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Abstract
The amount of data generated owing to the rapid development of the Smart Internet of 
Things is increasing exponentially. Traditional machine learning can no longer meet the 
requirements for training complex models with large amounts of data. Federated learning, 
as a new paradigm for training statistical models in distributed edge networks, alleviates 
integration and training problems in the context of massive and heterogeneous data and 
security protection for private data. Edge computing processes data at the edge layers of 
data sources to ensure low-data-delay processing; it provides high-bandwidth commu-
nication and a stable network environment, and relieves the pressure of processing mas-
sive data using a single node in the cloud center. A combination of edge computing and 
federated learning can further optimize computing, communication, and data security for 
the edge-Internet of Things. This review investigated the development status of federated 
learning and expounded on its basic principles. Then, in view of the security attacks and 
privacy leakage problems of federated learning in the edge Internet of things, relevant work 
was investigated from cryptographic technologies (such as secure multi-party computation, 
homomorphic encryption and secret sharing), perturbation schemes (such as differential 
privacy), adversarial training and other privacy security protection measures. Finally, chal-
lenges and future research directions for the integration of edge computing and federated 
learning are discussed.
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1  Introduction

As a new Internet technology, the Smart Internet of Things (SIoT) has ushered in a new 
wave of development in correspondence with the rise in artificial intelligence technologies, 
which can greatly help the development of intelligence in various fields (Shen et al. 2023). 
IoT devices have increasingly advanced sensing technologies, storage capabilities, and 
computing and processing capabilities. They are widely deployed for various sensing tasks, 
such as in wearable medical monitoring devices to assist in diagnosis (Jan et  al. 2023), 
smart agricultural monitors (Garg and Alam 2023), and smart industrial control (Adhikari 
et al. 2023). Successful practices in these fields must consider the foundations of big data, 
large-scale data analyses, and the training and application of machine learning (ML) mod-
els. However, traditional centralized ML processes are facing ever-growing, multi-source, 
heterogeneous, and complex distributed IoT data. These data cannot be managed by relying 
only on the limited functional services provided by cloud service centers (Ge et al. 2023; 
Shuvo et  al. 2022). The cloud-centric computing model uploads data collected by edge-
IoT devices to a central cloud server for centralized storage, processing, and computing. 
Nevertheless, the centralized processing model based on the cloud center cannot withstand 
the explosive growth in data volume. Moreover, data related to user privacy are uploaded 
to the cloud center to address security issues, increasing privacy leakages. Edge computing 
(EC) is a new distributed computing paradigm (Shi et al. 2016) for storing, processing, and 
applying data collected by edge-IoT devices on the edge side close to the data source. The 
EC approach effectively reduces the pressure of performing data processing in the cloud 
center. The bottleneck in the transmission communication retains the training data in edge 
device nodes to avoid the risk of privacy data leakages to a certain extent (Li et al. 2022a; 
Ranaweera et al. 2021). EC approaches combining ML (Hua et al. 2023; Ning et al. 2023) 
and deep learning (DL) (Ahmad et  al. 2023; Zhang et  al. 2023a; Ghosh and Grolinger 
2020) have been applied in many fields.

Federated learning (FL) is a paradigm for training statistical learning models on distrib-
uted edge networks, and was proposed by Google in 2016 (Mcmahan et al. 2017). It is a 
mainstream solution for solving the problems concerning huge communication overheads, 
data privacy security, and heterogeneous data fusion (Fan et al. 2023; Xu et al. 2023). As 
a distributed ML (DML) method, FL realizes global model training without local source 
data. Through FL, each local device only needs to encrypt the local model parameter 
updates and then upload them to a central aggregation server. The central aggregation 
server then uses a federated average algorithm to obtain a global model parameter update. 
Next, each local device can download the global model parameters and decrypt them. 
Finally, each local device uses the global model parameters for the local ML model train-
ing. This process cannot be stopped until the maximum number of iterations or required 
model accuracy is reached. FL has been successfully applied in medical (Fan et al. 2022; 
Li et al. 2023a; Myrzashova et al. 2023; Sharma and Guleria 2023), industrial (Zheng et al. 
2023; Guo et al. 2023), agricultural (Durrant et al. 2022; Friha et al. 2021) and other fields. 
It enables models to be trained on edge devices, which also means that EC is an appropri-
ate environment for using FL. Therefore, problems such as high communication costs, pri-
vacy and data security needs, and heterogeneous data isolation in edge-Internet of Things 
(edge-IoT) networks can be alleviated by utilizing FL technology in the EC environment. 
Moreover, FL solves the privacy and security problem of sensitive data in ML in the EC 
environment. However, the processes of uploading and downloading the model update 
parameters, training iterations, and other processes still expose the FL environment to a 
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series of risks. For example, malicious hacker attacks and dishonest participants may use 
the model parameters to infer the original data (Phong et al. 2017). The data security and 
privacy-preserving schemes in FL in an EC environment face the following threats and 
challenges.

• Data security threats. In EC environment, communications between devices and 
between devices and aggregation servers may be subject to various network attacks, 
and edge devices are usually distributed in untrusted environments and may be sub-
ject to physical attacks or malicious tampering, etc. FL systems in an EC environment 
need to send data to the edge layer close to the data source for processing, which still 
involves the risk of data security. These systems may also be subject to various forms 
of attacks, such as poisoning attack. A malicious client in the FL system may send 
incorrect model updates to the parameter aggregation server to probe the remaining 
participating side datasets or destroy the model accuracy. In the edge-IoT network envi-
ronment, participants can access the FL system any time, verify their identity cred-
ibility, and grant access to the system. Building a trusted FL system in an untrusted 
environment remains a key issue in the design of FL security systems.

• Data privacy-preserving issues. Edge computing drives services closer to end-users, 
and FL transfers models from edge service nodes to the user’s local for training, miti-
gating the risk of privacy leakage caused by user data leaving the local area. However, 
information such as model training parameters or gradients communicated between 
local devices and edge service nodes may still leak information about the local raw 
dataset (Ge et al. 2023). Meanwhile, since service providers are usually honest but curi-
ous and have the most private information at their disposal, even partial model updates 
may lead to serious privacy data leakage problems. Therefore, the constant updating of 
attack types also puts new requirements on the research of privacy-preserving FL tech-
niques under edge computing.

• Communication and computation overhead. The rapid popularization of SIoT applica-
tions has led to an explosive growth in the amount of data at edge nodes, and the high 
computational cost brought by massive data training and the high communication cost 
generated by the exchange of large-scale model parameters have seriously hindered 
the widespread application of FL techniques. Meanwhile, the low computational per-
formance, limited communication bandwidth, network real-time and high quality of 
service requirements of edge devices also pose challenges to the research of novel FL 
techniques in EC environments.

• In EC, FL enables large-scale device collaboration for training AI models in a privacy-
preserving manner. However, the scale of edge devices involved in FL is huge, and the 
performance and computational power of hardware devices may vary greatly. Mean-
while, the geographic distribution of edge devices varies widely, which may lead to 
heterogeneity problems such as network latency, instability, and bandwidth limitations. 
Finally, each edge device as a FL participant usually has non-independent and homo-
geneously distributed datasets, and heterogeneous data sources bring huge negative 
impact on the accuracy of FL models. Device heterogeneity in IoT EC environments 
poses significant challenges for FL implementations.

Several current research works are devoted to the innovation and application of FL the-
ory in EC. Edge terminal devices with high mobility and exposed to the open edge network 
environment are prone to various malicious attacks, which not only affect the performance 
of the FL model, but also bring serious data security and privacy leakage problems to the 
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FL process. To address the data security problem of the FL process under EC, (Huang 
et al. 2023a) proposed a reliable FL mechanism for mobile EC, designing endpoint selec-
tion algorithms based on the reputation mechanism for the construction of the reputation 
model and the concealment of the selected endpoints, and maintaining the model perfor-
mance through elite campaigning to reduce the impact of poisoning attacks on the model. 
(Ni et al. 2023) proposed a new Byzantine robust FL framework, which identifies and dis-
cards malicious gradients through a dual filtering mechanism design, and uses an adaptive 
weight adjustment scheme to dynamically reduce the aggregation weights of potentially 
malicious gradients, to realize secure and trustworthy FL in IoT. (Li et al. 2023b) address 
the security attacks that FL is vulnerable to in distributed adversarial environments, and 
non-independent and homogeneous distribution of data further weakening the robustness 
of the existing FL methods. The Mini-FL scheme was proposed. This scheme performs 
unsupervised learning on the received gradients to define a grouping policy, and the aggre-
gation server groups the received gradients according to the grouping policy and calculates 
the weighted average of the gradients in each group to update the global model. Existing 
FL data security technology schemes mainly involve endpoint selection, hardware device 
secure communication, model secure aggregation, and security detection, etc., and the 
related technology development and innovation are still ongoing.

To address the privacy protection of FL process under EC, (Zhu et al. 2023) proposed an 
enhanced FL model with reinforcement learning, and designed a partially encrypted secure 
multiparty broadcast computation algorithm by combining the advantages of end-to-end 
homomorphic encryption and secure multiparty computation, which realizes that the edge 
device and the roadside unit collaborate to train the learning model without exposing the 
original data. (Li et  al. 2023c) proposed a ubiquitous intelligent FL privacy protection 
scheme, designing matrix masks to ensure secure transmission between embedded devices 
and edge servers, while using differential privacy mechanisms to train residual models on 
edge servers to provide privacy protection for data under EC. (Liu et al. 2023a) discussed 
the problem that most FL privacy protection protocols only provide single round privacy 
guarantees, and proposed a long-term privacy protection aggregation protocol, which uses 
a batch partition deletion update policy and integrates with advanced privacy-preserving 
aggregation protocols to satisfy single- or multi-round privacy guarantees. Privacy protec-
tion is an important issue in the combination of FL and EC, and the existing technical 
solutions mainly include encryption techniques, differential privacy techniques, etc. The 
FL process in EC environment involves information exchange and model training among 
multiple devices or edge nodes, and requires comprehensive consideration of various fac-
tors such as algorithms, protocols and policies.

Distinguished from other published works focusing on FL within EC, this paper dis-
tinctly delineates the landscape of security issues and privacy threats intrinsic to FL within 
edge networks. Additionally, it meticulously categorizes and expounds upon the adverse 
consequences stemming from diverse privacy security attacks, comprehensively dissect-
ing their impacts on the FL process. Compared to the literature (Huang et al. 2023a; Ni 
et  al. 2023; Li et  al. 2023b, 2023c; Zhu et  al. 2023; Liu et  al. 2023a) that explores the 
data security and privacy protection issues involved in FL under EC. This review system-
atically sorts out the current research results of privacy-preserving FL in edge networks, 
and focuses on the problems of multi-party conspiracy to steal private data and mali-
cious adversaries destroying the FL process in FL and the corresponding security defense 
schemes.

This article aims to provide a comprehensive discussion of the development of safe and 
reliable FL systems in an EC environment. First, we introduce concepts related to EC and 
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FL. We then summarize the data security risks and privacy leakage threats in the current 
edge-IoT environment. Next, we review the research progress on FL’s existing privacy data 
security protection technologies in EC. Finally, we analyse future research hotspots in FL 
privacy security protection in edge-IoT, and provide several research suggestions for estab-
lishing a secure and trusted FL system under edge-IoT.

2  Fundamentals of federated learning

This section introduces the concepts and working principles of EC and FL. We also sum-
marize the data security and privacy leakage attacks faced by FL systems in current edge-
IoT environments.

2.1  Related technologies

2.1.1  Edge computing

At present, ML training data mainly comes from edge-IoT devices, which not only have a 
large amount of data, but also a high degree of data heterogeneity. With increasing atten-
tion being paid to the security protection of private data, the traditional architecture model 
of centralized processing in a cloud center can no longer meet the needs of the current 
technological developments. As a new type of distributed computing technology, the core 
of the EC technology involves loading raw data into edge network devices (such as edge 
servers) for storage, processing, and computing. In the edge-IoT, the breakthroughs in EC 
technology have meant that many ML model trainings can be implemented locally without 
having to be delivered to a cloud center. The EC processes and analyses data in real time 
near the data source, providing the advantages of high data processing efficiency, strong 
real-time performance, and low network latency. This mode is closer to the user and solves 
requirements at the edge node. It effectively improves the computing processing efficiency, 
reduces channel pressure, and protects the security of private data.

2.1.2  Deep learning

DL is currently used in a wide range of applications, including computer vision and natu-
ral language processing. Terminal devices such as smartphones and IoT sensors generate 
data to be analysed in real time using DL and to train DL models. However, DL inferences 
and training require significant computing resources for quick execution. EC’s fine grid of 
computing nodes placed close to terminal devices is a viable way to meet the high comput-
ing and low latency requirements of edge device DL and also provides privacy technology 
protection, bandwidth efficiency, and scalability. However, there is a risk that the sensitive 
information of data owners in the EC environment will be leaked when the data leaves the 
edge server node during local upload. Service providers are usually honest, but may be 
curious. FL was initially proposed to provide a collaborative data-training solution. It pro-
vides considerable privacy enhancements by coordinating multiple client devices to train a 
shared ML model without directly exposing the underlying data.
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2.1.3  Definition of FL

FL problems involve learning a single global statistical model from data stored in a large 
number of remote devices. An example of a traditional FL architecture is shown in Fig. 1. 
The goal of FL is to learn the model under the constraints of local storage and the process-
ing of the data generated by the device, and to periodically update the model parameters to 
be communicated with the cloud parameter server. In other words, the goal is to minimize 
the following objective function, i.e., to minimize the average training loss for all custom-
ers, as follows:

where, m is the total number of devices participating in training,  pk specifies the relative 
weight of influence attributed to each individual device, and Fk(w) is the local objective 
function of the k th device. Fk(w) is usually defined as the empirical risk of the local data, 
as follows:

where, nk is the data volume of the k th device,  fi(w, xi, yi) is the loss function of the model 
with the parameter w on the instance (xi, yi) in the k th device-local dataset. The optimiza-
tion process within FL focuses on the minimization of the value associated with the local 
loss function.

The FL architecture can also be designed using peer-to-peer networking, as shown in 
Fig.  2. This architecture eliminates the hidden dangers caused by a single failure point, 
further ensuring system security. It is easy to scale but may consume a greater amount of 
computing resources in the encryption and decryption of message communication.

(1)min

w
F(w),F(w) =

∑m

k=1
pkFk(w)

(2)Fk(w) =
1

nk

∑nk

i=1
fi(w, xi, yi)

Fig. 1  Federated learning system architecture: client–server
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2.2  FL data security and privacy leakage

In edge-IoT, a large number of edge-IoT devices are often connected to the Internet, which 
undoubtedly significantly increases the security risks. Currently, most of the various secu-
rity attack methods are conducted through the Internet, and the success rate is generally 
high. In this environment, there are a variety of data security and privacy leakage threats 
in FL systems. This paper mainly discusses the data security attacks and privacy leakage 
attacks involved in FL in edge-IoT.

2.2.1  FL data security attacks

FL under EC utilizes the computational power of edge devices to collaboratively train 
models. However, insecure network communication environments and design flaws of tra-
ditional FL structures lead to many data security issues facing the FL process. At the same 
time, current FL security techniques are difficult to defend against constantly innovative 
and sophisticated security attacks. Malicious adversaries often use vulnerable edge-IoT 
devices to intrude into internal targets, destroying the global model convergence as well as 
the model performance, thus posing security threats to the entire FL process. In the follow-
ing, the more common data security attacks are described and categorized in detail.

Poisoning attack: In the FL system, a poisoning attack (Bhagoji et al. 2019; Chen et al. 
2023) aims to use poisoned data to disrupt the model training and reduce the federated 
model accuracy. Poisoning attacks can be divided into model and data poisoning. Model 
poisoning attacks are injected into the model trained by the edge nodes. Data poisoning 
can disrupt the model training by injecting poisoned data into a local dataset of an edge 
device. Both methods will produce malicious updates to the model training of FL systems, 
and it is difficult to detect such attackers (Fang et al. 2020; Guo et al. 2022). In the edge-
IoT environment, the large and complex number of networked devices participating in the 
FL system and degrees of device trustworthiness are unknown, posing a potential threat to 
the security of the FL system. Therefore, it is necessary to develop defensive measures to 
protect FL systems from poisoning (Rodríguez-Barroso et al. 2022a).

Fig. 2  Federated learning system architecture: Peer-to-peer network architecture



 H. Li et al.

1 3

130 Page 8 of 38

Sybil attacks: In FL-distributed networks, attackers can use a single node to forge mul-
tiple identities. Attackers use these forged identities to control or affect other normal nodes 
in a distributed network, resulting in network robustness losses (Douceur 2002; Singh and 
(2006) Eclipse attacks on overlay networks: Threats and defenses. In: Proceedings IEEE 
INFOCOM  2006;). In the context of edge intelligent networks, distributed collabora-
tive intelligent applications need to exchange a large amount of data and information to 
ensure the efficient operation of different programs, and the distributed network environ-
ment provides conditions for Sybil attacks, where attackers can create multiple identities to 
interfere with the normal operation of the system or steal services for profit (Hammi et al. 
2022). Traditional FL allows distributed clients to join and exit the system, and attackers 
can use multiple colluding aliases to join the system to execute attacks, for this reason, 
some researchers have set up a trusted third party for centralized FL systems to verify false 
node identities or use blockchain technology to implement decentralized and reliable FL in 
untrustworthy networks, and utilize the structural properties of the blockchain and cryptog-
raphy to defend against Sybil attacks (Xiao et al. 2022; Fang et al. 2022).

Backdoor attack: Backdoor attack is when an attacker intentionally inserts a malicious 
message or "backdoor" into a system in order to trigger malicious behavior under certain 
conditions. Backdoor attack may cause a system to perform well under normal conditions, 
but perform illegal and improper tasks when certain conditions are met. Since FL involves 
multiple participants, an attacker can attempt to insert a backdoor into the local model 
of some trusted participants and then disrupt the FL process by tampering with gradient 
updates, sending malicious update parameters. Meanwhile, after multiple iterations of FL, 
the model parameter aggregation may change and the embedded backdoor may gradually 
fail. Therefore, malicious actors often increase the persistence of backdoor attacks in FL by 
slowing down the learning rate during training (Nguyen et al. 2024; Gong et al. 2022; Yang 
et al. 2023a).

Byzantine attack: As the most typical attack method in FL, the attacker tries to tamper 
with the model update parameters submitted by trusted nodes so that the actual model 
aggregation deviates far from the model convergence direction, resulting in a decrease in 
the FL model accuracy and serious deviations in the predicted values. This type of secu-
rity attack is the most common and is highly effective. Correspondingly, the FL security 
systems for Byzantine attacks are also being updated. The use of secure robust aggrega-
tion is currently recognized as an effective means for defending against Byzantine attacks 
(Li et al. 2023d; Miao et al. 2022; Wan et al. 2022).

Free-riding Attack: In FL, free-riding attack is the process of a free-rider generating 
false model update parameters to report to the parameter server. Then, the free-rider uses 
the global model parameters to update its local model but does not contribute its own 
local data to the global model aggregation. Free-riding attacks reduce the amount of data 
involved in global model training. Spurious parameter updates can also affect the global 
model accuracy (Lin et al. 2019; Fraboni et al. 2021).

Adversarial attack: Adversarial attack in FL deceive federated models by adding subtle 
perturbations to the local raw data to generate adversarial samples. Adversarial attacks can 
be divided into white-box, black-box, targeted, and non-directed attacks. In a white-box 
attack, the adversary masters the model and training data information; however, this is gen-
erally inconsistent with actual situations. Under a black-box attack, the adversary has little 
knowledge of the model and training set information. This is in line with the actual sce-
narios, and is currently the main research direction. Under a targeted attack, a multi-clas-
sification ML model classifies and outputs input samples into specified categories. Under 
a non-directional attack, the adversary uses generative adversarial samples to deceive the 
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FL model. Adversarial attacks help adversaries evade FL system security detection and can 
generate poisoned samples to undermine the FL system accuracy (Goodfellow et al. 2014; 
Nair et al. 2023).

2.2.2  FL privacy leakage attacks

In terms of privacy leakage, during the entire training cycle of the FL model, information 
such as weight updates and gradient updates may be leaked as sensitive private data. Dur-
ing this period, there may be a risk of privacy leakage, whether from the participating cli-
ents of the FL, central servers, or third-party servers. Recent studies have found that even 
some model gradient information can be leaked as local private data samples or features. 
Malicious attackers can also steal the training datasets of a local client in an FL iteration, 
or rebuild the training datasets through an FL global model inversion.

Model inversion attack: This type of attack method obtains the training set informa-
tion from a target model that has completed the training. A model inversion attack infers 
the training set information through a reverse analysis. This information can be the infor-
mation of members participating in the training and/or certain statistical characteristics of 
the training set data. For example, an attack method that uses a model inversion attack 
to infer actor identity information is called a member inference attack. Member inference 
attacks are designed to obtain information by checking for the presence of raw data in the 
training set (Hu et  al. 2023). In an FL member inference attack, with each iteration, the 
data contributor uploads its own model update parameters to the parameter server. At this 
time, the server understands the model characteristics and global model parameters of 
each party. Thus, it can easily be determined whether a specific data sample is in the local 
training dataset. In some cases, parameter servers can become malicious adversaries and 
conduct member inference attacks. The remaining participants in the FL system may be 
potential adversaries. They can determine whether the estimated data originates from the 
target model training set. Subsequently, the adversaries judge whether the data are member 
data. During the entire attack process, the FL model parameter contributors don’t know the 
opponent’s inference attack behavior, leading to the privacy data of the model contributors 
being leaked unknowingly (Hatamizadeh et al. 2023).

Refactoring attack: This type of attack focuses on reconstructing all of the training set 
information of the model contributors or certain sensitive feature categories of the train-
ing set (e.g., attribute category labels). Several reconstruction attack methods have been 
proposed, such as generalized adversarial network (GAN) attacks. (Hitaj et al. 2017) first 
proposed a GAN-based data reconstruction attack to steal the private data of model con-
tributors. When using the GAN to attack the FL, an adversary generates a prototype of the 
training data of the target by training the GAN. By injecting fake training data samples 
into the model server, the model contributor is tricked into contributing more local training 
data. Eventually, the adversary may use this information to restore the local original data 
of the model contributor and thereby steal sample data. Through GAN attacks, adversar-
ies can also complete data category inferences (Liu et al. 2023b) and label inferences (Jin 
et al. 2023). Because the FL system server does not know much regarding the reputation 
and honesty of the various parties, it is difficult to distinguish a GAN-based data-inference 
attack. Therefore, when building and maintaining FL security systems, it is necessary to 
strengthen the identification of and defend to such reconstruction attack methods.

Model extraction attack: In 2016, (Tramèr et  al. 2016) proposed a model extraction 
attack method focused on reconstructing alternative models similar to the target model. In 
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the FL context, the adversary obtains black-box access to the target model. It obtains the 
return result by sending data in a loop and uses these return values to steal the FL model 
update parameters or model functions. It restores the FL target model or reconstructs a 
similar target FL model as much as possible (Li et al. 2023e).

The above data security and privacy leakage attacks are common attack types in FL. 
Table 1 and 2 compare and analyse the methods and effects of the security and privacy 
attack methods.

2.3  FL privacy security threats in EC

The traditional cloud-centric computing approaches are gradually proving inadequate in 
addressing the security challenges posed by the vast amounts of privacy-sensitive data gen-
erated by edge terminal devices in the intelligent Internet of Things landscape. EC technol-
ogy, by processing and analyzing data near its source in real-time, not only caters to the 
demand at the edge nodes but also significantly enhances processing efficiency, alleviates 
communication overhead, and safeguards data privacy. Concurrently, FL enables model 
training on edge devices, making EC an apt environment for FL deployment. Nevertheless, 
EC, being a nascent distributed computing paradigm, harbors distinctive privacy security 
risks. The FL model training process within EC confronts similar privacy security threats. 
The intricate service model of edge computing, coupled with real-time application requi-
sites and the resource constraints of edge terminal devices, alongside the heterogeneous 
nature of edge user privacy data from multiple sources, may exacerbate privacy security 
concerns during the FL training process. For instance, the exigency for refined security 
authentication mechanisms at the edge nodes, coupled with the inadequacy of traditional 
encryption technologies for edge computing environments, poses risks of privacy secu-
rity breaches, particularly in untrusted execution environments. The primary data security 
threats and privacy protection challenges encountered by FL within EC encompass:

• Secure sharing and storage of privacy data: The collection of user data by edge termi-
nal devices encompasses sensitive information such as personal location, health data, 
and identity details. Storing such privacy data in third-party servers, like edge serv-
ers, within edge computing environments raises concerns regarding data leakage and 
unauthorized tampering. Moreover, the presence of numerous unknown trust nodes 
within the intricate edge network environment poses additional security risks. The con-
nection of FL model learning and training tasks to the network exposes vulnerabilities 
that malicious adversaries can exploit through various security attack methods. Com-
mon network security threats in the EC environment include denial of service attacks, 
information injection, malicious code attacks, gateway forgery, and man-in-the-middle 
attacks. The fundamental challenge persists in securely uploading local data to the net-
work or entrusting it to third-party servers for storage and processing.

• Fine-grained authentication access control: EC, being a distributed computing sys-
tem, operates across multiple trust domains. However, even authorized nodes within 
untrusted network environments face trust issues. Establishing authentication identities 
for network nodes across diverse trust domains and ensuring secure access verifica-
tion between them imposes elevated requirements and challenges on the design of fine-
grained access control mechanisms within complex edge networks.

• Design requirements of lightweight privacy security algorithms: The majority of edge 
terminal devices in edge computing environments suffer from limited resource perfor-
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mance, including constrained computing power and battery capacity, especially preva-
lent in mobile terminal devices. This limitation inhibits the effective implementation 
of traditional security encryption algorithms, access control mechanisms, and security 
defense measures on resource-constrained terminal devices. Consequently, the develop-
ment of lightweight privacy and security algorithms tailored for the EC environment 
becomes imperative for the secure and efficient execution of FL processes.

• Data consistency and quality issues: Data in EC environments is typically distributed 
across edge devices, leading to synchronization challenges due to performance dispari-
ties among terminal devices. Asynchronous execution of learning algorithms and com-
puting tasks further complicates ensuring data consistency and the accuracy of FL local 
model training parameters. Addressing these issues remains a formidable challenge 
within FL in EC.

3  Related works

This section discusses FL studies on the development of data security and privacy protec-
tion technologies in the edge-IoT environment, and analyses, compares, and summarizes 
the mainstream solutions in the industry.

3.1  FL data security

FL is a variant of distributed learning that enables the training of shared models with-
out the need to access private data from different sources. Despite its benefits in terms of 
privacy protection, the distributed nature of FL and its privacy constraints make it vul-
nerable to data security attacks. These include poisoning, sybil, backdoor, and adversarial 
attacks. In the edge-IoT scenario, cyber-physical systems integrate sensing, computing, 
control, and network processes into physical objects and infrastructure elements connected 
via the Internet to perform common tasks. Once the learning and training of  the FL model 
are connected to the network, hackers can use a series of security attack methods and the 
security mechanism vulnerabilities of the host to launch security attacks. Therefore, the 
tight coupling of the network and physical systems poses challenges to the stability, secu-
rity, efficiency, and reliability of FL. In this section, we summarize the means and mecha-
nisms for providing robust performance protection of FL models, including data security 
attack intrusion detection mechanisms and improvements in FL model security robustness.

3.1.1  Federated robust aggregation algorithms

With the steady developments in edge device computing power, storage capacity, and 
other performances, information transmission, local storage, and network computing tasks 
have gradually shifted to edge devices. In the face of access to complex edge devices, this 
undoubtedly has brought significant challenges to the security of FL. FL aggregation algo-
rithms play an important role in updating the global model, such as privacy data protection, 
efficient model convergence, and security attack defense. Different FL aggregation algo-
rithms are designed with different advantages and disadvantages. Secure aggregation, as an 
important criterion in the design of FL aggregation algorithms, aims to protect the security 
and reliability of the participants’ local models and the FL training process. However, in 
the untrustworthy EC environment, the current federated aggregation algorithms cannot 
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well defend against the Byzantine attacks that are common in distributed computing sys-
tems. Meanwhile, the model communication of massive edge participants also puts higher 
requirements on efficient FL aggregation algorithms. For this reason, the development of 
secure and efficient FL aggregation algorithms is an important means to implement robust 
FL processes in untrustworthy EC environments. This section focuses on a systematic and 
in-depth analysis of the more advanced FL aggregation algorithms, and discusses and sum-
marizes the model aggregation algorithms under different FL and EC application scenarios 
by comparing different advanced schemes in terms of data security, model performance, 
and system efficiency (Qi et al. 2023).

In terms of defending data security attacks, Nuria et  al. (Rodríguez-Barroso et  al. 
2022b) deeply analyzed the model poisoning backdoor attack in FL, discussed the pattern 
key backdoor attack and distributed backdoor attack that may be triggered by adversar-
ial participants with outlier behaviors in FL, and developed a new robust and resilient FL 
aggregation operator, i.e., robust filtering of one-dimensional outliers, in response to the 
above problems, which filters out the univariate outliers by performing the standard devia-
tion method on model participant updates for each dimension to identify univariate outli-
ers and thus filter out adversarial participants in FL. (Zhang et al. 2023b) supported back-
door detection for FL secure aggregation through two new primitives, inadvertent random 
grouping and partial parameter disclosure. Inadvertent random grouping divides FL partic-
ipants into one-time random subgroups, which prevents collusive attackers from knowing 
each other’s group membership assignments and detect backdoor attacks using statistical 
distributions of subgroup aggregation parameters based on learning iterations. Compared 
to the robust filtering operator for one-dimensional outliers proposed by Nuria. Zhang’s 
design scheme has better performance in terms of communication and computational cost, 
but Nuria focuses more on the detection of outlier behaviors of adversarial participants, 
with a focus on defending against model-poisoning attacks based on data poisoning and 
model updating enhancements of adversarial participants.

Nevertheless, current FL systems are unable to monitor the local training process of 
edge devices in real-time when dealing with distributed collaborative learning among a 
large number of IoT devices, leading malicious attackers to exploit the vulnerability for 
byzantine attacks. (Ni et  al. 2023) proposed a dual filtering mechanism for byzantine 
attacks during FL under edge-IoT to identify and discard malicious gradients and increase 
the security of the FL training process, while considering the impact of potential malicious 
gradients, designing an adaptive weight adjustment scheme to correct the size of local and 
normal gradients to keep the same size using a dynamic trimming method to ensure effec-
tive model aggregation. However, Ni’s scheme does not consider that the real datasets usu-
ally used by FL participants in real EC environments are non-independently and identically 
distributed, and the non-independently and identically distributed original datasets further 
weaken the robust performance of existing FL aggregation algorithms and increase the 
possibility of the FL global model to be attacked and corrupted in non-independently and 
identically distributed scenarios.

For this reason, (Li et al. 2023b) evaluated the effectiveness of existing byzantine robust 
FL methods in non-independently and identically distributed scenarios, and proposed a 
mini-FL scheme, which proposes a grouping aggregation method based on participant geo-
graphic, temporal, and user characteristics as a grouping principle. The scheme introduces 
a clustering method, considering that the uploaded gradients naturally tend to cluster due 
to location, time and user clustering. The parameter server divides the received gradients 
into different subgroups and performs byzantine robust aggregation separately, the similar 
behavior of each subgroup results in a smaller range of gradients leading to a smaller attack 
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space. The introduction of clustering method reduces the attack surface and effectively 
enhances the FL robustness in practical non-independent same-distribution scenarios (He 
et al. 2023) similarly analyzed the challenges posed by non-independent same-distribution 
data to the byzantine robustness of FL, and proposed the byzantine robust stochastic model 
aggregation method, which utilizes robust stochastic model aggregation to obtain the byz-
antine robustness to non-independent same-distribution data, and analyzed and proved that 
the byzantine convergence of the robust stochastic model aggregation scheme in distrib-
uted nonconvex learning. Compared with the stronger generality of the scheme proposed 
by Li, He proved the convergence of the scheme in distributed nonconvex learning even 
more from theoretical analysis. (Zhang et  al. 2023c) studied the existing FL attacks and 
detection schemes, and found that most detection schemes have high false positive rates 
in the setting of non-independent and identical distribution. Therefore, they proposed a 
Kalman filter-based cross-round detection. This detection scheme identifies adversaries by 
looking for behavioral changes before and after attacks, so as to adapt to data heterogeneity 
and improve detection accuracy.

In terms of FL model performance enhancement, existing FL secure aggregation algo-
rithms cannot satisfy the security and reliability of the FL process for resource-constrained 
IoT devices without significantly affecting the model accuracy and performance. Since 
the performance of edge-IoT devices is usually limited to support high performance con-
suming FL robust aggregation algorithms, (Cao et al. 2024) proposed a secure robust FL 
framework with a trusted execution environment, which adopts a shared representation 
learning approach to classify the model into a sensitive model and a representational model 
used for client training, where the sensitive model is always retained in the secure environ-
ment, and the representational model is in the real environment for normal training and 
aggregation. The representation learning approach allows each FL participant to train its 
own personalized model, which improves the model convergence rate and accuracy. Mean-
while, the framework, in order to enhance the robustness of FL models in non-independent 
and homogeneously distributed scenarios, designs a robust affiliation-based multi-model 
aggregation method, which uses affiliations generated by soft clustering to classify clients 
and uses multi-model methods to perform aggregation separately to enhance robustness.

(Du et al. 2023a) considered that the device operating environment restricts high-quality 
annotated data extraction among the participants, and propose a forgotten optimized aggre-
gation strategy combining Kalman filter and cubic exponential smoothing, which improves 
the global aggregation of models to enhance model performance. Meanwhile, a deep learn-
ing network combining multi-scale convolution, attention mechanism, and multilevel resid-
ual connectivity is also used to extract multi-client data features simultaneously to improve 
the accuracy and generalization of the aggregation algorithm in local model training with 
multiple participants.

(Wang et al. 2023) focused on the fact that the performance of the over-the-air FL is 
usually limited by the devices with the worst channel conditions of the edge servers, and 
considered that the use of reconfigurable smart surfaces can alleviate the communication 
problem of over-the-air FL and develop a learning algorithm based on graph neural net-
work to map the channel coefficients directly to the optimized network parameters, which 
reduces the computational complexity of the algorithm by exploiting the alignment equiv-
alence and invariance of the graph to achieve the aggregation algorithm dimensionality 
independently of the number of edge devices.

The schemes proposed by Cao et al., Du et al. and Wang et al. focus on the performance 
of FL robust aggregation algorithms under the constraints of edge-IoT device resources and 
operating environment. And the former scheme focuses on evaluating the model accuracy 
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of the proposed aggregation algorithms when resource-limited IoT devices are subject to 
byzantine and backdoor attacks, while the latter scheme focuses on improving the accuracy 
of the model aggregation as well as the communication and computational efficiency when 
a large number of local models are aggregated, focusing on improving the accuracy and 
efficiency of the FL system. However, allowing all devices to participate in the FL process 
is not a long-term feasible solution, and the heterogeneity of edge devices under IoT in 
terms of data quality power, arithmetic, storage, etc., and the poor communication links of 
some of the participants can affect the FL performance. Therefore, optimal client selection 
also becomes an important stage in the FL process.

3.1.2  FL client selection algorithms

In the FL process, the client devices participating in each round of training can be accu-
rately and efficiently selected based on the device performance, connection quality and 
other indicators, which helps to improve the efficiency and performance of FL. Meanwhile, 
a fair client selection algorithm design can also prevent malicious clients from participat-
ing in training using techniques such as authentication and reputation assessment, reducing 
the harm of malicious attacks on the model (Mayhoub and M. Shami T,  2023). To this 
end, this section reviews recent client selection algorithms for FL, analyzes and evaluates 
client selection algorithms in terms of both features and limitations.

In designing client selection algorithms to enhance FL robustness, reduce communi-
cation and computational overhead and improve model convergence speed and accuracy. 
(Jiang et  al. 2023) analyzed a number of security strategies to mitigate label-flipping 
attacks in FL, and proposed a malicious client detection approach for defending against 
label-flipping attacks against the huge computational overhead and lack of robustness 
required by these strategies, which is achieved by training a parameter server with a light-
weight generator on the parameter server to detect the quality of training data for each cli-
ent. The generator performs data quality detection without retraining and does not require 
any prior knowledge, which satisfies the lightweight design and privacy security require-
ments. However, Jiang et al.’s scheme does not focus on the frequent exchanges of model 
parameters carried out between the massive edge client devices and the server side, and 
due to the limited communication resources, the frequent exchanges of massive parameters 
cause large communication delays and affect the efficiency of the FL system.

Aiming at how to design the FL client selection algorithm to improve the FL communi-
cation efficiency, (Yang et al. 2023b) first proposed a client selection scheme based on the 
kernelized stan difference between the global posterior and the local skewed distributions, 
the updates provided by clients with large kernelized stan differences can minimize the 
local free energy of each iteration, and the probability of such clients to be selected is the 
largest, and the resulting communication overhead is also smaller.

Meanwhile, (Wehbi et al. 2023) proposed an intelligent client selection method by con-
sidering the problems of data quality, computational and communication resource hetero-
geneity that exists among IoT devices, and analyzed the substantial problems of schemes 
that select FL clients based on a random selection strategy. The method overcomes the 
limitation that most client selection schemes follow a unilateral selection strategy, and uses 
matching game theory to propose a bilateral client selection method for FL, taking into 
account the preferences of FL servers and client devices in the selection process.

(Huang et al. 2023b) investigated the use of a clustered FL approach to solve the prob-
lem of heterogeneous data, and found that the current clustered FL process is relatively 
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slow. Considering the lack of an effective client selection strategy, proposed the use of 
active learning to select participating clients for each cluster. The scheme filters out some 
of the group clients that partially provide the most information in each round of FL based 
on active learning metrics and only aggregates their model updates to update cluster-spe-
cific models. Where the active learning metrics are set to uncertainty sampling, committee 
query, and loss. The active client selection FL scheme proposed by Huang requires fewer 
participating clients, which can significantly speed up the learning process and signifi-
cantly improve the model accuracy with lower communication overhead.

Enhancing the robustness and data security of FL systems in EC environments involves 
multiple factors and considerations, and more current technical solutions are mostly 
researched from the perspectives of communication security, device security, model 
robustness, communication and computation overhead, and client selection. However, the 
network attacks in untrustworthy EC environments are gradually diversified and compli-
cated, and how to develop FL frameworks with higher security performance while taking 
into account the system overhead and efficiency is still a key direction for future research 
on secure robust FL.

3.2  FL information privacy‑preserving

FL solves the privacy security problem of sensitive data in ML environments. However, 
the uploads and downloads of the model update parameters, training iterations, and other 
processes still expose the FL environment to a series of risks. Examples include malicious 
speculation by semi-honest adversaries and theft of data by curious attackers (Narayanan 
and Shmatikov 2008). The privacy in FL can be divided into global and local privacy. 
Global privacy requirements and local device-generated model updates protect the privacy 
of all unreliable third parties except for the trusted central aggregation server in each itera-
tion. Local privacy requires model updates to protect the server privacy. At present, typical 
technologies for improving FL privacy security include cryptographic technologies, distur-
bance technologies, adversarial training (AT), blockchain, and KD.

3.2.1  Cryptography technologies

Common cryptography technologies in FL encrypt the model parameter information that 
must be uploaded in plaintext. This process enhances the privacy and security protec-
tion performance of the FL systems. At present, the commonly used encryption methods 
include secure multi-party computation (SMPC) and homomorphic encryption (HE). Each 
encryption technology has unique technical characteristics. For example, SMPC can keep 
user input data confidential and allows multiple parties to perform joint computation on 
private data, but the computing overhead is expensive. Compared with SMPC, HE schemes 
have a similar performance in security protection. However, they consume fewer comput-
ing resources than SMPC.

SMPC, also known as MPC, was originally proposed to protect the inputs of multi-party 
participants. In the FL framework, the SMPC is used to protect model updates for cli-
ents. SMPC ensures that each participant in the FL system only recognizes its own inputs 
and outputs, and ensures that it has a complete lack of knowledge regarding other clients. 
Using SMPC to build an FL security model can increase efficiency by reducing the secu-
rity requirements. Kilbertus et  al. (Kilbertus et  al. 2018) used SMPC methods for vali-
dation and model training to prevent local private data from being known to other users. 
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Sharemind (Bogdanov et al. 2008) designed an SMPC framework as a secure and efficient 
computer system. (Kalapaaking et al. 2022) proposed a CNN-based FL rack by combin-
ing SMPC-based aggregation and cryptographic inference methods. Encrypted on-premise 
models were sent to the cloud for SMPC-based cryptographic aggregation, resulting in an 
encrypted global model. Ultimately, the encrypted global model was returned to each edge 
server for more localized training, thereby further improving the accuracy of the model. 
This solution solved the FL privacy security problem in the IoT environment under 6th-
generation networks, and ensured the accuracy of the model and confidentiality of the 
model parameters. However, this solution did not consider the costs of multi-source hetero-
geneous data encryption processing and communication resource consumption in the IoT 
environment.

(Li et al. 2023f) designed a vertical FL-ring (VFL-R) for FL models with limited com-
munication sources and low computing power in the coordinators. VFL-R was a novel 
vertical FL framework combined with a ring architecture for multi-party collaborative 
modeling. The VFL-R framework simplified the intricate communication architecture of 
all parties and provided protection against semi-honest attacks. In addition, it reduced the 
influence of coordinators in the modeling process. (Berry and Komninos 2022) faced the 
problems of the SMPC’s large number of computational rounds and high costs of transmit-
ting data between parties. They proposed an efficient optimization framework for a CNN 
with SMPC. This framework combined various optimization methods from a broader pri-
vacy-preserving DL field. It included batch normalization for privacy-preserving and poly-
nomial approximations of the activation functions.

The SMPC is a lossless solution that allows multiple parties to perform joint computa-
tions on private data. SMPC keeps data content confidential and provides strong privacy 
protection. As a research-oriented solution, the SMPC-based FL privacy protection scheme 
still faces many challenges. The main problem is the trade-off between the FL system 
efficiency and privacy. The SMPC encryption and decryption process takes a long time, 
which may negatively affect the model training. The design of a lightweight SMPC solu-
tion remains a significant challenge. Therefore, many researchers choose HE technologies. 
Under the premise of having the same security performance scheme, the lower computing 
consumption of HE technologies has made them the first choice for many researchers in 
designing FL security protocol frameworks.

HE refers to plaintext and encryption operations. The obtained result is equivalent to a 
result obtained by first encrypting the plaintext to obtain ciphertext and then performing 
the same operation on the ciphertext. Owing to this advantageous feature, ML can entrust a 
third party to process data without revealing the information.

HE has been introduced into the FL framework to encrypt local gradient updates, gradi-
ent parameters, and other model parameter information. This prevents private data from 
being leaked by adversaries. The early HE algorithms used single-key arithmetic. Homo-
morphic operations could only be performed between values with the same public key. 
This required the clients to share the same private key. However, if the same private key 
was shared by multiple clients, there was a risk of private key leakage. There was also an 
increased risk of malicious clients accessing the data of other clients. This was undoubt-
edly a significant test for FL privacy protection using HE schemes. Therefore, (López-Alt 
et al. 2012) proposed a multi-key HE method. Later generations have continued to inno-
vate and improve on this basis to solve the limitations of single-key HE approaches. It 
has recently been discovered that multi-key HE can be used in FL scenarios to protect the 
privacy of model updates. However, they may not be protected against attacks by malicious 
actors that disrupt the course of learning, such as Byzantine attacks.
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(Ma et  al. 2022a) proposed a multi-key fully HE multi-key-Cheon-Kim-Kim-Song 
(MK-CKKS) scheme for supporting approximate fixed-point algorithms. It required an 
aggregated public key for encryption and decryption and required each device to calcu-
late its decryption share. The ciphertext was successfully decrypted only when the num-
ber of private keys participating in decryption reached a certain threshold. MK-CKKS 
required all data contributors to collaborate to decrypt the aggregated results, thereby 
guaranteeing the confidentiality of the model updates. It was robust to attacks by mali-
cious actors and collusive attacks by actors on servers. (Hou et  al. 2021) proposed a 
verifiable privacy protection scheme (VPRF) based on a vertical joint random forest. 
The VPRF utilized homomorphic comparisons and voting statistics with a multi-key HE 
to protect privacy. (Zhang et al. 2023d) combined distributed Paillier cryptography and 
zero-knowledge proofs based on existing Byzantine robust FL algorithms. They pro-
posed an FL scheme that balanced robustness and privacy protection.

In solving the problems of traditional privacy protection, FL solutions cannot simul-
taneously provide efficient data confidentiality and lightweight integrity verification. 
(Ma et al. 2022b) proposed a verifiable privacy-preserving FL scheme (VPFL) for EC 
systems. The VPFL combined the distributed selection stochastic gradient descent 
method with the Paillier HE system. They also proposed an online and offline signa-
ture method for lightweight gradient integrity verification. (Zhao et al. 2022) designed a 
decentralized privacy-preserving and verifiable federated learning framework based on 
efficient and verifiable cryptographic matrix multiplication. The framework effectively 
defends against various inference attacks by ensuring the confidentiality of global and 
local model updates and the verifiability of all training steps. It realizes the integrity of 
the federated learning model training and improves the training efficiency of the feder-
ated learning system.

In recent years, secret sharing schemes have been widely concerned and used to design 
federated security protocols as a special encryption method that is both secure and effi-
cient. Secret sharing technology can be applied to the training process of FL to ensure the 
privacy of model parameter sharing. Secret sharing splits the parameters of the federated 
learning model into multiple parts and sends them to different participants, and ensures 
that only when the number of participants exceeds the recovery threshold specified by the 
system, can they cooperate with each other to recover the model information. In theory, the 
federated learning based on secret sharing can protect the local data set of the client from 
the semi-honest central aggregation server and other participants. In the case of collusion 
between some clients and the central aggregation server, secret sharing can still provide 
privacy security guarantee.

(Zhou et al. 2021) proposed a privacy-preserving FL framework that combines Shamir 
with HE to ensure that aggregate values can be correctly decrypted only when the number 
of participants is greater than t. Tasiu et al. (Muazu et al. 2024) proposed a secure FL sys-
tem based on data fusion, which employs a convolutional neural network with an effective 
weight sharing method for prediction, and uses multi-party computation and additive secret 
sharing to encrypt the weights of the model to protect the privacy of the gradient param-
eters of the federated learning training model. (Wang et  al. 2022a) proposed a privacy-
preserving scheme for FL under EC, and designed a lightweight privacy-preserving proto-
col based on shared secret and weight mask, which achieves higher accuracy and training 
efficiency than HE, and can resist device dropout and collusion attacks between devices. 
However, the above schemes solve the trade-off between prediction accuracy and model 
privacy by protecting the gradient parameters, and do not consider the high communication 
cost caused by the transmission of massive secret segments. At the same time, in the EC 



 H. Li et al.

1 3

130 Page 20 of 38

environment, the processing and transmission delay of edge devices with different perfor-
mance are also quite different.

Therefore, (Liu et al. 2022) designed a secure aggregation protocol based on an effec-
tive additional secret sharing in fog computing setting to solve the problem that the training 
process of FL needs to perform secure aggregation frequently. Firstly, the protocol used fog 
nodes as intermediate processing units to provide local services to help the cloud server 
aggregate the sum during the training process. Then a lightweight Request-then-Broad-
cast method is designed to ensure that the protocol is robust to lost clients. The protocol 
achieves low communication and computation overhead. (Xie et al. 2022) designed a loss-
less multi-party federated XGBoost learning model based on secret sharing. The model 
framework reshaped the segmentation criterion calculation process of XGBoost in the 
secret sharing setting, and solved the quadratic optimization problem in a distributed way 
to perform leaf weight calculation, so that the model could run quickly in a secure manner. 
However, when facing the complex and large FL network, the secret sharing technology 
needs to allocate more secret segments. At the same time, due to the different equipment 
performance of each participant in the FL, and the different types, structures, and quality 
of the data sets, the local model training time and quality of each participant are different, 
which leads to the fact that multiple participants cannot receive or submit their own secret 
clips at the same time, and the FL system has higher bandwidth requirements for network 
transmission.

Nevertheless, it remains necessary to solve the problems of member inference attacks 
and reverse attacks leading to training data privacy leakages, e.g., the address security 
problems of most existing cryptography approaches in FL and required additional comput-
ing. HE still has great room for technological innovation and improvements in terms of the 
computing efficiency, complexity of the interaction logic, and secret sharing schemes in 
terms of communication delay and communication bandwidth cost.

3.2.2  Differential privacy technology

In DML, fuzzy processing technology is often used to protect the privacy security of the 
training datasets. This includes performing randomization, noise disturbance, generaliza-
tion, and compression to obfuscate the training data and improve the privacy performance 
to a certain extent. In FL, DP is often used to add noise disturbance to the original training 
set data, model parameters, or gradient information, so as to hide key features of the data. 
DP can achieve privacy data protection.

(Dwork 2008) proposed the concept of DP in 2006 and provided a rigorous mathemati-
cal proof of its security. DP mainly protects data privacy and security by adding noise to 
sensitive data. The introduction of DP in FL to add noise disturbances to the model param-
eters uploaded by FL participants or to use generalization methods to hide key data features 
prevents a reverse retrieval of data, so that the ML models can resist adversarial samples 
(Ibitoye et al. 2021).

DP has a lower overhead than SMPC’s high communication overhead. Many advanced 
DP algorithms have been proposed in existing studies. For example, (Wang et al. 2019a) 
designed a deep neural network (DNN) learning framework that supported DP by consid-
ering the risk of privacy leakages of sensitive crowdsourced data. The framework evalu-
ated important features related to the target class labels. It used adaptive noise figures to 
accommodate heterogeneous input features. Finally, a noise disturbance was added to the 
affine transformation of the input features according to the importance and heterogeneity of 
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the input features. (Geyer et al. 2017) proposed a client-side DP-protection FL optimization 
algorithm. (McMahan et  al. 2017) added user-level privacy protection to the FL averag-
ing algorithm to design a user-level DP training algorithm for large neural networks. The 
purpose of both was to protect private data by hiding the local model parameters uploaded 
by users during training, thereby balancing the model performance and privacy loss. Both 
algorithms were validated using actual datasets. This proved that, with sufficient devices 
participating in federated training, privacy protection could be achieved with a small addi-
tional overhead. Simultaneously, both approaches guaranteed high model accuracy.

However, this method did not consider that the introduction of DP in FL with fewer 
participants may lead to impaired overall model accuracy. To this end, (Huang et al. 2020) 
substituted DP noise into a neural network by pruning a given layer of the neural network, 
aiming to protect private data from leakage without reducing the model accuracy. Lin et al. 
(Lin et al. 2022) designed a novel privacy-preserving learning framework based on graph 
neural networks (GNNs). The framework had a formal privacy guarantee based on edge-
local DP to protect both node features and edge privacy. It was highly integrated with a 
GNN with a privacy utility guarantee to protect users’ data privacy under a given privacy 
budget.

In general, the factors with greater influence on the accuracy of the model are the noise 
disturbances and clipping degrees. Bu et  al. (Bu et  al. 2021) utilized the advantages of 
the linear algebraic properties of neural tangent kernel matrices. A convergence analysis 
framework for DP DL suitable for general neural network structures and loss functions was 
established. In a continuous-time analysis, the authors verified that the main influence on 
the model convergence was not noise, but the degree of sample clipping. Thus, a global 
cropping method was designed. Compared to traditional local cropping methods, the global 
clipping loss was small, the calibration was better, and the model prediction accuracy was 
less-impacted. However, the discrete-time convergence at large learning rates required 
further study (in such cases, the addition of noise affects the model convergence to some 
extent.

The above improvements strove to strike a balance between privacy protection and 
model accuracy. However, they did not deeply consider the privacy computing costs of 
model iterations or the added model complexity with the introduction of DP. To this 
end, (Zhao et  al. 2021) designed a multi-level and multi-participation dynamic alloca-
tion method for a privacy budget. A new adaptive differential private FL algorithm was 
designed to balance privacy and utility. (Andrew et al. 2021) proposed an adaptive gradi-
ent-clipping strategy. This strategy added noise to a specified layer while applying adaptive 
fractional clipping to an iterative DP mechanism. This strategy alleviated the problem of 
excessive hyperparameters in DP algorithms.

3.2.3  Adversarial training

In recent years, information privacy-preserving methods based on cryptography and distur-
bance technologies have been widely applied in FL. These technologies primarily concern 
raw data, parameter encryption, and secure local computing. They pass the results of the 
computation to a third party to aggregate the computation results, which can significantly 
reduce the risk of privacy leakages in the distributed learning process. However, malicious 
attackers can steal data from other honest actors by deploying GANs. (Wang et al. 2019b) 
designed a GAN on a central aggregation server to steal the private data of users. Using 
calculated gradient information, the adversary could reverse some or all of the private 
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data. In recent years, many approaches have been proposed for stealing private data in FL 
systems through GANs. Aiming to resist such adversarial attacks, a significant amount of 
research has been conducted aiming to protect the privacy in FL. The main objectives are 
detection and defense. Defenses against adversarial attacks have the following three main 
directions.

• Modify the training process or modify the input sample during the testing stage.
• Modify the neural network, such as by improving the activation function or loss func-

tion and adding or deleting the number of sublayers in the neural network.
• Identify adversarial samples or completely classify adversarial samples.

AT is the first line of defense against adversarial attacks, and has been introduced into 
FL to strengthen data privacy security. AT participates in federated model training, using 
the real and adversarial samples as a training set. AT enhances local real-world data pri-
vacy security through adversarial sample perturbation. AT is an active defense technique. 
It attempts to arrange all attacks from the training phase of the client, making the FL global 
model robust to known adversarial attacks (Tramèr et  al. 2017). AT requires the use of 
large amounts of training data and high-intensity adversarial samples; therefore, it can reg-
ularize neural networks to reduce overfitting. In turn, the resistance of the neural network 
is enhanced and the best empirical robustness is obtained (Papernot et al. 2018; Croce and 
Hein 2020; Tramer et al. 2020).

Early AT defenses were focused on detection and prevention. For example, (Bara-
caldo et  al. 2017) used background information such as sources and transformations to 
detect toxic sample points in a training set, and (Arjovsky et al. 2017) prevented inference 
attacks by generating fake training data. However, recent studies have found that the secu-
rity threats to concentrated AT are gradually increasing. (Song et al. 2019) found that AT 
makes ML models more vulnerable to member inference attacks than those trained using 
the original training set. (Mejia et al. 2019) found that with a model inversion attack, an 
attacker can use an AT model to generate images that are similar to actual training samples. 
(Zhang et al. 2022) developed a new privacy attack method that destroyed the privacy of 
the DL systems in AT models. First, the feature information was recovered from the gradi-
ent. The recovered features were then used as supervised reconstruction inputs.

Facing insecure AT, (Ryu and Choi 2022) proposed a hybrid AT method. This scheme 
used clean images denoised by denoising networks, clean images without denoising, and 
adversarial samples to train DNN models. This scheme improved the robustness of DNNs 
against a wide range of adversarial attacks. (Wang et al. 2022b) introduced a semi-super-
vised learning mechanism with virtual AT to avoid overfitting during DL model training. 
(Rashid et al. 2022) used IoT datasets to explore the impacts of adversarial attacks on DL, 
and proposed a method using AT. This method significantly improved the performance of 
IDSs in adversarial attacks.

At present, most AT methods use AT examples to improve the model robustness. How-
ever, most AT approaches require additional computational time and overhead for com-
putational gradients. To this end, (Jia et  al. 2022) designed an adversarial initialization 
method for the dependent samples of a fast AT. This method realized sample dependence 
by generating benign samples and their gradient information in the training target net-
work. However, this law did not consider the high computational costs and time required 
to deploy large-scale AT on resource-constrained edge devices in FL networks. (Tang et al. 
2022) proposed a federated adversarial decoupling learning framework. The framework 
applied decoupled greedy learning (DGL) to federated AT to reduce computations and 
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memory usage. In addition, the framework added an auxiliary weight decay to improve the 
vanilla DGL and mitigate target inconsistencies. The experimental results showed that the 
federated adversarial decoupling learning framework significantly reduced the computing 
resources consumed by AT while maintaining almost the same accuracy and robustness as 
concentrated joint training.

Most researchers have focused on the accuracy of AT models. AT injects adversarial 
sample samples into the model training to improve the robustness of DNN models against 
adversarial GANs. A slight perturbation of the adversarial sample to the original sample 
may affect the accuracy of the model. To this end, (Yu et  al. 2022a) designed a meta-
learning-based AT algorithm framework to avoid the performance degradations caused by 
the generated adversarial samples. (Zhou et al. 2022) proposed a latent-boundary-guided 
AT framework. The framework trained DNN models on adversarial samples, as guided by 
potential boundaries. High-quality adversarial sample samples were generated by adding 
perturbations to potential features. This approach achieved a better trade-off between the 
standard accuracy and adversarial robustness. In general, AT improves the privacy of the 
user data. Adding AT samples minimizes the threat of inference to the actual training data. 
In the latest research on improving the robustness in AT, the trade-off between standardiza-
tion and robustness has received widespread attention. This also provides a new direction 
for the future development of federal confrontation training.

3.2.4  Blockchain

The traditional centralized FL framework relies on a central aggregation server and there-
fore has a single point of failure. When communication is busy, the central node incurs 
higher communication costs and low efficiency. Participants lack incentive mechanisms 
and are not highly motivated to participate in joint learning. There is also a lack of secu-
rity mechanisms to identify malicious users who compromise the model. To address these 
shortcomings, many researchers have combined blockchain with FL. First, the participat-
ing nodes of the blockchain are used to replace the central server to reduce the single-
point-failure problem. Next, miner nodes are used to calculate the local device model 
update parameters without uploading raw data. Subsequently, the consensus mechanism of 
the blockchain is used to verify and record the local device model updates. The aggregate 
model parameters are uploaded by local devices, and the global model updates are added 
to new blocks. Finally, each local device downloads the global model from the blockchain 
blocks.

(Miao et al. 2022) designed a blockchain-based privacy-preserving Byzantine robust FL 
(PBFL) scheme. The PBFL used cosine similarity to determine the gradients uploaded by 
malicious clients. Fully HE was used to provide secure aggregation. In general, PBFL uses 
a blockchain system to facilitate the implementation of transparent PBFL processes and 
regulations, thereby mitigating the impacts of central servers and malicious clients. (Durga 
and Poovammal 2022) proposed a novel framework based on blockchain and FL models. 
The FL model was responsible for reducing the complexity, whereas the blockchain helped 
protect the privacy of distributed data. This framework used a hybrid capsule learning 
network to develop models that protected privacy while performing accurate predictions. 
(Wang et al. 2022c) aimed at the problem of untrusted third parties in FL by adopting a 
distributed blockchain to distribute tasks and collection models. A reputation calculation 
method was proposed to calculate the real-time reputations of task participants. (Yu et al. 
2022b) designed an overall framework for a blockchain-based FL system. The framework 
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utilized distributed ledger technology to mitigate the problems of single points of failure 
and low-quality or poisoned data interference models in FL systems. It was designed to 
enhance the security and scalability of FL systems.

The blockchain-based FL technologies introduced above have focused on using the 
characteristics of blockchain technology to alleviate privacy and security issues in FL sys-
tems. However, blockchain technology can increase the complexity of FL systems. It is 
also possible that the FL system may become inefficient because of an inefficient consen-
sus mechanism. To this end, many researchers regard the research and development of effi-
cient and lightweight blockchain consensus mechanisms as a major research hotspot for 
the future development of blockchain-based FL technologies. (Yang et al. 2022) designed 
a credit data and model-sharing architecture based on FL and blockchain. The framework 
ensured the secure storage and sharing of credit information in a distributed environment. 
The framework proposed a permission control contract and credit verification contract for 
the security authentication of the results of the credit sharing model under FL. The efficient 
credit data storage mechanism, combined with a removable bloom filter, ensured a unified 
consensus of the training and calculation processes. (Li et  al. 2022b) discussed existing 
quantum blockchain schemes and analyzed the reasons for the inefficiency of the current 
blockchain consensus mechanisms. A consensus mechanism called a quantum-delegated 
proof was constructed using quantum voting and provided rapid decentralization for quan-
tum blockchain schemes. (Du et al. 2023b) investigated a blockchain-assisted EC scenario. 
A matching mechanism based on a smart contract was proposed to establish a lease asso-
ciation between EC nodes and data service operators. A trust-driven proof-of-benefit con-
sensus mechanism was designed to realize verification of the transactions and fair remu-
neration distributions.

The integration of blockchain and FL technologies has largely alleviated the issues 
faced in the traditional FL field. However, after the integration of these two technologies, 
there remain problems caused by the blockchain itself. For example, the traditional block-
chain consensus mechanism and network structure cause problems such as long transaction 
confirmation times, limited throughput, and complex communication structures. This also 
leads to an increase in the model update parameter aggregation delays in the blockchain 
network for each round of the FL process. Each FL participant uses a different local device. 
When the uploaded model is updated in the blockchain network, the time delays of each 
device may not be uniform. This can also lead to a decrease in the prediction accuracy of 
the trained global model (Zhu et al. 2022). Considering the existing problems of the block-
chain-based FL frameworks, the current decentralized FL architecture approach is rap-
idly gaining popularity (Hu et al. 2019). Decentralized training has also been shown to be 
more efficient than centralized training when running federated systems in low-bandwidth 
or high-latency networks (Xiao et al. 2020; Liu et al. 2020; Jiang et al. 2020). Combined 
with the blockchain-based asynchronous FL framework proposed by (Feng et  al. 2021), 
blockchain ensures that the model parameters in the chain are not tampered with. Simul-
taneously, the asynchronous FL accelerates the global aggregation. We find that an asyn-
chronous FL framework based on blockchain can solve the problems in balancing privacy, 
security, and efficiency faced in current FL technology development to a certain extent.

3.2.5  Knowledge distillation

KD technology originated from the concept of transferring knowledge from large models 
to small models, and was formally proposed by (Hinton et al. 2015) in 2015. The core idea 
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of KD concerns the transfer of knowledge. A student model obtains an accuracy compa-
rable to that of a teacher model by imitating it. A complete KD system consists of three 
parts: knowledge, distillation algorithm, and teacher-student architecture. The distillation 
algorithm is the core step for determining how the knowledge of the teacher model is trans-
ferred to the student model.

In the area of privacy protection, traditional ML and DL methods are vulnerable to pri-
vacy attacks. For example, an attacker can obtain individual information or relevant train-
ing data from the model parameters, gradient information, and target model. Therefore, the 
relevant organizations and individuals have high requirements for data privacy and secu-
rity. FL has been widely adopted as a way to access private raw data training sets without 
disclosing them to other participants. KD can isolate the access to the original training 
datasets of each participant in the FL system through the teacher-student architecture of 
KD, e.g., by letting the teacher learn the private data training model and then transferring 
this knowledge to the outside model.

(Wang et  al. 2022d) proposed an adversarial KD. This scheme combined KD with 
backdoor attacks. The KD reduced the anomalous features in the model results caused 
by label flipping, allowing the model to bypass defenses. Meanwhile, there also exists 
a problem of privacy leakage when using co-distillation to solve the problem of unbal-
anced data distribution. (Gong et al. 2023) proposed a FL framework for an integrated 
attention distillation to protect privacy. The framework utilized unlabeled public data 
for one-way offline KD and learning from local knowledge with an integrated attention 
distillation. The framework isolated dispersed and heterogeneous local data through 
the KD, thereby significantly reducing the risk of privacy leakage. Nevertheless, while 
focusing on privacy protection performance, the framework ignored the huge commu-
nication costs of FL and the huge computing overhead caused by KD. (Wu et al. 2022) 
proposed the FedKD FL method. This method was based on adaptive mutual KD and 
dynamic gradient compression techniques. FedKD accelerated the efficiency of FL 
model training, thereby alleviating the huge communication costs in FL and improving 
the communication efficiency and effectiveness.

Studies have also considered the effects of data structures and distribution heterogeneity 
on FL performance. (Li et al. 2022c) proposed an FL framework with a decentralized KD. 
This framework introduced a decentralized KD module. That is, no data were stored on 
the server to protect local privacy. The global model was trained by extracting the knowl-
edge of the local model based on a divergence measure defined in the loss function and by 
approaching the mean value of the neural network map. The impact of the heterogeneous 
data on the FL system performance was mitigated while protecting the local private data. 
Facing complex model data in the edge intelligence scenario, (Sepahvand et al. 2022) pro-
posed an adaptive teacher-student learning algorithm with decomposition KD. The algo-
rithm used Tucker decomposition to decompose a high-dimensional feature graph at the 
end of the teacher. It obtained a core tensor that students could easily understand from 
the teacher’s feature graph. The teacher-student architecture designed by the algorithm was 
used in edge intelligent devices, and greatly improved the FL system efficiency and privacy 
security performance in edge-IoT.

KD can satisfy the FL privacy and security requirements to a certain extent. Differ-
ent types of knowledge can be leveraged in complex source data scenarios. This allevi-
ates the problem of the original training data being heterogeneous and less diverse. How-
ever, the KD technology itself has limitations. When dealing with large-scale models, large 
amounts of system resources must be consumed. For large-scale distributed FL scenarios, 
the training of more heterogeneous datasets and a large number of communication rounds 
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are challenges to the use of KD technology. Therefore, there is still a large space for further 
research on the combination of KD and FL to improve the efficiency of using KD and FL 
for privacy protection.

4  Challenges and future directions

We discussed the major security and privacy issues of FL under edge networks. These 
include the major mechanisms, attacks, and possible countermeasures. However, there 
are still emerging privacy security challenges and issues that have yet to be explained or 
require further exploration from the perspective of the EC-assisted IoT paradigm. This sec-
tion explains some of these challenges, and provides insights into promising future research 
directions.

4.1  Challenges

The rapid development of the SIoT not only promotes the wide application of FL; it also 
results in higher requirements for FL. This section summarizes the challenges facing the 
future development of FL by combining the current development status of FL with the 
development needs of edge-IoT.

4.1.1  Secured and efficient edge FL

Currently, numerous research endeavors underscore the compromise of FL model train-
ing efficiency in favor of bolstering privacy safeguards within the FL framework. Specifi-
cally, privacy-preserving FL that relies on encryption techniques confronts a delicate bal-
ance between model training efficiency and privacy assurance. For instance, the utilization 
of encryption to secure model parameters introduces a noteworthy consideration: escalat-
ing the encryption level leads to an augmented computational overhead. Consequently, 
with the substantial influx of client interactions in the domain of Edge- IoT, the task of 
enhancing both model training efficiency and privacy security performance within Edge 
FL becomes a substantial challenge. This challenge is particularly pertinent as the goal is 
to establish a dependable FL system within the context of an inherently unreliable edge 
network environment.

4.1.2  Lightweight byzantine robust FL

A large number of client devices exist in the mobile edge-IoT scenario. FL may not be able 
to safely and efficiently integrate various model trainers with varying access, identities, 
purposes, and requirements. Secure authentication authorization is required for participants 
who access FL systems anytime and anywhere. The effectiveness and safety of training 
data with complex and varied structures must also be evaluated. The training process must 
be resilient to malicious enemy poisoning damage and other privacy security threats. The 
above issues require us to design a set of Byzantine robust security FL architectures for 
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future edge-IoT environments. These architectures can accommodate a large user base and 
provide lightweight security against hostile Byzantine adversaries.

4.1.3  Heterogeneous data

FL model training requires considerable safe and reliable data support. The unified integra-
tion, efficient utilization, safe storage, and sharing of the heterogeneous data resources in 
edge-IoT environments remain urgent issues that need to be addressed. They also require 
further exploration from an edge computation-assisted FL perspective and strategies for 
data confidentiality, integrity, and privacy. There is also a need to develop flexible, fine-
grained, and adaptive data-analysis solutions. Such schemes can automatically identify the 
degree of sensitivity of edge user data and provide a corresponding appropriate security 
mechanism. In addition, we consider the significant differences in computing and storage 
capabilities between the cloud servers and edge nodes. Protecting node data may not be 
feasible when using the traditional security approach originally proposed for cloud servers 
to protect edge devices. In addition, an edge-IoT network is distributed, scalable, and het-
erogeneous. This is a challenge for security mechanisms that must maintain the efficiency 
and privacy of the data storage with auditing, backup, and recovery.

4.1.4  FL privacy security and mobile 6G

Future sixth-generation (6G) mobile networks are envisioned as heterogeneous, ultra-
dense, and highly dynamic intelligent networks. The emergence of sixth-generation mobile 
network technology will also accelerate the realization of the edge-SIoT. The integration 
of 6G connects physical systems with the digital space and enables powerful and instant 
wireless connectivity. With growing concerns about data privacy, FL is considered as a 
promising solution for deploying distributed data processing and learning in wireless net-
works. FL can take full advantage of the distributed computing resources in mobile EC 
systems, allowing users to retain their private data locally. However, the unreliable com-
munication channels, limited resources, and lack of trust between users hinder the effective 
application of FL in the IoT. This is because, in a mobile edge environment, the system 
bandwidth is limited and shared by all connected mobile devices (which may interfere with 
one another). In addition, owing to mobility and channel fading, a selected device may 
have different computing powers and dynamic wireless channel conditions. Therefore, the 
6G era will lead to higher requirements for safe and reliable FL models.

4.1.5  Asynchronous FL privacy‑preserving

Current IoT smart devices may not have sufficient computing resources to train and deploy 
an entire learning model. Simultaneously, the transmission of continuous real-time data to 
a central server with high computing resources incurs huge communication costs and raises 
data security and privacy concerns. FL is a promising solution for training ML models by 
using resource-limited devices and edge servers. However, most existing studies adopt an 
unrealistic synchronous parameter update method for homogeneous IoT nodes under sta-
ble communication connections. Therefore, asynchronous FL has been proposed as a new 
research approach that avoids using a single central server. Asynchronous FL improves the 
training efficiency of heterogeneous IoT devices in unstable communication networks by 
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allowing nodes to join or exit during the learning process. In business-based FL instances, 
asynchronous FL may be more beneficial when customers do not trust third parties. 
Although there is no raw data sharing, the open architecture and extensive collaboration 
in asynchronous FL still provide some malicious actors with a great opportunity to infer 
the training data of other parties. This can lead to serious privacy issues. Therefore, future 
research should be conducted on asynchronous FL privacy security mechanisms for EC.

4.1.6  FL universal safety mechanism design

The research and development of privacy protection mechanisms should be applicable to 
different FL classification scenarios. The current federal privacy and security protocols are 
mainly developed for HFL. When applied to VFL and federated transfer learning, they are 
not only inefficient, but also insecure. Therefore, the development of privacy protection 
mechanisms applicable to various FL classification scenarios remains a major challenge for 
the development of privacy-preserving FL.

4.1.7  Stringent latency demands

Contemporary intelligent IoT applications at the edge impose significant requirements on 
FL to satisfy the stringent latency prerequisites of client services. Examples encompass 
intelligent driving reliant on edge terminals and real-time medical diagnosis and analy-
sis. Nonetheless, the issue of delay stemming from repeated communication rounds in FL 
curbs its convergence velocity. This delay arises due to FL clients awaiting the aggrega-
tion of all local models before initiating a new global model round and commencing the 
subsequent training phase. Consequently, the delay encountered in the FL communication 
process becomes a substantial impediment, substantially constraining the integration and 
application of FL within the domain of edge-based intelligent IoT networks.

4.2  Future research directions

This section combines the proposed future challenges for FL in the edge-IoT context as a 
direction guide. We propose meaningful research directions for the development of future 
FL based on new technologies with broad development prospects.

4.2.1  Secure and efficient FL based on over‑the‑air computing

The proliferation of edge Internet of Things devices has prompted the necessity for expe-
dited processing of extensive sensor data, resulting in protracted data processing delays. 
Over-the-air computing, which merges communication and computation, presents a solu-
tion by accomplishing computing tasks during data transmission, potentially mitigating 
the data processing delay conundrum. Rooted in the concept of "communication and com-
puting integration", over-the-air computing harnesses the signal waveform superposition 
attribute during transmission to facilitate rapid data aggregation.

The fusion of over-the-air computing with FL involves executing computational tasks 
while transmitting model updates. By adopting a collaborative design strategy that inte-
grates computation and communication, the expedited aggregation of the FL global model 
is achieved. Concurrently, the computation for updating FL’s local models takes place dur-
ing the communication phase. This method adeptly alleviates the possible vulnerability 
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of the local model computation process to semi-honest or malicious central aggregation 
servers, resulting in a notable enhancement of data confidentiality. In the forthcoming 
landscape of edge-intelligent networks teeming with terminal devices, over-the-air com-
puting emerges as a promising avenue to enhance the performance of distributed model 
training. Exploiting this technology to expedite FL model aggregation warrants compre-
hensive exploration. Additionally, over-the-air computing leverages the wireless channel’s 
superposition characteristics to thwart privacy breaches during data communication. The 
optimization of radio resource allocation to ensure heightened confidentiality throughout 
the FL process in over-the-air computing also necessitates extensive investigation. Hence, 
the incorporation of over-the-air computing for secure and efficient FL design constitutes 
a compelling avenue for future research, holding considerable potential in the context of 
advancing both privacy-preserving and model efficiency.

4.2.2  Quantum technology designs lightweight robust FL

An FL security protocol designed using encryption technology can provide a large degree 
of defense against illegal attacks and prevent privacy leakages. However, the high comput-
ing overhead and heavy communication costs of encryption technology in large FL systems 
render FL less suitable. Therefore, we consider that the high encryption rate, high execu-
tion rate, and high security of quantum encryption (QE) technology may be suitable for 
an FL lightweight secure and robust protocol design. QE technology mainly uses quan-
tum properties and principles. It comprises a series of encryption technologies such as key 
generation, plaintext obfuscation encryption, ciphertext restoration and decryption, key 
preservation and transmission, and anti-eavesdropping. Eavesdropping by an intermedi-
ate adversary, copying, or tampering may cause a quantum-state change that exposes such 
eavesdropping. The key to the QE is generated randomly in the process of communication. 
This ensures that the key cannot be eavesdropped upon or cracked. In addition, quantum 
key distribution technology ensures that the communication parties only need to share the 
secret key once, thereby ensuring the security of transmitting the encrypted information in 
the open channel.

In the design of a secure and robust FL aggregation protocol, QE technology and appli-
cations can be mixed with classical encryption technology and applications. For example, 
for key management, we can design a quantum key pool to realize fast key distribution and 
reduce the waiting time for the key exchange for a large number of edge devices. We can 
combine quantum key distribution technology to ensure the random and secure generation 
and sharing of keys. Compared with traditional encryption methods, QE technology can 
effectively improve the encryption and decryption efficiency in large FL scenarios and sim-
plify the complex key generation and differentiation processes. As a hot research direction 
in the future, quantum technology can not only be used to design robust edge FL security 
protocols that are more secure and reliable, but can also help realize lightweight communi-
cation, encryption, and decryption.

4.2.3  Federated transfer learning based on knowledge distillation

The massive data structures in edge-IoT are heterogeneous and cannot be effectively inte-
grated. Consequently, FL always faces heterogeneity challenges caused by the distribution 
of non-identically independently distributed data from different clients with different com-
puting and communication capabilities. Severe data heterogeneity leads to client-side drift, 
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resulting in unstable model convergence and poor performance. Federated transfer learning 
comprises a combination of FL and transfer learning techniques for allowing knowledge to 
be shared while protecting private data. This is set up for FL not only for different sample 
spaces but also for different feature spaces, which can help build effective and accurate ML 
models for applications with only a small amount of data and weak supervision. KD is a 
teacher-student training structure. Usually, the teacher model provides knowledge and the 
student model extracts the knowledge of the teacher model through distillation training. 
Knowledge from the complex teacher model is then transferred to the student model at a 
small cost.

As an attractive option, federated transfer learning employing KD addresses the 
problems of data heterogeneity and small amounts of training data. By employing 
KD to perform federated transfer learning from large models to compact models, the 
FL models can be compressed. Simultaneously, KD can reduce the bandwidth occu-
pied by the FL training and improve the communication efficiency in FL. There-
fore, as an effective method to solve data heterogeneity, federated transfer learning 
with KD can alleviate the costs in large-scale FL training and communication to a 
certain extent.

4.2.4  SIoT privacy security based on FL and blockchain

A large amount of the data stored by edge-IoT devices are locally involved in the FL 
model training process. This process is always at risk of theft, poisoning, and tamper-
ing by malicious adversaries. Blockchain is used as a distributed ledger to store records, 
and data written in the blocks cannot be corrupted. This increases the transparency and 
immutability of data and facilitates data sharing while reducing opportunities for decep-
tion and fraud.

In the FL blockchain, each participating device acts as a client to update the parameters 
and aggregate the learning models in a decentralized manner. Each local client uses a local 
dataset to train a local model and uploads the trained model parameters to a group of min-
ers. The miner then merges the model parameters uploaded by the local client into a block, 
which is validated by the miner using the mining process. Once the block is mined, these 
model parameters are attached to the blockchain and broadcast to the entire network. Each 
local client downloads the latest update block and calculates the global model parameters. 
This iteration is performed only until the model accuracy requirement or maximum num-
ber of iterations is reached. The immutable and de-neutral nature of the blockchain helps 
eliminate the FL’s need for a central server. This can be used to solve privacy security 
issues in edge-IoT scenarios. At the same time, blockchain incentives can attract users in 
the federated system to actively participate in the training of statistical models and allevi-
ate problems such as communication costs and communication delays to a certain extent. 
To this end, blockchain technology has been introduced into the development of the SIoT. 
Researchers have used the confidentiality, integrity, and availability of blockchains to 
improve the security of private data.

4.2.5  FL‑based intrusion detection system protects 6G wireless communications

The provision of communication services via portable and mobile devices (such as air 
base stations) is a key concept for implementation of such services in 6G networks. Tradi-
tional FL partially solves privacy concerns by sharing models with base stations. However, 
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the centralized nature of FL only allows devices near the base station to share the trained 
model. Moreover, there are many potential threats to wireless channel communication, 
such as denial of service attacks, data security attacks, and illegal authentication accesses. 
In addition, long-distance communication forces devices to increase their transmission 
power, raising energy efficiency issues.

Most of the existing IDS models are built using ML and DL algorithms. This 
makes it difficult to train a participant’s local dataset without compromising user 
privacy. In addition, the amount of training data held by a single organization is lim-
ited; this has a significant impact on the accuracy of the ML and DL models. There-
fore, it is necessary to expand the amount of data while protecting its security. In 
addition, the increasing complexity of the network environment also leads to higher 
requirements for the applicability of the IDS. The processing of massive data also 
results in higher requirements for the efficiency of an IDS. The emergence of FL 
has enabled ML and DL models to be efficiently trained while protecting participant 
data privacy. A distributed IDS under the FL mechanism significantly improves the 
training efficiency and guarantees the privacy data security and classification accu-
racy. Therefore, in an unreliable 6G wireless communication channel, improving the 
FL-based IDS mechanism can facilitate the security filtering of such massive data 
to a certain extent. This reduces the threat of wireless channel security attacks while 
mitigating the risk of private data leakages.

4.2.6  Asynchronous FL based on trusted blockchain

Considering the integration of blockchain and FL technologies, there may still be problems 
caused by blockchain itself. For example, the traditional blockchain consensus mechanism 
and network structure cause problems such as long transaction confirmation times, lim-
ited throughput, and complex communication structures. These problems may lead to an 
increase in the model update parameter aggregation delay in the blockchain network for 
each round of the FL process. Each participant in the federation has a different device: 
when models are uploaded to the blockchain network separately, the time delay of each 
device may not be uniform. This could also result in a decrease in the prediction accuracy 
of the trained global model. In asynchronous FL, the central aggregation server undertakes 
global aggregation shortly after amassing a limited set of local models. This prompt aggre-
gation strategy mitigates the influence of underperforming clients on the overall efficiency 
of FL global model training.

Asynchronous FL solves the problem of inefficient FL systems caused by the differ-
ent performances of the edge devices. However, the times of uploading or downloading 
the model information by each device node are not synchronized. This may cause gradient 
delays at some nodes. Asynchronous FL introduces a trusted blockchain as an FL server. 
The child blockchains are used for partial model parameter updates, and the main block-
chain is used for global model parameter updates. The blockchain is decentralized, trans-
actions are conducted in real time, and the nodes in the various blocks communicate with 
each other in a timely manner. These features can also alleviate the problem of gradient 
staleness in the model training process of asynchronous FL, resulting in degradation of the 
accuracy of the global model. The trusted identity authentication mechanism of blockchain 
can filter out unreliable devices that apply to access the FL in the edge-IoT, thereby reduc-
ing FL privacy and security risks from the source.
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4.2.7  Low‑latency FL for edge computing systems

Edge computing involves real-time data processing and analysis proximate to the data 
source, effectively addressing demands at the edge node. This approach enhances data 
processing efficiency, alleviates data communication burdens, and fortifies data privacy 
and security. In this context, FL framework has been tailored to align with the edge 
computing paradigm. FL’s local model updates are outsourced to the edge server for 
aggregation. Edge clients’ local models undergo multiple rounds of training updates 
on the edge computing server before being uploaded to the central server for global 
aggregation. This process efficiently alleviates communication pressures stemming from 
centralized model training, thereby enhancing FL’s convergence rate. The reduction in 
communication process delay satisfies the prerequisites of edge-IoT applications with 
stringent FL processing delay requirements.

5  Conclusion

This study comprehensively investigates and analyzes the threat of data security attacks 
and privacy leakage security issues faced by FL under the edge-IoT. First, we introduce 
relevant concepts and basic working principles of FL, EC, and other technologies. We 
also summarize the data security attacks and privacy leakage attacks in FL. We then 
discuss the current mainstream security protection technologies for FL data security and 
privacy leakage attacks. For data security attacks, we investigate mainstream defense 
measures (such as the intrusion detection mechanism) and the robust performance of FL 
security aggregation. For privacy leakage attacks, we analyze mainstream defense meas-
ures such as cryptography technologies, disturbance technologies, AT, blockchain, and 
KD. The advantages and limitations of the FL security models developed using vari-
ous defense technologies are discussed. Finally, in the context of EC IoT-assisted FL, 
we discuss the challenges of FL security protocol design and possible future research 
directions.

The rapid development of SIoT has increased the complexity of DML environments at 
the edge. EC offloads heavy data storage processing to edge server nodes, alleviating the 
computing pressure of the central node and further compensating for the shortcomings of 
edge devices. Implementing FL under the EC paradigm will further mitigate the negative 
impacts of the FL privacy enhancement on the FL efficiency and model accuracy. Simul-
taneously, FL security protocols are being developed to balance privacy performance and 
system efficiency.
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