z.
It remains to consider HomDb (C )(i∗i−1 P, j!TB[n]) and to prove that it vanishes for

n �= 1. Using Eq. 2.3, we obtain a short exact sequence 0 → j! j−1 P → P → i∗i−1 P →
0 that induces a long exact sequence, a fragment of which is shown below:

HomDb (B)( j−1 P, TB[n − 1]) � HomDb (C )( j! j−1 P[1], j!TB[n])
→ HomDb (C )(i∗i−1 P, j!TB[n]) → HomDb (C )(P, j!TB[n]).

(2.9)

Now observe that the right term vanishes for n �= 0 since P is projective, and
the left term of Eq. 2.9 vanishes for n �= 1 by our assumption on the vanishing of
Ext•B( j−1 P, TB). Therefore

HomDb (C )(i∗i−1 P, j!TB[n]) = 0

for n �= 0, 1. This holds also for n = 0 by the assumption (2.6).
To complete the proof, note that Ext1C (i∗i−1 P, j!TB) has a natural structure of an

EndA (i−1 P)-EndB(TB)-bimodule via the identifications

EndA (i−1 P) � EndC (i∗i−1 P) EndB(TB) � EndC ( j!TB)


�
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Remark 2.5 The assumptions in the proposition are always satisfied when P is a
projective object of C and TB is any injective object of B.

Remark 2.6 One can formulate an analogous statement for a rigid object TA of A
and an injective object I of C .

3 Gluing in Comma Categories

Let A ,B be categories and F : A → B a functor. The comma category with respect

to the pair of functors A
F−→ B

Id←− B [15, II.6], denoted by (F ↓ Id), is the category
C whose objects are triples (A, B, f ) where A ∈ ob A , B ∈ ob B and f : F A → B
is a morphism (in B). The morphisms between objects (A, B, f ) and (A′, B′, f ′) are
all pairs of morphisms α : A → A′, β : B → B′ such that the square

F A
f

��

Fα

��

B

β

��
F A′

f ′
�� B′

(3.1)

commutes.
Assume in addition that A , B are abelian and that F : A → B is an additive,

right exact functor. In this case, the comma category C is abelian [8]. Consider the
functors

A

i∗
��
C

i−1

��

j−1

��
B

j!

��

defined by

i∗(A) = (A, 0, 0) i∗(α) = (α, 0) i−1(A, B, f ) = A i−1(α, β) = α

j!(B) = (0, B, 0) j!(β) = (0, β) j−1(A, B, f ) = B j−1(α, β) = β

for objects A ∈ ob A , B ∈ ob B and morphisms α, β.

Lemma 3.1 The quadruple (i−1, i∗, j−1, j!) is a gluing data.

Proof We need to verify the four properties of gluing data. The adjunction follows
by the commutativity of the diagrams

F A
f

��

Fα

��

B

��
F A′ �� 0

0 ��

��

B

β

��
F A′

f ′
�� B′

for α : A → A′ and β : B → B′.
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For exactness, note that kernels and images in C can be computed component-
wise, that is, if (α, β) : (A, B, f ) → (A′, B′, f ′) is a morphism in C , then ker(α, β) =
(ker α, ker β, f |F(ker α)) and similarly for the image. The extension condition follows
from

0 → (0, B, 0)
(0,1B)−−−→ (A, B, f )

(1A,0)−−−→ (A, 0, 0) → 0

and orthogonality is straightforward. 
�

One can use the special structure of the comma category C to define another pair
of functors. Let i! : A → C and j� : C → B be the functors defined by

i!(A) = (A, F A, 1F A) i!(α) = (α, Fα)

j�(A, B, f ) = coker f j�(α, β) = β̄

where β̄ : coker f → coker f ′ is induced from β.

Lemma 3.2 i! is a left adjoint of i−1, j� is a left adjoint of j!, and

i−1i! � IdA j−1i! = F j�i! = j�i∗ = 0 j� j! � IdB

Proof The adjunctions follow by considering the commutative diagrams

F A
1F A

��

Fα

��

F A

β= f ′◦Fα

��
F A′

f ′
�� B′

F A
f

��

��

B

β

��
0 �� B′

and noting that the commutativity of the right diagram implies that β factors uniquely
through coker f . The other relations are straightforward. 
�

Remark 3.3 The diagram

A × B

(i!, j!)
��
C

(i−1, j−1)

��

(i−1, j�)
��
A × B

(i∗, j!)
��

is a special case of the one in [8, p. 7], viewing C as a trivial extension of A × B.

Proposition 3.4 Let P be a projective object of A and TB be a rigid object of
B such that ExtnB(F P, TB) = 0 for all n > 0. Assume that F P ∈ ob(B) has a pro-
jective resolution in B and consider T = (P, 0, 0) ⊕ (0, TB, 0)[1] ∈ Db (C ). Then
HomDb (C )(T, T[n]) = 0 for n �= 0 and

EndDb (C )(T) �
(

EndB(TB) HomB(F P, TB)

0 EndA (P)

)
,

where the bimodule structure on HomB(F P, TB) is given by left composition
with EndB(TB) and right composition with EndB(F P) through the natural map
EndA (P) → EndB(F P).
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Proof Since i! is a left adjoint of an exact functor, it takes projective objects of A
to projective objects of C . Hence i! P = (P, F P, 1F P) is projective and we can apply
Proposition 2.4 for i! P and TB. As (P, 0, 0) = i∗i−1i! P and (0, TB, 0) = j!TB, we only
need to show the isomorphism

Ext1C ((P, 0, 0), (0, TB, 0)) � HomB(F P, TB)

as EndA (P)-EndB(TB)-bimodules.
Indeed, let

· · · → Q2 → Q1 → F P → 0 (3.2)

be a projective resolution of F P. Then (P, 0, 0) is quasi-isomorphic to the complex

· · · → j! Q2 → j! Q1 → i! P → 0 → . . .

whose terms are projective since j! is a left adjoint of an exact functor. Therefore
Ext1C ((P, 0, 0), (0, TB, 0)) can be identified with the morphisms, up to homotopy,
between the complexes

. . . �� j! Q2 �� j! Q1 �� i! P �� 0 �� . . .

. . . �� 0 �� j!TB
�� 0 �� 0 �� . . .

(3.3)

By Lemma 3.2, HomC (i! P, j!TB) = HomA (P, i−1 j!TB) = 0, thus any homo-
topy between these complexes vanishes, and the morphism space equals
ker(HomC ( j! Q1, j!TB) → HomC ( j! Q2, j!TB)). Using the fact that j! is fully faithful
and applying the functor HomB(−, TB) on the exact sequence (3.2), we get that the
morphism space equals HomB(F P, TB), as desired.

Under this identification, the left action of EndB(TB) � EndC ( j!TB) is given by
left composition. As for the right action of EndA (P), observe that any α ∈ EndA (P)

extends uniquely to an endomorphism in the homotopy category

(0, F P, 0)
(0,1)

��

(0,Fα)

��

(P, F P, 1F P)

(α,Fα)

��
(0, F P, 0)

(0,1)
�� (P, F P, 1F P)

which determines a unique endomorphism, in the homotopy category, of the top
complex of Eq. 3.3. 
�

Remark 3.5 When the functor F : A → B admits a right adjoint G : B → A , the
comma category (F ↓ Id) is equivalent to the comma category (Id ↓ G) correspond-

ing to the pair A
Id−→ A

G←− B. In this case, one can define also a right adjoint i! of
i∗ and a right adjoint j∗ of j−1, and we end up with the eight functors (i!, i−1, i∗, i!)
and ( j�, j!, j−1, j∗). The bimodule HomB(F P, TB) in Proposition 3.4 can then be
identified with HomA (P, GTB).
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4 Application to Triangular Matrix Rings

4.1 Triangular Matrix Rings

Let R and S be rings, and let R MS be an S-R-bimodule. Let � be the triangular matrix
ring

� =
(

R M
0 S

)
=

{(
r m
0 s

)
: r ∈ R, s ∈ S, m ∈ M

}
(4.1)

where the ring structure is induced by the ordinary matrix operations.
For a ring R, denote the category of right R-modules by Mod R. The functor − ⊗

M : Mod R → Mod S is additive and right exact, hence the corresponding comma
category (− ⊗ M ↓ IdMod S) is abelian.

Lemma 4.1 [1, III.2] The category Mod � is equivalent to the comma category (− ⊗
M ↓ IdMod S).

Proof One verifies that by sending a triple (XR, YS, f : X ⊗ M → Y) to the �-
module X ⊕ Y defined by

(
x y

) (
r m
0 s

)
= (

xr f (x ⊗ m) + ys
)

(4.2)

and sending a morphism (α, β) : (X, Y, f ) → (X ′, Y ′, f ′) to α ⊕ β : X ⊕ Y → X ′ ⊕
Y ′, we get a functor (− ⊗ M ↓ IdMod S) → Mod � which is an equivalence of
categories. 
�

Corollary 4.2 There exist gluing data

Mod R

i∗
��

Mod �

i−1

��

j−1

��
Mod S.

j!

��

The functors occurring in Corollary 4.2 can be described explicitly. Let

eR =
(

1 0
0 0

)
, eS =

(
0 0
0 1

)
.

Using Eq. 4.2, observe that for a �-module Z�,

(i−1 Z )R = Z eR ( j−1 Z )S = Z eS (4.3)

where r acts on i−1 Z via
(

r 0
0 0

)
and s acts on j−1 Z via

(
0 0
0 s

)
. The morphism (i−1 Z ) ⊗

M → j−1 Z is obtained by considering the actions of
(

0 m
0 0

)
, m ∈ M, and the map

Z �→ (i−1 Z , j−1 Z , (i−1 Z ) ⊗ M → j−1 Z ) defines a functor which is an inverse to the
equivalence of categories constructed in the proof of Lemma 4.1.

Conversely, for an R-module XR and S-module YS, we have (i∗ X)� = X and
( j!Y)� = Y where

( r m
0 s

)
acts on X via r and on Y via s.
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Lemma 4.3 The image of �� in the comma category equals (R, M, 1M) ⊕ (0, S, 0).

Proof Use Eq. 4.3 and

�

(
1 0
0 0

)
=

(
R 0
0 0

)
, �

(
0 0
0 1

)
=

(
0 M
0 S

)
.


�

Remark 4.4 Since − ⊗ M admits a right adjoint Hom(M, −), we are in the situation
of Remark 3.5 and there are eight functors (i!, i−1, i∗, i!) and ( j�, j!, j−1, j∗). For the
convenience of the reader, we now describe them as standard functors ⊗ and Hom
involving idempotents, see also [6, Section 2] and [17, Proposition 2.17].

If A is a ring and e ∈ A is an idempotent, the functor

HomA(eA,−) = − ⊗A Ae : Mod A → Mod eAe

admits a left adjoint − ⊗eAe eA and a right adjoint HomeAe(Ae,−). By taking A = �

and e = eR we get the three functors (i!, i−1, i∗). Similarly, e = eS gives ( j!, j−1, j∗).
In addition, the natural inclusion functor

HomA/AeA(A/AeA,−) = − ⊗A/AeA A/AeA : Mod A/AeA → Mod A

admits a left adjoint − ⊗A A/AeA and a right adjoint HomA(A/AeA,−). By taking
A = � and e = eR, observing that eS�eR = 0, we get the three functors ( j�, j!, j−1).
For e = eS we get (i−1, i∗, i!).

4.2 The Main Theorem

For a ring �, denote by Db (�) the bounded derived category of Mod �, and by
per � its full subcategory of complexes quasi-isomorphic to perfect complexes, that
is, bounded complexes of finitely generated projective �-modules.

For a complex T ∈ Db (�), denote by 〈add T〉 the smallest full triangulated subcat-
egory of Db (�) containing T and closed under forming direct summands. Recall that
T is a tilting complex if 〈add T〉 = per � and HomDb (�)(T, T[n]) = 0 for all integers
n �= 0. If, moreover, Hn(T) = 0 for all n �= 0, we call T a tilting module and identify
it with the module H0(T).

Theorem 4.5 Let R, S be rings and TS a tilting S-module. Let R MS be an S-R-
bimodule such that as an S-module, MS ∈ per S and ExtnS(MS, TS) = 0 for all n > 0.
Then the triangular matrix rings

� =
(

R M
0 S

)
and �̃ =

(
EndS(TS) HomS(M, TS)

0 R

)

are derived equivalent.

Proof For simplicity, we shall identify Mod � with the corresponding comma cate-
gory. We will show that T = (R, 0, 0) ⊕ (0, TS, 0)[1] is a tilting complex in Db (�)

whose endomorphism ring equals �̃.
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Applying Proposition 3.4 for the projective R-module R and the rigid S-
module TS, noting that F R = MS and ExtnS(MS, TS) = 0 for n > 0, we see that
HomDb (�)(T, T[n]) = 0 for all n �= 0 and moreover EndDb (�)(T) � �̃.

It remains to show that 〈add T〉 = per �. First, we show that T ∈ per �. Observe
that j!(per S) ⊆ per �, since j! is an exact functor which takes projectives to projec-
tives and j!S = (0, S, 0) is a direct summand of �. Hence in the short exact sequence

0 → (0, M, 0) → (R, M, 1M) → (R, 0, 0) → 0, (4.4)

we have that (0, M, 0) ∈ per � by the assumption that MS ∈ per S, and (R, M, 1M) ∈
per � as a direct summand of �. Therefore (R, 0, 0) ∈ per �. In addition, (0, TS, 0) ∈
per � by the assumption TS ∈ per S, hence T is isomorphic in Db (�) to a perfect
complex.

Second, in order to prove that 〈add T〉 = per � it is enough to show that � ∈
〈add T〉. Indeed, since (0, TS, 0)[1] is a summand of T, by the exactness of j! and
our assumption that 〈add TS〉 = per S, we have that (0, S, 0) ∈ 〈add T〉 and (0, M, 0) ∈
〈add T〉. Since (R, 0, 0) is a summand of T, by invoking again the short exact
sequence (4.4) we see that (R, M, 1M) ∈ 〈add T〉, hence � ∈ 〈add T〉.

Therefore T is a tilting complex in Db (�), and by [19] (see also [12, (1.4)]), the
rings � and �̃ � EndDb (�)(T) are derived equivalent. 
�

Remark 4.6 The assumption that TS is a tilting module implies that the rings S and
EndS(TS) are derived equivalent.

Remark 4.7 When the tilting module TS is also injective, it is enough to assume that
MS ∈ per S.

4.3 Applications

Let S be an Artin algebra over an Artinian commutative ring k, and let mod S be
the category of finitely generated right S-modules. Let D : Mod S → Mod Sop be the
functor defined by D = Homk(−, J), where J is an injective envelope of the direct
sum of all the non-isomorphic simple modules of k. Recall that D restricts to a duality
D : mod S → mod Sop. Applying it on the bimodule SSS, we get the bimodule S DSS =
Homk(S, J).

Lemma 4.8 Let R be a ring and R MS a bimodule. Then S DMR � HomS(R MS, S DSS)

as R-S-bimodules.

Proof By the standard adjunctions,

HomS(R MS, Homk(SSS, J)) � Homk(R MS ⊗S SS, J) = Homk(R MS, J).


�

It follows that D = HomS(−, DSS), hence DSS is an injective object in Mod S. We
denote by gl.dim S the global dimension of mod S.



Derived Equivalences of Triangular Matrix Rings 69

Theorem 4.9 Let R be a ring, S an Artin algebra with gl.dim S < ∞ and R MS an S-
R-bimodule which is finitely generated as an S-module. Then the triangular matrix
rings

� =
(

R M
0 S

)
and �̃ =

(
S DM
0 R

)

are derived equivalent, where D is the duality on mod S.

Proof The module DSS is injective in Mod S and any module in mod S has an
injective resolution with terms that are summands of finite direct sums of DS. Since
gl.dim S < ∞, such a resolution is finite, hence 〈add DS〉 = per S and M ∈ per S for
any M ∈ mod S.

Therefore the assumptions of Theorem 4.5 are satisfied for TS = DS (see also
Remark 4.7), and it remains to show that EndS(TS) = S and HomS(M, TS) � S DMR

(as bimodules). This follows by the Lemma 4.8 applied for the bimodules S DSS and
R MS. 
�

Remark 4.10 Under the assumptions of Theorem 4.9, when R is also an Artin k-
algebra and k acts centrally on M, the rings � and �̃ are Artin algebras and the
derived equivalence in the theorem implies that Db (mod �) � Db (mod �̃).

Moreover, by using the duality D, one sees that Theorem 4.9 is true for two Artin
algebras R and S and a bimodule R MS on which k acts centrally under the weaker
assumptions that M is finitely generated over k and at least one of gl.dim R, gl.dim S
is finite.

By taking TS = S in Theorem 4.5, we get the following corollary.

Corollary 4.11 Let R, S be rings and R MS an S-R-bimodule such that as an S-module,
MS ∈ per S and ExtnS(MS, S) = 0 for all n > 0. Then the triangular matrix rings

� =
(

R M
0 S

)
and �̃ =

(
S HomS(M, S)

0 R

)

are derived equivalent.

Remark 4.12 The conditions of Corollary 4.11 hold when the ring S is self-injective,
that is, S is injective as a (right) module over itself, and R MS is finitely generated
projective as an S-module. In particular, this applies when S is a semi-simple ring
and M is finitely generated as an S-module.

Remark 4.13 Recall that for a ring R, a division ring S and a bimodule S NR which
is finite dimensional as a left S-vector space, the one-point extension R[N] and the
one-point coextension [N]R of R by N are defined as the triangular matrix rings

R[N] =
(

S S NR

0 R

)
[N]R =

(
R R DNS

0 S

)

where D = HomS(−, S) is the duality on mod S. By taking M = DN in the preceding
remark, we see that the rings R[N] and [N]R are derived equivalent. Compare this
with the construction of “reflection with respect to an idempotent” in [20].
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5 Concluding Remarks

5.1 Repetitive Algebras

In the specific case of Artin algebras, another approach to the connection between a
triangular matrix algebra � and its mate �̃ involves the use of repetitive algebras, as
outlined below.

Let � be an Artin algebra over a commutative Artinian ring k and let D : mod k →
mod k be the duality. Recall that the repetitive algebra �̂ of �, introduced in [11], is
the algebra (without unit) of matrices of the form

�̂ =

⎛
⎜⎜⎜⎜⎝

. . . D�i−1 0
0 �i D�i 0

0 �i+1 D�i+1

0
. . .

⎞
⎟⎟⎟⎟⎠

where �i = �, D�i = D� for i ∈ Z, and only a finite number of entries are nonzero.
The multiplication is defined by the canonical maps � ⊗� D� → D�, D� ⊗� � →
D� induced by the bimodule structure on D�, and the zero map D� ⊗� D� → 0.

When � is a triangular matrix algebra, one can write

� =
(

R M
0 S

)
D� =

(
DR 0
DM DS

)

and a direct calculation shows that the maps � ⊗ D� → D� and D� ⊗ � → D�

are given by multiplication of the above matrices, under the convention that
M ⊗S DS → 0 and DR ⊗R M → 0.

As for the mate �̃, we have

�̃ =
(

S DM
0 R

)
D�̃ =

(
DS 0
M DR

)
,

therefore the repetitive algebras of � and its mate �̃ have the form

�̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . . DM DS
R M DR

S DM DS
R M DR

S DM DS
R M

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, ̂̃� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . . M DR
S DM DS

R M DR
S DM DS

R M DR
S DM

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and are thus clearly seen to be isomorphic.
When k is a field and both algebras R and S have finite global dimension, this can

be combined with Happel’s Theorem [9, (II.4.9)] to deduce that � and its mate �̃ are
derived equivalent.

Note, however, that for the derived equivalence between � and �̃ to hold,
it is enough to assume that only one of R, S has finite global dimension (see
Remark 4.10).
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Moreover, while the repetitive algebras of � and �̃ are always isomorphic, in the
case where none of R, S have finite global dimension, the algebras � and �̃ may not
be derived equivalent, see Example 5.3 below.

5.2 Grothendieck Groups

In this subsection, k denotes an algebraically closed field. Let � be a finite dimen-
sional k-algebra and let P1, . . . , Pn be a complete collection of the non-isomorphic
indecomposable projectives in mod �. The Cartan matrix of � is the n × n integer
matrix defined by Cij = dimk Hom(Pi, Pj).

The Grothendieck group K0(per �) of the triangulated category per � can be
viewed as a free abelian group on the generators [P1], . . . , [Pn], and the Euler form

〈K, L〉 =
∑
r∈Z

(−1)r dimk HomDb (�)(K, L[r])

on per � induces a bilinear form on K0(per �) whose matrix with respect to that basis
equals the Cartan matrix.

It is well known that a derived equivalence of two algebras � and �′ induces an
equivalence of the triangulated categories per � and per �′, and hence an isometry
of their Grothendieck groups preserving the Euler forms. We now consider the
consequences of the derived equivalence of Theorem 4.9 (when R and S are finite
dimensional k-algebras) for the corresponding Grothendieck groups.

For simplicity, assume that � is basic. In this case, there exist primitive orthogonal
idempotents {e1, . . . , en} in � such that Pi � ei� for 1 ≤ i ≤ n. Therefore by the
isomorphisms Hom�(ei�, N) � Nei of k-spaces for any �-module N�, we get that
Cij = dimk e j�ei.

Lemma 5.1 Let R, S be basic, finite dimensional k-algebras, and let R MS be a
finite dimensional S-R-bimodule. Then the Cartan matrix C� of the corresponding
triangular matrix algebra � is of the form

C� =
(

CR 0
CM CS

)

where CR, CS are the Cartan matrices of R, S.

Proof Let e1, . . . , en and f1, . . . , fm be complete sets of primitive orthogonal idem-
potents in R and in S. Let ēi = ei

(
1 0
0 0

)
and f̄ j = f j

(
0 0
0 1

)
. Then ē1, . . . , ēn, f̄1, . . . , f̄m

is a complete set of primitive orthogonal idempotents of � and the result follows by
computing the dimensions of ēi�ēi′ , ēi� f̄ j, f̄ j�ēi and f̄ j� f̄ j′ . In particular, (CM) ji =
dimk ei Mf j. 
�

Since dimk f jDMei = dimk ei Mf j, we get by Lemma 5.1 that the Cartan matrices
of � and its mate �̃ are

C� =
(

CR 0
CM CS

)
C�̃ =

(
CS 0
Ct

M CR

)
.

When at least one of R and S has finite global dimension, the derived equivalence
of Theorem 4.9 implies that C� and C�̃ represent the same bilinear form, hence they
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are congruent over Z, that is, there exists an invertible matrix P over Z such that
PtC� P = C�̃.

One can also show this congruence directly at the level of matrices, as follows.

Lemma 5.2 Let K be a commutative ring. Let A ∈ Mn×n(K) be a square matrix,
B ∈ GLm(K) an invertible square matrix and C ∈ Mm×n(K). Then there exists P ∈
GLn+m(K) such that

Pt
(

A 0
C B

)
P =

(
B 0
Ct A

)

Proof Take P =
(

0 In

−B−1 Bt −B−1C

)
. Then

Pt
(

A 0
C B

)
P =

(
0 −BB−t

In −Ct B−t

)(
A 0
C B

) (
0 In

−B−1 Bt −B−1C

)

=
(

0 −BB−t

In −Ct B−t

)(
0 A

−Bt 0

)
=

(
B 0
Ct A

)


�

Note that one could also take P =
(−A−tCt −A−t A

Im 0

)
, hence it is enough to

assume that at least one of A and B is invertible.
The conclusion of the lemma is false if one does not assume that at least one of the

matrices A, B is invertible over K. This can be used to construct triplets consisting of
two finite dimensional algebras R, S (necessarily of infinite global dimension) and a
bimodule M such that the triangular matrix algebra � and its mate �̃ are not derived
equivalent.

Example 5.3 Let R = k[x]/(x2), S = k[y]/(y3) and M = k with x and y acting on k
as zero. Then the triangular matrix algebras

� =
(

k[x]/(x2) k
0 k[y]/(y3)

)
�̃ =

(
k[y]/(y3) k

0 k[x]/(x2)

)

are not derived equivalent, since one can verify that their Cartan matrices

C� =
(

2 0
1 3

)
C�̃ =

(
3 0
1 2

)

are not congruent over Z. Note that despite the fact that R and S are self-injective,
Corollary 4.11 cannot be used since M does not have a finite projective resolution.

5.3 Trivial Extensions

Triangular matrix rings are special cases of trivial extensions [1, p. 78]. Indeed, if
R, S are rings and R MS is a bimodule, the corresponding triangular matrix ring is
isomorphic to the trivial extension A � M where A = R × S and M is equipped with
an A-bimodule structure via (r, s)m = rm and m(r, s) = ms.
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We remark that even when A is a finite dimensional k-algebra of finite global
dimension and M is a finite dimensional A-bimodule, the trivial extension algebras
A � M and A � DM are generally not derived equivalent, so that the derived
equivalence in Theorem 4.9 is a special feature of triangular matrix rings.

Example 5.4 Let A = kQ where Q is the quiver •1 �� •2 and let M be the

kQ-bimodule corresponding to the following commutative diagram of vector spaces

0(1,1)

������

0(2,1)

�������

�����
��

k(1,2)

0(2,2)

������

Then A � M is the path algebra of the quiver • ⇒ • while A � DM is the path alge-
bra of • � • modulo the compositions of the arrows being zero. These two algebras
are not derived equivalent since gl.dim(A � M) = 1 while gl.dim(A � DM) = ∞.
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