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Abstract
Recently, continuous- and discrete-time models of a zeroing neural network (ZNN) have 
been developed to provide online solutions for the time-dependent linear equation (TDLE) 
with boundary constraint. This paper presents a novel approach to address the bound-
constrained TDLE (BCTDLE) problem by proposing a new discrete-time ZNN (DTZNN) 
model. The proposed DTZNN model is designed using the Taylor difference formula to 
discretize the previous continuous-time ZNNN (CTZNN) model. Theoretical analysis indi-
cates the computational property of the proposed DTZNN model, and numerical results 
further demonstrate its validity. The applicability of the proposed DTZNN model is finally 
confirmed via its application to the motion planning of a PUMA560 robotic arm.

Keywords Discrete-time zeroing neural network · Time-dependent linear equation · 
Boundary constraint · Taylor difference formula · Robotic arm

1 Introduction

Linear and nonlinear equations are fundamental mathematical tools that play essential 
roles in several industrial applications, such as robot path planning, image recognition, 
and signal processing (Zhao 2013; Tsiligianni et al. 2015; Zhang and Jin 2017; Li et al. 
2019). Extensive work has been conducted on solving linear and nonlinear equations, 
typically using numerical algorithms (Sharma 2005; Neta et al. 2014; Abdelmalek 1977; 
Donoho et al. 2012; Zeng et al. 2014; Spedicato et al. 2000; Morigi and Sgallari 2001) and 

 * Dongsheng Guo 
 gdongsh2022@hainanu.edu.cn

1 School of Information and Communication Engineering, Hainan University, Haikou, China
2 School of System Design and Intelligent Manufacturing, South China University of Technology, 

Shenzhen, China
3 School of Automation Science and Engineering, South China University of Technology, 

Guangzhou, China
4 School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-10746-x&domain=pdf


 N. Cang et al.

1 3

  140  Page 2 of 24

neurodynamic methods (Kumar 2022a, b; Kumar  2023; Cichocki et al. 1992; Xia et al. 
1999; Liang and Tso 2002). Among the numerical algorithms, direct methods and iterative 
methods are mainly used. In Abdelmalek (1977), the minimum L∞ solution of the linear 
equation was first proposed. In Donoho et al. (2012), the sparse approximate solution of 
the linear equation was obtained by using the stagewise orthogonal matching pursuit algo-
rithm. Many iterative algorithms have also been developed to bring solutions to the linear 
equation, such as adaptive iterative thresholding algorithms (Zeng et al. 2014), abstraction 
algorithms (Spedicato et al. 2000), and regularizing Lanczos iterative algorithms (Morigi 
and Sgallari 2001). However, these numerical algorithms may encounter challenges such 
as the accumulation of numerical errors, slow convergence rates, and low stability (Zhang 
et al. 2013).

In recent years, neural network models have garnered widespread attention for address-
ing modeling and control problems in both linear and nonlinear dynamic systems (Zhang 
et  al. 2018; Li et  al. 2019; Xiao et  al. 2020; Liao et  al. 2024; Kumar 2022a, b; Kumar  
2023). Particularly, the introduction of novel neural network models such as the Lyapunov-
stability-based context-layered recurrent pi-sigma neural network (CLRPSNN) (Kumar 
2022a), the memory recurrent Elman neural network (MRENN) (Kumar 2022b), and 
the higher-order recurrent neural network (HORNN) (Kumar  2023) have provided new 
approaches for solving the identification and control problems of nonlinear dynamic sys-
tems. The CLRPSNN model effectively addresses the issue of nonlinear system identifi-
cation by introducing an additional layer of context nodes, demonstrating significant per-
formance advantages in simulation results. However, stability has always been a crucial 
consideration in the design of neural network models. The MRENN and HORNN models 
innovate in stability design, ensuring stability and convergence of the models by combining 
Lyapunov stability criteria and recursive learning rate schemes. This emphasis on stabil-
ity makes these models more reliable and practical when dealing with nonlinear dynamic 
systems.

Similar to numerical algorithms, neurodynamic methods also significantly improve the 
efficiency of solving the linear equation. Cichocki et al. (1992) proposed different recur-
rent neural networks (RNNs) to address the linear equation with an inequality constraint. 
Xia et al. (1999) designed an RNN model that can converge faster and provide more accu-
rate solutions to the linear equation with an inequality constraint. The discrete-time form 
of such an RNN model was further deduced by Liang and Tso (2002). It is worth not-
ing that these studies are based on the assumption of time-invariant when solving linear 
equations. However, many systems in practical engineering applications are always time-
varying. Therefore, directly applying these methods to solve time-varying linear equations 
may yield poor results. Moreover, the mathematical domain of the variables involved in 
a linear equation must be set during the solution process (Zhang et  al. 2018; Park et  al. 
1998). For example, it is assumed that many robotic arms can lead to task failure or even 
damage if the physical constraints of the joints are exceeded. Thus, appropriate methods 
must be investigated to ensure that joint angle, velocity, and/or acceleration are within the 
proper mathematical intervals (Guo et al. 2018; Zhang et al. 2013). In other words, solving 
time-varying underdetermined linear equations with boundary constraint is of importance 
in practical engineering applications.
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In many industrial applications, there is a high demand for the real-time performance 
of linear equation, making them time-dependent. Existing studies are less concerned with 
methods for solving time-dependent linear equation (TDLE) with boundary constraint. To 
solve a given time-dependent problem, a representative RNN was presented and refined by 
Zhang and Guo (2015); Zhang and Yi (2011); Zhang et al. (2012, 2015). The main idea of 
this model was to define the error control equation and then derive the RNN (depicted in 
an ordinary equation) so that the computational error can converge globally and eventu-
ally become 0, hence the name zeroing neural network (ZNN). Focusing on solving the 
bound-constrained TDLE (BCTDLE), Xu et  al. (2019a) developed the continuous-time 
ZNN (CTZNN) model, which they successfully employed to solve time-varying linear 
equations and inequality systems (Xu et al. 2019b). Sun and Liu (2020) designed a novel 
noise-resistant CTZNN model for solving time-varying Lyapunov equations. However, 
directly implementing the CTZNN model into hardware in practical engineering applica-
tions is challenging.

Therefore, for the purpose of possible hardware implementation, researchers dis-
cretize the CTZNN model using difference equations. The traditional numerical dif-
ferentiation algorithm for discretizing continuous systems is typically implemented 
using the Euler difference formula. Specifically, in Guo and Zhang (2012), a one-step 
iteration description of the DTZNN model is proposed for dynamic matrix inversion. 
The simulation results show that this model has an error mode of O(�2) , that is, when 
the sampling interval � decreases by a factor of 10, the steady-state calculation error 
(SSCE) decreases by a factor of 100. Unlike the traditional Euler difference formula, 
in Guo et al. (2017), a new Taylor-type difference rule is constructed. For the approxi-
mation of first-order derivatives, this rule has been proven to have a smaller SSCE 
than the Euler difference rule and possesses an error mode of O(�3) , that is, when the 
sampling interval � decreases by a factor of 10, the SSCE decreases by a factor of 
1000. Using the new Taylor difference rule, researchers have successively developed 
Taylor difference formulas with the error modes O(�4) and O(�5) . Specifically, Huang 
et  al. (2022) developed a Taylor difference formula with an error mode of O(�4) to 
solve time-variant underdetermined nonlinear systems under bound constraint. Differ-
ent from the proposed DTZNN model in this paper, their model focuses on solving 
nonlinear systems and may not necessarily be applicable to linear equations, whereas 
DTZNN model proposed in this paper exhibits superior accuracy. Cai et al. (2021) also 
discretized the CTZNN model based on Taylor series expansion. However, their model 
mainly focuses on solving a time-varying system of linear equation and inequality, and 
does not consider boundary constraint. A recent study (Ma and Guo 2021) showed 
that the DTZNN model can effectively solve the BCTDLE with an SSCE of the order 
O(�4) , where � is the sampling distance.

Following but differing from the previous work (Ma and Guo 2021), this paper estab-
lishes a new DTZNN model that can effectively solve the TDLE with boundary constraint. 
The validity of such a model is supported by both theoretical and numerical results. Con-
sidering the importance of robotic arms in industrial applications (Xu et al. 2019a; Ma and 
Guo 2021; Zhang et al. 2019), this paper further applies the proposed DTZNN model to 
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the PUMA560 robotic arm to demonstrate the applicability of the model. The primary con-
tributions of this paper can be summarized as follows: 

(1) The new DTZNN model, which has not been previously reported, is studied to solve 
the TDLE with boundary constraint. Notably, the proposed model is clearly different 
from the previous DTZNN model (Ma and Guo 2021), and achieves better performance 
on computing and solving the BCTDLE.

(2) Theoretical analysis denotes the computational characteristic of the proposed DTZNN 
model, and numerical results verify its validity. More importantly, these results show 
that the DTZNN calculation error at steady state is of order O(�5) . This is the first time 
that a computing model with O(�5) mode is presented to solve the BCTDLE.

(3) The proposed DTZNN model is utilized for robotic arms by solving the linear kinematic 
equation that involves joint physical constraint. Simulation results using the PUMA560 
robotic arm with different examples demonstrate the effectiveness and practicality of 
the proposed DTZNN model.

The upcoming sections of this paper are structured as follows. Section 2 presents the problem 
statement and the ZNN models for the TDLE with boundary constraint. Section 3 describes 
the proposed DTZNN composition and theoretical analysis. Section 4 provides numerical val-
idation experiments with the proposed DTZNN model. Section 5 shows the applicability of 
the DTZNN model to robotic arms with joint constraints. Section 6 concludes this paper.

2  Preliminary

This section outlines the problem to address the TDLE with boundary constraint. To probe the 
matter further, the continuous- and discrete-time models of ZNN are shown as basis.

2.1  Problem statement

The TDLE with boundary constraint considered in this paper is formulated as follows (Lu 
et al. 2019; Xu et al. 2019a):

where matrix G(t) ∈ Rm×n (with m < n ) is time-dependent and full-rank, vector h(t) ∈ Rm is 
time-dependent and smooth, vector x(t) ∈ Rn is unknown and must be obtained by solving 
(1), and x± is the bounds of x(t). This paper aims to find a viable x(t) that satisfies both the 
linear equation and the boundary constraint outlined in (1).

As shown in Xu et al. (2019b), solving the BCTDLE (1) can be transformed into finding 
the solution of the system as follows:

with U = [−I;I] ∈ R2n×n , � = [−x−;x+] ∈ R2n , and V(t) = diag{y1(t),⋯ , y2n(t)} ∈ R2n×2n . 
I ∈ Rn×n is the identity matrix, and y(t) is an unknown vector that must still be determined 
when solving (2). The matrix–vector form of (2) is then expressed as follows:

(1)
{

G(t)x(t) = h(t),

x− ⩽ x(t) ⩽ x+,

(2)
{

G(t)x(t) − h(t) = 0,

Ux(t) − � + V(t)y(t) = 0,
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with Q(t) ∈ R(m+2n)×(3n) , w(t) ∈ R(3n) , and r(t) ∈ R(m+2n) being

In this way, solving the BCTDLE (1) is equivalent to solving the matrix–vector equation 
presented in (3) for t ⩾ 0.

2.2  CTZNN model

In this subsection, to solve the BCTDLE (1), following the ZNN design principle (Xu et al. 
2019b), the error equation e(t) ∈ R(m+2n) is defined by

Then, a decay exponent formula is introduced to achieve the convergence of e(t) to 0 (Xu 
et al. 2019b), and the resultant CTZNN model is derived and formulated as follows (Lu 
et al. 2019):

where vectors ẇ(t) and ṙ(t) denote the time derivatives of w(t) and r(t) , respectively, and 
matrices P(t) ∈ R(m+2n)×(3n) and M(t) ∈ R(m+2n)×(3n) are

with P+(t) ∈ R(3n)×(m+2n) being the right pseudoinverse matrix of P(t). The following 
theoretical conclusion regarding the CTZNN model (5) is given and proved in Xu et  al. 
(2019b).

Lemma 1 When considering a solvable BCTDLE (1), the CTZNN model (5) can produce 
an exact time-dependent solution of (1).

2.3  DTZNN model

The study of discrete-time models of ZNN is of practical interest because of hardware imple-
mentation and development of numerical algorithms (Guo et  al. 2017; Mathews and Fink 
2004). The widely-used method for deriving a discrete-time model is by using the Euler differ-
ence formula (Mathews and Fink 2004), which is given by

(3)Q(t)w(t) − r(t) = 0,

Q(t) =

[
G(t) 0

U V(t)

]
,

w(t) =

[
x(t)

y(t)

]
,

r(t) =

[
h(t)

�

]
.

(4)e(t) = Q(t)w(t) − r(t).

(5)ẇ(t) = −P+(t)(𝜆(Q(t)w(t) − r(t)) +M(t)w(t) − ṙ(t)),

P(t) =

[
G(t) 0

U 2V(t)

]
, and M(t) =

[
Ġ(t) 0

0 0

]
,
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where wk = w(tk = k�) , � = tk+1 − tk represents the sampling interval, k = 0, 1, 2,… is the 
number of iterations, and O(�) is the truncation error.

Evidently, the discretization of the CTZNN model (5) via Euler difference formula (6) 
yields the following expression:

where P+
k
= P+(tk = k�) , Qk = Q(tk = k�) , Mk = M(tk = k�) , ṙk = ṙ(tk = k𝜀) , 

rk = r(tk = k�) , and 𝜇 = 𝜆𝜀 > 0 is the step size.
By eliminating O(�2) from (7), the following DTZNN model to solve the BCTDLE (1) 

is derived below:

In relation to the DTZNN model (7), it is a variation law with an O(�2) error form. That is, 
when the sampling interval � is reduced by a factor of 10, the stationary error is reduced 
by a factor of 100. Such a DTZNN model may not satisfy the high-precision requirement 
in practice. Thus, a new DTZNN model with better performance on computing and solving 
the BCTDLE (1) is proposed in this paper.

3  New DTZNN model

In this section, on the basis of the Taylor difference formula (Cai et  al. 2021), the new 
DTZNN model is developed to solve the BCTDLE (1). Theoretical analysis is also pro-
vided to denote the computational characteristic of the proposed DTZNN model.

3.1  Model formulation

The approximation of a first order derivative via Taylor series expansion has been the sub-
ject of numerous studies (Zhang et al. 2019). In the previous study (Cai et al. 2021), the 
Taylor difference formula that has higher accuracy and lower steady-state error than the 
conventional Euler difference formula (6) has been constructed.

Lemma 2 The following Taylor difference formula (Cai et al. 2021) is shown to approxi-
mate the first order derivative:

with k = 6, 7, 8,⋯ and f (⋅) being the objective function.
To discretize the CTZNN model (5) using the above Taylor difference formula (9), the 

following vector form of (9) is presented for the approximation of ẇk:

(6)ẇk = ẇ(tk = k𝜀) =
wk+1 − wk

𝜀
+ O(𝜀),

(7)wk+1 = wk − 𝜇P+
k
(Qkwk − rk) − 𝜀P+

k
(Mkwk − ṙk) + O(𝜀2),

(8)wk+1 = wk − uP+
k
(Qkwk − rk) − 𝜀P+

k
(Mkwk − ṙk).

(9)
ḟ (tk) =(54f (tk+1) − 5f (tk) − 10f (tk−1) − 55f (tk−2) + 10f (tk−3)

+ f (tk−4) + 10f (tk−5) − 5f (tk−6))∕(120𝜀) + O(𝜀4),
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By applying the Taylor difference formula (10) to the discretization of the CTZNN model 
(5), the discrete-time expression is given by

By eliminating O(�5) from (11), the DTZNN model proposed in this paper to solve the 
BCTDLE (1) is expressed as follows:

Regarding the proposed DTZNN model (12), it requires seven initial states (i.e., w0 , w1 , w2 , 
w3 , w4 , w5 and w6 ) to activate the iterative computation. Thus, given an initial value w0 , the 
rest are found by the DTZNN model (8) and are computed as follows:

The procedure of the proposed DTZNN model (12) to solve the BCTDLE problem (1) is 
as follows: 

 (i) Initialization: Given the time duration T, sampling gap � , step size � , constraint 
boundary 

[
−x−, x+

]
 . Initialize t0 , w0 , G0 , Ġ0 , h0 , and ḣ0 . Receive P+

0
 , r0 , ṙ0 , Q0 and 

M0 . Compute ‖‖e0‖‖2 = ‖‖Q0w0 − r0
‖‖2.

 (ii) First Loop (with k = 0, 1, 2, 3, 4, 5 ): Compute wk+1 through (8). Receive P+

k+1
 , r

k+1
 , ṙ

k+1
 , 

Q
k+1

 and M
k+1

 . Compute ‖‖‖ek+1

‖‖‖2 =
‖‖‖Qk+1

w
k+1

− r
k+1

‖‖‖2.
 (iii) Second Loop (with k = 6,… , int(T)∕�) ): Compute wk+1 through (12). Receive P+

k+1
 , 

r
k+1

 , ṙ
k+1

 , Q
k+1

 and M
k+1

 . Compute ‖‖‖ek+1

‖‖‖2 =
‖‖‖Qk+1

w
k+1

− r
k+1

‖‖‖2.
 (iv) Output: Save wk and ‖‖‖ek

‖‖‖2 =
‖‖‖Qk

w
k
− r

k

‖‖‖2 , and plot figures.

An important criterion for measuring the performance of numerical algorithms is compu-
tational complexity. For (12), the overall computational complexity is O((m + 2n) × (3n)) 
(with m < n ∈ R ). Thus, the proposed DTZNN model (12) has low computational com-
plexity, i.e., O(n2).

(10)
ẇk =(54wk+1 − 5wk − 10wk−1 − 55wk−2 + 10wk−3

+ wk−4 + 10wk−5 − 5wk−6)∕(120𝜀) + O(𝜀4).

(11)
wk+1 =

5

54
wk +

5

27
wk−1 +

55

54
wk−2 −

5

27
wk−3 −

1

54
wk−4 −

5

27
wk−5

+
5

54
wk−6 −

20

9
P+
k
(𝜇(Qkwk − rk) + 𝜀Mkwk − 𝜀ṙk) + O(𝜀5).

(12)
wk+1 =

5

54
wk +

5

27
wk−1 +

55

54
wk−2 −

5

27
wk−3 −

1

54
wk−4 −

5

27
wk−5

+
5

54
wk−6 −

20

9
P+
k
(𝜇(Qkwk − rk) + 𝜀Mkwk − 𝜀ṙk).

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w1 = w0 − 𝜇P+
0

�
Q0w0 − r0

�
− 𝜀P+

0

�
M0w0 − ṙ0

�
,

w2 = w1 − 𝜇P+
0

�
Q1w1 − r1

�
− 𝜀P+

0

�
M1w1 − ṙ1

�
,

w3 = w2 − 𝜇P+
0

�
Q2w2 − r2

�
− 𝜀P+

0

�
M2w2 − ṙ2

�
,

w4 = w3 − 𝜇P+
0

�
Q3w3 − r3

�
− 𝜀P+

0

�
M3w3 − ṙ3

�
,

w5 = w4 − 𝜇P+
0

�
Q4w4 − r4

�
− 𝜀P+

0

�
M4w4 − ṙ4

�
,

w6 = w5 − 𝜇P+
0

�
Q5w5 − r5

�
− 𝜀P+

0

�
M5w5 − ṙ5

�
.
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3.2  Theoretical analysis

In this subsection, the computational characteristic of the proposed DTZNN model (12) is 
analyzed and proved theoretically.

Lemma 3 The proposed DTZNN model (12) is characterized by zero stability and consist-
ency, and thus has convergence property.

Proof By analyzing the characteristic polynomial, it has been determined that the proposed 
DTZNN model in Equation (12) exhibits zero stability (Guo et al. 2018). Then, from the 
derivation of (12), its truncation error is O(�5) , reflecting its consistency. Referring to the 
findings of Griffiths and Higham (2010), the zero stability and consistency are essential 
for the convergence of the proposed DTZNN model (12). With that, the proof is now fully 
established.   ◻

Lemma 4 The proposed DTZNN model (12) can produce a precise time-dependent solu-
tion of the solvable BCTDLE (1).

Proof By following Lemma 3, the solution wk computed by the proposed DTZNN model 
(12) can converge to a theoretical solution w∗

k
= w∗(tk = k�) of (3). Mathematically, 

wk → w∗
k
 if k is large enough (Huang et al. 2022). By virtue of Qkwk − rk = 0 and the given 

definitions of Qk and rk , the following equation can be deduced:

  ◻

Knowing that Vkyk ≥ 0,U = [−I;I] ∈ R2n×n, and � =
[
−x−;x+

]
∈ Rn×n , (13) is refor-

mulated as stated below:

(14) indicates that, when k is large enough, the DTZNN model (12) has xk → x∗
k
(tk = k�) 

for the BCTDLE (1) to hold. This statement further shows that the proposed DTZNN 
model (12) can offer a precise time-dependent solution of the solvable BCTDLE (1). With 
that, the proof is now fully established.   ◻

Lemma 5 Considering the BCTDLE (1) is solved by the proposed DTZNN model (12), the 
SSCE varies in the mode of O(�5).

Proof Based on the error function (4), the SSCE of (12) is given by

(13)lim
k→∞

([
Gkxk − hk
Uxk − �

])
= lim

k→∞

(
−

[
0

Vkyk

])
.

(14)
{

limk→∞

(
Gkxk − hk

)
= 0,

x− ≤ limk→∞

(
xk
)
≤ x+.

lim
k→∞

||ek||2 = lim
k→∞

‖‖Qkwk − rk
‖‖2.
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According to Lemmas 3 and 4, wk = w∗
k
+ O(�5) with a large enough k. Then, the following 

result on the SSCE of (12) is obtained:

◻which means that the DTZNN calculation error at steady state is of order O(�5) . There-
fore, considering the BCTDLE (1) is solved by the proposed DTZNN model (12), the 
SSCE varies in the mode of O(�5) . With that, the proof is now fully established.   ◻

To summarize, Lemmas 3–5 provide theoretical guarantees that the proposed DTZNN 
model (12) can effectively solve the BCTDLE (1).

4  Numerical verification and comparison

This section showcases numerical simulations to verify the superiority and effectiveness of 
the proposed DTZNN model (12) in solving the BCTDLE (1). Notably, the recent research 
(Guo et al. 2017) indicates that the DTZNN model via Taylor difference formula can out-
perform the DTZNN model (8) via Euler difference formula. Thus, this section only offers 
the comparative numerical results of using the proposed DTZNN model (12) and the previ-
ous DTZNN model in Guo et al. (2017). For convenience, the previous DTZNN model in 
Guo et al. (2017) is expressed as follows:

These simulations are also performed via MATLAB R2021b on a digital computer 
equipped with an AMD Ryzen 7 5800 H processor with Radeon Graphics @3.20 GHz, 32 
GB of memory, and Windows 10 OS.

4.1  Model comparison

In this subsection, numerical simulation comparative experiments are conducted using 
the following example to demonstrate the effectiveness and superiority of the proposed 
DTZNN model (12) in solving BCTDLE (1). In the ensuing numerical experiments, 
the DTZNN models (12) and (16) are used to solve the BCTDLE (1) with the following 
coefficients:

(15)

lim
k→∞

‖‖ek‖‖2 = lim
k→∞

‖‖Qkwk − rk
‖‖2

= lim
k→∞

‖‖‖Qk(w
∗
k
+ O(�5)) − rk

‖‖‖2
= lim

k→∞

‖‖‖QkO(�
5)
‖‖‖2

= O(�5).

(16)
wk+1 =

5

24
wk +

1

2
wk−1 +

1

4
wk−2 +

1

6
wk−3 −

1

8
wk−4

− P+
k

(
𝜇
(
Qkwk − rk

)
+ 2𝜀

(
Mkwk − ṙk

))
.
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Fig. 1  Numerical results for the previous DTZNN model (16) with � = 0.01 and � = 0.1 to solve the BCT-
DLE (1)

Fig. 2  Numerical results for the proposed DTZNN model (12) with � = 0.01 and � = 0.1 to solve the BCT-
DLE (1)

Fig. 3  Numerical results for the previous DTZNN model (16) with � = 0.001 and � = 0.1 to solve the BCT-
DLE (1)
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The relevant numerical results are provided in Figs. 1, 2, 3, 4 and Table 1.
Figure  1 presents the simulation results of the previous DTZNN model (16) using 

� = 0.01 and � = 0.1 and four different initial values to solve the BCTDLE (1), where 
x
(i)

k
(i = 1, 2, 3) indicates the ith element of the feasible solution vector xk of (1). In Fig. 1a, 

the trajectories of xk are time-dependent, and the changing values are within the constraint 
boundary [x−, x+] . These results mean that the exact solution of (1) can be obtained by 
applying the previous DTZNN model (16). In Fig. 1b, the calculation errors ‖ek‖2 of (16) 
converge, and the SSCEs are in the order of 10−6 . According to these results, the previous 
DTZNN model (16) can effectively solve the BCTDLE (1).

Figure  2 presents the simulation results of the proposed DTZNN model (12) using 
� = 0.01 and � = 0.1 and four different initial values to solve the BCTDLE (1). In Fig. 2a, 
the trajectories of xk are time-dependent as well and numerically bounded (or say, they sat-
isfy xk ∈ [x−, x+] ). In Fig. 2b, the calculation errors of (12) demonstrate convergence, with 
the SSCE values reaching the order of 10−8 . These findings provide strong evidence for the 
validity of (12) in solving (1). More importantly, comparing the results in Figs. 1b and 2b, 

G(t) = [1 + sin t, 2 + cos(2t), 5 − sin t],

h(t) = sin(0.5t) − cos(2t),

−x+ = x− = [−0.3,−0.3,−0.3].

Fig. 4  Numerical results for the proposed DTZNN model (12) with � = 0.001 and � = 0.1 to solve the 
BCTDLE (1)

Table 1  SSNEs of the proposed DTZNN model (12) and the previous DTZNN model (16) using different � 
and � to solve the BCTDLE (1)

# Model � = 0.1 � = 0.15 � = 0.2 Mode

� = 0.01 DTZNN (16) 3.99467 × 10
−7

2.83945 × 10
−7

2.17668 × 10
−7

O(�4)

DTZNN (12) 4.75485 × 10
−9

3.22147 × 10
−9

2.65792 × 10
−9

O(�5)

� = 0.001 DTZNN (16) 4.21474 × 10
−11

2.78023 × 10
−11

2.0733 × 10
−11

O(�4)

DTZNN (12) 1.34232 × 10
−13

9.53207 × 10
−14

7.35412 × 10
−14

O(�5)
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the SSCE of the proposed model (12) is 100 times smaller than that of the previous model 
(16). This comparison indicates that (12) has smaller errors and higher accuracy than (16). 
Therefore, the proposed DTZNN model (12) offers greater advantages than the previous 
DTZNN model (16) in solving the TDLE with boundary constraint, i.e., (1).

By reducing the sampling interval � by a factor of 10 and repeating the above numeri-
cal experiments, the corresponding results of using the DTZNN models (16) and (12) are 
shown in Figs. 3 and 4, respectively. In such two figures, as computed by (16) or (12), the 
trajectories of xk are time-dependent and satisfy xk ∈ [x−, x+] . The related computational 
errors converge with the SSCE being small enough. These simulation results verify again 
the effectiveness of the DTZNN models (16) and (12) in solving the BCTDLE (1). In par-
ticular, comparing Figs. 3b and 4b, the SSCEs of (16) and (12) for solving (1) are 10−10 
and 10−13 orders of magnitude, respectively. The latter is about 1000 times smaller than the 
former. Therefore, the proposed DTZNN model (12) can be more advantageous than the 
previous DTZNN model (16) in solving the BCTDLE (1).

For further investigation, the SSCEs of the DTZNN models (16) and (12) are compared 
and validated using different values of � and � , with a fixed initial state of w0 = 0.2 and the 
same sampling time. The detailed data are provided in Table 1, which demonstrates that 
the proposed model (12) is computationally better than the previous model (16). These 
results also verify that the calculation error variation mode of (12) is O(�5) . Specifically, 
when � = 0.001 , the SSCE can reach the order of 10−14 . In addition to this, the perfor-
mance of the proposed DTZNN model (12) on computing and solving (1) can be improved 
by decreasing the sampling interval � or increasing � in the appropriate range.

Overall, the simulation results presented in Figs. 1, 2, 3, 4 and Table 1 confirm the supe-
riority and efficacy of the proposed DTZNN model (12) in solving the BCTDLE (1) in 
comparison with the previous DTZNN model (16).

4.2  Influence of " and �

In the previous section, the effectiveness and superiority of the proposed DTZNN model 
(12) in solving the BCTDLE problem are demonstrated through simulation comparisons. 
The proposed DTZNN model (12), it has two adjustable parameters (i.e., � and � ). Since 
different values of � and � can have an effect on the solution effectiveness, this section 
delves into the influence of these two adjustable parameters on the proposed DTZNN 
model (12) using a new example. The time period for the simulation is set to T = 10 s. The 
coefficient matrix and the constraint boundary of the BCTDLE (1) to be solved are given 
as follows:

To better demonstrate the effectiveness of the proposed DTZNN model (12) in solv-
ing BCTDLE (1), two additional computational errors are introduced: the equation error 
ēk = G(t)x(t) − h(t) and the constraint boundary error êk = Ux(t) − 𝜗.

Figure 5a clearly illustrates that the feasible solution of the BCTDLE (1) under the influ-
ence of the proposed DTZNN (12) model, undergoes rapid convergence from an initially 

G(t) = [3 + cos(3t), 1 + sin(t), 6 − cos(t) − sin(t)],

h(t) = [sin(t) − cos(t)],

−x+ = x− = [−0.4,−0.4,−0.4].



New discrete‑time zeroing neural network for solving…

1 3

Page 13 of 24   140 

Fig. 5  Numerical results for the proposed DTZNN model (12) with � = 0.01 and � = 0.1 to solve the BCT-
DLE (1)

Fig. 6  Numerical results for the proposed DTZNN model (12) with � = 0.001 and � = 0.1 to solve the 
BCTDLE (1)
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out-of-boundary state and reaches the boundary constraint range. This result clearly vali-
dates the effectiveness and convergence properties of the proposed DTZNN model (12). 
Figure  5b indicates that when the iteration count k is sufficiently large, the SSCE ‖‖ek‖‖2 
converges, and the maximum value is in the smaller order of magnitude of 10−8 after stabi-
lization. This outcome suggests that the proposed DTZNN model (12) can effectively solve 
BCTDLE (1). From Fig. 5c, it can be seen that with increasing iteration count k and after 
reaching stability, the equation error ēk converges to 0. The trend of the variation in êk in 
Fig. 5d and e also illustrates that under the influence of the proposed DTZNN model (12), 
x
k
 transitions from initially exceeding the boundary to returning within the boundary con-

straint range. Therefore, in Fig. 5a, x
k
 is the exact solution of BCTDLE (1), confirming that 

the proposed DTZNN model (12) can effectively solve BCTDLE (1).
The above simulation results are obtained with the sampling interval � = 0.01 . To show-

case the high precision characteristics of the proposed DTZNN model (12) and highlight 
the impact of the sampling interval on the solution effectiveness, the sampling interval is 
further reduced to � = 0.001 , while keeping other parameters constant. The relevant simu-
lation results for solving BCTDLE (1) are presented below.

Figures 6a, d, and e reveal that even with four different initial values exceeding the 
boundary constraints, xk can rapidly converge within the boundary constraint range under 
the influence of the proposed DTZNN model (12). Comparing Fig. 5b with Fig. 6b, it 
is also noticeable that as the sampling interval � decreases, the computational perfor-
mance improves. Specifically, (9.35241 × 10−13)∕(7.03878 × 10−8) ≈ 1.32870 × 10−5 , 
indicating that the proposed DTZNN model (12) follows an O(�5) error model, that is, 
as the sampling interval � is reduced by a factor of 10, the SSCE can be reduced by a 
factor of 100000. Therefore, it is possible to appropriately decrease the value of � based 
on practical requirements to enhance computational accuracy and obtain more precise 
time-varying solutions.

In addition to the sampling interval � , the proposed DTZNN model (12) has another 
adjustable parameter, � . To further explore the influnce of the two parameters on the pro-
posed DTZNN model (12), six sets of simulation experiments are conducted. From Fig. 7a, 
c, and e, it can be observed that with the sampling interval � = 0.01 , the SSCEs of the pro-
posed DTZNN model (12) for solving BCTDLE (1) decreases as the step size � increases. 
This similar conclusion can be obtained from Fig. 7b, d, and f. While the impact of increas-
ing � on the SSCE is not as pronounced as decreasing � , in practical situations, the sam-
pling interval cannot be made arbitrarily small owing to some constraints. Therefore, when 
adjusting the sampling interval to the minimum achievable under practical conditions, 
increasing � can be employed to further reduce the SSCE and enhance precision.

By comparing the simulation results between the left and right of Fig.  7, it can be 
observed that, with the step size � held constant, as the sampling interval � decreases from 
0.01 to 0.001, the SSCEs reduce from the order of 10−8 to 10−13 . This magnitude reduc-
tion once again confirms that the proposed DTZNN model (12) exhibits an error model of 
O(�5) . Therefore, the numerical simulation results above strongly demonstrate the effec-
tiveness and superiority of the proposed DTZNN model (12) in solving BCTDLE (1).

It is worth noting that the main difference in this section compared to the previous one 
lies in the fact that the initial values exceed the boundary constraint. Therefore, the com-
parison of simulation results show that while keeping the sampling interval � and the step 
size � constant, the SSCE in this section is reduced by a factor of 10 compared to the 
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Fig. 7  Calculation errors for the proposed DTZNN model (12) with different � and � to solve the BCTDLE 
(1)
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previous section. However, both sections still keep an O(�5) error model. Such a phenom-
enon occurs not only in the proposed DTZNN model (12) but also in the previous DTZNN 
model (16), where model accuracy is sacrificed to ensure regression to within the bound-
ary constraint. However, the proposed DTZNN model has smaller calculation errors and 
demonstrates greater fault tolerance, thus making it more widely applicable in practical 
engineering scenarios.

5  DTZNN application to robotics

This section presents the application of the proposed DTZNN model (12) to the robotic 
arms with joint physical constraints to demonstrate the applicability of the model.

5.1  Motion planning of robotic arms

The motion planning of a robotic arm involves generating the joint trajectory �(t) ∈ Rn in 
real-time to accurately follow the desired Cartesian path r(t) ∈ Rm of the end-effector (Li 
et al. 2019).

In particular, taking into consideration the feedback and joint limits, the motion plan-
ning of robotic arms is achieved by efficiently solving the TDLE with boundary constraints 
as follows (Xu et al. 2019b):

The above equation involves several key variables, including Jacobian matrix 
J(�(t)) ∈ Rm×n , joint velocity �̇�(t) ∈ Rn , time derivative of r(t) denoted as ṙ(t) ∈ Rm , the 
feedback parameter k > 0 ∈ R , and the differentiable nonlinear mapping function �(⋅) . In 
addition, �± and �̇�± represent the limits of �(t) and �̇�(t) , respectively.

It follows from (Zhang et al. 2004) that the boundary constraints in (17) are unified 
as

with 𝜌 > 0 ∈ R . Then, the following reformulation of (17) is further obtained:

with 𝛿− = max{𝜌(𝜃− − 𝜃), �̇�−} and 𝛿+ = min{𝜌(𝜃+ − 𝜃), �̇�+} . At this point, solving (18) is 
the same as solving the BCTDLE (1), with the correlation coefficients as follows:

(17)

⎧⎪⎨⎪⎩

J(𝜃(t))�̇�(t) = ṙ(t) − k(𝜙(𝜃(t)) − r(t)),

�̇�− ≤ �̇�(t) ≤ �̇�+,

𝜃− ≤ 𝜃(t) ≤ 𝜃+,

max
{
𝜌(𝜃− − 𝜃), �̇�−

}
≤ �̇� ≤ min

{
𝜌(𝜃+ − 𝜃), �̇�+

}
,

(18)
{

J(𝜃(t))�̇�(t) = ṙ(t) − k(𝜙(𝜃(t)) − r(t)),

𝛿− ≤ �̇�(t) ≤ 𝛿+,

G(t) = J(𝜃(t)),

h(t) = ṙ(t) − k(𝜙(𝜃(t)) − r(t)),

x(t) = �̇�(t).
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Moreover, the following augmented coefficient matrices and vectors are presented:

Therefore, the proposed DTZNN model (12) for the BCTDLE (1) can be introduced to 
solve (18) and (17), where wk = [�̇�k;yk] ∈ R3n . Notably, the Taylor difference formula (10) 
is also employed to calculate the joint angle �k = �

(
tk = k�

)
 at every instance. On the basis 

of (12), the following detailed formulation for realizing the motion planning of robotic 
arms with joint physical constraints is provided:

Hereafter, (19) is called the new motion planing scheme for physically-constrained robotic 
arms. With regard to such a motion planning scheme (19), seven initial values must still be 
determined to start the iterative computation. Similarly, given the initial joint angle �0 and 
w0 , the rest is obtained via the following iterative computation:

where i = 0, 1,… , 6.

5.2  Simulation verification

To demonstrate the effectiveness of the new motion planning scheme (19), simulations are 
conducted using the PUMA560 robotic arm for a set desired path [i.e., the tricuspid path 
(20), circular path (21), and Rhodonea path (22)]. In this way, the validity and practicality 
of the proposed DTZNN model (12) is thus confirmed.

In these simulations, the limits of the PUMA560 robotic arm are defined as

U =

[
−I

I

]
, 𝜗 =

[
−𝛿−

𝛿+

]
,

P(t) =

[
G(t) 0

U 2V(t)

]
=

[
J(𝜃(t)) 0

U 2V(t)

]
,

r(t) =

[
h(t)

𝜗

]
=

[
ṙ(t) − k(𝜙(𝜃(t)) − r(t))

𝜗

]
,

Q(t) =

[
G(t) 0

U V(t)

]
=

[
J(𝜃(t)) 0

U V(t)

]
,

M(t) =

[
Ġ(t) 0

0 0

]
=

[
J̇(𝜃(t)) 0

0 0

]
,

w(t) =

[
x(t)

y(t)

]
=

[
�̇�(t)

y(t)

]
.

(19)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜃k+1 =
5

54
𝜃k +

5

27
𝜃k−1 +

55

54
𝜃k−2 −

5

27
𝜃k−3−

1

54
𝜃k−4 −

5

27
𝜃k−5 +

5

54
𝜃k−6 −

20

9
𝜀�̇�k,

wk+1 =
5

54
wk +

5

27
wk−1 +

55

54
wk−2 −

5

27
wk−3

−
1

54
wk−4 −

5

27
wk−5 +

5

54
wk−6−

20

9
P+
k

�
𝜇
�
Qkwk − rk

�
+ 𝜀Mkwk − 𝜀ṙk

�
.

{
𝜃i+1 = 𝜃i + 𝜀�̇�i,

wi+1 = wi − uP+
i

(
Qiwi − ri

)
− 𝜀P+

i

(
Miwi − ṙi

)
,
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The desired end-effector position vectors for the tricuspid path, circular path, and Rhodo-
nea path are respectively designed as

− �̇�+ = �̇�− = [−0.8; − 0.8; − 0.8; − 0.8; − 0.8; − 0.8] rad/s,

𝜃+ = [2.7754;0.7506;3.9274;2.9674;1.7455;4.6256] rad,

𝜃− = −[2.7754;3.8925;0.7855;1.9201;1.7455;4.6256] rad.

(20)rp =

⎡⎢⎢⎣

rx
ry
rz

⎤⎥⎥⎦
=

⎡⎢⎢⎣

r(2 cos(�) + cos(2�)) − 3r + ix0
r(2 sin(�) − sin(2�)) cos(�) + iy0
r(2 sin(�) − sin(2�)) sin(�) + iz0

⎤⎥⎥⎦
,

(21)rp =

⎡⎢⎢⎣

rx
ry
rz

⎤⎥⎥⎦
=

⎡⎢⎢⎣

r cos(�) − r + ix0
r sin(�) cos(�) + iy0
r sin(�) sin(�) + iz0

⎤⎥⎥⎦
,

Fig. 8  Simulation results of the motion planning scheme (19) with � = 0.01 and � = 0.1 for PUMA560 
robotic arm tracking the tricuspid path
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where � = 2�sin2(�t∕2T) , time t ∈ [0, T] , the parameter � is constant, and r is the radius 
of the desired path. In addition, ix0 , iy0 and iz0 respectively denote the X-axis, Y-axis and 
Z-axis components of the initial position vector of the end-effector.

To better show the simulation effect, the PUMA560 end-effector path tracking peri-
ods are all set to T = 10s , and the initial joint configuration is set to �0 = [0;0;0;0;0;0] 
rad. The related simulation results are depicted in Figs.  8, 9, 10,  11, where 
t ∈ {0, �, 2�,… , 10} , e = �(�(t)) − r(t) ∈ R3 , and �̇�(i) and �(i)(i = 1, 2,⋯ , 6) represent the 
ith element of �̇�(t) and �(t).

Figure 8 presents the results of the new motion planning scheme (19) with � = 0.01 
and � = 0.1 for the PUMA560 robotic arm tracking the tricuspid path. In Figs. 8a and 
b, it can be observed that the PUMA560 end-effector trajectory closely follows the 
desired tricuspid path, and the maximum positioning error is 6.11775 × 10−7 m. In par-
ticular, Fig. 8c denotes that the value of joint angle � calculated by (19) remains within 
its limits. In Fig.  8d, the joint velocity �̇� stays within the limits even after the lower 

(22)rp =

⎡⎢⎢⎣

rx
ry
rz

⎤⎥⎥⎦
=

⎡
⎢⎢⎣

r cos(2�) cos(�) − r + ix0
r cos(2�) sin(�) cos(�) + iy0
r cos(2�) sin(�) sin(�) + iz0

⎤
⎥⎥⎦
,

Fig. 9  Simulation results of the motion planning scheme (19) with � = 0.001 and � = 0.1 for PUMA560 
robotic arm tracking the tricuspid path
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limit is reached. That is, �̇�− ≤ �̇�(t) ≤ �̇�+ and �− ≤ �(t) ≤ �+ are satisfied. These simula-
tion results demonstrate that the new scheme (19) can effectively implement the motion 
planning of the PUMA560 robotic arm in the presence of joint physical constraints and 
further verify the practical application of the proposed DTZNN model (12).

To further present the high accuracy characteristics of the new motion planning scheme 
(19), the simulation is repeated with the sampling interval � reduced by a factor of 10 
(i.e., from � = 0.01 to � = 0.001 ) and the rest of the condition parameters unchanged. 
The first two subfigures of Fig.  8 show that the PUMA560 end-effector successfully 
tracks the desired path again, with the maximum error is 1.34149 × 10−11 m. The rest of 
the subfigures of Figs. 8c and d denote that joint angle � and joint velocity �̇� also satisfy 
�̇�− ≤ �̇�(t) ≤ �̇�+ and �− ≤ �(t) ≤ �+ , respectively, thus demonstrating the effectiveness 
of the new motion planning scheme (19). Notably, the PUMA560 end-effector position-
ing error decreases by a factor of 10,000 as the sampling interval � decreases, that is, 
(1.34149 × 10−11)∕(6.11775 × 10−7) ≈ 2.19278 × 10−5 . This finding underscores the 
importance of the sampling interval � for the new motion planning scheme (19) and reflects 
an O(�5) error variation pattern. Therefore, in practical applications, � in the new motion 
planning scheme (19) should be set small enough to ensure the high planning accuracy 
required for robotic arms.

Fig. 10  Simulation results of the motion planning scheme (19) with � = 0.01 and � = 0.1 for PUMA560 
robotic arm tracking the circular path
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For further investigation, the tracking path of the PUMA560 end-effector is set to a cir-
cular path and a Rhodonea path for the new motion planning scheme (19) with � = 0.001 
and � = 0.1 . Figures  10 and 11 show the corresponding simulation results, which fully 
demonstrate the validity of the new motion planning scheme (19). In particular, the end-
effector tracking trajectory closely follows the desired path, and the corresponding maxi-
mum error is of the order of 10−10 m or 10−11 m. Joint velocity �̇� and the joint angle � 
obtained through the new scheme (19) also remain within their respective limits, ensuring 
that they satisfy the conditions �̇�− ≤ �̇�(t) ≤ �̇�+ and �− ≤ �(t) ≤ �+ , respectively.

In summary, the simulation results provided in Figs. 8, 9, 10, 11 confirm the validity of 
the new motion planning scheme (19) for the PUMA560 robotic arm. Furthermore, these 
results underscore the effectiveness and practicality of the proposed DTZNN model (12).

Fig. 11  Simulation results of the motion planning scheme (19) with � = 0.01 and � = 0.1 for PUMA560 
robotic arm tracking the Rhodonea path
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6  Conclusion

In this paper, utilizing the Taylor difference formula (9) to discretize the CTZNN model 
(5), the new DTZNN model (12) is proposed and studied to address the BCTDLE (1). 
Theoretical analysis demonstrates that the proposed DTZNN model (12) has conver-
gence property and can generate the exact time-dependent solution of (1). Numerical 
results indicate the validity and superiority of the proposed DTZNN model (12) and 
further point to the SSCE variation being of the O(�5) mode. Such a DTZNN model 
is finally applied to robotic arms, and the related new motion planning scheme (19) is 
derived. Simulation results obtained from the PUMA560 robotic arm denote the validity 
and reliability of the new motion planning scheme (19) for different desired path track-
ing examples. The applicability of the proposed DTZNN model (12) is confirmed as 
well.

One future research directions involves utilizing the proposed DTZNN model (12) to 
solve the BCTDLE (1) in a noisy environment. Another direction is to explore the appli-
cation of the proposed DTZNN model (12) in other tasks of redundant robot manipula-
tors, such as repetitive motions and obstacle avoidance. As a continuation of this paper, 
further efforts will focus on designing and selecting different activation functions to 
enhance the robustness of the proposed DTZNN model (12).
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