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Abstract

In some multi-criteria decision-making (MCDM) scenarios, decision makers must address
challenges like handling uncertain and incomplete information, managing biases in crite-
ria values, and assessing interrelationships among criteria based on their partitioning as per
their characteristics. To tackle these challenges, a picture fuzzy set (PFS) can be utilized to
quantify vague information, Hamy mean (HM) can be used to consider criteria interrelation-
ships while the power average (PA) mitigates any kind of biasness. Also, to overcome the
limitations of persistence and invariantess in algebraic operations, Dempster-Shafer theory
(DST) is employed. By integrating the conventional HM with the traditional PA under par-
titioning, this paper first introduced the novel power partitioned Hamy mean (P Pt HM?)
operator. Then, this operator is extended for picture fuzzy numbers (PFNs) with DST and
two novel operators are introduced, which are named as picture fuzzy power partitioned
Hamy mean (PFPPtH M% s7) and picture fuzzy weighted power partitioned Hamy mean
(PFWPPtH M% g7) with some desirable properties. Moreover, based on these operators,
a new method for MCDM in the PFS environment has been designed. The paper illustrates
their application in selecting the best hotel among four alternatives (B1, B», B3, B4) based
on five criteria, which are partitioned into two sets. Results indicate that the best and worst
alternatives under these operators are hotels By and By, respectively. Sensitivity analysis
explores the impact of granularity parameter variations, and comparative analysis demon-
strates the effectiveness of the presented operators. Overall, the study concludes that these
operators offer flexibility, generality, and consistency for analyzing MCDM problems in PFS
environments.
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1 Introduction

The broad objective of any multi-criteria decision-making (MCDM) method is to explicitly
evaluate multiple criteria and provide the desirable alternative from the available alternatives
considering the restrictions. It usually consists of two phases. In the first phase, criteria
and alternatives are identified and then a decision matrix with the help of experts having
assessment values is prepared. In the second phase, assessment values are used to determine
the most desirable alternative, either by classical methods or by aggregation operators.
Thus, in the initial phase of decision-making and data analysis, it is common to encounter
assessment values obtained from various sources. These values inherently carry a degree of
uncertainty, making precise decision-making challenging. To address this challenge, Zadeh
(1965) introduced the concept of the fuzzy set (FS) in 1965. The FS is a valuable mathe-
matical tool that aids in quantifying uncertainty by utilizing the concept of a membership
degree. It allows to represent the extent to which an element belongs to a set, providing
a flexible means of dealing with uncertainty. However, FS is effective for many applica-
tions, but it has limitations. Notably, it does not distinguish between non-membership degree
and refusal degree, making it less suitable for scenarios where such distinctions are cru-
cial. Recognizing these limitations, Atanassov (1986) extended the concept of the FS and
introduced the intuitionistic fuzzy set (IFS) in 1986. IFS incorporates both membership and
non-membership degrees, enabling a more comprehensive representation of uncertainty. To
calculate the refusal or indeterminacy degree in an IFS, simply subtracts the sum of the
membership and non-membership degrees from one. The utility of IFS extends across a wide
range of applications, with researchers employing it to quantify uncertainty in MCDM. It
has proven particularly valuable in addressing problems related to operational laws (Wang
and Liu 2012), similarity measures (Liu 2017), distance measures (Jin et al. 2009), ranking
methods (Zhang et al. 2019), classical MCDM methods (Zhang et al. 2020), aggregation
operators (Xu 2008), and many other areas. Researchers have made significant strides in
effectively applying IFS across various domains. However, it has become evident that IFS
may not be the ideal tool for addressing certain real-life problems that necessitate answers in
the format of ‘yes’, ‘no’, ‘abstain’, or ‘refusal’. Consider, for instance, the context of voting
questions, where all voting outcomes can be categorized into four distinct groups: ‘vote for’,
‘abstain’, ‘vote against’, and ‘refuse to vote’. Such scenarios demand a more nuanced and
versatile approach. In response to this challenge, the concept of picture fuzzy set (PFS),
as introduced by Cuong (2014) in 2014, emerged as a promising alternative. PFS includes
three essential degrees: membership degree, non-membership degree, and neutral degree,
with the stipulation that the sum of these three degrees equals one or less. This innovative
framework not only accommodates the complications of decision-making but also offers a
more comprehensive perspective for handling complex problems that across the limitations
of traditional IFS. PFS’s ability to capture nuances and uncertainties inherent in decision
processes has made it a valuable tool in diverse applications, ranging from voting systems
to risk assessment and beyond. Similar to IFS, PFS has also gained importance and popular-
ity in the fields of operational laws (Khalil et al. 2019; Seikh and Mandal 2021), similarity
measures (Ganie et al. 2020; Ganie and Singh 2021; Wei 2017a), distance measures (Dutta
2018), classical MCDM methods (Biswas and Pamucar 2023; Lin et al. 2020; Singh and
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Kumar 2020; Yildirim and Yildirim 2022), and aggregation operators (Akram et al. 2021c;
Ahmad et al. 2023; Si et al. 2021; Wang et al. 2017; Yang et al. 2023), etc.

In the second phase, the extracted information is used to evaluate any MCDM problem
either by adopting classical methods or aggregation operators based approaches. Generally,
classical MCDM methods provide rankings of alternatives after completing a set of predefined
steps, but aggregation operators (Ali 2023a,b; Ali and Garg 2023; Ali and Naeem 2023a, b;
Ali et al. 2023) based approaches can offer aggregated values for each alternative and then
produce rankings of alternatives (Dagistanli 2023; Dincer et al. 2023). So, based on this
assertion, the present study considers the aggregation operators based approach to combine
the quantitative evaluation of criteria for each alternative and then rank the alternatives in
accordance with the aggregated results. In the real-world MCDM problems, the aggregation
of values for criteria is a challenging process where the preferences of the decision makers
may differ. A good aggregation operator should be all-encompassing, versatile enough to
accommodate such variation, consider interrelationships between criteria. Additionally, the
preferences of decision makers are a crucial input to MCDM problems because they have
some subjectivity. Among different preferences, risk attitudes of decision makers (such as
pessimistic, neutral, and optimistic) are a significant type. Such risk attitudes should be able
to be captured by an ideal aggregation operator. A literature survey related to aggregation
operators and their characteristics for the applicability of PFS in MCDM has been provided
in the next section.

1.1 Literature survey

There are typically two types of methods for analyzing MCDM problems. The first type of
method employs traditional techniques such as Technique for Order of Preference by Simi-
larity to Ideal Solution (TOPSIS), ELimination Et Choice Translating REality (ELECTRE),
VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Decision-Making Trial
and Evaluation Laboratory (DEMATEL), and so on, whereas the second employs aggregation
operators. In general, classical MCDM techniques can only produce rankings of alternatives
by following specified steps, whereas aggregation operators based approaches can provide
aggregated values for each alternative, and then rankings of alternatives can be done (Sahoo
and Goswami 2023). Wei (2017b) presented weighted averaging and weighted geometric
operators under the PFS environment. Similarly, Garg (2017) introduced the archimedean
weighted averaging and ordered weighted averaging operators for PFS. Khan et al. (2019)
introduced Einstein weighted averaging and geometric aggregation operators. Jana et al.
(2018) introduced dombi weighted averaging and geometric aggregation operators. Wei
(2018) introduced Hamacher weighted averaging and geometric aggregation operators. Apart
from these, a number of authors have successfully applied aggregation operators under differ-
ent fuzzy environments (Akram et al. 2021a,b, 2023a,b, ¢). A brief summary of some recent
research papers based on the characteristics of aggregation operators for PES are listed in
Table 1.

Since the increasing complexity of decision making, we should consider following issues
when selecting aggregation operators in PFS environment. The first issue is the operational
laws for PFNs. Most of the existing studies mentioned in Table 1 are based on algebraic #-
norm and 7-conorm operations, which are known to carry certain drawbacks and unfavorable
properties. To address these limitations, Dempster (1967); Shafer (1976) introduced the
concept of Dempster-Shafer theory (DST). DST serves as a valuable mathematical tool for
aggregating information while accounting for possible errors and imprecision. Within the
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DST framework, basic probability assignment (BPA) quantifies the occurrence probability of
criteria in basic events. Furthermore, the belief interval (BI), consisting of the belief function
(BF) and the plausibility function (PF), captures the levels of belief and uncertainty associated
with a focal element, respectively. Recently, Liu and Gao (2020) developed intuitionstic
fuzzy operators under the framework of DST. Then, Qin et al. (2020) extended this work and
proposed operators under the framework of DST and applied it to MCDM problem.

The second issue is that in most situations, there are interrelationships among attributes.
We should not only consider the attributes themselves but also take into account the inter-
relationship among attributes. In response to this issue, many aggregation operators under
fuzzy information have been proposed by authors (Naseem et al. 2023; Ranjan et al. 2023;
Yu 2015). Specifically, in allusion to the interrelationship between or among attributes, some
authors developed the Bonferroni mean (BM) (Bonferroni 1950), the Maclaurin Symmetric
mean (MSM) (Maclaurin 1729), the Muirhead mean (MM) (Muirhead 1902), and the Hamy
mean (HM) (Hara et al. 1998), and applied them to different fuzzy environments. Wei et al.
(2018) studied generalized Heronian mean aggregation operators, while Wang et al. (2018)
presented Muirhead mean (MM) operators. The BM operators were developed by Ates and
Akay (2020). The BM operator only consider the correlation between two attributes. The
MM and MSM, are types of aggregation operators that provide the correlation between mul-
tiple arguments and the mean value of fused arguments. Hara et al. (1998) established a
critical refinement of arithmetic mean (AM) and geometric mean (GM) inequality in 1998,
demonstrating that HM and its dual will monotonically lie between AM and GM. The MM
and MSM operators do not normalize the correlated values as precisely as HM does, the HM
operator presents a more accurate picture of the interrelationship among attributes. It can
be found that the HM operator has a greater power and flexibility in addressing information
aggregation than the BM operator. By taking advantage of HM, Liu et al. (2019) introduced
the HM aggregation operators under interval neutrosophic environment. After that, Liu et al.
(2020) introduced partitioned HM under intuitionistic uncertain linguistic environment and
applied it to MCDM method for plant location selection.

The third issue is related to weights of criteria. In the fuzzy information aggregation, the
computing results are susceptible to extreme values given by biased decision makers and
produce low confidence levels for the decision outcomes. To mitigate the negative impact of
extreme attribute values, Yager (2001) developed the power average (PA) operator. Theoreti-
cal expansions on PA are also quite rich. Xu and Yager (2009) proposed the power geometric
(PG) operator, which can analogously model the interactions among aggregated data. The
PG operator is considered more suitable for processing the multiplicative preference rela-
tionships. Due to this characteristic, the PA operator has been widely utilized in a variety
of fields, such as software quality evaluation, multiple attribute (group) decision-making
(MADM/MAGDM), and green product development. Using the concept of PA operator, He
et al. (2015) proposed the power BM operators under IFS environment. Liu and Liu (2019)
integrates PA and MM operators under linguistic g-rung orthopair fuzzy environment. How-
ever, Qin et al. (2021) proposed archimedean PMSM operators, while Punetha and Komal
(2023) provided PMM operator under PFS environment and applied it to decision making
problems.

These operators are successfully applied in the decision making process with the assump-
tion that each attribute is related to the rest of the attributes. In real-life decision making
situation it may not be always happened. For example, consider a mobile phone selection
problem (Rawat et al. 2023), where the best alternative among a number of mobile phone
options is selected based on five attributes: basic requirements (A;), physical characteris-
tic (Ap), technical features (A3), brand choice (A4) and customer excitement (As). The
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attributes are partitioned in two classes: P; = {A1, A2, A3} and P, = {A4, As}. It is found
that attributes Ay, A, and A3 are interrelated therefore, they belong to the same class Py,
similar interpretation can be provided for the members of P,. However, there is no relation-
ship among the members of Py and P,. The expressed interrelationship structure among the
attributes is intrinsically connected to the corresponding input arguments. To effectively deal
with these cases, Dutta and Guha (2015) proposed the partitioned BM (PtBM) operator to
deal with this situation in which parts of attributes are interrelated and others do not have
any relationship. Using the concept of partitioning, Liu et al. (2020) provided interval-valued
intuitionistic uncertain linguistic multi attribute decision-making method for plant location
selection. After that, Luo and Xing (2020) extended this work and presented partitioned
Heronian mean operators with interactional operational laws and applied in MCDM prob-
lem. Then, Qin et al. (2020) proposed power PtBM operators using Archimedean operations
under g-rung orthopair FS environment. Recently, Ali (2022) proposed PtMSM operators
under hesitant FS environment.

From the above literature review, the following challenges in context of PES are noticed.

(a) Criteria weights play crucial role in the aggregation process that must be calculated
methodically to reduce subjective randomness caused by human intervention (He et al.
2015; Liu and Liu 2019; Punetha and Komal 2023; Qin et al. 2021).

(b) Some more generalized operators are required that could provide the interrelationship
between criteria more efficiently (Liu et al. 2019, 2020).

(c) As different criteria have different characteristics, so partitioning of criteria as per their
characteristics can be integrated in MCDM process (Ali 2022; Luo and Xing 2020).

(d) The algebraic operational laws such as addition and scalar multiplication are not invariant
and persistent i.e. they have few drawbacks and undesirable properties, which can be
effectively resolved by integrating the concept of DST in MCDM process (Liu and Gao
2020; Qin et al. 2020).

Based on the noted challenges, the detailed motivation and contribution of the present study
is given in the following section.

1.2 Motivation and contribution of the study

Based on the reviewed literature as presented in Table 1, it has been observed that in some
real-life decision-making problems, a few complications arise during the optimal alternative
evaluation process. Some of the noted complications along with their resolving approaches
are listed as follows:

(a) In some instances, decision-makers input criteria values that can be either extremely low
or high or might have a negative effect on final ranking results. To address this challenge,
Yager (2001) introduced the PA operator. Since its introduction, the PA operator has found
widespread application across different fuzzy contexts (Liu and Liu 2019; Punetha and
Komal 2023).

(b) Many MCDM problems exhibit intricate interrelationships among their criteria. Conse-
quently, it becomes essential to thoroughly examine and assess these interdependencies
among criteria values. In order to effectively tackle this challenge, a range of aggrega-
tion operators, including but not limited to BM, MM, HM, and MSM, can be employed.
The choice of the most suitable operator among these options depends on the specific
requirements and characteristics of the problem (Hara et al. 1998; Liu et al. 2019). These
operators offer versatile tools to capture and incorporate the nuanced interrelationships
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among criteria values, facilitating a more comprehensive and accurate decision-making
process.

(¢) In certain real-life MCDM scenarios, criteria often exhibit distinct characteristics, neces-
sitating a method to categorize and handle them accordingly. One effective approach to
address this challenge involves the partitioning of criteria based on their unique charac-
teristics. Dutta and Guha (2015) introduced partitioned BM operators, which consider
all possible criterion partitions of a designated size. Researchers have also explored the
integration of partitioning concepts with various operators in different fuzzy contexts
(Ali 2022; Qin et al. 2020).

(d) Table 1 highlights that a significant portion of aggregation operators relies on algebraic
t-norm and 7-conorm operations, which are known to carry certain drawbacks and unfa-
vorable properties (Liu and Gao 2020). Since the algebraic operational laws are not
invariant and persistent for addition and scalar multiplication, respectively. To address
these limitations, Dempster and Shafer introduced the DST. In accordance with findings
from (Qin etal. 2020), there exists a close relationship between PFS and DST. This insight
allows for the direct application of DST aggregation rules to combine criteria represented
by PFNs in real decision-making scenarios. Consequently, PFNs can seamlessly transi-
tion into BPAs within the DST framework, preserving all pertinent information, while
the operational rules of PFNs can be transformed into operational laws governing Bls.
These transformations eliminate the shortcomings and constraints associated with the
algebraic operational laws of PFNs, leading to more coherent and compelling aggregated
results.

Based on the comprehensive literature review meticulously presented in Table 1 and the
motivations outlined earlier, it has become evident that, to the best of our knowledge, no
prior research has attempted to concurrently address the complex complexities inherent in
the scope of MCDM. These complexities involved various aspects, including but not lim-
ited to the integration of PA, the consideration of HM, and the partitioning of criteria, all
of which are conclusive in real-world decision-making scenarios. By integrating these con-
cepts, anovel aggregation operator named P Pt H M1 is introduced. Moreover, the innovation
does not stop here. The paper extends the application of this ground breaking aggregation
operator into the domain of PFS, introducing a novel operators. The integration with DST
is a transformative step forward and stands as the central thrust of our research endeavor.
This innovation represents the core contribution of this paper, as it equips decision-makers
with a powerful and versatile tool to address the multifaceted challenges that confront real-
world MCDM problems. Ultimately, our goal is to provide a comprehensive framework
that empowers decision-makers to make more informed, accurate, and robust decisions in
complex decision-making contexts. This article will achieve the following objectives:

(a) A novel P PtH M1 operator has been developed by integrating the concepts of PA, HM,
and partitioning of criteria.

(b) The PPtHMY operator is then extended for the PFS environment, and two novel
operators named PFPPtHM} ¢ and PFW P PtHMj, ¢, with DST, as well as some
desirable properties, are introduced.

(c) A MCDM approach based on the developed PFPPtHMqDST and PFWP PtHMqDST
operators has been presented.

(d) An example of the best hotel selection illustrates the effectiveness of the proposed
approach. To demonstrate the efficiency of the proposed operators, sensitivity and com-
parative analyzes were carried out.
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The remainder of the paper is divided into the following six sections. The basic definitions are
provided in Section 2. The P Pt H M4, PFPPtHM%ST, and PFWPPtHM%ST operators
are developed in Section 3, and their desirable properties are also discussed. A MCDM method
based on proposed operators has been designed in Section 4. In Section 5, anumerical example
of the best hotel selection is presented, along with sensitivity and comparative analyzes, to
demonstrate the efficiency and stability of the proposed operators. Finally, the paper ends
with some concluding remarks and provides limitations and some possible future directions.
The meanings of the symbols used in this article are summarized in Table 2 for easy reading.

2 Some preliminary concepts

This section briefly recalls some of the basic concepts such as definition of PFS, opera-
tional laws, score and accuracy functions, distance and support functions for PFNs and DST
framework along with PA, HM, PHM and PtHM operators.

2.1 Picture fuzzy set

Definition 1 Cuong (2014) Let X be a universal set, then PFS on X is as follows:

K = {(x, px (x), ng (x), vg (x)) : x € X} (&)

where, ug(x), ng(x), vg(x) € [0, 1] are called as the degrees of positive, neutral and
negative membership of x in K respectively with condition0 < ug (x)+ng (x)+vg(x) <1,
Vx € X.Thenforx € X, mg(x) = 1 — (ug (x) +ng (x)+vg(x)) could be called the degree
of refusal membership of x in K. For sake of convenience, we can call k = (uk, nk, vi) as a
picture fuzzy number (PFN).

Table 2 Mathematical symbols with description

Symbols Description Symbols Description

K Picture fuzzy set dpsT(x,y) Distance function for DST

K Picture fuzzy set with DST Sup Support function

k Picture fuzzy number Suppsr Support function for DST

k Picture fuzzy number with DST T Sum of support functions

" Membership degree q Granularity parameter vector

n Neutral membership degree Py tth partition of criteria set

v Non-membership degree d Number of partition

b4 Refusal membership degree T, T Power weights

S Score function B Set of alternative

SpsT Score function for DST G Set of criteria

H Accuracy function D Picture fuzzy decision matrix

Hpsrt Accuracy function for DST Q Normalized picture fuzzy decision
matrix

d(x,y) Distance function OpsST Normalized picture fuzzy decision

matrix for DST
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Definition 2 Wei (2017b) Let k = (w, n,v), ki = (1,11, vy) and kp = (2, 52, v2) be
three PFNs, and let A be a positive real number. Then algebraic operational laws for PFNs
are as follows:

(1) k1 @k = (1 + w2 — wip2, n102, V1V2);

(ii) k1 ® ko = (uip2, N1 +m2 — mm2, v + v2 — V1V2);
(iii) Ak=(1 — (1 — w)*, n*, v*);
(iv) kr=(u*, 1= (1=t 1= (1 —=v)).

Definition 3 Wei (2017b) Let k = (u, n, v) be a PFN then the score (S(k)) and accuracy
(H (k)) functions of k are defined as S(k) = u — v and H (k) =  + n + v respectively. Let
k1 and k be two PFNs, then using the definitions of their score and accuracy functions, the
ranking of these PFNs can be done as followings.

(a) if S(k1) > S(k), then k1 > k»
(b) if S(k1) = S(k2), then

() if H(ky) > H(ka), then ki > ko,
(i) if H(ky) = H(ka), then k; = ko.

Definition 4 Dutta (2018) If k; = (u;, n;,v;) and k; = (uj, n;,v;) are two PENs, the
normalized Hamming distance between them is calculated as follows:

1
d(ki, kj) = E(IIM — il + I —njl+ i —vj|+ |7 — 7)) )

where, m;=(1 — u; —n; —v;) and w;=(1 — p; —n; — vj).
Using Hamming distance, the support between k; and k; is defined as follows:

Sup(ki, k;j) =1 —d(ki, kj) 3)
The support function satisfies following properties:

(a) Sup(ki, kj) € [0, 1],
(b) Sup(ki, kj) = Sup(k;, k;),
(c) It d(k;, kj) < d(ki, kp), then Sup(k;, k;) > Sup(ky, kp).

2.2 Dempster-Shafer theory

The DST proposed by Dempster (1967); Shafer (1976). It is a successful and well-liked tool
for combining ambiguous or imprecise information. In the DST framework, BPA describes
the occurrence rate of criteria in basic events, and the BI, which is made up of the BF and
the PF, reflects the belief and uncertainty of the focus element, respectively. This section
goes over fundamental ideas including BPA, BE, PF, and BI for DST. Also, this section
extended the concepts of PFS, operational laws of PENSs, score and accuracy functions for
PFNss, distance and support functions for PFNs in the framework of DST.

Definition 5 Let X denotes a set of n mutually exclusive and exhaustive objects, then BPA
on X denotes a mapping E : P(X) — [0, 1] that satisfies the following conditions:

Y E(Y)=1land E($) =0. “)

YCP(X)
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Definition 6 Let a BPA E on X, then the BF is as follows:
Bel(X)= Y  E(Y) 5)

Ycx

where, E(X) > 0.
Definition 7 Let a BPA E on X, then the PF is as follows:

PI(X)= ) E(¥)=1-Bel(Y) (6)
YNX#¢

The complementary set of X is denoted by Y.

Definition 8 Let a BPA E on X, then the Bl is defined as follows:
BI(X) = [Bel(X), PI(X)] (7)

Definition 9 Qin et al. (2020) Let X be a universal set then PFS with DST on X is defined
as:
K ={(x, BIz(x)): x € X}, ®)

where Bl (x)=[Belg (x), Plg(x)]=[pg(x), I=ng(x)—vg(x)]and ug(x), ng(x), vg(x)
€ [0, 1] are called as the degrees of positive, neutral and negative membership of x in K
respectively with condition 0 < g (x) < 1—ng(x) —vg(x) < 1,V¥x € X. Thenforx € X,
Tg(x) =1— (ugx)+ng(x)+vg(x)) could be called the degree of refusal membership
of x in K. For sake of convenience, we can call k = BI; = [Belg, Pl] = [, 1 —np —vg]
a PFN with DST.

Definition 10 Qin et al. (2020) Letk = BI = [Bel, PI] = [, 1 —n—v]andk; = Bl =
[Bely, Pli] = [u1, 1 —n1 —vil, ko = Bl = [Bely, Pl] = [u2, 1 —m — w2,k =
BIl, = [Bel,, Pl,] = [in,1 — n, — v,] be n + 1 PENs with DST, then we obtain the
following expressions:

Lhobho. . ok= [ZLI Bl 2 Pl"] = [ZLI = Z"”:l“’”"’”")}

n n n n

ki ® ky = [BeliBely, P1; Ply] = [pipia, (1 — 1 —v)(1 = 1 — vp);
8k = [Bel, PI] = [81,8(1 —n — )], 8 € [0, 1];
k* = [Bel, Pl] = [u*, (1 = n = v)*], 1 € [0, 00).

Eal

Deﬁnitior111 Qin et al. (2020)~Let12 = BI = [, 1 — n — v] be a PEN with DST then the
score (S(k)) and accuracy (H (k)) functions are as follows:

~ Bel + Pl l+pu—n—v
Sosr(k)z( . ) _ /LG )

Hpsr(k) = (Pl — Bel) = (1 — u —n — v)

Letk; = BI} = [u1,1 —n —viland ko = Bl = [u2, 1 — 72 — 2] be two PENS, then
using the definitions of their score and accuracy functions, the ranking of these PFNs can be
done as followings.

(@) if Spsr (k1) > Spsr (k2) then ky > ka;
(b) if Spsr (k1) = Spsr(k2), then

(i) if Hpsr (k1) > Hpsr (ko) then ky < ka;
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(i) if Hpsr (k1) = Hpsr(ka) then k = ka.

Definition 12 Qin et al. (2020) If k; = BI; = [i;, 1 —n; —viland k; = BI; = [, 1 —
n; — v;] are two PFNs, the normalized Hamming distance between them is calculated as
follows:

o 1
dDST(ki,kj)=§(|Mi—ﬂj|+|77i—77j|+|vi—le) 9
Using Hamming distance, the support between k; and k j is as follows:
Suppsr (ki kj) = 1 — dpsr ki, k)) (10)

The support function satisfies following properties:

(@) Suppgr (ki kj) € (0.1
(b) Suppgr (i, kj) = Suppgr (k). ki), o o
(¢) Ifdpst(ki, kj) < dpst(ki, kp), then Suppgr (i, kj) > Suppgr (ki, kp).

2.3 Power average, Hamy mean, power Hamy mean, partitioned Hamy mean
operators

This section briefly provides the definitions of PA, HM, PHM and PtHM operators.

Definition 13 Yager (2001) Let a;, i = 1,2, ..., n be a set of n crisp numbers, then the PA
operator is defined as:

Yo (L +T(ai))a;

PA(al, a, ...an) = 2:1:1(1 4+ T(a,))

an

n
where, T (a;) = Z Sup(a;, a;) and Sup(a;, a;) is the support for a; and a;, and also satisfies
Jj=1
. ]#l . . . . . . .
the properties as mentioned in Definition 4 for crisp numbers. The PA operator is a non-linear
i=1 (147 (a;))
depends on all the input arguments a; (i = 1,2, ...,n) and allows the argument values to
support each other in the aggregation process. Moreover, the support measure is possibly a
similarity index. The closer two values are, the more they support each other. The PA operator

satisfies following properties:

weighted average aggregation operator, and the weight of the argument a;

1. Idempotency: PA(a;, az, ...a,) = a; if a; = a for all i;

2. Boundedness: min(a;) < PA(ay, az, ...a,) > max(a;) for all i;

3. Commutativity: Any permutation of the arguments has the same PA operator;

4. Non-monotonous: An increase in one of the arguments can result in a decrease in the
PA operator.

Definition 14 Haraetal. (1998) Leta;, i = 1, 2, ..., n be a set of n crisp numbers, then their
HM is defined as:

q

q
> (I
1§i1<..,<iq§n j=1

HMY(ay, ay, ..., a,) =
n Cg

(12)

@ Springer



Novel picture fuzzy power partitioned Hamy mean operators... Page 130f43 145

where, g is a parameter (¢ = 1, 2, ..., n); i1, i2, ..., iy are g integer values taken from the set

{1,2,...,n} and C{ is the Binomial coefficient i.e., C! = q!(n”iiq)!.

Definition 15 Liu et al. (2019) Let a;, i = 1, 2, ..., n be a set of n crisp numbers, then the
PHM is defined as:

3 H( n(l+ T(a))ai, )é
Y (4T (a))

I<ij<..<ig=n j=1

PHMY (a1, as, ..., a,) = (13)

Ci
where, g is a parameter (¢ = 1, 2, ..., n) and iy, i2, .. iq are ¢ integer values taken from the

set {1, 2, ..., n} while C = The T (a;) = Z Sup(a;, a;) and Sup(a;, a;) are the
j=1
j #i
supports for a; and a; respectively, and also satisfy the properties as mentioned in Definition
4 for crisp numbers.

'(n q)'

Definition 16 Liuetal. (2020)Let A = (ay, az, ..., a,) be aset of n crisp numbers, and the set
A is partitioned into d-number of subsets Py, Ps, ..., P; of arguments a;’s with two important
partitioning conditions P; N P; = ¢ and U;izl P, = A. The parameter g1, g2, ..., G, ---, 4d
take values ¢; = 1,2, ..., | P¢|, and | P%| is the cardinality of P; (t = 1,2, ...,d). Also g =
(41,92, - q1» ---, qa) 1s the granularity parameter vector. Then the Pt H M operator is defined
as follows:

qr
| Z 1_[ dij

I<ii<..<ig, <|P| \Jj=1
PtHMY (a1, a, ccay) = ~ 3 | ———— (14)

415 Cip,

where iy, i3, ..., ig, traverses all the g;-tuple combination of {1, 2, ..., [P}, and C| P =

% is the Binomial coefficient. The process of partitioning is shown in Fig. 1.

Criteria set
{103,050,

Partitioning of criteria i

e M

BB P F=la,a.a ) Py By

Effect of granularity value l
q[\"’,\
Possible interaction between members ‘/'/\ / \\A / \
of P, based on selected value of g, a, a, " a flagsay-=ta, a3 a4 314,405~ {q . ,W,a,‘/,‘} {a,‘,a[‘,___,a‘“)‘}
] ! ] B I’
i | i i i i i J
- c cl
Total combinations C\ 7l C\ £l 2] 2]

Fig. 1 Process of partitioning for criteria
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3 Novel picture fuzzy power partitioned Hamy mean operators
with Dempster-Shafer theory

This section, first proposed a novel P Pt H M9 operator then this operator is extended for
PFS environment. Two novel operators named as P F P PtHM Z, grand PFWPPtHM g ST
are introduced by integrating PFS, PA, HM, and partitioning with DST.

3.1 Power partitioned Hamy mean operator

Definition 17 Let A = (ay, az, ..., a,) be a collection of n-crisp numbers, and the arguments
of a; (i =1,2,..,n) are partitioned into d-number of sets Py, Ps, ..., Py with P, N P; = ¢
and Ule P, = A.The parameter q1, g2, ..., qt, ..., qq take values g, = 1, 2, ..., | Py|, and | P |
is the cardinality of P, (r = 1,2, ...,d). Also ¢ = (q1,92, ---, 415 .-, qq) is the granularity
parameter vector. Therefore, the P Pt H M9 operator of n-dimension is defined as follows:

L ( n(+T@)ai; \ar
a D (®<27:I(1+T(a,->)>)

1 1<iy<..<ig, <|Py| ~ j=1
PPtHMq(alvazs"-aan):E® Kl ! qu
t=1 | Pr]
15)
where i1, i3, ..., iy, traverses all the g;-tuple combination of {1,2, ..., |P[}, and Clqlé’fl =
n
% is the Binomial coefficient. Meanwhile, T (a;) = Z Sup(a;, a;) and Sup(a;, a;)

j=1
. . . ]#l . . e
is the support for ¢; and a;, and also satisfy the properties as mentioned in Definition 4 for
crisp numbers.

3.2 Picture fuzzy power partitioned Hamy mean operator

Definition 18 Let K = {/Ei : /Ei = [wi, 1 —n; —vil,i = 1,2, ..., n} be the corresponding
BIs of PFNs k; = (i, ni,vi) (i = 1,2,...,n), and the arguments of E- (i=12.,n)
are partitioned into d-number of sets Py, P», ..., Py with P, N P; = ¢ and Uf:l P = K.
The parameter g1, q2, ..., ¢, ..., qq 18 With g = 1,2, ..., | P¢|, and | P;| is the cardinality of
P (t =1,2,..,d). Also g = (q1,92, ---,4:, ---, qq4) 1s the granularity parameter vector.
Therefore, the PF P PtH MZ) ¢ operator of n-dimension is given as:

@ ((é( n(l + T (&), >f>
1<ij<...<ig <|P;| > j=1 Z’;‘=1(1+T(Ei))

qt
Cip,

d
S 1
PFPPtHMY g (ki ka, ... k) = 7 &b

t=1

(16)
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where i1, i3, ..., ig, traverses all the g,-tuple combination of {1, 2, ..., | P|}, and CIq;’;\ =
n

—mi, is the Binomial coefficient. Meanwhile, T'(k;) = Y S (ki k;) and

ZT0P 1= 18 the Binomial coefficient. Meanwhile, ) = uppsr(ki, k;) an
j=1
J#

Suppst (ki k j) is the support for k; and IE.,- , and also satisfy the properties as mentioned in
Definition 12.
For convenience, let

= AFTE) (17

Yo (1 + T(k)))
where, (71, 12, ..., t,,)T is called as power weighting vector (PWV), which satisfy the condi-
tions 7; € [0, 1] and Zr, =1.

Then (16) can be wrltten as:

P <®(nt,/k,l)>

d
- 1 1<ij<...<ig, <|P;|
PFPPIHMY g (ki ks, k) = — €D - ’Cq, (18)
[P

Theorem 1 Let K = {IE,- C ko= [wi, 1 —ni —v;il,i = 1,2,...,n} be the corresponding
BIs of PFNs K = {k; : ki = (ui,ni,vi),i = 1,2, ...,n}. The value aggregated by the
PFP PtHM%ST operator is still a Bl and is defined as follows:

1 d

o 1
HWHHM%AMJLMbJ:[EE:&CmP< > (ﬂm%m )))

| Py 1<iy<...<ig <|P|

1
1 ar
22 (; CW( > (Hema-n-w»)")
t=1 3 i i j

I<ii<..<ig <|P| *j=1
19)

Proof On the basis of operational laws for PFNs with DST we have, ntj; /Ei ;= [nr,-jul- ;o
}’lfij(] - Uij - U[j)].
Then,

qr qr qt
@i ki) = [H(nrijw, [[om,a—m; - v,-j»]
j=1 j=1 j=1
qr L qt L qt 1
<®(m,;,.aij>> "= [( [T, ui_f)) " ( [T, =i, — w,-))) ! }

Jj=1 Jj=1

P <®(nr,/k,l))

1<ii<...<ig =|Pt|
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(LT (1))

1<ii<...<ig, <|P|

L

(L5 (flemos o))

1<iy<...<ig <|Pt|

Now,

1 ir 1 qr %
i ( @ <®(nt:,kz,)) >=[7(C‘q;)‘)2< . Z (H(nri]/uj)> >

[Pl M<ip<.. <ig <|P| *j=1 I<ii<..<ig =|P| “j=1
1

1 ar
Cq,‘)2< > (]_[(nrz,(l ni; v,,») )]

| P 1<ij<...<ig =|P|

Then,

d @ <®(nr’/ k’/ )> d P .
I<ij<..<ig <|P| * j=1 1 i @
@ ct |: Z(Cﬁ;ﬁ( Z (l_[("fi,-ui,-)) ))

=1 [Pl =1 1<iy <..<ig, <|P| N j=1

—_

)

qr
% <(C\m)2 ( 2 (H(""ﬂf (I=n;; —w,)))

=1 I<it<..<ig <|P,| \j=1
Finally,

a @
& (@) |
é =iy <..<ig sIP| " j=1 I:i Z < ( Z (ﬁ(ﬂf' ‘ )> ;>)
ce d? (Cp? o |

t=1 [P =1 1<i) <...<ig, <|P| Nj=1

QU=

LS (o))

I<ij<..<ig <|Pi| “j=1

Hence the proof is complete.
The following Theorem states the commutativity of the PF P Pt H M* ps7 operator: O

Property 1 (Commutativity): Let Ei =[pi, 1=ni—vi] (i = 1,2, ..., n) bethe corresponding
BlIs of PENs k; = (ui, ni,vi) (i = 1,2,...,n). If (K}, k), ..., k},) is any permutation of
(ki ky, ... kn), k. = [p}, 1 — n} — v]], then

PFPPtHM} o (ki ko, ... kn) = PEPPtHM} o (K}, K, ... k). (20)

Proof Given (k/, 123 12;1) is any permutation of (ki k», ..., k), based on Theorem 1, it is
not difficult to obtain following expression:

d

S 1 1
PFPPtHMY o (ki ko, ... kn) = [d—z Z <(qu |)2( > <]_[(nr,ju1, ) ))

| Py 1<iy<...<ig <|P|
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(3 (o)
7 (”Tij(l—ﬂij—‘/ij))> >)]
: =1 (Cll"zl)2 j=1
1
:[ﬁ
=1
d

(ol 2 (flos))
;7¥<<Cf;,l>2< 2 (H%(l , w@»)ﬂ)]

1<iy <...<ig, <|P/]

M&

1<ij<..<ig <|P:
— 1<ii<...<ig <|Pr|
= PFPPtHMY ¢ (ki K, .. K)
Thus we can obtain
PFPPtHM} g, (ki ko, ....ky) = PFPPtBM}) gy (K|, k), ... k})

It is also noted that PFPPtH M% g7 operator does not satisfied idempotency and bound-
edness (Liu and Gao 2020; Qin et al. 2020). However, if a small modification is done by
taking multiplication of the aggregated value with dC‘qI’, | then the modified PF P PtHMDST

operator is denoted by MPFP PtH M g 1s defined below which have idempotency and

boundedness.
qr qir
(l_[(nrl‘jﬂ[j)> ))’
| =1
1

ST CISEY)

=1 I<ii<..<ig <|P| “j=1

- 1 1
q - | = RN
MPFPIPHMDST(kl ka, .o k) = |:d E ( (

I<ij<..<ig <|P

m}

Property 2 (Idempotency): Let lzi = [ui, 1 —n; —vi] (i~: 1,~2, ..., ) be the corresponding
Bls of PENs k; = (i, ni,vi) i =1,2,...,n). Alsoletk; =k = [, 1 — n — v], then

MPFPtPHMY g (ki ko, ... k) = k.

Proof Giventhatk; =k = [, 1 —n— v]foralli, then

d

1
U N 1 1 kil a
MPFPPHMY (k1 Ko, oo K) = [EZ(CT< > (H(nn,-m,-)) ))
=1 [Pl M<iy<...<ig <|P| j=1

1

130 (L, (o))

t=1 I<iy<...<ig, <|P;| “j=I
Because,
qt
3 (]_[(ntij)) =1
I<iy<..<ig, <|P] ©j=I

We can obtain, M PFPPtHM? o (ki ko, ..., kn)

d

Lzl (L 2, (w))

1<ij <»~-<lq,S|Pt|
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d

(e, 2 (o))

1<iy<...<ig, <| P

=[/’L’1_n_v]=k
[}

Property 3 (Boundedness): Let £ = [pi, 1 — i — vi] (i = 1,2, ..., n) be the corresponding
Bls of PENs k; = (wi, mi, vi) (0 = 1,2, ...,n). I k™ = [min(u;), min(l — n; — ;)] and
k* = [max(u;), max(1 — n; — v;)] for i = 1,2, ..., n). Then

k= < MPFPPHMY (K, ko, ... ) < B @1

Proof Since min(u;) < (ui) < max(u;), itis easy to obtain

L

IP,)2< : Z (H(m”(mmul/))> )>

qi
¢ 1<iy<..<ig, <|Py| ~j=1

d

qr 1
dCip) | 2 <
d

Z
<d(Cl ) %Z( |P,)2< > (ﬁ(nfij:uij)>qlr>>

=1 I<ij<..<ig <|P| " j=1

=d(Cp) ;Xd:( |P,)2< 2 (H(m (e ))> >>

=1 1<iy<..<ig <|P| j=1

Because,
> ( [To)) =1
1<ii<...<ig =|Pt|
We can obtain,

dc ) %Z<(Cq1, |)2( > (H(mlnuz )"1>>

I1<ij<..<ig =|P| " j=1

i ! "
= (G dzzl<<cqzé|>2< 2 (H("t”“”> >>

1<ii<...<ig, <| Pt =

<d(Cclh) [Li((cqlzl)z( 2 (n(mx“")q]»

1<ii<..<ig <|P| ~j=1

and

| 1 qi s
mln(’ul)< d(C|P|) ﬁZ(W( Z (l_[(nfij/’bij))q>> SmaX(Mi)
I

I<iy<..<ig <|P| © j=I
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Similarly, we can obtain

d 1
min(1 = n; —v;) < d(Clh) ( Z( )2( > (Hmfz,(l—m, vm) )))
=1 |P1\ i i j=1

1<i|<...<ig <|P|
< max(l —n; —v;)
Thus we can obtain,

min(u;) + min(1 — n; — v;)
2

_d(cm ((;i( p,|)2< )3 (]‘[(nr,,mj) )))

t 1<ii<...<ig, <|P|

d %
+<% 2 ((c‘i B ( 2 (H(m"(l L ”’f))) >>>)
=1 [Py 1<iy <...<ig, <| Py
_ max(u;) +max(l —n; —v;)
- 2
According to Definition 11, we have

min(p;) + min(l —n; — v;)

Spsr (k™) = 2
~ max(u;) + max(l — n; — v;
Spsy(it) = (i) > (I—n )

Spst(MPFPtPHMY o (ki ko, ..., kn))

d(<?2p,)<<d22<(cl)2< . Z (ﬁ(nti’m’))(h>>>>

1<ij<..<ig <|P| j=1

1

B (D (o))

I1<iy<...<ig <|Pt|

Thus, we have

Spsr(k™) < MPFPPtHM{ g (ki k2, ... kn) < Spst (k™).
According to comparison rules, we have
k= < MPFPPtHM} o1 (ki ko, oo k) < kT

In the following, an example is provided to illustrate the calculation process. O

Example 1 Let ki = (0.53,0.33,0.09), k» = (0.89,0.08,0.03), k3 = (0.42,0.35,0.18),
124 = (0.08, 0.89, 0.02) and 125 = (0.73,0.12,0.08) be five PFNs corresponding to the
criteria G1, G, G3, G4, G5 respectively, which is partitioned into 2-groups P; = {G1, G3}
and P, = {G3, G4, G5} i.e., the cardinality of these partitions are |P;| = 2 and |P>| = 3.
Then, utilizing PFPPtH M?) g7 operator, the aggregated value is obtained by using the
following steps.

Step 1. Convert these PFNs into DST form of PFNs using Definition 9. Then, these numbers
are cpnverted into k1 = [0.53, 0.58], ko = [0.89, 0.89], k3 = [0.42, 0.47], k4 = [0.08, 0.09]
and ks = [0.73, 0.80].
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Step 2. Calculate Sup(lz,', 12,-), where i, j = 1, 2, 3,4, 5, using (10). Thus, we have

Sup(ky, k2) = 0.665, Sup(ky, k3) = 0.890, Sup(ky, ks) = 0.460, Sup(ki, ks) = 0.790
Sup(k, k1) = 0.665, Sup(ka, k3) = 0.555, Sup(k, k4) = 0.185, Sup(kz, k5) = 0.875
Sup(ks, k1) = 0.890, Sup(k3, k) = 0.555, Sup(k3, ks) = 0.480, Sup(ks, ks) = 0.680
Sup(ky, k1) = 0.460, Sup(ks, k2) = 0.185, Sup(ks, k3) = 0.480, Sup(ks, ks) = 0.260
Sup(ks, k1) = 0.790, Sup(ks, k2) = 0.875, Sup(ks, k3) = 0.680, Sup(ks, k4) = 0.260

Step 3. Calculate T(1€,~), wherei =1, 2, 3,4, 5. Thus, we have

T (ki) = Sup(ky, ky)+Sup(ky, k3)+Sup(ky, kq)+Sup(ky, ks) =0.665+0.890+0.46040.790 =2.805,
T (ky) = Sup(ky, k1) +Sup(ka, ka)+Sup (ka, kq)+Sup (ky, ks) =0..665+0.55540.185+0.875=2.280,
T (k3) = Sup k3, k1) +Sup(ks, ko) +Sup(k, ka)+ Sup(k3, k5) =0.890+0.555-+0.480+0.680 =2.605,
T (ky) = Sup kg, ky)+Sup(ky, ko) +Sup(ks, k3)+ Sup (ks, ks) =0.460+0.185+0.480+0.260 = 1.385,
T (ks) = Sup(ks, ky)+Sup(ks, k2)+Sup(ks, k3)+Sup (ks, ks) =0.790+0.875+0.680+0.260 =2.605.

Step 4. Calculate the 7;, where i = 1,2, 3,4, 5, using (17). Thus, we have

_ 1+ T (k)
(1+T (k) + (1 + T(ka)) + (1 + T (k3)) + (1 + T (ka)) + (1 + T (ks))
1+ 2.805

= (1+2.805) + (1 +2.280) + (1 + 2.605) + (I + 1.385) + (I + 2.605)
= 0.2281

Similarly, we obtain 7o = 0.1966, 73 = 0.2161, 74 = 0.1430 and 75 = 0.2161.

Step 5. Suppose ¢, g2 = 2 are the granularity values which are used in the criteria weights
evaluation process during proposed operator implementation. Then using above computed
power weights 7; and the definition of the proposed PFP Pt HM? Ds operator (18), then the
aggregated value is computed as follows:

qt L
EB (®(nfij];i_,~)> !

1<ii<..<ig <|P| * j=1

qt
Cip,

S o 1
PFPPtHMY R (ki ka, k3, ks, ks) = 7

N
1D~
i

:[;Xd:<(c,‘l;,,l>2( 2 (H("T”””) ))

1<iy<...<ig <|P|
d t 1
1 1 ar
?Z((c >2( 2 (H("fif(l_”if _”"’))) ))}
1 |Pt| 1<i) <...<ig, <|Py| "~ j=1

1

= [i{ﬁ(((s x 0.2281 x 0.53) x (5 x 0.2161 x 0.42))>
2
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1
+—— ((5 x 0.1966 x 0.89) x (5 x 0.1430 x 0.08
@ ((( ) ( )

1
2
((5 %x0.1966 % 0.89) x (5§ x0.2161 x 0.73)) ((5 x0.1430x0.08) x (5§ x0.2161 ><0.73))) },

1
1 1 2
22{(6‘%)2({(5 x 0.2281 x (1 —0.33 — 0.09)) X (5 x 0.2161(1 —0.35 — 0.18))})

1

Jr(C32)2

({(5 x 0.1966 x (1 —0.08 — 0.03)) x (5 x 0.1430 x (1 — 0.89 — 0.02))}

{(5 x 0.1966 x (1 —0.08 — 0.03)) x (5 x 0.2161 x (1 —0.12 — 0.08))}

1

{(5 x 0.1430 x (1 — 0.89 — 0.02)) X (5 x 0.2161 x (1 —0.12 — 0.08))}) ’ ”

= [0.1661, 0.1822].

Special cases of P F P Pt H M}, . operator: Inaddition, the special casesof PF P Pt HM} .
operator are provided as follows:

Case 1: Ford = 1,1i.e.,q; = q and | P;| = n, the PFPPtHMZ’)ST operator converts to
the picture fuzzy power Hmay mean (PFPHM) operator.

q 1
@ <®(m"jlzij)>
j=1

1
- ~ 1 1<ij<..<ig<
PFPPIHM Y g (ki k. oook) = - P | ———
t=1

— |

Ci

; :
% @ <®(nfij/€i,-)>
" Jj=1

1511<..,<tq§n

PFPHM(ky, ko, ..., ky)

Case 2: Ford = land g, = g = 1, the PFP PtHM%ST operator converts to the picture
fuzzy power averaging (PFPA) operator (Yager 2001).

SN
D ( (nT;, ki,.)>
1

1
S o I<ii<.<ii<n N j=
PFPPIHMYG g (ki ks oo b) = ~ @) | =
1[:1

1
Cn

n
@r,-l%,- = PFPA(k1, ky, ..., kn)
i=1
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Case 3: Ford = 1 and ¢; = ¢ = n, the PFP PtHMDST operator converts into (Yang and
Garg 2021):

n @ ( ®(nr,} k’/ )>
1 I<ii<..<ip<n
1 D C,';

PFPPtHMY (ki ko, ... kn)

n
®(nfilzi)%
i=1

The discussed PFPPtH MqD g7 Operator accounts interaction between arguments, parti-
tioning of criteria, reduction of biased values of criteria and quantify the limitations of
algebraic operational laws. However, still PFP PtH M% g7 operator does not count the
importance of criteria in aggregation of information, therefore next subsection introduces
the PFWPPtHM % g7 operator which considers the corresponding importance of criteria
in terms of weights to aggregate the PFNs.

3.3 Picture fuzzy weighted power partitioned Hamy mean operator

Definition 19 Let K = {IE,' ki = [wi, 1 —n; —vil,i =1, 2, ..., n} be the corresponding Bls
of PFNs k; = (i, ni, vi) (i = 1,2, ...,n). The argumentslz i=1,2,.,n) are partmoned
into d-number of sets Pj, P, .. Pd with conditions P, N P; = ¢ and Ul Pr= K.
The parameter q1, q2, ---, Gi, ..., g4 1s with g; = 1,2, ..., | P¢|, and | P;| is the cardinality of
Pt =1,2,....d). Also g = (q1,92, -+ Q1+ ---» qd) is the granularity parameter vector.
The w; (i =1, 2, .., n) is the weight of the corresponding input arguments with w; € [0, 1]
and Y !_, w; = 1. Therefore, the PFW P PtH M% g7 operator of n-dimension is defined as

follows:
(ég) < noi; (1+ T (ki))ki, ))
7 - o~ d 1<i) <...<ig, <|P| -1 nfl(w](l + T(iéj)))
PFWPPtHMY (ki ko, ... !
(22)
where i1, iy, ..., Iy, traverses all the g;-tuple combination of {1, 2, ..., | 4|}, and C|P\ =

n
Ay is the Binomial coefficient. Meanwhile, (ki) = Y Suppgy(ki, ;) and
j=1
o ~ ~ J#
Sup g7 (ki, k) is the support for k; and k; , and also satisfy the properties as mentioned in
Definition 12.
Let

5 — nwi(l + T(ki))~ 23)
Zj:l a)j(l + T(kj))
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where, (1, T2, ..., 7,)T is called as power weighting vector (PWV), which satisfy the condi-
n
tions 7; € [0, 1] and Zf,- =1.

i=1
Then (22) converted into,

® <®(”%ku)>

d
1<iy<...<ig <|P1|
PFWPPtHM ki, ko, ... 24
Dsr ki, ko Gj Cqu,)[ (24)
Theorem2 Let K = {12 = [wi, 1 —n;i —vil,i = 1,2, ...,n} be the corresponding
BIs of PFNs K = {k; : ki = (ui, ni, v,),i = 1,2, ...,n}. The value aggregated by the

PFWP PtHM%ST operator is still a Bl and is given as follows:

d

S 1 1
PFWPPtHMY o (ki ko, oy k) = [EZ<(c"’ ‘)2( > (H(nr,/m ) ))

I<ij<...<ig <|P|

1 1 = "
el 2, [Mown-n-u))]

=1 I<ii<..<ig <|P| “j=1
(25)

Proof Similar as Theorem 1.
The commutativity of the PFW P Pt HM? Ds7 operator is as follows: O

Property 4 (Commutativity) Let 12,- = [wi, 1 —n; —v;] Q = 1,2, v n) be the corresponding
Bls of PENs k; = (i, ni,vi) (i = 1,2,...,n). If (k}, k), ..., k) is any permutation of
(ki ko, ..o kn), k= [}, 1 — 0} — v]], then

PFWPPtHM} g (ki ko, ... ky) = PFWPPtHMY o (K{, Kb, .. k). (26)

2 n

Proof Proof is similar to Property 1.
It must be noted that PFW P Pt H M% s does not satisfied idempotency and boundedness
(Liu and Gao 2020; Qin et al. 2020). However, if a small modification (multiply by dC |ql’,[|)

is considered, the modified PFWPPtHM;I)ST (MPFWPPtHMDST) corresponds to an
idempotency and boundedness operator as follows:

[j,i(ci;,,( = (o))

t=1 I<ii<..<ig =|P| “j=1

MPFWPPtHMY o (k1 ko, ..., k)

1

1 4 a
- ; (nTi; (1 —ni; — z,))) ))]
(2 (fena-n -

I<ii<..<ig =|P| “j=1

[m}

Property 5 (Idempotency). Let I;,- = [ui, 1 —n;i —v;] (i~= 1, 2 ., n) be the corresponding
BIs of PENs k; = (i, ni, vi) i = 1,2, ...,n). Also let k; = 1 —n —v], then

[
MPFWPPtHMY o (ki ko, ... ky) = k 27)
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Proof Proof is similar to Property 2. O

Property 6 (Boundedness). Let 12,- =[pi, 1=ni—vlG =12, .,n) be the corresponding
]~315 of PFNs k; = (ui, ni,vi) (i = 1,2,...,n). If k= = [min(w;), min(1 — n; — v;)] and
kt = [max(u;), max(1 —n; — v;)] for i =1,2,...,n). Then

k= =MPFWPPtHM} g (ki ko, ... ky) = kT (28)
Proof Proof is similar to Property 3. O

Example 2 Let k; = (0.53,0.33,0.09), k> = (0.89,0.08,0.03), k3 = (0.42,0.35,0.18),
ks = (0.08,0.89,0.02) and ks = (0.73,0.12,0.08) be five PENs corresponding to the
criteria G1, G, G3, G4, G5 respectively, which is partitioned into 2-groups P; = {G1, G3}
and P, = {G», G4, Gs} i.e., the cardinality of these partitions are |P;| = 2 and | P»| = 3,
and the weighting vector is w=(0.1, 0.2, 0.3, 0.25, 0.15). Then, utilizing PFWPPtHM%ST
operator, the aggregated value is obtained by using the following steps.

In this example the steps 1, 2, and 3 are same as Example 1. From Step 3, we obtain
T (k1)=2.803, T (kz) = 2.280, T (k3) = 2.605, T (k4) = 1.385 and T (k3) = 2.605.

Step 4. Calculate the 7;, where i = 1, 2, 3,4, 5, using (23). Thus, we have 7

w1 (1 + T (k1))
o1(1+ T (k1) + o2(1 + T (ka)) + @3(1 + T (k3)) + wa(1 + T (ka)) + ws(1 + T (ks))
0.1(1 + 2.805)
0.1(1 + 2.805) + 0.2(1 4+ 2.280) + 0.2(1 + 2.605) 4+ 0.25(1 + 1.385) + 0.15(1 + 2.605)
=0.1169

Similarly, we obtain 7, = 0.2015, 73 = 0.3323, 74 = 0.1832 and 75 = 0.1661.

Step 5. Suppose ¢, g2 = 2 are the granularity values which are used in the criteria weights
evaluation process during proposed operator implementation. Then using above computed
power weights 7; and the definition of the proposed PFW P Pt HM? st operator (24), then
the aggregated value is computed as follows:

1

D (®<m,, . )

1<ii<...<ig <|P| =

qt
Cipy

-~ o~~~ 1
q1:92 —
PFWPPUHMSE (ko ks, K. s) = b

t=1

Z[;Z((Cw)z( . Z (ﬁ(nfiiui'f))(h)>’

t=1 I<ii<..<ig <|P| ~j=1

1

dlzz((clplﬂ( 2 (n("f’(l "f'_”"-"))y))}

=1 1<ii<...<ig, <| Pt

1

1 1
= |:22{(C2)2(((5 x 0.1169 x 0.53) x (5 x 0.3323 ><042)))
1

+W<((5 x 0.2015 x 0.89) x (5 x 0.1832 x 0.08))
3
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1
2
((5%0.2015%0.89) x (5x0.1661x0.73)) (5% 0.1832 x 0.08) x (5% 0.16611 ><0.73))) }

1

1 1
22{(@)2({(5 x 0.1169 x (1 —0.33 — 0.09)) x (5 x 0.1661(1 — 0.35 — 0‘18))})

+W({(5 x 0.2015 x (1 —0.08 —0.03)) x (5 x 0.1832 x (1 —0.89 — 0.02))}
3

{(5 x 0.2015 x (1 —0.08 — 0.03)) X (5 x 0.1661 x (1 —0.12 — 0.08))}

{(5 x 0.1832 x (1 — 0.89 — 0.02)) x (5 x 0.1661 x (1 — 0.12—0.08))})2 ”

= [0.1495, 0.1641].

4 A new multi criteria decision making method based on the proposed
operators

A MCDM method depend on the developed P F P Pt HM}, ¢ and PFW P PtHM? . oper-
ators for PFNs is presented in this section.

4.1 Problem description

Consider a MCDM problem with m number of alternatives B = {By, B3, ..., B, } and n
number of criteria G = {G1, G, ..., G,}. On the basis of collected information, a picture
fuzzy decision matrix D = [k;jlmuxn (i =1,2,...,m; j = 1,2, ..., n) is constructed, where
kij = (wij, nij, vij) is a PFN for the alternative B; with respect to criteria G ;. The problem
now is to find the best alternative from the set of alternatives B based on criteria G and
decision matrix D. The method is explained in the next section.

4.2 Decision making procedure

In this section, we provide a detailed description of the procedural steps for the
MCDM method, which is based on the utilization of the proposed operators, namely,
PFPPtHMIDST and PFWPPtHMYDST. These operators have been specifically
designed to enhance the decision-making process by incorporating the concept of DST. The
steps outlined below demonstrate how these operators are employed to guide the decision-
making process effectively.

Step 1. In the first step, normalization of picture fuzzy decision matrix D is done with the
help of normalization process. The normalized decision matrix is denoted by Q = [k;; 1 xn
and its entries are given as follows:

(29)

ki = (wij, mij, vij), if Gj is the benifit criterion
/ (vij. mij, iij), if Gj is the cost criterion
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Step 2. In this step, conversion of the PFNs in the matrix Q to the PFNs with DST is done
based on the definition 9. The resulting converted matrix Q psr is as follows:
Opst = lkijlmxn = [[1ij. 1 = nij — Vil (30)
Step 3. Calculate the support values as follows:
Suppsrkijs kir) = 1 —dpst (kij ki) i =1,2,.om; j,t=1,2,..,n; j#¢t, (31)

where, dpsT (%i s IE,‘ ¢) is the distance between two PFNs 1€i ; and 12,- ; with DST.
Step 4. Calculate sum of support values T (k; ) as follows:

n
T(kij) =Y _Suppsrkij.ki); i =1,2,om; jt=1,2..n j#t (32)

t=1

J#t
Step 5. Determine power weights ti and 7i for the operators PFPPtHM qD g and
PFWPPtHM ;]) g7 Tespectively, using the following equations:

1+ T (k;
r,:M- i=1,2,...m; j=12 ..n. (33)

Y (L4 T (k)
and _
o +TE)
Y w1+ T k)
Step 6. Utilize the operators PFPPtHMqDST and PFWPPtHM;I)ST to assess the overall

preference value for each alternative based on the decision matrix Qpsr = [/E,« ilmxn as
described below:

=12,...m; j=12,..n. (34)

Kentl
I

PFPPtHMY o (kiy ki, v ki) (35)
= PFWPPtHM} g (ki) ki s i) (36)

et

Step 7. Calculate the score Spsr (I;,') and accuracy Hpsrt (/Ei) values for each alternative
Bi(i = 1,2, ...,m) by using following equations:

~ Bel + Pl l+u—n—v
SDST(k):( . ) _( uzn )

Hpsr (ki) = (Pl — Bel) = (1 — j; — n; — vp) (38)

(37

Step 8. Rank all the alternatives B; (where i = 1,2, ..., m) using the criteria provided by
Spsrt (lzi Yand HDS T(lzi), employing the ranking method detailed in Definition 11. Based
on the outcomes of this ranking process, identify and choose the best alternative.

The steps of proposed MCDM problem is depicted in Fig. 2.

5 Numerical example
To illustrate the proposed MCDM method, an example adapted from Luo and Xing (2020) is
discussed in this section. The example deals with problem of the best hotel selection among

the available four hotels By, By, Bz and Bs. The selection procedure is based on five criterion
includes price(G),comfortability (G»), service (G3), location (G4) and convenience (Gs5).

@ Springer



Novel picture fuzzy power partitioned Hamy mean operators... Page270f43 145

Collect information in Compute the summary
the form of a picture _C‘}’]“‘P“‘_e pt]’iwe(rBB) values by Compute the score Compute the
fuzzy decisi tri weights using Eq c values accuracy values
uzzy cejlslon matrix PEPPHM !, y
D =[k]
No
Rank all the alternatives
US:OI'ET%;Z;;?: t; Weights are CompuE e umaTy based on their score and
i i 5
considered Yes Com]zlusl;pciiwe(r:;\;';nghts values by accuracy values
? S PFWPPHM 4,

Get normalized decision .
matrix Get the ranking order
of alternatives

0 =[k;]
Using Eq (32) calculate
Use Eq (30) to convert T(k;) Select the best
Q in the form of DST alternative
matrix
Get normalized DST Using Eq (31) calculate
matrix_ _ ~
Qe = [k,/ ] Sup g (ky Jki)

Fig.2 Flow chart for proposed MCDM method

The weight vector associated with criteria is w = (0.10, 0.20, 0.30, 0.25,0.15)7 and the
collected information in the form of a PFN matrix D = [k;;]4x5 is presented in Table 3.

5.1 Implementation of the MCDM method’s procedural steps

Step 1. Normalization of the decision matrix D.

Since G7, G3, G4, and G5 are benefit criteria, and G is a cost criterion, they must be
normalized in accordance with (29). Then, the normalized picture fuzzy decision matrix
O = [kijlmxn is given in Table 4.

Step 2. Convert the normalized picture fuzzy decision matrix to picture fuzzy decision
making with DST by using (30). The computed values are shown in Table 5.

Step 3. Calculate the support values SupDST(IEij, ki) (i =1,2,3,4;j,t=1,2,3,4,5;
j # t) by using (31) and computation is given below.

Suppgr ki), k1) = Suppgr(kis, ki)
1.0, 0.8, 0.9, 0.7, 0.8
0.8, 1.0, 0.9, 0.9, 0.8
=109, 0.9, 1.0, 0.8, 0.7
0.7, 0.9, 0.8, 1.0, 0.9
0.8, 0.8, 0.7, 0.9, 1.0

Sup sy (kaj, kar) = Suppgr ko, k2j)

Table 3 Decision matrix D

Alternative G Gy G3 Gy Gs

B (0.4,0.2,04) (0.6,0.2,0.2) (0.4,0.2,0.2) (0.6, 0.0, 0.2) (0.6, 0.0, 0.4)
By (0.2,0.4,0.4) (0.8,0.2,0.0) (0.4,04,0.2) (0.6, 0.4, 0.0) (0.4,0.2,0.2)
B3 (0.4,04,0.2) (0.6, 0.0, 0.4) (0.8, 0.0, 0.2) (0.6,0.2,0.2) (0.4,0.2,0.2)
By (0.2,04,0.2) (04,04,0.2) (0.6, 0.4, 0.0) (0.4,0.2,0.4) (0.8, 0.2, 0.0)
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Table 4 The normalized decision matrix Q

Alternative

G

Go

G3

Gy

Gs

By
By
B3
By

(0.4,0.2,04)
(0.4,04,0.2)
(0.2,04,0.4)
(0.2,04,0.2)

(0.6, 0.2, 0.2)
(0.8, 0.2, 0.0)
(0.6, 0.0, 0.4)
(0.4,0.4,0.2)

(0.4,0.2,0.2)
(0.4,04,0.2)
(0.8, 0.0, 0.2)
(0.6, 0.4, 0.0)

(0.6, 0.0,0.2)
(0.6, 0.4, 0.0)
(0.6,0.2,0.2)
(0.4,0.2,0.4)

(0.6, 0.0, 0.4)
(0.4,0.2,0.2)
(0.4,0.2,0.2)
(0.8,0.2,0.0)

(1.0,
0.6,
1.0,
0.8,
0.9,

0.6,
1.0,
0.6,
0.8,
0.7,

1.0,
0.6,
1.0,
0.8,
0.8,

0.8,
0.8,
0.8,
1.0,
0.7,

Suppsr (/23]-, I;3t) = Suppsr (/23t7 /23j)

(1.0,
0.6,
0.4,
0.6,

0.6,
1.0,
0.8,
0.8,

0.4,
0.8,
1.0,
0.8,

107, 0.7, 0.7,

0.6,
0.8,
0.8,
1.0,
0.9,

Supp sy (kaj. kar) = Suppgr (kay. kaj)

1.0, 0.9,
0.9, 1.0,
0.7, 0.8,
0.7, 0.8,

0.7,
0.8,
1.0,
0.6,

0.5, 0.6, 0.8,

0.7,
0.8,
0.6,
1.0,
0.6,

0.97]
0.7
0.9
0.7
1.0 |

0.7
0.7
0.7
0.9
1.0 |

0.57
0.6
0.8
0.6
1.0 |

Step 4. Compute the sum of support values T(IE,-.,')(i =1,2,3,4;,j=1,2,3,4,5) by using
(32) and computation is given below.

3.2, 34,
3.3, 2.7,

T (kij) = 23,29

3.3,33,32
3.3, 3.1, 32
21, 3.1, 3.0

2.8,3.1,29, 27,25

Table 5 Decision matrix Q with DST

Alternative G Gy G3 Gy Gs

By [0.4, 0.4] [0.6, 0.6] [0.4,0.6] [0.6, 0.8] [0.6, 0.6]
B [0.4,0.4] [0.8,0.8] [0.4,0.4] [0.6, 0.6] [0.4,0.6]
B3 [0.2,0.2] [0.6, 0.6] [0.8,0.8] [0.6, 0.6] [0.4, 0.6]
By [0.2,0.4] [0.4,0.4] [0.6,0.6] [0.4,0.4] [0.8,0.8]
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Step 5. Compute the power weights 7;; and 7;;, (i =1,2,3,4; j =1,2,3,4,5) by using
(33) and (34), respectively, and computation is given below.

[0.1963, 0.2056, 0.2009, 0.2009, 0.1963]
0.2087, 0.1796, 0.2087, 0.1990, 0.2039
0.1737, 0.2053, 0.1947, 0.2158, 0.2105
| 0.2000, 0.2158, 0.2053, 0.1947, 0.1842 |

Tij =

and

[0.0978, 0.2049, 0.3003, 0.2503, 0.1467 ]
0.1045, 0.1798, 0.3135, 0.2491, 0.1531
0.0858, 0.2029, 0.2887, 0.2666, 0.1560
| 0.0995, 0.2147, 0.3063, 0.2421, 0.1374 |

‘L_’,'j =

Step 6. Utilizing the proposed operators, calculate the overall collective value of each alter-
native using (35) and (36). Here, we have divided the criteria set into 2 partitions i.e., d = 2.
The first partition (P;) considers three criteria G1, Go and G3, while the second partition
(P>) contains two criteria G4 and Gs. For computation, the granularity parameter vector is
selected as ¢ = (q1, q2) = (1, 1). The computed values are shown in Table 6.

Step 7. Calculate the score values Spsr (lzi)(i =1, 2, 3, 4) for the alternatives in accor-
dance with the overall preference values kii=1,2,3,4) using (37). The computed values
are shown in Table 7.

Step 8. Rank all the alternatives B;, i = 1,2,3,4 on the basis of their score values
SpsT (12,-) by using the methodology discussed in Definition 11. The ranking orders of alter-
natives based on the score values and the best alternative for both the proposed operators are
shown in Table 8. Table shows that the best alternative for both the proposed operators is Bj.

The above analysis considers the value ¢ = (g1, ¢2) = (1, 1) for the granularity parame-
ter vector. From above analysis, we have observed that the results are stable and consistent
for both the operators. However, there are some complexities are observed during the imple-
mentation of the proposed approach which includes the complexities due to the evaluation
of the power weights, partitioning of criteria, conversion of data into interval during DST
implementation, and interdependency between criteria due to HM.

To analyse the effect of variation in ¢ = (g1, g2) on final decision making, a sensitivity
analysis has been conducted by taking different combinations of g; and ¢», and a detailed
procedure is provided in the next section.

5.2 Sensitivity analysis

In this section, a sensitivity analysis is provided to examine the stability and effect of varia-
tion in values of parameters g; by using proposed P F P PtHMqDST and PFWP PtHMqDST
operators. The value of parameter ¢, signify all the possible granularity(interrelationship)

Table 6 The overall preference

value computed from both the Alternative PFPPtHM} ¢ PFWPPtHM}
operators B [0.2639, 0.3036] [0.2478, 0.2851]

B> [0.2484, 0.2762] [0.2334, 0.2602]

By [0.2397, 0.2690] [0.2229, 0.2510]

By [0.2279, 0.2524] [0.2139, 0.2360]
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Table 7 Score values of each

alternative Alternative PFPPtHMY} ¢ PFWPPtHM} ¢
Bi 0.1227 0.1257
B> 0.1123 0.1138
B3 0.1169 0.1256
By 0.1078 0.1062

between the g; number of criteria grouped in the " partition. In this example, the values of
q1 and g depend on the cardinality of partitions P; and P,, respectively. The possible values
of parameters are g1 = 1, 2, 3and go = 1, 2. The evaluated score values and associated rank-
ing order of alternatives computed by PF P PtH M;’, gy and PFWPPtH MqD g7 operators
are shown in Tables 9 and 10 respectively. From Tables 9 and 10, it can be noticed that when
g1 = 1 and g = 1, then the ranking order of alternatives is By > B3 > B, > By for both
the operators. Thus, for this combination of g1 and g7, the best and worst alternatives are B
and By, respectively. Similar analysis can be conducted for the rest of the combinations of
(g1, q2). Based on ranking results, it is concluded that for all the combinations of (g1, ¢2),
the best and worst alternatives are always By and By, respectively, from both the operators.
The computed results are also plotted in Fig. 3(a) (for PF P PtHMqDST) and Fig. 3(b) (for
PFWPPtHMY} g7)- The ranking order of the alternatives is significantly affected by chang-
ing the combination of (g1, g2), as shown by Tables 9, 10 and Fig. 3(a), (b), and the results
are stable and consistent. As a result, in the example under consideration, by adjusting the
various combinations of (g1, g2) based on actual requirement, we can obtain rational decision
results.

5.3 Comparative analysis

To show the efficiency and consistency of the developed operators, a qualitative and quan-
titative comparison analyses with 23 existing aggregation operators such as PFWA, PFWG,
PFAWA, PFAOWA, PFEWA, PFEOWA, PFDWA, PFDWG, PFHWA, PFHWG, GPFHM,
GPHWHM, PFWMM, PFWDMM, PFWBM, PFAPMSM, PFAPWMSM, PFPMM psr,
PFWPMMpst, PFIPtHA, PEWIPtHA, PFPMM and PFWPMM have been done. The full
detail of these existing aggregation operators are provided in Table 1. The discussion is
presented hereafter.

5.3.1 Qualitative comparison

This section provides a qualitative comparative of proposed and considered existing operators
based on their characteristics, such as: (1) the power to diminish the negative effect of biased
values in aggregation results; (2) the ability to provide interrelationships among multiple

Table 8 Ranking of all the

. Operator Ordering Best alternative
alternatives
PFPPtHMY By > B3> By > By B
PFWPPtHM} ¢ By > B3 > By > By B
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(a) PFPPtHMY} o operator (b) PEW PPtHM}, ¢ operator

Fig.3 Plot for score Vs. granularity parameter vector ¢

criteria; (3) the ability to partition multiple criteria based on their characteristics; and (4)
the power to quantify the limitations of algebraic operational laws. The findings are given in
Table 11 and are described in the following aspects:

(a)

(b)

(©)

()

The power to diminish the negative effect of biased values. The PA operator is help-
ful in diminishing the negative effect of biased values of criteria by assigning power
weights to them using support degree (Yager 2001). The existing operators PFAPMSM,
PFAPWMSM, PFPMMpst, PFW PM M ps7t, PFPMM and PFWPMM, as well as the
proposed operators, used PA to diminish the negative effect on criteria values, whereas
the remaining operators under consideration did not.

The ability to provide interrelationships among multiple criteria. In decision mak-
ing, sometimes multiple criteria are interrelated and their interrelationship is essentially
required to be incorporated into the decision making process to get feasible and realis-
tic results (Hara et al. 1998). The existing operators PFWMM, PFDWMM, PFAPMSM,
PFAPWMSM, PFPMMpst, PFW P MM pst, PFPMM and PFWPMM, and proposed
operators incorporated the interrelationship among multiple criteria very effectively,
while the operators GPFHM, GPFWHM, PFWBM, PFIPtHA, and PFWIPtHA incorpo-
rated only the interrelationship between any two criteria. The remaining operators under
consideration, such as PEWA, PFWG, PFAWA, PFAOWA, PFEWA, PFEOWA, PFDWA,
PFDWG, PFHWA, and PFHWG do not even consider interrelationships between any
number of criteria in the aggregation process.

The ability to partition multiple criteria based on their characteristics. Since differ-
ent criteria have different characteristics, it is feasible to partition them based on their
characteristics before applying the aggregation process (Dutta and Guha 2015). The
existing PFIPtHA and PFWIPtHA, and the proposed operators, used the concept of par-
titioning of criteria as per their characteristics for getting feasible and realistic results.
The remaining operators under consideration do not consider the concept of partitioning
of criteria.

The power to quantify the limitations of algebraic operations. Since the algebraic
operations are not invariant and persistent for addition and scalar multiplication, respec-
tively, the DST, which overcomes these limitations, can be used. Some other advantages
of DST include the use of incomplete data in analysis, the inclusion of measures of
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probability into the argument values, and allowing integration of probability theory
in finding the values associated with alternatives (Dempster 1967; Qin et al. 2020;
Shafer 1976). Based on these features, the framework of DST is used in the existing
PFPMMpst and PFW PM Mpsr, and proposed operators. The remaining operators
under consideration do not incorporate DST into their analysis.

Thus, it has been observed that the proposed operators have all the four characteristics as
mentioned above. In contrast to the listed existing operators under the PFS environment, the
proposed operators are therefore more effective, general, consistent, stable, and flexible to
analyse any real-world MCDM problem more logically.

5.3.2 Quantitative comparison

Based on the ranking results, this section compares the proposed to 23 other existing aggre-
gation operators quantitatively. The calculated results are shown in Table 12 and plotted in
Fig. 4 as a radar graph.

Based on the tabulated and plotted results, the noted findings are as follows:

(a) The ranking order obtained from different operators depends upon the type of the aggre-
gation operator and the algebraic operations applied. The ranking order is also influenced
by the inclusion of partitioning of criteria, granularity power of taking interrelationships
between multiple criterion, and the power to diminish the negative effect of biased val-
ues of criteria. The existing PFWA, PEFWG, PFAWA, PFAOWA, PFEWA, PFEOWA,
PFDWA, PFHWA, and PFHWG (Garg 2017; Jana et al. 2018; Khan et al. 2019; Wei
2017b, 2018) operators provide the same ranking order as By > B4 > B3 > Bj, which
differs from the proposed method because these existing operators do not take into

PFWA
PFWPPtHM(DST) 1 PFWG -
PFPPHM(DST) — | g | | PFAWA
PFWPMM R PFAOWA i
PFPMM | PFEWA
\ —&—B3
PFWIPtHA ./ / \_\ PFEOWA
[~/ —=-B4
PFIPtHA || | prowa
| | [
‘> | |
PFWPMM(DST) | | /- PFDWG
PFPMM(DST) /" PFHWA
PFWAPMSM ' PFHWG
PFAPMSM . - ) GPFHM
PFWBM — | |_— GPFWHM

PFWDMM PFWMM

Fig.4 Radar graph for quantitative comparison in which scale of grid is -1 to 1 representing score values
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account interrelationships between multiple criteria, partitioning of different criteria,
and even do not remove the negative effect of biased values of criteria in the aggregation
process.

(b) The ranking orders obtained from GPFHM, GPFWHM and PFWBM (Ates and Akay
2020; Wei et al. 2018) operators is same as B, > B4 > B3z > B which is different from
the proposed operators because they considered only interrelationship between any two
criteria without taking partitioning of different criteria and removing the negative effect
of biased values of criteria in the aggregation process.

(c) The ranking orders obtained from the existing operators PFIPtHA and PFWIPtHA (Luo
and Xing 2020) are different from the proposed methods because they only consider
interrelationship between any two criteria and taking partitioning of different criteria as
per the characteristics, however they do not still remove the negative effect of biased
values of criteria in the aggregation process.

(d) Furthermore, the suggested technique using P F' P PtHM;])ST and PFWP PtHMqDST
operators is compared to the Qin et al. (2021) method using parameter value R = 1.
The ranking order obtained by PFAPMSM and PFWAPMSM operators are By > By >
B3z > By and B4 > B, > B3 > By, respectively. The results indicate that the B, and By
are best alternatives for PFAPMSM and PFWAPMSM operators, respectively, whereas
B is the worst alternative for both the operators. We observed that, the ranking results
obtained by the proposed operators are totally different from the existing PFAPMSM
and PFWAPMSM operators because the proposed operators involve the concepts of
partitioning and DST.

(e) The ranking orders obtained from the existing PFPMM and PFWPMM operators
(Punetha and Komal 2023) is By > B4 > Bj > Bz, which is differ from the pro-
posed operators because they consider interrelationship between multiple criteria and
mitigate the negative effect of biased values, however they still do not deal with the
limitation of algebraic operations in the aggregation process.

(f) The ranking orders obtained from the proposed PF P PtHMY ¢, and PFW P PtHM}, ¢,
operators is same as By > B3z > B > B4 which is different from most of the existing
operators under consideration because these proposed operators overcome the short-
coming in the existing methods and include all the four characteristics as discussed
in qualitative analysis in the aggregation process. The best and the worst alternatives
obtained from the proposed operators are B; and By respectively. Thus, proposed oper-
ators are more efficient, general, consistent, stable and flexible to solve any real life
MCDM problem more accurately in comparison to some exiting operators under PFS
environment.

6 Conclusion

This paper introduces a novel MCDM method based on the proposed operators for PFNs.
It extends the PtHM operator to create P Pt H M9 by integrating it with the PA operator to
mitigate bias. This operator is then adapted for PFNs with DST, resultingin P F P Pt HM Z, ST
and PFWPPtHM z) s7» Which exhibit desirable properties. The use of the framework of DST
in PFNss quantifies the incomplete data in analysis and the limitations of algebraic operational
laws by including measures of probability in the argument values and integrating probability
theory in finding the values associated with alternatives. Some advantages of the proposed
operators are:
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e They mitigate negative effect of biased values in criteria by applying power weights
through the PA operator.

e They consider the interrelationship between multiple criteria with the help of HM.

e They consider partitioning of the different criteria based on their characteristic.

e They quantify the limitations of incomplete information and algebraic #-norm and ¢-
conorm based operational laws through DST.

To identify the feasibility of the proposed operators, a numerical example is presented to
select the best hotel among the available options. It has been concluded that the best and
worst alternatives for proposed operators are the hotels By and By, respectively. A sensitivity
analysis has been discussed to examine the effect of variation in the granularity parameter
vector g on the aggregated values. The sensitivity results concluded that, for each choice of
granularity parameter vector g = (g1, g2) values, the best and worst alternatives are always Bj
and B4, which shows the stability and consistency of the proposed operators. Qualitative and
quantitative comparative analyses demonstrated that the developed operators outperformed
the existing ones in the PFS environment. The results indicate that the developed operators,
as compared to the examined existing aggregation operators under the PFS environment, are
more adaptable, general, consistent, and stable to solve any real-life MCDM problem more
effectively.

6.1 Limitations
Some of the noted limitations of this study are as follows:

e The proposed decision-making approach has limitations related to the decision space
because the proposed MCDM approach is based on PFNs and is unable to apply to
problems where the decision space needs some extended space, such as spherical fuzzy
sets, T-spherical fuzzy sets, complex T-spherical fuzzy sets, etc.

e The proposed approach uses DST operations. Due to the involvement of DST operations,
our proposed operators do not satisfy the property of idempotency. However, in the
literature, there are Archimedean-type generalized operations available that may be used
to get more flexible results.

e The proposed approach is also unable to address the issue of group decision-making.
Additionally, if the group of decision makers is large, the level of agreement among them
would influence the final decision, and as a result, the concept of consensus should be
integrated with the proposed approach.

e Another drawback is that in order to identify the best hotel, this study relies on secondary
data (Luo and Xing 2020). The approach can be developed further and then used to
evaluate the best hotel with real-time data, with the goal of trying to suggest some
preventative measures to help decision-makers make sensible and workable choices.

6.2 Future scope

In future research, the proposed MCDM approach can be extended further in several direc-
tions, such as:

e The method can be integrated with other MCDM techniques like TOPSIS, AHP, WAS-
PAS, MABAC, MEREC, VIKOR, EDAS, DEMATEL, etc.
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e The strategy can be applied to other types of fuzzy environments, such as complex
picture fuzzy sets, complex pythagorean fuzzy sets, complex gq-rung fuzzy sets, complex
t-spherical fuzzy sets, etc.

e This method can be extended by using other types of methods, such as distance measures,
entropy measures, similarity measures, the maximizing deviation method, the best-worst
method, gray relation analysis, etc., to calculate the weights of both the DMs and criteria.

e The method can be used to solve some other types of MCDM issues, such as supply chain
management, municipal solid waste management, sewage treatment, the evaluation of
renewable energy sources, human resource management, and the evaluation of air quality
monitoring systems, etc.
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