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Abstract
Adversarial attacks pose significant challenges to the reliability and performance of neu-
ral networks. Despite the development of several defense mechanisms targeting various 
types of adversarial perturbations, only a few manage to strike a balance between theoreti-
cal soundness and practical efficacy. nmODE (neural memory ordinary differential equa-
tion) is a recently proposed model with several intriguing properties. By delving into the 
rare attribute of global attractors inherent in nmODE, this paper unveils its stable map-
ping, thereby conferring certified defense capabilities upon it. Moreover, a novel quanti-
tative approach is proposed, establishing a mathematical link between perturbations and 
nmODE’s defense proficiency. Additionally, a training technique termed as nmODE+ is 
put forward, enhancing the defense capability of nmODE without imposing additional 
training burdens. Extensive experiments demonstrate nmODE’s resilience to various per-
turbations, showcasing its seamless integration with neural networks and existing defense 
mechanisms. These findings offer valuable insights into leveraging differential equations 
for robust neural network security.

Keywords Adversarial defense · Ordinary differential equations · Neural ordinary 
differential equations · Neural networks

1 Introduction

With the development of deep learning, neural networks have demonstrated exceptional 
performance in computer vision and natural language processing tasks. However, stud-
ies show that neural networks are vulnerable to kinds of attacks. Szegedy et al. (2013) 
introduced the concept of adversarial samples, denoting modified data that can induce 
neural network models to produce incorrect predictions, with these modifications being 
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almost imperceptible to humans. By artificially crafting adversarial samples, even the 
state-of-the-art classifiers can give wrong results with high confidence (Goodfellow 
et al. 2014). This problem has threatened the security of neural networks, attracting the 
attention of numerous researchers.

To solve this problem, kinds of defense methods have been explored, which can be 
mainly categorized into heuristic defenses and certified defenses. Heuristic defenses are 
effective in practice, with numerous studies focusing on it, represented by adversarial 
training (Goodfellow et  al. 2014; Madry et  al. 2017), defensive distillation (Papernot 
et al. 2016), and gradient masking (Gu and Rigazio 2014). However, heuristic defenses 
lack theoretical guarantees, raising concerns about the ability to resist future novel 
attacks. In contrast, certified defenses (Wong and Kolter 2018; Raghunathan et al. 2018; 
Weng et al. 2018; Lecuyer et al. 2019) have the theoretical guarantee for defense abil-
ity, offering both theoretical and practical effectiveness, which are even more worth 
exploring.

The field of neural networks defined by differential equations has been a highly active 
area of research in recent years. Utilizing differential equations, scholars have explored the 
behavior of neural networks as dynamic systems. For example, multilayer neural networks 
can be considered as the discretization of continuous dynamic systems (Weinan 2017), 
convolutional neural networks can be interpreted as a discrete form of nonlinear partial 
differential equations (Haber et  al. 2018), and recurrent neural networks can be viewed 
as ODEs (ordinary differential equations) (Chang et al. 2019). Differential equations have 
provided us with deeper insights into neural network properties and potential applications.

In the theory of differential equations, attractors are used to describe the behavior of a 
system as it converges to a certain state during its evolution. Particularly, a global attractor 
can attract all initial conditions in the system, guiding to a stable state. Stability measures 
whether a system can return to its original equilibrium state after small disturbances, and 
a global attractor ensures such return. Given the stabilizing effect of global attractors, why 
not leverage global attractors for defense against adversarial attacks?

This is because the global attractor property is very rare, which normal dynamic sys-
tems do not possess. Fortunately, the recently proposed nmODE (neuron memory ordi-
nary differential equation) (Yi 2023), a variation of neural ODE, possesses the property 
of global attractors. The global attractor represents the long-term behavior of the nmODE, 
and its stability is described and understood through stable mappings. Inspired by this rare 
property of nmODE, we find that nmODE possesses intrinsic stable mapping to defense 
against perturbations. In this paper, we further explore the stability of nmODE. The main 
contributions are summarized as follows:

• We propose a certified defense method leveraging stable mapping in nmODE, featuring 
inherent defense capability and mathematical provability, which enhances the security 
and reliability of machine learning models.

• A quantitative approach to assess nmODE defense ability has been proposed, estab-
lishing mathematical relationships between perturbations and defense capability. This 
offers valuable insights for future quantitative analysis of network defense ability.

• We propose a training method termed as nmODE+ to enhance defense capabilities, 
building upon the theoretical underpinnings of stable mapping from nmODE, while 
incurring no additional training costs. This holds value for the training methods devel-
opment aimed at defense ability enhancement.

• Extensive experiments demonstrate that nmODE can resist types of adversarial pertur-
bations, and can be seamlessly integrated with neural networks and defense methods.
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2  Related work

2.1  Certified defense

Wong and Kolter (2018) propose a method to train provably robust neural networks by 
optimizing convex outer bounds on the adversarial polytope, and the approach is guaran-
teed to detect all adversarial examples. Raghunathan et al. (2018) develop a new differenti-
able upper bound on the performance of two-layer networks when the adversarial input 
in l∞ is assumed to be applied. Weng et  al. (2018) develop two fast algorithms that can 
certify non-trivial lower bounds of minimum adversarial distortions for obtaining a tight 
and certified lower bound �L on ReLU networks. Lecuyer et al. (2019) propose a novel and 
orthogonal approach for certified robustness against adversarial examples that is broadly 
applicable and scalable, and they also develop PixelDP, the first certified defense that 
scales effectively to large networks and datasets. Zhai et al. (2020) propose the MACER 
algorithm, which learns robust models without using adversarial training but performs bet-
ter than all existing provable l2-defenses. Levine and Feizi (2020) introduce a certifiable 
defense against patch attacks that guarantees for a given image and patch attack size, no 
patch adversarial examples exist. Chiang et  al. (2020) propose the first certified defense 
against patch attacks, and propose faster methods for its training. Zizzo et al. (2021) model 
an attacker who poisons the model to insert a weakness into the adversarial training such 
that the model displays apparent adversarial robustness, while the attacker can exploit the 
inserted weakness to bypass the adversarial training and force the model to misclassify 
adversarial examples. Cullen et al. (2022) demonstrate how these best-possible certificates 
can be improved upon by exploiting both the transitivity of certifications, and the geometry 
of the input space, giving rise to what has been called Geometrically Informed Certified 
Robustness.

Overall, although there have been numerous certified defense mechanisms, there are 
still some shortcomings that require further improvement. These include issues such as 
scalability when dealing with large-scale networks and datasets, as well as the adaptability 
to various deep neural network architectures.

2.2  ODE‑based defense

Neural ODE has been proposed as a continuous approximation to the ResNet architecture. 
Recent studies have demonstrated that neural ODEs are intrinsically more robust against 
adversarial attacks compared to vanilla DNNs.

Yan et al. (2019) present an empirical study on the robustness of ODE-based networks, 
finding that they are more robust against both random Gaussian perturbations and L∞ 
adversarial perturbations crafted by FGSM and PGD compared to conventional CNNs. Liu 
et al. (2020) introduce a provably stable architecture for neural ODEs that achieves non-
trivial adversarial robustness under white-box adversarial attacks even when the network 
is trained naturally. Kang et al. (2021) propose a neural ODE with Lyapunov-stable equi-
librium points for defending against adversarial attacks (SODEF). Inspired by the asymp-
totic stability of the general nonautonomous dynamical system, Li et al. (2022) propose to 
make each clean instance be the asymptotically stable equilibrium point of a slowly time-
varying system to defend against adversarial attacks. Huang et al. (2022) present a frame-
work called FI-ODE, using Lyapunov functions, barrier functions, and control policies for 
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certifiably robust forward invariance in neural ODEs. Arvinte et al. (2023) investigate the 
robustness of density estimation using the probability flow neural ODE model against gra-
dient-based likelihood maximization attacks and the relation to sample complexity, where 
the compressed size of a sample is used as a measure of its complexity. Yang et al. (2023) 
present the B-NODE, incorporating barrier functions into the training process, which 
ensures that the system remains stable and does not deviate too far from the original trajec-
tory and improves the robustness of neural ODEs against adversarial attacks.

Although some works propose theoretically grounded methods for enhancing the 
robustness of neural ODEs, such as stability analysis and Lyapunov functions, there 
is a need for further theoretical exploration. The theoretical foundation of these 
approaches could be strengthened to provide deeper insights into the mechanisms 
underlying the improved robustness and to ensure the reliability of the proposed meth-
ods across different scenarios.

3  Preliminary

3.1  Neural ODE mapping

The neural ODE mapping involves training a neural network to represent a continuous 
transformation of data, where the parameters of the network are learned such that they 
define the behavior of the ODE. This allows the model to capture complex temporal and 
spatial dependencies within data. Neural ODE mappings combine neural networks with the 
principles of differential equations, which are particularly useful for modeling dynamic and 
continuous processes (Kidger 2022). A general neural ODE is defined as

where W denotes learning parameters, x denotes external input, and y denotes ODE state.
For neural ODEs, a mapping is considered stable if, for any small change � in the input, 

the corresponding change � in the output remains bounded. A stable mapping refers to a 
mathematical function or transformation that exhibits certain desirable properties related to 
the behavior of nearby points when the input or domain is perturbed. We provide the defi-
nition of stable mapping as follows, where x and y(t) represent the input and output, and x̄ 
and ȳ(t) represent the perturbed input and its corresponding perturbed output.

Definition 1 The neural ODE mapping F ∶ x → y(t) defined by (1) is called stable, if 
given any 𝜖 > 0, there exists a 𝛿 > 0 such that ‖x − x̄‖ ≤ 𝛿 implies that ‖y(t) − ȳ(t)‖ ≤ 𝜖 for 
all t ≥ 0.  (Fig. 1) Otherwise, the neural ODE mapping F is called unstable.

3.2  Global attractors

Global attractor is a concept in dynamical systems theory that describes the long-term 
behavior of a system. Global attractors represent the set of all possible states towards 
which a system tends to evolve over time, regardless of its initial conditions. In dynami-
cal systems, global attractors represent the stable states towards which the system tends to 

(1)ẏ = f (y, x,W),
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converge. Systems with global attractors are not easily perturbed from their stable states, as 
they tend to maintain their performance in the presence of perturbations.

Considering a dynamical system, whose evolution equation can be described by a dif-
ferential equation:

where x denotes the state vector of the system, t represents the time, and F denotes the 
function describing the dynamics. A subset of the state space denoted by A is a global 
attractor if it satisfies the following properties:

1. Invariance: For any x(0) ∈ A, the solution satisfies x(t) ∈ A for all t ≥ 0, that is:

A is invariant under the dynamics of the system. If the system starts from any initial condi-
tion in A, it remains in A for all future time.

2. Attraction: For any x(0) ∉ A, the trajectory x(t) converges to A as t goes to infinity, 
that is:

A attracts all trajectories in the state space. For any initial condition not in A, the trajecto-
ries converge towards A as time goes to infinity.

3.3  Perturbations

Perturbations, which refer to small changes in input data, can significantly impact the per-
formance of neural networks. In particular, there are two types of perturbations: non-adver-
sarial perturbations and adversarial perturbations.

Non-adversarial perturbations are common in real-world scenarios and occur naturally. 
Image processing technologies such as resizing, compression, and cropping can introduce 
perturbations to the original images (Zheng et  al. 2016). Spatial transformation, such as 
rotation and shift, can also greatly reduce the performance of the state-of-the-art neural 
networks (Engstrom et al. 2017).

dx

dt
= F(x),

x(0) ∈ A ⇒ x(t) ∈ A,∀t.

lim
t→∞

x(t) = A.

Fig. 1  The diagram of neural ODE’s stable mapping
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Adversarial perturbations are artificially crafted, and imperceptible to humans but have 
significant impacts on the performance of neural networks. According to Szegedy et  al. 
(2013), adversarial perturbations exist because of data sampling problems, while Goodfel-
low et al. (2014) believed that they result from the accumulation of noise caused by high-
dimensional linearity, and the excessive accumulation value leads to the classification error 
of neural networks.

Typically, the magnitude of the adversarial perturbations is commonly measured using 
Lp distance metric (Goodfellow et al. 2014; Carlini and Wagner 2017). For the real sample 
x and adversarial sample x′, the Lp distance between them is given by:

where p denotes a real number, and n represents the dimension of vector x. In the con-
text of adversarial perturbations, L2 norm and L∞ norm appear frequently. The L2 norm 
imposes a constraint on the overall perturbations, requiring the sum to be less than a cer-
tain threshold. The L∞ norm restricts only the maximum value of the perturbations, deem-
ing any perturbations within this maximum value as reasonable.

3.4  Adversarial attacks

Adversarial attacks can apply adversarial perturbations to neural networks. Research on 
adversarial attacks is crucial for enhancing the robustness and security of models, guarding 
against potential malicious manipulations and misdirection.

Adversarial attacks can be categorized into two categories: white-box attacks and black-
box attacks. White-box attacks know the model architecture and can leverage the gradi-
ent information, while black-box attacks know nothing except for the input and the output. 
Usually, white-box attacks have better attack performance compared to black-box attacks, 
while black-box attacks are more practically significant, resulting from the difficulty for 
attackers to analyze the targeted model in real-world scenarios.

According to the attack frequency, adversarial attacks can be further classified into sin-
gle-step attacks and iterative attacks. Single-step attacks involve only one attack iteration, 
characterized by fast execution but lower intensity, exemplified by FGSM (Goodfellow 
et al. 2014). Iterative attacks, represented by PGD (Madry et al. 2017), are improvements 
upon single-step attacks, involving multiple attack iterations following certain rules.

4  The stable mapping of nmODE

nmODE (Yi 2023) is an interesting neural network proposed recently, capturing the dynam-
ical system behavior of memory neurons described by ODEs, which can be described by:

||x − x�||p =
(

n∑
i=1

|xi − x�
i
|p
) 1

p

,
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In (2), y denotes the state of the network, � represents the decay parameter, � represents the 
perception input, W denotes the connection matrix, b denotes the bias, and x represents the 
external input.

nmODE is built upon the concept of columns in the neocortex, suggesting a unit 
of intelligence that may share a common algorithm across columns. nmODE presents 
several key differences and advantages compared to traditional neural ODE models. 
One of the main differences is the incorporation of a memory mechanism using global 
attractors in the network. It offers a unique perspective on how memory neurons can 
be integrated into neural network models, potentially enhancing their representation 
capabilities. Another significant difference is that nmODE is a decoupled system for 
memory neurons, making it particularly easy for mathematical analysis of its dynam-
ics. This decoupling allows for independent solutions of one-dimensional ODEs for 
each memory neuron, which can be efficiently implemented using electric circuits to 
speed up network training. nmODE can be hierarchically stacked to create more com-
plex networks, allowing for the construction of networks with stronger representation 
capabilities. This stacking feature provides flexibility in designing network architec-
tures. Experimental results demonstrate that on the classification tasks, nmODE is 
comparable to state-of-the-art neuron ODEs (Chen et  al. 2018; Dupont et  al. 2019; 
Norcliffe et al. 2020).

The computing algorithm of nmODE is given as follows:

Algorithm 1  nmODE computing algorithm

We find that nmODE has stable mapping and its defense capability is inherent. In this 
section, we will provide a stability theoretical guarantee for nmODE, propose a quantitative 
calculation method for the stability of nmODE, and propose the training method nmODE+ 
aimed at enhancing the stability.

(2)

⎧
⎪⎪⎨⎪⎪⎩

ẏ = −𝜆y + sin2
�
y + 𝛾

�

𝛾 = Wx + b

𝜆 > 1
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4.1  Stability theoretical guarantee

Theorem 1 Suppose that 𝜆 > 1, then the mapping of nmODE (2) is stable. Moreover, given 
any 𝜖 > 0, there exists

such that ‖x − x̄‖ ≤ 𝛿 implies that ‖y(t) − ȳ(t)‖ ≤ 𝜖 for all t ≥ 0.

Proof Given any two external inputs x and x̄, at time t, we have

and

It follows that

By using the Dini derivative, we have

for t ≥ 0. Let yi(0) = ȳi(0) = 0, it gives that

(3)
� =

(� − 1) ⋅ �

max1≤i≤n
�

m∑
j=1

���wij
���
�

ẏi(t) = −𝜆yi(t) + sin2

[
yi(t) +

m∑
j=1

wijxj

]

̇̄yi(t) = −𝜆ȳi(t) + sin2

[
ȳi(t) +

m∑
j=1

wijx̄j

]
.

d
[
yi(t) − ȳi(t)

]
dt

= − 𝜆
[
yi(t) − ȳi(t)

]

+ sin2

[
yi(t) +

m∑
j=1

wijxj

]

− sin2

[
ȳi(t) +

m∑
j=1

wijx̄j

]
.

D+||yi(t) − ȳi(t)
|| ≤ − (𝜆 − 1) ⋅ ||yi(t) − ȳi(t)

||
+

m∑
j=1

|||wij
||| ⋅

|||xj − x̄j
|||

||yi(t) − ȳi(t)
|| ≤ − e(𝜆−1)t ⋅ ||yi(0) − ȳi(0)

||
+

m∑
j=1

�
t

0

e(𝜆−1)(t−s)
|||wij

||| ⋅
|||xj − x̄j

|||ds

≤ 1

𝜆 − 1
⋅

m∑
j=1

|||wij
||| ⋅

|||xj − x̄j
|||
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for t ≥ 0. That is

Given any 𝜖 > 0, choose

then, if ‖x − x̄‖ ≤ 𝛿, it holds that ‖y(t) − ȳ(t)‖ ≤ 𝜖 for all t ≥ 0. The proof is complete.  
 ◻

Our theoretical analysis demonstrates the inherent property of stable mapping within 
nmODE. The stable mapping describes the local behavior of nmODE, providing an under-
standing of how nmODE converges to the global attractor within a local range. When the 
input undergoes slight modifications, the stable mapping ensures that the output remains 
largely unchanged, thereby endowing nmODE with certified defense capabilities. The tra-
jectory of nmODE is shown in Fig. 2.

The similarity between nmODE stable mapping and the system identification methods 
with neural networks lies in their ability to defense perturbations. Compared to system 
identification methods, nmODE stable mapping offers theoretical guarantees, ensuring sta-
bility and provable protection, while system identification methods rely more on empiri-
cal and heuristic principles in their design and lack rigorous theoretical guarantees. This 
theoretical guarantee is crucial for addressing various security challenges, particularly in 
combating evolving attack methodologies. It provides a solid foundation for defense mech-
anisms, regardless of known or unknown attack scenarios.

‖y(t) − ȳ(t)‖ ≤
max1≤i≤n

�
m∑
j=1

���wij
���
�

𝜆 − 1
⋅ ‖x − x̄‖.

� =
(� − 1) ⋅ �

max1≤i≤n
�

m∑
j=1

���wij
���
� ,

Fig. 2  The three-dimensional trajectory of nmODE over time t. We randomly simulated 1000 different sets 
of initial states y ∈ {(y1, y2) | y1, y2 ∈ [0, 2]}. The trajectories at t = 1, t = 3, and t = 5 are plotted sepa-
rately. The global attractors ensure that nmODE ultimately reaches stability regardless of the initial condi-
tions. At any time t, the stable mapping describes the local behavior of nmODE, providing an understanding 
of how nmODE converges to the global attractor within a local range
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4.2  Quantitative method

Equation (3) elucidates the relationship between the small change � in the input and the 
corresponding change � in the output. � characterizes the defense capability of nmODE 
against perturbations. Given a fixed value of �, a smaller � indicates a stronger defense 
capability of nmODE. By considering � as the dependent variable, Eq. (3) can be rewritten 
as:

where � = max1≤i≤n
�

m∑
j=1

���wij
���
�
.

Equation (4) paves the way for a quantitative analysis approach, facilitating a deeper under-
standing of the relationship between the imposed perturbation and the defensive capacity of 
nmODE. We utilize Fig.  3 to intuitively explain and validate this quantitative method. For 
an initial input x = [1, 0, 1, 0, 1, 0, 1, 0, 1]T , we introduce two perturbations �1 and �2, where 
�1 = �2 = 0.8, resulting in the perturbed inputs x̄1 and x̄2. Concurrently, we set the corre-
sponding connection matrix W1 and W2 as:

(4)� =
�

� − 1
⋅ �,

Fig. 3  An example used to illustrate Eq. (4). In this case, �1 and �2 represent perturbations applied to x, both 
with a magnitude of 0.8. These perturbations are used to generate the perturbed inputs x̄1 and x̄2
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At this time, based on Eq. (4), we can calculate that � = 0.5 and � = 0.1. This suggests that 
by infusing a perturbation of 0.8 into x to yield x̄, the difference between the outputs y and 
ȳ when using nmODE should not surpass 0.1.

For comparison with nmODE, we used another ODE, named P-nmODE, which can be rep-
resented as:

The key difference between nmODE and P-nmODE lies in the sign of the decay parameter 
�. The results of the output y and ȳ of nmODE and P-nmODE at different integration times 
t are shown in Table 1. It can be observed that for any t ≥ 0, nmODE satisfies Eq. (4), while 
P-nmODE does not.

4.3  nmODE+

From Eq. (4), it can be observed that under a fixed �, � is positively correlated with � and 
negatively correlated with �. The relationship diagram among �, �, and � is depicted in 
Fig. 4.

To enhance the defense capability of nmODE, it is desirable to minimize the value 
of � and maximize the value of �. Based on this finding, we propose a training method 
for nmODE, named nmODE+, aimed at enhancing the stability of nmODE. Specifically, 

W1 =
[
0.4

9
,
0.4

9
,…

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
1×9

W2 =
[
0.5

9
,
0.5

9
,…

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
1×9

.

⎧⎪⎪⎨⎪⎪⎩

ẏ = 𝜆y + sin2
�
y + 𝛾

�

𝛾 = Wx + b

𝜆 > 1

Table 1  The corresponding outputs y and ȳ at different integration time t for nmODE and P-nmODE 

nmODE

t y
1

ȳ
1

|y
1
− ȳ

1
| y

2
ȳ
2

|y
2
− ȳ

2
|

0.6 0.0100 0.0135 0.0035 0.0157 0.0212 0.0055
1 0.0105 0.0143 0.0038 0.0167 0.0226 0.0059
5 0.0107 0.0145 0.0038 0.0169 0.0229 0.0060

P-nmODE

t y
1

ȳ
1

|y
1
− ȳ

1
| y

2
ȳ
2

|y
2
− ȳ

2
|

0.6 0.2302 0.3193 0.0837 0.3767 0.5231 0.1464
1 2.3067 3.0890 0.7823 3.5706 4.7678 1.1972
5 1.15 × 109 1.54 × 109 0.39 × 109 1.78 × 109 2.35 × 109 0.57 × 109
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during the training process, it is recommended to set a relatively large value for the hyper-
parameter �, and constrain the weight of parameter W to be small to ensure a small �.

To achieve the constraint of keeping the weight of parameter W small, we propose two 
implementation schemes: weight clipping, and adaptive parameter loss.

4.3.1  Weight clipping

Weight clipping involves setting a threshold to constrain weights within a specific range, 
preventing them from becoming excessively large. We have

(5)W̄ = clip(W,−c, c),

Fig. 4  The relationship diagram among �, �, and �. Under a fixed �, � is positively correlated with � and 
negatively correlated with �
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where W is the original weight, c is the threshold, and W̄ is the clipped weight.

4.3.2  Adaptive parameter loss

Adaptive parameter loss is related to the magnitude of W, which varies according to the 
changes in weights. The loss function increases with the growth of weights, thereby con-
straining the magnitude of W. We have

where

 and � is a hyperparameter used to adjust the penalty strength.

5  Experiment

The structure of this section unfolds as follows: initially, we introduce the dataset employed 
in the experiment, the methods chosen for comparison, and the specific experimental setup. 
Afterwards, we provide a comprehensive comparison of nmODE, highlighting its strengths 
and advantages in comparison with the currently predominant methods. Finally, we analyze 
the compatibility of nmODE, and conduct the ablation study. The pipeline of the method is 
depicted in Fig. 5.

5.1  Experimental setup

5.1.1  Datasets

• MNIST.      MNIST (LeCun 1998) contains handwritten digits from 0 to 9, holding 
60, 000 images in the training set and 10, 000 images in the testing set. The size of each 
image is 28 × 28.

(6)L = Lorigin + � ⋅ Lstable,

(7)Lstable = max
1≤i≤n

(
m∑
j=1

|||wij
|||
)
,

Fig. 5  The pipeline primarily consists of three stages: (a) feature extraction, during which the image is con-
verted into tensor features via numerous layers; (b) the nmODE layer, which bolsters the model’s robustness 
following the acquisition of the image representation; and (c) prediction, where the features refined by the 
nmODE layer are utilized for label prediction, thereby determining the specific classification
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• Fashion-MNIST.      Fashion-MNIST (Xiao et  al. 2017) consists of 60,  000 train-
ing images and 10, 000 testing images, each with a resolution of 28 × 28 pixels. The 
images represent 10 different fashion categories, including items like T-shirts, trousers, 
pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots.

• CIFAR-10.      CIFAR-10 (Krizhevsky 2009) contains 50,  000 training samples and 
10, 000 testing samples, 10 distinct categories of 32 × 32 color images, encompassing 
airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks.

5.1.2  Attack methods

• FGSM FGSM (Goodfellow et al. 2014) is a simple and fast white-box attack for gen-
erating adversarial examples. It works by taking the gradient of the loss function with 
respect to the input data, and then perturbing the input data in the direction of the 
gradient sign. The amount of perturbation is controlled by a hyperparameter �, which 
determines the maximum allowable size of the perturbation.

• PGD  PGD (Madry et  al. 2017) is a commonly used white-box attack for generating 
adversarial examples. It iteratively perturbs an input example in the direction of the 
gradient of the loss function with respect to the input, while projecting the perturbed 
example back onto a specified norm ball to ensure that the perturbation is not too large. 
By repeating this process multiple times, PGD can find adversarial examples that are 
close to the original example.

• AutoPGD AutoPGD (Croce and Hein 2020) is an adaptive adversarial attack method 
that automatically adjusts the step size and number of iterations to find the optimal 
adversarial examples within a given computational budget. Compared to PGD attack, 
AutoPGD can find more optimal adversarial examples faster and is more robust.

• Square Attack Square Attack (Andriushchenko et al. 2020) is a query-efficient black-
box attack that generates adversarial examples by modifying square-shaped regions of 
the input image. The method is based on a randomized search scheme that explores the 
input space efficiently, which outperforms previous state-of-the-art methods in terms of 
success rate and query efficiency.

5.1.3  Implementation details

During the training and testing phase, Runge–Kutta of order 5 of ormand-Prince-Shamp-
ine ODE solver is employed, which is an adaptive-step ODE solver. The relative tolerance 
rtol = 10−3 and absolute tolerance atol = 10−3 correspond to the tolerances for accepting 
an adaptive step. We use torchdiffeq (Chen et al. 2018) to implement the ODE solver.

On MNIST and Fashion-MNIST, the original 28 × 28 pixel images are vectorized into 
784-dimensional vectors. We use 2 fully connected layers, whose functions are feature 
extraction and classification prediction respectively. The connection matrices are W1

2048×784
 

and W2
10×2048

. We insert nmODE between two fully connected layers. The model under-
goes training on clean data utilizing cross-entropy loss, trained for 100 epochs with � = 3, 
t̄ = 5e−2 and t̄ = 1 respectively.

On CIFAR-10, a pre-trained ResNet-18 model is utilized as the feature extractor,1 
the output of which is provided to nmODE as the input (512 dimensions). The model 

1 https:// github. com/ kuang liu/ pytor ch- cifar.

https://github.com/kuangliu/pytorch-cifar
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Fig. 6  Accuracy(%) of nmODE on Gaussian noise perturbations, resize operation, Gaussian blur operation, 
and brightness change compared to CNNs. � denotes the intensity of Gaussian noise. l denotes the resized 
size. k denotes the kernel size of Gaussian blur. b denotes the intensity of brightness

Fig. 7  Non-adversarial perturba-
tions on the MNIST dataset 
crafted by Gaussian noise, resize 
operation, Gaussian blur, and 
brightness change. � denotes 
the intensity of Gaussian noise. 
l denotes the resized size. k 
denotes the kernel size of Gauss-
ian blur. b denotes the intensity 
of brightness



 H. Luo et al.

1 3

  120  Page 16 of 23

undergoes training on clean data utilizing cross-entropy loss, trained for 1000 epochs with 
t̄ = 5 and � = 3.

For the adversarial attacks, we use PGD, AutoPGD, and Square Attack in the experi-
ment. For PGD, we apply the approach with 40 iterations and a flexible attack radius (50 
iterations for the CIFAR-10 experiment). In the case of AutoPGD attack, we utilize an L∞ 
norm attack along with a cross-entropy loss function and an update step size of 0.75. As for 
the Square Attack, we adhere to the procedure with L∞ norm, which is generated through 
5000 queries and incorporates a margin loss function.

We conduct all experiments using Pytorch 1.13.1 with Python 3.8.6, on an Ubuntu 
server 18.04.5 LTS with an RTX 3090 (24GB) GPU using CUDA 12.0.

5.2  Experimental comparison

5.2.1  Non‑adversarial robustness evaluation

We explore the naturally occurring perturbations defense ability of nmODE. We select 
popular CNN architectures for comparison, including ResNet (He et al. 2016), Xception 
(Chollet 2017), and EfficientNet (Tan and Le 2019). To ensure the fairness of the experi-
ment, all models adopt the same training method and are trained on the original MNIST 

Table 2  Accuracy (%) of nmODE under L∞ attacks compared to vanilla NODE (Chen et al. 2018), NODE 
trained with data augmentation (AT-NODE), ODE-TRADES (Zhang et  al. 2019), TisODE (Yan et  al. 
2019), and B-NODE (Yang et al. 2023) on the MNIST dataset

Results that surpass all competing methods are bold
a Results taken from Yang et al. (2023)

Attack Method �

0.01 0.03 0.05

PGD Vanilla NODE 86.14 ± 1.33a 71.04 ± 2.01a 47.40 ± 2.11a

AT-NODE 91.76 ± 1.16a 85.80 ± 1.94a 78.38 ± 1.67a

ODE-TRADES 91.46 ± 1.07a 85.08 ± 1.61a 77.32 ± 1.89a

TisODE 92.67 ± 1.28a 87.48 ± 1.42a 81.28 ± 1.28a

B-NODE 92.62 ± 0.87a 89.16 ± 1.25a 83.18 ± 1.75a

nmODE (ours) ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.��

AutoPGD Vanilla NODE 84.41 ± 1.11a 68.99 ± 1.71a 46.31 ± 2.51a

AT-NODE 91.34 ± 1.51a 87.60 ± 2.67a 78.35 ± 1.87a

ODE-TRADES 92.19 ± 1.92a 85.31 ± 2.41a 76.89 ± 3.85a

TisODE 91.12 ± 1.27a 87.02 ± 2.21a 79.48 ± 2.35a

B-NODE 93.45 ± 1.42a 88.95 ± 2.09a 82.65 ± 2.58a

nmODE (ours) ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.��

Square Attack Vanilla NODE 86.55 ± 2.65a 72.50 ± 5.85a 51.58 ± 4.05a

AT-NODE 92.65 ± 1.72a 89.50 ± 3.84a 81.13 ± 5.44a

ODE-TRADES 92.06 ± 3.10a 90.08 ± 2.73a 82.41 ± 2.96a

TisODE 94.10 ± 0.97a 87.60 ± 1.69a 83.24 ± 2.55a

B-NODE 94.49 ± 2.55a 91.52 ± 3.49a 85.49 ± 2.50a

nmODE (ours) ��.�� ± �.�� ��.�� ± �.�� ��.�� ± �.��
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training set without data augmentation techniques. The variations in the MNIST dataset 
caused by non-adversarial perturbations are illustrated in Fig. 7. Our experimental results 
are shown in Fig.  6. It can be observed that nmODE exhibits greater resilience against 
Gaussian noise, resize operation, Gaussian blur, and brightness change.

5.2.2  L∞ robustness on MNIST

On the MNIST dataset, we conduct experiments to compare the L∞ robustness of nmODE 
with vanilla NODE (Chen et al. 2018), NODE trained with data augmentation (AT-NODE), 
ODE-TRADES (Zhang et al. 2019), TisODE (Yan et al. 2019), and B-NODE (Yang et al. 
2023). We use PGD, AutoPGD, and Square Attack to attack. As shown in Table 2, nmODE 
has better performance under all the attacks.

5.2.3  L∞ robustness on Fashion‑MNIST and CIFAR‑10

On the Fashion-MNIST, we compare the L∞ robustness of nmODE with AT-NODE, ODE-
TRADES, and B-NODE. AT-NODE, ODE-TRADES, and B-NODE are trained with data 
augmented with adversarial examples, which are generated by 40 steps L∞ PGD attack 

Fig. 8  a Accuracy (%) of 
nmODE under L∞ PGD attack 
compared to NODE trained with 
data augmentation (AT-NODE), 
ODE-TRADES (Zhang et al. 
2019), and B-NODE (Yang et al. 
2023) on the Fashion-MNIST 
dataset. b Accuracy(%) of 
nmODE under L∞ PGD attack 
compared to NODE trained with 
data augmentation (AT-NODE), 
ODE-TRADES (Zhang et al. 
2019), TisODE (Yan et al. 2019), 
and B-NODE (Yang et al. 2023) 
on the CIFAR-10 dataset
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( � = 8∕255 ), while nmODE is trained only on the clean data without augmentation. The 
clean accuracy for AT-NODE, ODE-TRADES, B-NODE and nmODE are 82.10%, 83.24%, 
82.68% and 88.83% respectively.

For the CIFAR-10 experiment, we use a pre-trained ResNet-18 for the feature extractor, 
the output of which is provided to neural ODEs as the input. The clean accuracy for ODE-
TRADES, B-NODE, and nmODE are 90.48%, 89.16%, and 95.46%, respectively.

Results are shown in Fig. 8. As seen from the figure, nmODE exhibits the best perfor-
mance under all the conditions.

Table 3  Accuracy (%) of nmODE under L2 PGD attack compared to Lipschitz-MonDeq (Pabbaraju et al. 
2020), Semi-MonDeq (Chen et al. 2021), Robust FI-ODE (Huang et al. 2022), NODE (Chen et al. 2018), 
and LyaNet (Rodriguez et al. 2022) on the MNIST and CIFAR-10 datasets

Results that surpass all competing methods are bold
a Results taken from Huang et al. (2022)

Dataset Method � Clean Adversarial

MNIST Lipschitz-MonDeq 0.1 95.60a 94.42a

Semi-MonDeq 0.1 99a 99a

Robust FI-ODE 0.1 99.35a 99.09a

nmODE (ours) 0.1 ��.�� ��.��

Lipschitz-MonDeq 0.2 95.60a 93.09a

Robust FI-ODE 0.2 99.35a 98.83a

nmODE (ours) 0.2 ��.�� ��.��

CIFAR-10 Lipschitz-MonDeq 0.141 66.66a 50.51a

NODE w/o Lyapunov training 0.141 69.05a 56.94a

LyaNet + Lipschitz restriction 0.141 73.15a 64.87a

LyaNet + Sampling scheduler 0.141 82.83a 74.81a

Robust FI-ODE 0.141 78.34a 67.45a

nmODE (ours) 0.141 ��.�� ��.��

Table 4  Accuracy(%) of TRADES, TRADES+nmODE under L∞ PGD attack ( � = 15∕255 ) on the CIFAR-
10 dataset

Results that surpass all competing methods are bold

TRADES TRADES+nmODE

Clean 86.72 86.30
PGD 68.70 70.89
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5.2.4  L
2
 robustness on MNIST and CIFAR‑10

On the MNIST and CIFAR-10 datasets, we evaluate L2 robustness of nmODE, using 
PGD to perturb the input images within an L2 ball of radius 0.1 and 0.2 on MNIST, and 
0.141 (36∕255) on CIFAR-10. We compare nmODE with Lipschitz-MonDeq (Pabbaraju 
et al. 2020), Semi-MonDeq (Chen et al. 2021), Robust FI-ODE (Huang et al. 2022), NODE 
(Chen et  al. 2018), and LyaNet (Rodriguez et  al. 2022). As shown in Table  3, nmODE 
achieves the strongest robustness results compared to prior ODE-based approaches.

Table 5  Accuracy (%) of 
nmODE+ compared to nmODE 
under L∞ adversarial attack 
( � = 0.05 ) on the MNIST dataset. 
wd denotes the magnitude of 
weight decay. The Robust Ratio 
is calculated by dividing the 
PGD accuracy by the clean 
accuracy

Method Accuracy (%) Robust Ratio (%)

clean PGD

nmODE 98.38 96.71 98.3
nmODE+ ( wd = 1e−5) 98.36 97.87 99.5 (↑ 1.2)

nmODE+ ( wd = 1e−4) 98.30 97.91 99.6 (↑ 1.3)

nmODE+ ( wd = 1e−3) 97.25 96.37 99.1 (↑ 0.8)

Fig. 9  Influence of integration 
time t of nmODE on the MNIST 
dataset under L∞ PGD attack 
( � = 0.05)

Fig. 10  Influence of y dimension 
of nmODE on the MNIST dataset 
under L∞ PGD and AutoPGD 
attacks ( � = 0.05)
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5.3  Compatibility of nmODE

We investigate the potential of integrating nmODE with other existing architectures to enhance 
the defense ability. We insert nmODE in front of the final FC layer of TRADES (Pang et al. 
2020), which is an adversarial training defense method with a combination of tricks. We con-
ducted experiments on the CIFAR-10 dataset and used the L∞ PGD ( � = 15∕255 ) to attack. 
The model is trained for 100 epochs using cross-entropy loss with t̄ = 1 and � = 3, utiliz-
ing Adam optimizer with learning rate 0.001. As illustrated in Table  4, nmODE enhances 
the defense ability of TRADES. Our experiments show that nmODE can be integrated into 
defense models to enhance the robustness.

5.4  Experiment on  nmODE+

To verify the effectiveness of nmODE+, we experiment on the MNIST dataset. We use 2 fully 
connected layers, whose functions are feature extraction and classification prediction respec-
tively. The connection matrices are W1

2048×784
 and W2

10×2048
. We insert nmODE between two 

fully connected layers. The model undergoes training on clean data utilizing cross-entropy 
loss, trained for 100 epochs with � = 3 and t̄ = 5e−2. We use weight decay to achieve the 
functionality of Lstable. Results are shown in Table 5. We prove that nmODE+ has stronger 
stability than nmODE.

5.5  Ablation study

To show the effect of integration time t for nmODE, we conduct an ablation experiment 
on the MNIST dataset. The model is trained for 10 epochs with a batch size of 256, uti-
lizing the Adam optimizer with a learning rate of 0.001. We utilize L∞ PGD ( � = 0.05 ) 
to attack. Results are summarized in Fig. 9.

To show the effect of y dimension for nmODE, we experiment on MNIST. The model 
is trained for 20 epochs with t̄ = 1 and � = 3, utilizing the Adam optimizer with a learn-
ing rate of 0.001. We utilize L∞ PGD and AutoPGD ( � = 0.05 ) to attack. Experimental 
results are presented in Fig. 10.

6  Conclusion and discussion

In this paper, we propose a certified defense method rooted in the unique properties of 
nmODE, a variant of neural ODE distinguished by the rare attribute of global attrac-
tors. Through rigorous mathematical analysis, we demonstrate that our proposed method 
is capable of significantly enhancing defense against perturbations. The establishment 
of a novel quantitative approach allows us to articulate a clear mathematical relationship 
between perturbations and the defense capabilities of nmODE. Furthermore, we propose a 
training method named nmODE+, which augments the defense capability of nmODE with-
out incurring additional training costs. The experimental results presented in this paper 
showcase the resilience of nmODE to various perturbations. Notably, our method seam-
lessly integrates with existing neural networks and defense mechanisms, underscoring its 
versatility and practical applicability.

nmODE offers an intriguing avenue for developing robust systems against adversar-
ial perturbations due to its stable mapping. Here’s a discussion on practical systems and 
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potential areas where nmODE can be deployed against adversarial perturbations, along 
with considerations for implementation:

• Image Classification and Recognition: nmODE can be employed in image classifica-
tion tasks where robustness against adversarial perturbations is crucial. Implement-
ing nmODE in image classification involves training models using techniques like the 
adjoint sensitivity method or gradient-based solvers. By the stable mapping, nmODE 
implicitly smooths out small perturbations, making them less susceptible to adversarial 
attacks.

• Anomaly Detection: nmODE can be utilized for anomaly detection tasks in vari-
ous domains such as cybersecurity, healthcare, or finance. By learning the continu-
ous dynamics of normal behavior, nmODE can effectively identify deviations caused 
by adversarial attacks. Implementing nmODE for anomaly detection involves training 
on normal data distributions and detecting deviations using reconstruction errors or 
learned latent dynamics. Adversarial training techniques can be used to enhance the 
model’s robustness against adversarial anomalies.

• Control Systems: In control systems, nmODE can be employed for robust control 
against adversarial disturbances. By modeling the system dynamics using continuous-
time formulations, nmODE can adapt to unforeseen disturbances and maintain sys-
tem stability. Implementing nmODE in control systems involves integrating them into 
control algorithms such as model predictive control (MPC) or reinforcement learning 
frameworks. Robust control strategies, including disturbance rejection and robust opti-
mization, can be combined with nmODE to mitigate adversarial effects.

• Natural Language Processing: nmODE can be applied in natural language processing 
tasks such as sentiment analysis or text classification to enhance robustness against 
adversarial inputs, such as adversarial text or linguistic manipulations. Implement-
ing nmODE involves embedding text data into continuous vector spaces and learning 
dynamics over these embeddings. Adversarial training methods tailored for text data, 
such as adversarial training with word embeddings or character-level perturbations, can 
be employed to improve robustness.

In subsequent research, we aim to generalize the nmODE to nmODEk, which can be 
described as:

where k ∈ N+. By considering potential choices for activation functions fk, we may get 
more findings on the stable mapping and defense capability of the model. Also, we will fur-
ther conduct experiments in real-world scenarios to validate the effectiveness of nmODE in 
practical applications and assess its performance under diverse environmental conditions. 
By addressing the outlined future work, we anticipate further advancements in the field, 
ultimately leading to more resilient and secure neural networks.
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