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Abstract
Crayfish Optimization Algorithm (COA) is innovative and easy to implement, but the cray-
fish search efficiency decreases in the later stage of the algorithm, and the algorithm is 
easy to fall into local optimum. To solve these problems, this paper proposes an modified 
crayfish optimization algorithm (MCOA). Based on the survival habits of crayfish, MCOA 
proposes an environmental renewal mechanism that uses water quality factors to guide 
crayfish to seek a better environment. In addition, integrating a learning strategy based on 
ghost antagonism into MCOA enhances its ability to evade local optimality. To evaluate 
the performance of MCOA, tests were performed using the IEEE CEC2020 benchmark 
function and experiments were conducted using four constraint engineering problems and 
feature selection problems. For constrained engineering problems, MCOA is improved by 
11.16%, 1.46%, 0.08% and 0.24%, respectively, compared with COA. For feature selec-
tion problems, the average fitness value and accuracy are improved by 55.23% and 10.85%, 
respectively. MCOA shows better optimization performance in solving complex spatial and 
practical application problems. The combination of the environment updating mechanism 
and the learning strategy based on ghost antagonism significantly improves the perfor-
mance of MCOA. This discovery has important implications for the development of the 
field of optimization.
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1 Introduction

For a considerable period, engineering application problems have been widely discussed 
by people. At present, improving the modern scientific level of engineering construc-
tion has become the goal of human continuous struggle, including constrained engineer-
ing design problems (Zhang et al. 2022a; Mortazavi 2019) affected by a series of external 
factors and feature selection problems (Kira and Rendell 1992), and so on. Constrained 
engineering design problems refers to the problem of achieving optimization objectives 
and reducing calculation costs under many external constraints, which is widely used in 
mechanical engineering (Abualigah et  al. 2022), electrical engineering (Razmjooy et  al. 
2021), civil engineering (Kaveh 2017), chemical engineering (Talatahari et al. 2021) and 
other engineering fields, such as workshop scheduling (Meloni et  al. 2004), wind power 
generation (Lu et al. 2021), and UAV path planning (Belge et al. 2022), parameter extrac-
tion of photovoltaic models(Zhang et al. 2022b; Zhao et al. 2022), Optimization of seismic 
foundation isolation system (Kandemir and Mortazavi 2022), optimal design of RC sup-
port foundation system of industrial buildings (Kamal et al. 2023), synchronous optimiza-
tion of fuel type and external wall insulation performance of intelligent residential build-
ings (Moloodpoor and Mortazavi 2022), economic optimization of double-tube heaters 
(Moloodpoor et al. 2021).

Feature selection is the process of choosing specific subsets of features from a larger 
set based on defined criteria. In this approach, each original feature within the subset is 
individually evaluated using an assessment function. The aim is to select pertinent features 
that carry distinctive characteristics. This selection process reduces the dimensionality of 
the feature space, enhancing the model’s generalization ability and accuracy. The ultimate 
goal is to create the best possible combination of features for the model. By employing 
feature selection, the influence of irrelevant factors is minimized. This reduction in irrel-
evant features not only streamlines the computational complexity but also reduces the time 
costs associated with processing the data. Through this method, redundant and irrelevant 
features are systematically removed from the model. This refinement improves the model’s 
accuracy and results in a higher degree of fit, ensuring that the model aligns more closely 
with the underlying data patterns.

In practical applications of feature selections, models are primarily refined using two 
main methods: the filter (Cherrington et  al. 2019) and wrapper (Jović et  al. 2015) tech-
niques. The filter method employs a scoring mechanism to assess and rank the model’s 
features. It selects the subset of features with the highest scores, considering it as the opti-
mal feature combination. On the other hand, the wrapper method integrates the selection 
process directly into the learning algorithm. It embeds the feature subset evaluation within 
the learning process, assessing the correlation between the chosen features and the model. 
In recent years, applications inspired by heuristic algorithms can be seen everywhere in 
our lives and are closely related to the rapid development of today’s society. These algo-
rithms play an indispensable role in solving a myriad of complex engineering problems 
and feature selection challenges. They have proven particularly effective in addressing 
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spatial, dynamic, and random problems, showcasing significant practical impact and tan-
gible outcomes.

With the rapid development of society and science and technology, through continuous 
exploitation and exploration in the field of science, more and more complex and difficult 
to describe multi-dimensional engineering problems also appear in our research process. 
Navigating these complexities demands profound contemplation and exploration. While 
traditional heuristic algorithms have proven effective in simpler, foundational problems, 
they fall short when addressing the novel and intricate multi-dimensional challenges posed 
by our current scientific landscape and societal needs. Thus, researchers have embarked 
on a journey of continuous contemplation and experimentation. By cross-combining and 
validating existing heuristic algorithms, they have ingeniously devised a groundbreaking 
solution: Metaheuristic Algorithms (MAs) (Yang 2011). This innovative approach aims to 
tackle the complexities of our evolving problems, ensuring alignment with the rapid pace 
of social and technological development. MAs is a heuristic function based algorithm. It 
works by evaluating the current state of the problem and possible solutions to guide the 
algorithm in making choices in the search space. MAs improves the efficiency and accu-
racy of the problem solving process by combining multiple heuristic functions and updat-
ing the search direction at each step based on their weights. The diversity of MAs makes it 
a universal problem solver, adapting to the unique challenges presented by different prob-
lem domains. Essentially represents a powerful paradigm shift in computational problem 
solving, providing a powerful approach to address the complexity of modern engineering 
and scientific challenges. Compared with traditional algorithms, MAs has made great pro-
gress in finding optimal solutions, jumping out of local optima, and overcoming conver-
gence difficulties in the later stage of solution through the synergy of different algorithms. 
These enhancements mark a significant progress, which not only demonstrates the adapt-
ability of the scientific method, but also emphasizes the importance of continuous research 
and cooperation. It also has the potential to radically solve problems in domains of com-
plex engineering challenges, enabling researchers to navigate complex problem landscapes 
with greater accuracy and efficiency.

Research shows that MAs are broadly classified into four different research directions: 
swarm-based, natural evolution-based, human-based, and physics-based. These categories 
include a wide range of innovative problem-solving approaches, each drawing inspira-
tion from a different aspect of nature, human behavior, or physical principles. Researchers 
exploration these different pathways to solve complex challenges and optimize the solu-
tions efficiently. First of all, the swarm-based optimization algorithm is the optimization 
algorithm that uses the wisdom of population survival to solve the problem. For exam-
ple, Particle Swarm Optimization Algorithm (PSO) (Wang et al. 2018a) is an optimization 
algorithm based on the group behavior of birds. PSO has a fast search speed and is only 
used for real-valued processing. However, it is not good at handling discrete optimization 
problems and has fallen into local optimization. Artificial Bee Colony Optimization Algo-
rithm (ABC) (Jacob and Darney 2021) realizes the sharing and communication of informa-
tion among individuals when bees collect honey according to their respective division of 
labor. In the Salp Swarm Algorithm (SSA) (Mirjalili et  al. 2017), individual sea squirts 
are connected end to end and move and prey in a chain, and follow the leader with follow-
ers according to a strict “hierarchical” system. Ant Colony Optimization Algorithm (ACO) 
(Dorigo et al. 2006), ant foraging relies on the accumulation of pheromone on the path, and 
spontaneously finds the optimal path in an organized manner.

Secondly, a natural evolutionary algorithm inspired by the law of group survival 
of the fittest, an optimization algorithm that finds the best solution by preserving the 
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characteristics of easy survival and strong individuals, such as: Genetic Programming 
Algorithm (GP) (Espejo et  al. 2009), because biological survival and reproduction have 
certain natural laws, according to the structure of the tree to deduce certain laws of bio-
logical genetic and evolutionary process. Evolutionary Strategy Algorithm (ES) (Beyer 
and Schwefel 2002), the ability of a species to evolve itself to adapt to the environment, 
and produce similar but different offspring after mutation and recombination from the 
parent. Differential Evolution (DE) (Storn and Price 1997) eliminates the poor individu-
als and retains the good ones in the process of evolution, so that the good ones are con-
stantly approaching the optimal solution. It has a strong global search ability in the initial 
iteration, but when there are fewer individuals in the population, individuals are difficult to 
update, and it is easy to fall into the local optimal. The Biogeography-based Optimization 
Algorithm (BBO) (Simon 2008), influenced by biogeography, filters out the global optimal 
value through the iteration of the migration and mutation of species information.

Then, Human-based optimization algorithms are optimization algorithms that take 
advantage of the diverse and complex human social relationships and activities in a spe-
cific environment to solve problems, such as: The teaching–learning-based Optimization 
(TLBO) (Rao and Rao 2016) obtained the optimal solution by simulating the Teaching 
relationship between students and teachers. It simplifies the information sharing mecha-
nism within each round, and all evolved individuals can converge to the global optimal 
solution faster, but the algorithm often loses its advantage when solving some optimiza-
tion problems far from the origin. Coronavirus Mask Protection Algorithm (CMPA) (Yuan 
et  al. 2023), which is mainly inspired by the self-protection process of human against 
coronavirus, establishes a mathematical model of self-protection behavior and solves the 
optimization problem. Cultural Evolution Algorithm (CEA) (Kuo and Lin 2013), using the 
cultural model of system thinking framework for exploitation to achieve the purpose of cul-
tural transformation, get the optimal solution. Volleyball Premier League Algorithm (VPL) 
(Moghdani and Salimifard 2018) simulates the process of training, competition and inter-
action of each team in the volleyball game to solve the global optimization problem.

Finally, Physics-based optimization algorithm is an optimization algorithm that uses 
the basic principles of physics to simulate the physical characteristics of particles in space 
to solve problems. For example, Snow Ablation Algorithm (SAO) (Deng and Liu 2023), 
inspired by the physical reaction of snow in nature, realizes the transformation among 
snow, water and steam by simulating the sublation and ablation of snow. RIME Algorithm 
(RIME) (Su et al. 2023) is a exploration and exploitation of mathematical model balance 
algorithm based on the growth process of soft rime and hard rime in nature. Central Force 
Optimization Algorithm (CFO) (Formato 2007), aiming at the problem of complex calcu-
lation of the initial detector, a mathematical model of uniform design is proposed to reduce 
the calculation time. Sine and cosine algorithm (SCA) (Mirjalili 2016) establishes math-
ematical models and seeks optimal solutions based on the volatility and periodicity charac-
teristics of sine and cosine functions. Compared with the candidate solution set of a certain 
scale, the algorithm has a strong search ability and the ability to jump out of the local opti-
mal, but the results of some test functions fluctuate around the optimal solution, and there 
is a certain precocious situation, and the convergence needs to be improved.

While the original algorithm is proposed, many improved MAs algorithms are also pro-
posed to further improve the optimization performance of the algorithm in practical appli-
cation problems, such as: Yujun-Zhang et al. combined the arithmetic optimization algo-
rithm (AOA) with the Aquila Optimizer(AO) algorithm to propose a new meta-heuristic 
algorithm (AOAAO) (Zhang et al. 2022c). CSCAHHO algorithm (Zhang et al. 2022d) is a 
new algorithm obtained by chaotic mixing of sine and cosine algorithm (SCA) and Harris 
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Hqwk optimization algorithm (HHO). Based on LMRAOA algorithm proposed to solve 
numerical and engineering problems (Zhang et al. 2022e). Yunpeng Ma et al. proposed an 
improved teaching-based optimization algorithm to artificially reduce NOx emission con-
centration in circulating fluidized bed boilers (Ma et  al. 2021). The improved algorithm 
SOS(MSOS) (Kumar et al. 2019), based on the natural Symbiotic search (SOS) algorithm, 
improves the search efficiency of the algorithm by introducing adaptive return factors and 
modified parasitic vectors. Modified beluga whale optimization with multi-strategies for 
solving engineering problems (MBWO) (Jia et al. 2023a) by gathering Beluga populations 
for feeding and finding new habitats during long-distance migration. Betul Sultan Yh-ld-z 
et al. proposed a novel hybrid optimizer named AO-NM, which aims to optimize engineer-
ing design and manufacturing problems (Yıldız et al. 2023).

The Crayfish Optimization Algorithm (COA) (Jia et al. 2023b) is a novel metaheuris-
tic algorithm rooted in the concept of population survival wisdom, introduced by Heming 
Jia et  al. in 2023. Drawing inspiration from crayfish behavior, including heat avoidance, 
competition for caves, and foraging, COA employs a dual-stage strategy. During the explo-
ration stage, it replicates crayfish searching for caves in space for shelter, while the exploi-
tation stage mimics their competition for caves and search for food. Crayfish, naturally 
averse to dry heat, thrive in freshwater habitats. To simulate their behavior and address 
challenges related to high temperatures and food scarcity, COA incorporates temperature 
variations into its simulation. By replicating crayfish habits, the algorithm dynamically 
adapts to environmental factors, ensuring robust problem-solving capabilities. Based on 
temperature fluctuations, crayfish autonomously select activities such as seeking shelter, 
competing for caves, and foraging. When the temperature exceeds 30°C, crayfish instinc-
tively seek refuge in cool, damp caves to escape the heat. If another crayfish is already 
present in the cave, a competition ensues for occupancy. Conversely, when the temperature 
drops below 30°C, crayfish enter the foraging stage. During this phase, they make deci-
sions about food consumption based on the size of the available food items. COA achieves 
algorithmic transformation between exploration and exploitation stages by leveraging tem-
perature variations, aiming to balance the exploration and exploitation capabilities of the 
algorithm. However, COA solely emulates the impact of temperature on crayfish behavior, 
overlooking other significant crayfish habits, leading to inherent limitations. In the latter 
stages of global search, crayfish might cluster around local optimum positions, restricting 
movement. This hampers the crayfish’s search behavior, slowing down convergence speed, 
and increasing the risk of falling into local optima, thereby making it challenging to find 
the optimal solution.

In response to the aforementioned challenges, this paper proposes a Modified Cray-
fish Optimization Algorithm (MCOA). MCOA introduces an environmental update 
mechanism inspired by crayfish’s preference for living in fresh flowing water. MCOA 
incorporates crayfish’s innate perception abilities to assess the quality of the surround-
ing aquatic environment, determining whether the current habitat is suitable for sur-
vival. The simulation of crayfish crawling upstream to find a more suitable aquatic 
environment is achieved by utilizing adaptive flow factors and leveraging the crayfish’s 
second, third foot perceptions to determine the direction of water flow.This method par-
tially replicates the survival and reproduction behavior of crayfish, ensuring the contin-
ual movement of the population. It heightens the randomness within the group, widens 
the search scope for crayfish, enhances the algorithm’s exploration efficiency, and effec-
tively strengthens the algorithm’s global optimization capabilities. Additionally, the 
ghost opposition-based learning strategy (Jia et al. 2023c) is implemented to introduce 
random population initialization when the algorithm becomes trapped in local optima. 
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This enhancement significantly improves the algorithm’s capability to escape local 
optima, promoting better exploration of the solution space. After the careful integra-
tion of the aforementioned two strategies, the search efficiency and predation speed of 
the crayfish algorithm experience a substantial improvement. Moreover, the algorithm’s 
convergence rate and global optimization ability are significantly enhanced, leading to 
more effective and efficient problem-solving capabilities.

In the experimental section, we conducted a comprehensive comparison between 
MCOA and nine other metaheuristic algorithms. We utilized the IEEE CEC2020 bench-
mark function to evaluate the performance of the algorithm. The evaluation involved 
statistical methods such as the Wilcoxon rank sum test and Friedman test to rank the 
averages, validating the efficiency of the MCOA algorithm and the effectiveness of the 
proposed improvements. Furthermore, MCOA was applied to address four constrained 
engineering design problems as well as the high-dimensional feature selection problem 
using the wrapper method. These practical applications demonstrated the practicality 
and effectiveness of MCOA in solving real-world engineering problems.

The main contributions of this paper are as follows:

• In the environmental renewal mechanism, the water quality factor and roulette wheel 
selection method are introduced to simulate the process of crayfish searching for a 
more suitable water environment for survival.

• The introduction of the ghost opposition-based learning strategy enhances the ran-
domness of crayfish update locations, effectively preventing the algorithm from get-
ting trapped in local optima, and improving the overall global optimization perfor-
mance of the algorithm.

• The fixed value of food intake is adaptively adjusted based on the number of eval-
uations, enhancing the algorithm’s capacity to escape local optima. This adaptive 
change ensures a more dynamic exploration of the solution space, improving the 
algorithm’s overall optimization effectiveness.

• The MCOA’s performance is compared with nine metaheuristics, including COA, 
using the IEEE CEC2020 benchmark function. The comparison employs the Wil-
coxon rank sum test and Friedman test to rank the averages, providing evidence for 
the efficiency of MCOA and the effectiveness of the proposed improvements.

• The application of MCOA to address four constrained engineering design problems 
and the high-dimensional feature selection problem using the wrapper method dem-
onstrates the practicality and effectiveness of MCOA in real-world applications.

The main structure of this paper is as follows, the first part of the paper serves as 
a brief introduction to the entire document, providing an overview of the topics and 
themes that will be covered. In the second part, the paper provides a comprehensive 
summary of the Crayfish Optimization Algorithm (COA). In the third part, a modified 
crawfish optimization algorithm (MCOA) is proposed. By adding environment updat-
ing mechanism and ghost opposition-based learning strategy, MCOA can enhance the 
global search ability and convergence speed to some extent. Section four shows the 
experimental results and analysis of MCOA in IEEE CEC2020 benchmark functions. 
The fifth part applies MCOA to four kinds of constrained engineering design problems. 
In Section six, MCOA is applied to the high-dimensional feature selection problem of 
wrapper methods to demonstrate the effectiveness of MCOA in practical application 
problems. Finally, Section seven concludes the paper.
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2  Crayfish optimization algorithm (COA)

Crayfish is a kind of crustaceans living in fresh water, its scientific name is crayfish, also 
called red crayfish or freshwater crayfish, because of its food, fast growth rate, rapid migra-
tion, strong adaptability and the formation of absolute advantages in the ecological envi-
ronment. Changes in temperature often cause changes in crayfish behavior. When the 
temperature is too high, crayfish choose to enter the cave to avoid the damage of high tem-
perature, and when the temperature is suitable, they will choose to climb out of the cave 
to forage. According to the living habits of crayfish, it is proposed that the three stages of 
summer, competition for caves and going out to forage correspond to the three living habits 
of crayfish, respectively.

Crayfish belong to ectotherms and are affected by temperature to produce behavioral 
differences, which range from 20 °C to 35 °C. The temperature is calculated as follows:

where temp represents the temperature of the crayfish’s environment.

2.1  Initializing the population

In the d-dimensional optimization problem of COA, each crayfish is a 1 × d matrix repre-
senting the solution of the problem. In a set of variables (X1, X2, X3…… Xd), the position 
(X) of each crayfish is between the upper boundary (ub) and lower boundary (lb) of the 
search space. In each evaluation of the algorithm, an optimal solution is calculated, and the 
solutions calculated in each evaluation are compared, and the optimal solution is found and 
stored as the optimal solution of the whole problem. The position to initialize the crayfish 
population is calculated using the following formula.

where Xi,j denotes the position of the i-th crayfish in the j-th dimension, ubj denotes the 
upper bound of the j-th dimension, lbj denotes the lower bound of the j-th dimension, and 
rand is a random number from 0 to 1.

2.2  Summer escape stage (exploration stage)

In this paper, the temperature of 30 °C is assumed to be the dividing line to judge whether 
the current living environment is in a high temperature environment. When the temperature 
is greater than 30 ℃ and it is in the summer, in order to avoid the harm caused by the high 
temperature environment, crayfish will look for a cool and moist cave and enter the sum-
mer to avoid the influence of high temperature. The caverns are calculated as follows.

where XG represents the optimal position obtained so far for this evaluation number, and XL 
represents the optimal position of the current population.

The behavior of crayfish competing for the cave is a random event. To simulate the ran-
dom event of crayfish competing for the cave, a random number rand is defined, when 

(1)temp = rand × 15 + 20

(2)Xi,j = lbj + (ubj − lbj) × rand

(3)Xshade = (XG + XL)∕2
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rand < 0.5 means that there are no other crayfish currently competing for the cave, and the 
crayfish will go straight into the cave for the summer. At this point, the crayfish position 
update calculation formula is as follows.

Here, Xnew is the next generation position after location update, and C2 is a decreasing 
curve. C2 is calculated as follows.

Here, FEs represents the number of evaluations and MaxFEs represents the maximum 
number of evaluations.

2.3  Competition stage (exploitation stage)

When the temperature is greater than 30  °C and rand ≥ 0.5, it indicates that the crayfish 
have other crayfish competing with them for the cave when they search for the cave for 
summer. At this point, the two crayfish will struggle against the cave, and crayfish Xi 
adjusts its position according to the position of the other crayfish Xz. The adjustment posi-
tion is calculated as follows.

Here, z represents the random individual of the crayfish, and the random individual cal-
culation formula is as follows.

where, N is the population size.

2.4  Foraging stage (exploitation stage)

The foraging behavior of crayfish is affected by temperature, and temperature less than or 
equal to 30 ℃ is an important condition for crayfish to climb out of the cave to find food. 
When the temperature is less than or equal to 30 °C, the crayfish will drill out of the cave 
and judge the location of the food according to the optimal location obtained in this evalu-
ation, so as to find the food to complete the foraging. The position of the food is calculated 
as follows.

The amount of food crayfish eat depends on the temperature. When the temperature 
is between 20 °C and 30°C, crayfish have strong foraging behavior, and the most food is 
found and the maximum food intake is also obtained at 25 °C. Thus, the food intake pattern 
of crayfish resembles a normal distribution. Food intake was calculated as follows.

(4)Xnew = X
i,j
+ C2 × rand × (Xshade − X

i,j
)

(5)C2 = 2 − (FEs∕MaxFEs)

(6)Xnew = X
i,j
− X

z,j
+ Xshade

(7)z = round(rand × (N − 1)) + 1

(8)Xfood = XG
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Here, µ is the most suitable temperature for crayfish feeding, and σ and C1 are the 
parameters used to control the variation of crayfish intake at different temperatures.

The food crayfish get depends not only on the amount of food they eat, but also on the 
size of the food. If the food is too large, the crayfish can’t eat the food directly. They need 
to tear it up with their claws before eating the food. The size of the food is calculated as 
follows.

Here, C3 is the food factor, which represents the largest food, and its value is 3, fitnessi 
represents the fitness value of the i-th crayfish, and fitnessfood represents the fitness value of 
the location of the food.

Crayfish use the value of the maximum food Q to judge the size of the food obtained 
and thus decide the feeding method. When Q > (C3 + 1)/2, it means that the food is too 
large for the crayfish to eat directly, and it needs to tear the food with its claws and eat 
alternately with the second and third legs. The formula for shredding food is as follows.

After the food is shredded into a size that is easy to eat, the second and third claws are 
used to pick up the food and put it into the mouth alternately. In order to simulate the pro-
cess of bipedal eating, the mathematical models of sine function and cosine function are 
used to simulate the crayfish eating alternately. The formula for crayfish alternating feeding 
is as follows.

When Q ≤ (C3 + 1)/2, it indicates that the food size is suitable for the crayfish to eat 
directly at this time, and the crayfish will directly move towards the food location and eat 
directly. The formula for direct crayfish feeding is as follows.

2.5  Pseudo‑code for COA

(9)p = C1 ×
1

√

2 × � × �
× exp(−

(temp − �)2

2�2
)

(10)Q = C3 × rand × (fitnessi∕fitnessfood)

(11)Xfood = exp

(

−
1

Q

)

× Xfood

(12)Xnew = X
i,j
+ Xfood × p × (cos(2 × � × rand) − sin(2 × � × rand))

(13)Xnew = (X
i,j
− Xfood) × p + p × rand × X

i,j
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Algorithm 1  Crayfish optimization algorithm pseudo-code

Initialization iterations T, population N, dimension dim

Randomly generate an initial population

Calculate the fitness value of the population to get XG, XL

While t<T

Defining temperature temp by Eq. (1).

If temp>30

Define cave Xshade according to Eq. (3).

If rand<0.5

Crayfish conducts the summer resort stage according toEq. (4).

Else

Crayfish compete for caves through Eq. (6).

End

Else

The food intake p and food size Q are obtained by Eq. (9) and Eq. (10).

If Q>2

Crayfish shreds food by Eq. (11).

Crayfish foraging according to Eq. (12).

Else

Crayfish foraging according to Eq. (13).

End

End

Update fitness values, XG, XL

t =t+1

End
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3  Modified crayfish optimization algorithm (MCOA)

Based on crayfish optimization algorithm, we propose a high-dimensional feature 
selection problem solving algorithm (MCOA) based on improved crayfish optimiza-
tion algorithm. In MCOA, we know that the quality of the aquatic environment has a 
great impact on the survival of crayfish, according to the living habits of crayfish, which 
mostly feed on plants and like fresh water. Oxygen is an indispensable energy for all 
plants and animals to maintain life, the higher the content of dissolved oxygen in the 
water body, the more vigorous the feeding of crayfish, the faster the growth, the less 
disease, and the faster the water flow in the place of better oxygen permeability, more 
aquatic plants, suitable for survival, so crayfish has a strong hydrotaxis. When crayfish 
perceive that the current environment is too dry and hot or lack of food, they crawl 
backward according to their second, third and foot perception (r) to judge the direction 
of water flow, and find an aquatic environment with sufficient oxygen and food to sus-
tain life. Good aquatic environment has sufficient oxygen and abundant aquatic plants, 
to a certain extent, to ensure the survival and reproduction of crayfish.

In addition, we introduce ghost opposition-based learning to help MCOA escape the 
local optimal trap. The ghost opposition-based learning strategy combines the candidate 
individual, the current individual and the optimal individual to randomly generate a new 
candidate position to replace the previous poor candidate position, and then takes the 
best point or the candidate solution as the central point, and then carries out more spe-
cific and extensive exploration of other positions. Traditional opposition-based learning 
(Mahdavi et  al. 2018) is based on the central point and carries out opposition-based 
learning in a fixed format. Most of the points gather near the central point and their 
positions will not exceed the distance between the current point and the central point, 
and most solutions will be close to the optimal individual. However, if the optimal indi-
vidual is not near the current exploration point, the algorithm will fall into local optimal 
and it is difficult to find the optimal solution. Compared with traditional opposition-
based learning, ghost opposition-based learning is a opposition-based learning solution 

Fig. 1  Classification of MAs
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that can be dynamically changed by adjusting the size of parameter k, thereby expand-
ing the algorithm’s exploration range of space, effectively solving the problem that the 
optimal solution is not within the search range based on the center point, and making 
the algorithm easy to jump out of the local optimal.

According to the life habits of crayfish, this paper proposes a Modified Crayfish Opti-
mization Algorithm (MCOA), which uses environment update mechanism and ghost 
opposition-based learning strategy to improve COA, and shows the implementation 
steps, pseudo-code and flow chart of MCOA algorithm as follows.

3.1  Environment update mechanism

In the environmental renewal mechanism, a water quality factor V is introduced to rep-
resent the quality of the aquatic environment at the current location. In order to simplify 

θ

Cave

θ

θ

θ

Fig. 2  Schematic diagram of the environment update mechanism

Fig. 3  Schematic diagram of ghost opposition-based learning strategy
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the design and computational complexity of the system, the water quality factor V of the 
MCOA is represented by a hierarchical discretization, and its value range is set to 0 to 5. 
Crayfish perceive the quality of the current aquatic environment through the perception 
(r) of the second and third legs, judge whether the current living environment can con-
tinue to survive through the perception, and independently choose whether to update the 
current location. The location update is calculated as follows.

Among them, each crayfish has a certain difference in its own perception of water envi-
ronment r, X2 is a random position between the candidate optimal position and the current 
position, which is calculated by Eq. (15), X1 is a random position in the population, and B 
is an adaptive water flow factor, which is calculated by Eq. (16).

Among them, the sensing force r of the crayfish’s second and third legs is a random 
number [0,1]. c is a constant that represents the water flow velocity factor with a value of 
2. When V ≤ 3, it indicates that the crayfish perceives the quality of the current living envi-
ronment to be good and is suitable for continued survival. When V > 3, it indicates that the 
crayfish perceives that the current living environment quality is poor, and it needs to crawl 
in the opposite direction according to the direction of water flow that crayfish perceives, so 
as to find an aquatic environment with sufficient oxygen and abundant food Fig. 1.

In the environmental updating mechanism, in order to describe the behavior of cray-
fish upstream in more detail, the perception area of crayfish itself is abstractly defined as a 
circle in MCOA, and crayfish is in the center of the circle. In each evaluation calculation, 
a random Angle θ is first calculated by the roulette wheel selection algorithm to deter-
mine the moving direction of the crayfish in the circular area, and then the moving path of 
the crayfish is determined according to the current moving direction. In the whole circle, 
random angles can be chosen from 0 to 360 degrees, from which the value of θ can be 
determined to be of magnitude [− 1,1]. The difference of random Angle indicates that each 
crayfish moves its position in a random direction, which broadens the search range of cray-
fish, enhances the randomness of position and the ability to escape from local optimum, 
and avoids local convergence Fig. 2.

3.2  Ghost opposition‑based learning strategy

The ghost opposition-based learning strategy takes a two-dimensional space as an example. 
It is assumed that there is a two-dimensional space, as shown in Fig. 3. On the X-axis, [ub, 
lb] represents the search range of the solution, and the ghost generation method is shown 
in Fig. 3. Assuming that the position of a new candidate solution is Xnew and the height of 
the solution is h1 i, the position of the best solution on the X-axis is the projected position 
of the candidate solution, and the position and height are XG, h2 i, respectively. In addi-
tion, on the X-axis there is a projection position Xi of the candidate solution with a height 
of h3 i.Thus, the position of the ghost is obtained. The projection position of the ghost on 

(14)Xnew = X2 + (X1 − Xi,j) × cos(�) × B × V × rand + X1 × sin(�) × B × rand

(15)X2 = (Xbest − X
i,j
) × r

(16)B = c × cos

(

�

2
×

(

1 −
FEs

MaxFEs

))
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the X-axis is xi by vector calculation, and its height is hi. The ghost position is calculated 
using the following formula.

In Fig. 3, the Y-axis represents the convex lens. Suppose there is a ghost position Pi, 
where xi is its projection on the X-axis and hi is its height. P* i is the real image obtained 
by convex lens imaging. P* i is projected on the X-axis as x* i and has height h* i. There-
fore, the opposite individual x* i of individual xi can be obtained. x* i is the corresponding 
point corresponding to the ghost individual xi obtained from O as the base point. Accord-
ing to the lens imaging principle, we can obtain Eq. (18), and the calculation formula is as 
follows.

The strategy formula of ghost opposition-based learning is evolved from Eq. (18). The 
strategy formula of ghost opposition-based learning is calculated as follows.

3.3  Implementation of MCOA algorithm

3.3.1  Initialization phase

Initialize the population size N, the population dimension d, and the number of evaluations 
FEs. The initialized population is shown in Eq. (2).

3.3.2  Environment update mechanism

Crayfish judge the quality of the current aquatic environment according to the water quality 
factor V, and speculate whether the current aquatic environment can continue to survive. 
When V > 3 indicates that the crawfish perceives the quality of the current aquatic environ-
ment as poor and is not suitable for survival. According to the sensory information of the 
second and third legs and the adaptive flow factor, the crawfish judges the direction of the 
current flow, and then moves upstream to find a better aquatic environment to update the 
current position. The position update formula is shown in Eq. (14). When V < 3, it means 
that the crayfish has a good perception of the current living environment and is suitable for 
survival, and does not need to update its position.

3.3.3  Exploration phase

When the temperature is greater than 30 ℃ and V > 3, it indicates that crayfish perceive 
the current aquatic environment quality is poor, and the cave is dry and without moisture, 

(17)xi = Xnewi − Xi + XG

(18)ki =
hi

h∗
i

=
(ub + lb)∕2 − xi

x∗
i
− (ub + lb)∕2

,

(19)X∗
i
=

ub + lb

2
+

ub + lb

2k
−

Xi

k

(20)k = (1 + (t∕T)0.5)10
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which cannot achieve the effect of summer vacation. It is necessary to first update the posi-
tion by crawling in the reverse direction according to the flow direction, and find a cool and 
moist cave in a better quality aquatic environment for summer.

3.3.4  Exploitation stage

When the temperature is less than 30 ℃ and V > 3, it indicates that crayfish perceive the 
current aquatic environment is poor, and there is not enough food to maintain the survival 
of crayfish. It is necessary to escape from the current food shortage living environment by 
crawling in the reverse direction according to the current direction, and find a better aquatic 
environment to maintain the survival and reproduction of crayfish.

3.3.5  Ghost opposition‑based learning strategy

Through the combination of the candidate individual, the current individual and the opti-
mal individual, a candidate solution is randomly generated and compared with the cur-
rent solution, the better individual solution is retained, the opposite individual is obtained, 
and the location of the ghost is obtained. The combination of multiple positions effectively 
prevents the algorithm from falling into local optimum, and the specific implementation 
formula is shown in Eq. (19).

3.3.6  Update the location

The position of the update is determined by comparing the fitness values. If the fitness of 
the current individual update is better, the current individual replaces the original indi-
vidual. If the fitness of the original individual is better, the original individual is retained to 
exist as the optimal solution.

The pseudocode for MCOA is as follows (Algorithm 2).

Table 1  Complexity analysis results of the eight algorithms

CEC MCOA COA ROA STOA AOA HHO PDO GA

F1 50.25427 42.06643 117.50879 78.69803 61.34279 190.05023 558.40814 46.75556
F2 52.47411 42.15295 132.87335 83.67219 63.75562 228.31452 545.78267 46.87563
F3 52.20520 34.79025 121.86170 77.28263 63.30686 209.25259 550.62068 42.79461
F4 41.56454 32.77783 127.68574 75.06781 58.81640 204.59109 531.71144 42.96858
F5 44.18214 40.45754 116.32387 73.13517 54.93385 201.21176 561.77099 42.35488
F6 44.31313 35.36359 118.61792 77.25077 57.87205 201.93613 563.40438 45.41542
F7 48.32919 44.74684 124.51911 85.37758 63.19400 210.17520 558.04406 48.82333
F8 58.45609 37.98938 155.53463 92.00123 59.56738 284.79159 548.82226 43.74182
F9 60.93452 34.90186 158.42571 71.52983 55.55031 288.45261 554.60660 40.14132
F10 40.67619 27.66778 138.68413 65.99252 50.03648 267.35518 548.90780 32.67195
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Algorithm 2  Modified Crayfish optimization algorithm pseudo-code
Initialize the parameters and population

Calculate the fitness of the initialized population and find the best individual 

(FEs=FEs+1)

WHILE(FEs<=MaxFEs)

Update temp, C2, and other parameters

FOR i=1 to N

FOR j=1 to d

IF V>3  (Poor water quality, enter the environment update 

mechanism.)

The better survival position is found according to Eq. (14)

ELSE

IF temp>30

IF rand<0.5

According to Eq. (4), find a suitable summer location

ELSE

The summer vacation position is obtained by competition 

according to Eq. (6)

END IF

ELSE

IF Q>(C3+1)/2

The new position is obtained by feeding according to Eq. (12)

ELSE

The new position is obtained by feeding according to Eq. (13)

END IF

END IF

END IF

END FOR

END FOR

Calculate the k value according to Eq. (17)

FOR i=1 to N

The ghost opposition-based learning strategy is performed according to Eq. (20)

END FOR

END WHILE

Calculate the fitness of the updated population and find the best individual 

(FEs=FEs+1)

END
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The flow chart of the MCOA algorithm is as follows.

3.4  Computational complexity analysis

The complexity analysis of algorithms is an essential step to evaluate the performance 
of algorithms. In the experiment of complexity analysis of the algorithm, we choose the 
IEEE CEC2020 Special Session and Competition as the complexity evaluation standard of 
the single objective optimization algorithm. The complexity of MCOA algorithm mainly 
depends on several important parameters, such as the population size (N = 30), the number 
of dimensions of the problem (d = 10), the maximum number of evaluations of the algo-
rithm (MaxFEs = 100,000) and the solution function (C). Firstly, the running time of the 
test program is calculated and the running time (T0) of the test program is recorded, and the 
test program is shown in Algorithm 3. Secondly, under the same dimension of calculating 
the running time of the test program, the 10 test functions in the IEEE CEC2020 function 
set were evaluated 100,000 times, and their running time (T1) was recorded. Finally, the 
running time of 100,000 evaluations of 10 test functions performed by MCOA for 5 times 
under the same dimension was recorded, and the average value was taken as the running 
time of the algorithm (T2). Therefore, the formula for calculating the time complexity of 
MCOA algorithm is given in Eq. (21).

(21)O(MCOA) =
T2 − T1

T0

Start
Initialize the population and 
parameters through formula 

(2)

Compute the fitness value and 
find the best individual 

Fes=Fes+1

An Angle is randomly selected by 
the roulette wheel selection 

method
V>3

According to Formula (14), the 
better living environment position 

is found

Obtain the ambient temperature of 
the current location according to 

equation (1)

Temp>30 Q>2

Rand<0.5

The new position is obtained by 
feeding according to Equation (12)

The new position is obtained by 
feeding according to Equation 

(13)

The summer vacation position is 
obtained by competition 

according to Equation (4)

According to Formula (6), find a 
suitable summer location

The ghost opposition-based learning strategy is performed 
according to Eq. (19)

Calculate the position of the cave 
according to Equation (3)

Food intake p and food size Q 
were calculated according to 

equations (9) and (10)

Shred the food according to 
Equation (11)

Calculate the updated population 
fitness value and find the best 

individual (Fes=Fes+1)
Fes>MaxFEs

End

Yes

No

Yes

Yes

YesNo

No

No

Environment update mechanism

Stage of summer

Stage of foraging

Fig. 4  Flow chart of the MCOA algorithm
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Table 2  Parameter Settings of 
the algorithm

Algorithm Parameter setting Value

MCOA C3 3
µ 25
σ 3
c 2

COA C3 3
µ 25
σ 3

ROA C 0.1
STOA b = 1 1
AOA ɑ = 5 5

µ 0.499
HHO β 1.5

u (0,1)
v (0,1)
E0 (− 1,1)

PDO rho 0.005
epsPD 0.1

GA Crossing-Over Rate 0.7
Mutation Rate 0.01
α 1.5

MSCSO SM 2
Roulette Wheel selection [0,360]
β [0,2π]

LSHADE NPmax 18 × d
NPmin 4
p 0.11
ms 5
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Fig. 5  Convergence curve of MCOA algorithm in IEEE CEC2020
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Algorithm 3   IEEE CEC2020 complexity analysis test program

x = 0.55

For i = 1 : 100000

x = x + x;

x = x / 2;

x = x × x;

x = sqrt(x);

x = log(x);

x = exp(x);

x = x / (x + 2);

End

Computing time for the above = T0

The experimental data table of algorithm complexity analysis is shown in Table 1. In 
the complexity analysis of the algorithm, we use the method of comparing MCOA algo-
rithm with other seven metaheuristic algorithms to illustrate the complexity of MCOA. In 
Table 1, we can see that the complexity of MCOA is much lower than other comparison 
algorithms such as ROA, STOA, and AOA. However, compared with COA, the complex-
ity of MCOA is slightly higher than that of COA because it takes a certain amount of time 
to update the location through the environment update mechanism and ghost opposition-
based learning strategy. Although the improved strategy of MCOA increases the computa-
tion time to a certain extent, the optimization performance of MOCA has been significantly 
improved through a variety of experiments in section four of this paper, which proves the 
good effect of the improved strategy.

4  Experimental results and discussion

The experiments are carried out on a 2.50  GHz 11th Gen Intel(R) Core(TM) i7-11,700 
CPU with 16 GB memory and 64-bit Windows11 operating system using Matlab R2021a. 
In order to verify the performance of MCOA algorithm, MCOA is compared with nine 
metaheuristic algorithms in this subsection. In the experiments, we used the IEEE 
CEC2020 test function to evaluate the optimization performance of the MCOA algorithm 
Fig. 4.
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4.1  Experiments with IEEE CEC2020 test functions

In this subsection, using the Crayfish Optimization Algorithm (COA), Remora Optimiza-
tion Algorithm (ROA) (Jia et al. 2021), Sooty Tern Optimization Algorithm (STOA) (Dhi-
man and Kaur 2019), Arithmetic Optimization Algorithm (AOA) (Abualigah et al. 2021), 
Harris Hawk Optimization Algorithm (HHO) (Heidari et  al. 2019), Prairie Dog Optimi-
zation Algorithm (PDO) (Ezugwu et  al. 2022), Genetic Algorithm (GA) (Mirjalili and 
Mirjalili 2019),Modified Sand Cat Swarm Optimization Algorithm (MSCSO) (Wu et  al. 
2022) and a competition algorithm LSHADE (Piotrowski 2018) were compared to verify 
the optimization effect of MCOA. The parameter Settings of each algorithm are shown in 
Table 2.

In order to test the performance of MCOA, this paper selects 10 benchmark test func-
tions of IEEE CEC2020 for simulation experiments. Where F1 is a unimodal function, 
F2–F3 is a multimodal function, F4 is a non-peak function, F5–F7 is a hybrid function, 
and F8-F10 is a composite function. The parameters of this experiment are uniformly set as 
follows: the maximum number of evaluation MaxFEs is 100,000, the population size N is 
30, and the dimension size d is 10. The MCOA algorithm and the other nine algorithms are 
run independently for 30 times, and the average fitness value, standard deviation of fitness 
value and Friedman ranking calculation of each algorithm are obtained. The specific func-
tion Settings of the IEEE CEC2020 benchmark functions are shown in Table 3.

Table 5  Wilcoxon rank-sum test results for IEEE CEC2020 test functions

CEC COA ROA STOA AOA HHO PDO GA MSCSO LSHADE
vs vs vs vs vs vs vs vs vs

MCOA MCOA MCOA MCOA MCOA MCOA MCOA MCOA MCOA

F1 9.426E-
01

1.734E-
06

1.734E-
06

1.734E-
06

1.734E-
06

1.734E-
06

1.734E-
06

1.779E-
02

1.734E-06

F2 3.881E-
04

2.879E-
06

2.703E-
02

3.405E-
05

6.424E-
03

2.127E-
06

1.734E-
06

4.779E-
01

1.921E-06

F3 2.412E-
04

1.921E-
06

4.682E-
03

1.734E-
06

2.353E-
06

1.734E-
06

1.734E-
06

3.405E-
05

1.734E-06

F4 1 1 1 1 1 1 1.734E-
06

1 1.734E-06

F5 2.116E-
02

4.729E-
06

1.251E-
04

1.734E-
06

4.114E-
03

1.734E-
06

1.734E-
06

3.190E-
02

1.734E-06

F6 9.590E-
01

7.691E-
06

4.196E-
04

2.353E-
06

6.892E-
05

1.734E-
06

1.734E-
06

2.849E-
02

1.025E-05

F7 1.057E-
04

1.734E-
06

2.127E-
06

2.603E-
06

5.752E-
06

1.734E-
06

1.734E-
06

1.734E-
06

1.734E-06

F8 4.492E-
02

1.734E-
06

1.734E-
06

1.734E-
06

2.843E-
05

1.734E-
06

1.734E-
06

3.872E-
02

2.843E-05

F9 2.353E-
06

1.734E-
06

3.882E-
06

3.182E-
06

4.729E-
06

1.734E-
06

2.879E-
06

4.072E-
05

1.742E-04

F10 4.165E-
02

1.734E-
06

1.108E-
02

3.182E-
06

5.193E-
02

1.734E-
06

1.734E-
06

6.884E-
01

8.451E-01

 + / = /− 7/1/2 9/1/0 9/1/0 9/1/0 8/1/1 9/1/0 10/0/0 7/1/2 9/0/1
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4.1.1  Results statistics and convergence curve analysis of IEEE CEC2020 benchmark 
functions

In order to more clearly and intuitively compare the ability of MCOA and various algo-
rithms to find individual optimal solutions, the average fitness value, standard deviation 
of fitness value and Friedman ranking obtained by running MCOA and other comparison 
algorithms independently for 30 times are presented in the form of tables and images. The 
data and images are shown in Table 4 and Fig. 5 respectively.

In Table  4, mean represents the average fitness value, std represents the standard 
deviation of fitness value, rank represents the Friedman ranking, Friedman average rank 

Table 6  Comparison results of single strategies (worst data are marked in bold)

best/worst data and are bold to facilitate clear observation by the reader

Functions Statistics GOBLCOA EUCOA COA MCOA

F1 min 1.06E + 02 2.59E + 02 3.17E + 02 1.00E + 02
mean 3.18E + 03 3.53E + 03 4.38E + 03 2.54E + 03
std 3.27E + 03 3.30E + 03 3.73E + 03 2.77E + 03

F2 min 1.11E + 03 1.11E + 03 1.16E + 03 1.12E + 03
mean 1.70E + 03 1.59E + 03 1.56E + 03 1.64E + 03
std 2.77E + 02 2.61E + 02 2.13E + 02 2.90E + 02

F3 min 7.21E + 02 7.17E + 02 7.25E + 02 7.16E + 02
mean 7.55E + 02 7.44E + 02 7.75E + 02 7.42E + 02
std 2.63E + 01 1.90E + 01 3.39E + 01 1.61E + 01

F4 min 1900 1900 1900 1900
mean 1900 1900 1900 1900
std 0 0 0 0

F5 min 1.76E + 03 2.03E + 03 2.05E + 03 1.76E + 03
mean 3.73E + 03 3.71E + 03 3.48E + 03 4.28E + 03
std 2.02E + 03 2.12E + 03 1.45E + 03 2.05E + 03

F6 min 1.60E + 03 1.60E + 03 1.60E + 03 1.60E + 03
mean 1.66E + 03 1.70E + 03 1.70E + 03 1.66E + 03
std 7.68E + 01 1.09E + 02 1.17E + 02 8.28E + 01

F7 min 2.15E + 03 2.19E + 03 2.22E + 03 2.21E + 03
mean 2.53E + 03 2.40E + 03 2.39E + 03 2.51E + 03
std 2.39E + 02 4.98E + 02 1.63E + 02 3.16E + 02

F8 min 2.30E + 03 2.30E + 03 2.30E + 03 2.30E + 03
mean 2.30E + 03 2.30E + 03 2.30E + 03 2.30E + 03
std 5.36E-01 1.49E + 00 1.64E + 00 7.68E-01

F9 min 2.50E + 03 2.50E + 03 2.73E + 03 2.50E + 03
mean 2.73E + 03 2.56E + 03 2.75E + 03 2.54E + 03
std 6.27E + 01 8.96E + 01 7.90E + 01 7.87E + 01

F10 min 2.90E + 03 2.60E + 03 2.90E + 03 2.89E + 03
mean 2.92E + 03 2.92E + 03 2.93E + 03 2.91E + 03
std 2.42E + 01 2.33E + 01 2.96E + 01 2.38E + 01
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represents the average ranking of the algorithm among all functions, and Friedman rank 
represents the final ranking of this algorithm. Compared with other algorithms, MCOA 
achieved the best results in average fitness value, standard deviation of fitness value and 
Friedman ranking. In unimodal function F1, although MCOA algorithm is slightly worse 
than LSHADE algorithm, MCOA is superior to other algorithms in mean fitness value, 
standard deviation of fitness value, Friedman ranking and other aspects. In the multimodal 
functions F2 and F3, although the average fitness value of MCOA is slightly worse, it also 
achieves a good result of ranking second. The standard deviation of fitness value in F3 
is better than other comparison algorithms in terms of stability. In the peakless function 
F4, except GA and LSHADE algorithm, other algorithms can find the optimal individual 
solution stably. In the mixed functions F5, F6, and F7, although the mean fitness value 
of LSHADE is better than that of MCOA, the standard deviation of the fitness value of 
MCOA is better than that of the other algorithms compared. Among the composite func-
tions of F8, F9 and F10, the standard deviation of MCOA’s fitness value at F8 is slightly 
worse than that of LSHADE, but the average fitness value and standard deviation of fitness 
value are the best in other composite functions, and it has achieved the first place in all 
composite functions. Finally, from the perspective of Friedman average rank, MCOA has a 
strong comprehensive performance and still ranks first. Through the analysis of the data in 
Table 4, it can be seen that MCOA ranks first overall and has good optimization effect, and 
its optimization performance is better than other 9 comparison algorithms.

Table 7  Comparison of different water flow velocity factor of CEC2020 (optimal data are marked in bold)

best/worst data and are bold to facilitate clear observation by the reader

Functions Statistics c = 2 c = 3 c = 4 c = 5 c = 6 c = 7

F1 mean 2.66E + 03 3.07E + 03 4.49E + 03 2.70E + 03 3.74E + 03 3.78E + 03
std 2.76E + 03 3.65E + 03 2.64E + 03 2.60E + 03 3.95E + 03 3.61E + 03

F2 mean 1.51E + 03 1.71E + 03 1.68E + 03 1.71E + 03 1.67E + 03 1.63E + 03
std 2.49E + 02 2.81E + 02 3.18E + 02 2.86E + 02 3.27E + 02 2.72E + 02

F3 mean 7.35E + 02 7.44E + 02 7.38E + 02 7.36E + 02 7.40E + 02 7.40E + 02
std 8.80E + 00 2.20E + 01 1.49E + 01 1.52E + 01 1.70E + 01 2.14E + 01

F4 mean 1900 1900 1900 1900 1900 1900
std 0 0 0 0 0 0

F5 mean 3.65E + 03 5.13E + 03 4.71E + 03 4.91E + 03 4.67E + 03 4.41E + 03
std 2.08E + 03 2.42E + 03 2.12E + 03 2.38E + 03 1.91E + 03 2.30E + 03

F6 mean 1.63E + 03 1.69E + 03 1.67E + 03 1.67E + 03 1.67E + 03 1.68E + 03
std 4.63E + 01 9.61E + 01 6.44E + 01 6.34E + 01 9.21E + 01 7.70E + 01

F7 mean 2.59E + 03 2.82E + 03 2.87E + 03 2.72E + 03 2.77E + 03 2.82E + 03
std 1.81E + 02 4.34E + 02 4.98E + 02 2.80E + 02 3.44E + 02 3.29E + 02

F8 mean 2.30E + 03 2.30E + 03 2.30E + 03 2.30E + 03 2.30E + 03 2.30E + 03
std 2.12E + 00 6.90E + 00 1.13E + 01 2.20E + 00 2.20E + 00 9.07E + 00

F9 mean 2.53E + 03 2.60E + 03 2.58E + 03 2.60E + 03 2.58E + 03 2.62E + 03
std 6.14E + 01 1.18E + 02 1.13E + 02 1.19E + 02 1.13E + 02 1.23E + 02

F10 mean 2.91E + 03 2.93E + 03 2.93E + 03 2.93E + 03 2.93E + 03 2.93E + 03
std 6.43E + 01 2.96E + 01 2.84E + 01 2.24E + 01 2.44E + 01 2.28E + 01
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Figure 5 shows that in the IEEE CEC2020 benchmark functions, for the unimodal func-
tion F1, although LSHADE algorithm has a better optimization effect, compared with sim-
ilar meta-heuristic algorithms, MCOA has a slower convergence rate in the early stage, 
but can be separated from local optimal and converge quickly in the middle stage. In the 
multimodal functions F2 and F3, similar to F1, MCOA converges faster in the middle and 
late stages, effectively exiting the local optimal. Although the convergence speed is slower 
than that of LSHADE, the optimal value can still be found. In the peak-free function F4, 
the optimal value can be found faster by all algorithms except LSHADE, STOA and PDO 
because the function is easy to implement. In the mixed functions F5, F6 and F7, although 
the convergence rate of MCOA is slightly slower than that of COA algorithm in the early 
stage, it can still find better values than the other eight algorithms except LSHADE in the 
later stage. For the composite functions F8, F9 and F10, MCOA can find the optimal value 
faster than the other nine algorithms.

Based on the above, although LSHADE has a stronger ability to find the optimal value 
in a small number of functions, MCOA can still find the optimal value in most functions in 
the later stage, and compared with the other eight pair algorithms of the same type, MCOA 
has more obvious enhancement in optimization ability and avoidance of local optimization, 
and has better application effect.

4.1.2  Analysis of Wilcoxon rank sum test results

In the comparison experiment, the different effects of multiple algorithms solving the same 
problem are used to judge whether each algorithm has high efficiency and more obvious 
influence on solving the current problem, such as the convergence speed of the conver-
gence curve, the fitness value of the optimal solution, the ability to jump out of the local 
optimum, etc. At present, only the average fitness value, the standard deviation of fitness 
value and the convergence curve can not be used as the basis for judging whether the per-
formance of the algorithm is efficient. Therefore, the data and images presented by each 
algorithm in solving the current problem are comprehensively analyzed, and the Wilcoxon 
rank sum test is used to further verify the difference between MCOA and the other nine 
comparison algorithms. In this experiment, the significance level is defined as 5%. If its 
calculated value is less than 5%, it proves that there is a significant difference between 
the two algorithms, and if it is greater than 5%, it proves that there is no significant differ-
ence between the two algorithms. Table 5 shows the Wilcoxon rank-sum test results of the 
MCOA algorithm and the other nine comparison algorithms. Where the symbols “ + ”, “−” 

Fig. 6  Schematic diagram of 
the multi-disc clutch braking 
problem
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and “ = ” table the performance of MCOA better, worse and equal to the comparison algo-
rithms, respectively.

In the calculation of the function F4 without peak, the value of 1 appears in the com-
parison of various algorithms such as MCOA, COA, ROA, STOA and other algorithms, 
indicating that in this function, a variety of algorithms have found the optimal value, there 
is no obvious difference, which can be ignored. However, in most of the remaining func-
tions, the significance level of MCOA compared with the other nine algorithms is less than 
5%, which is a significant difference.

From the overall table, the MCOA algorithm also achieves good results in the Wilcoxon 
rank-sum test of the IEEE CEC2020 benchmark function, and the contrast ratio with other 
algorithms is less than 5%, which proves that the MCOA algorithm has a significant dif-
ference from the other nine algorithms, and MCOA has better optimization performance. 
According to the comparison results with the original algorithm, it is proved that MCOA 
algorithm has a good improvement effect.

4.2  Comparison experiment of single strategy

MCOA adopts two strategies, environment update mechanism and ghost opposition-based 
learning strategy, to improve COA. In order to prove the effectiveness of these two strate-
gies for algorithm performance optimization, a single strategy comparison experiment is 
added in this section. In the experiment in this section, EUCOA algorithm which only adds 
environment update mechanism and GOBLCOA algorithm which only adds ghost opposi-
tion-based learning strategy are compared with the basic COA algorithm. The experiments 
are independently run 30 times in IEEE CEC2020 benchmark test function, and the statisti-
cal data obtained are shown in Table 6. In order to make the table easy to view the statisti-
cal results, the poor data in the table will be bolded to make the statistical results more 
clear and intuitive. It can be seen from the table that among the best fitness values, average 
fitness values and standard deviation of fitness values of the 10 test functions, GOBLCOA 
and EUCOA account for less bolded data, while most data of the original algorithm COA 
are bolded in the table, which effectively proves that both the environment update mech-
anism and the ghost opposition-based learning strategy play a certain role in COA. The 
comprehensive performance of COA has been significantly improved.

4.3  Parameter sensitivity analysis of water flow velocity factor c

In order to better prove the influence of flow velocity coefficient on MCOA, we choose 
different flow velocity coefficient c values for comparison experiments. Table 7 shows the 
statistical results of 30 independent runs of different water flow velocity coefficients in 
CEC2020. The bold sections represent the best results. As can be seen from the table, the 
result obtained by c = 2 is significantly better than the other values. Only in individual test 
functions are the results slightly worse. In the F1 function, c = 5 has the best std. In the F5 
function, std is best at c = 6. Among F10 functions, c = 5 has the best std. Among the other 
test functions, both the mean fitness value and std at water flow velocity factor c = 2 are 
optimal. Through the above analysis, it is proved that the water flow velocity factor c = 2 
has a good optimization effect.
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4.4  Experimental summary

In this section, we first test MCOA’s optimization performance on the IEEE CEC2020 
benchmark function. The improved MCOA is compared with the original algorithm 
COA and six other meta-heuristic algorithms in the same environment and the experi-
mental analysis is carried out. Secondly, the rank sum test is used to verify whether 
there are significant differences between MCOA and the other nine comparison algo-
rithms. Finally, three algorithms, EUCOA with environment update mechanism, GOB-
LCOA with ghost opposition-based learning strategy, COA and MCOA, are tested to 
improve performance. These three experimental results show that MCOA has a good 
ability to find optimal solutions and get rid of local optimal solutions.

5  Constrained engineering design problems

With the new development of the era of big data, the solution process becomes compli-
cated and the calculation results become accurate, and more and more people pay close 
attention to the dynamic development of the feasibility and practicality of the algorithm, 
so as to ensure that the algorithm has good practical performance on constrained engi-
neering design problems. In order to verify the optimization effect of MCOA in practical 
applications, four constrained engineering design problems are selected for application 
testing of MCOA to evaluate the performance of MCOA in solving practical application 
problems. Every constrained engineering design problems has a minimization objective 
function (Papaioannou and Koulocheris 2018) that is used to calculate the fitness value 
for a given problem. In addition, each problem contains a varying number of constraints 
that are taken into account during the calculation of the objective function. If the con-
straints are not met, the penalty function (Yeniay 2005) is used to adjust the fitness 
value. However, the processing of constraints is not the focus of our research, our focus 
is on the optimization of parameters in a convex region composed of constraints (Liu 
and Lu 2014). In order to ensure the fairness of the experiment, the parameters of all 
experiments in this section are set as follows: the maximum evaluation time MaxFEs is 
10,000 and the overall scale N is 30. In each experiment, all the algorithms were ana-
lyzed 500 times and the optimal results were obtained.

Fig. 7  Schematic diagram of the welded beam design problem
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5.1  Multi‑disc clutch braking problem

In the field of vehicle engineering, there is a common constrained engineering design prob-
lems multi-disc clutch braking problem, and the purpose of our algorithm is to minimize 
the mass of the multi-disc clutch by optimizing eight constraints and five variables, so as to 
improve the performance of the multi-disc clutch. Among them, the five variables are: inner 
diameter ri, outer diameter ro, brake disc thickness t, driving force F, and surface friction coef-
ficient Z. The specific structure of the multi-disc clutch is shown in Fig. 6.

The mathematical formulation of the multi-disc clutch braking problem is as follows.
Consider:

Objective function:

Subject to:

Variable range:

Other parameters:

(22)x =
[

x1 x2 x3 x4 x5
]

=
[

ri ro t F Z
]

(23)f (x) = II
(

r2
o
− r2

i

)

t(Z + 1)�(� = 0.0000078)

(24)g1(x) = ro − ri − Δr ≥ 0

(25)g2(x) = lmax − (Z + 1)(t + �) ≥ 0

(26)g3(x) = Pmax − Prz ≥ 0

(27)g4(x) = Pmax�sr max − Prz�sr ≥ 0

(28)g5(x) = �sr max − �sr ≥ 0

(29)g6(x) = Tmax − T ≥ 0

(30)g7(x) = Mh − sMs ≥ 0

(31)g8(x) = T ≥ 0

(32)
60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3,

600 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9

(33)Mh =
2

3
�FZ

r3
o
− r2

i

r2
o
− r3

i

,Prz =
F

II
(

r2
o
− r2

i

) ,

(34)�rz =
2II

(

r3
o
− r3

i

)

90
(

r2
o
− r2

i

) , T =
IzII n

30
(

Mh +Mf

)
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After calculation and experiments, the experimental results of the multi-disc clutch 
braking problem are made into a table as shown in Table  8. In Table  8, MCOA con-
cluded that the inner diameter ri = 70, the outer diameter r0 = 90, the thickness of the 
brake disc t = 1, the driving force F = 600, and the surface friction coefficient Z = 2. At 
this time, the minimum weight obtained is 0.2352424, it is 11.16% higher than the orig-
inal algorithm. Compared with MCOA, the other five algorithms in the calculation of 
this problem show that the optimization effect is far lower than that of MCOA.

5.2  Design problem of welding beam

The welded beam design problem is very common in the field of structural engineer-
ing and is constrained not only by four decision variables (welding width h, connecting 
beam length l, beam height t, and connecting beam thickness b) but also by seven other 
different conditions. Therefore, it is challenging to solve this problem. The purpose of 
the optimization algorithm is to achieve the best structural performance of the welded 
beam and reduce its weight by optimizing the small problems such as the shape, size 
and layout of the weld under many constraints. The specific structure of the welded 
beam is shown in Fig. 7.

The mathematical formulation of the welded beam design problem is as follows.
Consider:

Objective function:

(35)Δr = 20mm, Iz = 55kg mm2,Pmax = 1MPa,Fmax = 1000N,

(36)Tmax = 15s,� = 0.5, s = 1.5,Ms = 40Nm,Mf = 3Nm,

(37)n = 250 rpm, �sr max = 10m∕s,lmax = 30mm

(38)x = [x1x2x3x4] = [h l t b]

Fig. 8  Schematic diagram of the reducer design problem
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Subject to:

where:

(39)f (x) = 1.10471x2
1
x2 + 0.04811x3x4(14.0 + x2)

(40)g1
(

x⃗
)

= 𝜏
(

x⃗
)

− 𝜏max ≤ 0

(41)g2
(

x⃗
)

= 𝜎
(

x⃗
)

− 𝜎max ≤ 0

(42)g3
(

x⃗
)

= 𝛿
(

x⃗
)

− 𝛿max ≤ 0

(43)g4
(

x⃗
)

= x1 − x4 ≤ 0

(44)g5
(

x⃗
)

= P − Pc

(

x⃗
)

≤ 0

(45)g6
(

x⃗
)

= 0.125 − x1 ≤ 0

(46)g7
(

x⃗
)

= 1.10471x2
1
+ 0.04811x3x4

(

14.0 + x2
)

− 0.5 ≤ 0

(47)𝜏
�

x⃗
�

=

�

(𝜏�)2 + 2𝜏�𝜏��
x2

2R
+ (𝜏��), 𝜏� =

P
√

2x1x2

, 𝜏�� =
MR

J
,

(48)M = P
(

L +
x2

2

)

,R =

√

x2
2

4
+

(

x1 + x3

2

)2

, 𝜎
(

x⃗
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=
6PL

x4x
2
3

,

(49)J = 2

�
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+
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x⃗
�

=
6PL3

Ex4x
2
3

,

Table 10  Experimental results of the reducer design problem

Algorithm Optimal values for variables Optimal weight

 × 1  × 2  × 3  × 4  × 5  × 6  × 7

MCOA 3.47635 0.7 17 7.3 7.8 3.34862 5.2768 2988.2713592
COA(Jia et al. 2023b) 3.48159 0.7 17.0313 7.3135 7.8 3.34991 5.27457 2990.67332
CSO(Ahmed et al. 2020) 3.52246 0.7 17.0056 7.3 7.8680 3.35026 5.29422 3010.9478
CS(Yang and Deb 2014) 3.5015 0.7 17.2274 7.605 7.8181 3.352 5.2875 3000.981
FA(Baykasoglu and 

Ozsoydan 2015)
3.50749 0.7 17 7.7196 8.0808 3.35151 5.28705 3010.1374

GTOA(Zhang and Jin 
2020)

3.50237 0.7 17 7.3 7.8000 3.35192 5.28550 2997.29701

TLBO(Rao and Rao 2016) 3.50068 0.7 17 7.8666 7.8000 3.36316 5.28897 3006.4205
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Boundaries:

The experimental results of the welding beam design problem are shown in Table 9. In the 
table, the welding width obtained by the MCOA algorithm h = 0.203034,the length of the con-
necting beam is l = 3.310032, the height of the beam is t = 9.084002, and the thickness of the 
connecting beam is b = 0.20578751. At this time, the minimum weight is 1.707524, it is 1.46% 
higher than the original algorithm. In the welding beam design problem, the weight deter-
mines the application effect of the algorithm in the practical problem. The weight of MCOA 
algorithm is smaller than that of other algorithms. Therefore, the practical application effect of 
MCOA is much greater than that of other algorithms.

5.3  Design problem of reducer

A reducer is a mechanical device used to reduce the speed of rotation and increase the torque. 
Among them, gears and bearings are an indispensable part of the reducer design, which have 
a great impact on the transmission efficiency, running stability and service life of the reducer. 
The weight of the reducer also determines the use of the reducer. Therefore, we will adjust the 
number of teeth, shape, radius and other parameters of the gear in the reducer to maximize 
the role of the reducer, reduce the friction between the parts, and extend the service life of the 
reducer. In this problem, a total of seven variables are constrained, which are the gear width 
x1, the gear modulus x2, the gear teeth x3, the length of the first axis between bearings x4, the 

(50)
Pc

(

x⃗
)

=

4.013E

√

x2
3
x6
4

0

L2
,

(

1 −
x3

2L

√

E

4G

)

,

(

1 −
x3

2L

√

E

4G

)

,

(51)P = 6000 lb,L = 14 in, �max = 0.25 in,E = 30 × 106, psi,

(52)�max = 13600 psi, and �max = 30000 psi

(53)0.1 ≤ xi ≤ 2, i = 1, 4; 0.1 ≤ xi ≤ 10, i = 2.3

Fig. 9  Schematic diagram of the three-bar truss design problem
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length of the second axis between bearings x5, the diameter of the first axis x6 and the diameter 
of the second axis x7. The specific structure of the reducer is shown in Fig. 8.

The mathematical model of the reducer design problem is as follows.
Consider:

Objective function:

Subject to:

(54)x = [x1 x2 x3 x4 x5 x6 x7]

(55)

f (x⃗) = 07854 × x1 × x2
2
× (3.3333 × x2

3
+ 14.9334 × x3−

43.0934) − 1.508 × x1 × (x2
6
+ x2

7
) + 7.4777 × x3

6
+ x3

7
+

0.7854 × x4 × x2
6
+ x5 × x2

7

(56)g1(x⃗) =
27

x1 × x2
2
× x3

− 1 ≤ 0

(57)g2(x⃗) =
397.5

x1 × x2
2
× x2

3

− 1 ≤ 0

(58)g3(x⃗) =
1.93 × x3

4

x2 × x3 × x4
6

− 1 ≤ 0

(59)g4(x⃗) =
1.93 × x3

5

x2 × x3 × x4
7

− 1 ≤ 0

Table 11  Experimental results of the three-bar truss design problem

Algorithm  × 1  × 2 Constraint values Optimal weight

MCOA 0.7887564807 0.4079947953 g1 = − 0.0052,g2 = − 1.4690,
g3 = − 0.5363,

263.85438633

COA(Jia et al. 2023b) 0.7618303638 0.4900334526 g1 = − 1.2111e-05,g2 = − 1.
3747,

g3 = − 0.6253,

264.48151181

MBA(Sadollah et al. 2013) 0.788603 0.408453 g1 = − 4.8780e-07,g2 = − 1.
4639,

g3 = − 0.5361,

263.8959

GOA(Saremi et al. 2017) 0.788898 0.40762 g1 = − 1.2922e-06,g2 = − 1.
4648,

g3 = − 0.5352,

263.8959

SSA(Mirjalili et al. 2017) 0.78867 0.40828 g1 = − 1.3025e-05,g2 = − 1.
4641,

g3 = − 0.5359,

263.85984

EROA(Wang et al. 2022) 0.78645 0.41369 g1 = − 1.6747e-04,g2 = − 1.
4576,

g3 = − 0.5417,

263.85520
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Boundaries:

The experimental results of the reducer design problem are shown in Table  10. 
From Table  10, it is known that the gear width calculated by the MCOA algorithm is 
x1 = 3.47635, the gear modulus x2 = 0.7, the gear teeth x3 = 17, the length of the first axis 
between the bearings x4 = 7.3, the length of the second axis between the bearings × 5 = 7.8, 
and the length of the first axis between the bearings x5 = 7.8. The diameter of the first axis 
is x6 = 3.348620, the diameter of the second axis is x7 = 5.2768, and the minimum weight 
is 2988.27135, it is 0.08% higher than the original algorithm. In this experiment, it can 
be concluded that MCOA has the smallest data among the minimum weights obtained by 
MCOA and other comparison algorithms in this problem, which proves that MCOA has 
the best optimization effect in solving such problems.

5.4  Design problem of three‑bar truss

Three-bar truss structure is widely used in bridge, building, and mechanical equipment and 
other fields. However, the size, shape and connection mode of the rod need to be further 
explored by human beings. Therefore, A1 = x1 and A2 = x2 determined by the pairwise prop-
erty of the system need to be considered in solving this problem. In addition to this, there 
will be constraints on the total support load, material cost, and other conditions such as 
cross-sectional area. The structural diagram of the three-bar truss is shown in Fig. 9.

(60)g5(x⃗) =
1

110 × x3
6

×

√

(
745 × x4

x2 × x3
)2 + 16.9 × 106 − 1 ≤ 0

(61)g6(x⃗) =
1

85 × x3
7

×

√

(
745 × x5

x2 × x3
)2 + 16.9 × 106 − 1 ≤ 0

(62)g7(x⃗) =
x2 × x3

40
− 1 ≤ 0

(63)g8(x⃗) =
5 × x2

x1
− 1 ≤ 0

(64)g9(x⃗) =
x1

12 × x2
− 1 ≤ 0

(65)g10(x⃗) =
1.5 × x6 + 1.9

x4
− 1 ≤ 0

(66)g11(x⃗) =
1.1 × x7 + 1.9

x5
− 1 ≤ 0

(68)
2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,

7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5
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The mathematical formulation of the three-bar truss design problem is as follows.
Consider:

Minimize:

Subject to:

Variable range:

The experimental results of the three-bar truss design problem are shown in Table 11, from 
which it can be concluded that x1 = 0.7887564and x2 = 0.4079948of the MCOA algorithm on 
the three-bar truss design problem. At this time, the minimum weight value is 263.85438633, 
it is 0.24% higher than the original algorithm. Compared with the minimum weight value of 
other algorithms, the value of MCOA is the smallest. It is concluded that the MCOA algo-
rithm has a good optimization effect on the three-bar truss design problem.

(69)x⃗ = [x1x2] = [A1A2]

(70)f (x⃗) = (2
√

2x1 + x2) ∗ l

(71)g1(x⃗) =

√

2x1 + x2
√

2x2
1
+ 2x1x2

P − 𝜎 ≤ 0

(72)g2(x⃗) =
x2

√

2x2
1
+ 2x1x2

P − 𝜎 ≤ 0

(73)g3(x⃗) =
1

√

2x1 + x1

P − 𝜎 ≤ 0

(74)l = 100cm,P = 2kN/cm3, � = 2kN/cm3

(75)0 ≤ x1, x2 ≤ 1

Table 12  Details of the datasets 
used

No Dataset Instances Featrues Categorical

1 Ionosphere 351 34 Biological
2 CLL-SUB-111 111 11,340 Biological
3 TOX-171 171 5748 Biological
4 Prostate-GE 102 5966 Biological
5 Nci9 60 9712 Biological
6 Colon 62 2000 Biological
7 GLI-85 85 22,283 Biological
8 Orlraws10P 100 10,304 Face image
9 Pixraw10P 100 10,000 Face image
10 Yale 165 1024 Face image
11 WarpAR10P 130 2400 Face image
12 WarpPIE10P 210 2420 Face image
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The experimental results of four constrained engineering design problems show that 
MCOA has good optimization performance in dealing with problems similar to constrained 
engineering design problems. In addition, we will also introduce the high-dimensional feature 
selection problem of the wrapper method, and further judge whether MCOA has good optimi-
zation performance and the ability to deal with diversified problems through the classification 
and processing effect of data.

Fig. 10  Convergence curve of FS
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6  High‑dimensional feature selection problem

The objective of feature selection is to eliminate redundant and irrelevant features, thereby 
obtaining a more accurate model. However, in high-dimensional feature spaces, feature 
selection encounters challenges such as high computational costs and susceptibility to over-
fitting. To tackle these issues, this paper propose novel high-dimensional feature selection 
methods based on metaheuristic algorithms. These methods aim to enhance the efficiency 
and effectiveness of feature selection in complex, high-dimensional datasets.

Fig. 11  Comparison plot of verification accuracy of eight algorithms
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High-dimensional feature selection, as discussed in reference (Ghaemi and Feizi-Dera-
khshi 2016), focuses on processing high-dimensional data to extract relevant features while 
eliminating redundant and irrelevant ones. This process enhances the model’s generali-
zation ability and reduces computational costs. The problem of high-dimensional feature 
selection is often referred to as sparse modeling, encompassing two primary methods: filter 
and wrapper. Filter methods, also called classifier-independent methods, can be categorized 
into univariate and multivariate methods. Univariate methods consider individual features 
independently, leveraging the correlation and dependence within the data to quickly screen 
and identify the optimal feature subset. On the other hand, multivariate methods assess 

Fig. 12  Comparison plots of feature sizes of the eight algorithms
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relationships between multiple features simultaneously, aiming to comprehensively select 
the most informative feature combinations. Wrapper methods offer more diverse solutions. 
This approach treats feature selection as an optimization problem, utilizing specific per-
formance measures of classifiers and objective functions. Wrapper methods continuously 
explore and evaluate various feature combinations to find the best set of features that maxi-
mizes the model’s performance. Unlike filter methods, wrapper methods provide a more 
customized and problem-specific approach to feature selection.

Filter methods, being relatively single and one-sided, approach the problem of feature 
selection in a straightforward manner by considering individual features and their relation-
ships within the dataset. However, they might lack the flexibility needed for complex and 
specific problem scenarios. However, wrapper methods offer tailored and problem-specific 
solutions. They exhibit strong adaptability, wide applicability, and high relevance to the 
specific problem at hand. Wrapper methods can be seamlessly integrated into any learning 
algorithm, allowing for a more customized and targeted approach to feature selection. By 
treating feature selection as an optimization problem and continuously evaluating different 
feature combinations, wrapper methods can maximize the effectiveness of the algorithm 
and optimize its performance to a greater extent compared to filter methods. In summary, 
wrapper methods provide a more sophisticated and problem-specific approach to feature 
selection, enabling the algorithm to achieve its maximum potential by selecting the most 
relevant and informative features for the given task.

6.1  Fitness function

In this subsection, the wrapper method in high-dimensional feature selection is elucidated, 
employing the classification error rate (CEE) (Wang et al. 2005) as an illustrative exam-
ple. CEE is utilized as the fitness function or objective function to assess the optimization 
effectiveness of the feature selection algorithm for the problem at hand. Specifically, CEE 
quantifies the classification error rate when employing the k-nearest-neighbors (KNN) 
algorithm (Datasets | Feature Selection @ ASU. 2019), with the Euclidean distance (ED) 
(The UCI Machine Learning Repository xxxx) serving as the metric for measuring the dis-
tance between the current model being tested and its neighboring models. By using CEE 
as the fitness function, the wrapper method evaluates different feature subsets based on 
their performance in the context of the KNN algorithm. This approach enables the algo-
rithm to identify the most relevant features that lead to the lowest classification error rate, 
thereby optimizing the model’s performance. By focusing on the accuracy of classification 
in a specific algorithmic context, the wrapper method ensures that the selected features 
are highly tailored to the problem and the chosen learning algorithm. This targeted feature 
selection process enhances the overall performance and effectiveness of the algorithm in 
handling high-dimensional data.

where X denotes feat, Y denotes label, both X and Y are specific features in the given data 
model, and D is the total number of features recorded.

(76)Fitness = CEE =
No. of wrongly classified

Total number of instances

(77)ED(Y ,X) =

√

√

√

√

D
∑

d=1

(

Xd − Yd
)2
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In the experimental setup, each dataset is partitioned into a training set and a test set, 
with an 80% and 20% ratio. The training set is initially utilized to select the most character-
istic features and fine-tune the parameters of the KNN model. Subsequently, the test set is 
employed to evaluate and calculate the data model and algorithm performance. To address 
concerns related to fitting ability and overfitting, hierarchical cross-validation with K = 10 
was employed in this experiment. In hierarchical cross-validation, the training portion is 
divided into ten equal-sized subsets. The KNN classifier is trained using 9 out of the 10 
folds (K-1 folds) to identify the optimal KNN classifier, while the remaining fold is used 
for validation purposes. This process is repeated 10 times, ensuring that each subset serves 
both as a validation set and as part of the training data. This iterative approach is a cru-
cial component of our evaluation methodology, providing a robust assessment of the algo-
rithm’s performance. By repeatedly employing replacement validation and folding training, 
we enhance the reliability and accuracy of our evaluation, enabling a comprehensive analy-
sis of the algorithm’s effectiveness across various datasets.

6.2  High‑dimensional datasets

In this subsection, the optimization performance of MCOA is assessed using 12 high-
dimensional datasets sourced from the Arizona State University (Too et al. 2021) and Uni-
versity of California Irvine (UCI) Machine Learning databases (Chandrashekar and Sahin 
2014). By conducting experiments on these high-dimensional datasets, the results obtained 
are not only convincing but also pose significant challenges. These datasets authentically 
capture the intricacies of real-life spatial problems, making the experiments more meaning-
ful and applicable to complex and varied spatial scenarios. For a detailed overview of the 
12 high-dimensional datasets, please refer to Table 12.

Table 15  Experimental results of Wilcoxon rank sum test for FS

Dataset COA SSA PSO ABC WSA FPA ABO
vs vs vs vs vs vs vs

MCOA MCOA MCOA MCOA MCOA MCOA MCOA

Ionosphere 1.97E-05 1.73E-06 1.48E-04 6.31E-05 2.13E-06 1.73E-06 6.33E-06
CLL-SUB-111 1.73E-06 1.73E-06 3.52E-06 2.35E-06 1.73E-06 1.92E-06 1.73E-06
TOX-171 1.97E-05 6.98E-06 3.61E-03 1.74E-04 1.73E-06 4.86E-05 1.73E-06
Prostate-GE 1.80E-05 5.79E-05 1.73E-06 2.05E-04 3.88E-06 3.11E-05 1.97E-05
Nci9 7.69E-06 2.35E-06 5.75E-06 6.32E-05 2.13E-06 4.29E-06 3.18E-06
Colon 3.18E-06 1.73E-06 1.73E-06 1.73E-06 3.18E-06 6.34E-06 4.73E-06
GLI-85 3.11E-05 1.73E-06 3.88E-06 1.73E-06 1.73E-06 5.75E-06 4.29E-06
Orlraws10P 2.88E-06 2.37E-05 1.24E-05 1.36E-05 4.29E-06 4.29E-06 2.02E-06
Pixraw10P 4.28E-06 5.21E-06 1.73E-06 1.73E-06 1.73E-06 4.73E-06 1.73E-06
Yale 3.88E-04 5.29E-04 2.70E-02 1.20E-03 1.89E-04 9.84E-03 1.15E-04
WarpAR10P 5.75E-06 5.75E-06 2.35E-06 3.88E-06 1.73E-06 2.35E-06 3.88E-06
WarpPIE10P 1.89E-04 2.16E-05 5.79E-05 1.15E-04 1.02E-05 7.69E-06 1.13E-05
 + / = /− 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0 12/0/0
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6.3  Experimental results and analysis

In order to assess the effectiveness and efficiency of MCOA in feature selection, we con-
ducted comparative tests using MCOA as well as several other algorithms including COA, 
SSA, PSO, ABC, WSA (Baykasoğlu et al. 2020), FPA (Yang 2012), and ABO (Qi et al. 
2017) on 12 datasets. In this section of the experiment, the fitness value of each algorithm 
was calculated, and the convergence curve, feature selection accuracy (FS Accuracy), and 
selected feature size for each algorithm were analyzed. Figures 10, 11 and 12 display the 
feature selection (FS) convergence curve, FS Accuracy, and selected feature size for the 
eight algorithms across the 12 datasets. From these figures, it is evident that the optimiza-
tion ability and prediction accuracy of the MCOA algorithm surpass those of the other 
seven comparison algorithms. Taking the dataset CLL-SUB-111 as an example in Figs. 11 
and 12, MCOA selected 20 features, while the other seven algorithms selected more than 
2000 features. Moreover, the prediction accuracy achieved by MCOA was higher than that 
of the other seven algorithms. Across all 12 datasets, the comparison figures indicate that 
the MCOA algorithm consistently outperforms the others. Specifically, the MCOA algo-
rithm tends to select smaller feature subsets, leading to higher prediction accuracy and 
stronger optimization capabilities. This pattern highlights the superior performance of 
MCOA in feature selection, demonstrating its effectiveness in optimizing feature subsets 
for improved prediction accuracy.

To address the randomness and instability inherent in experiments, a single experi-
ment may not fully demonstrate the effectiveness of algorithm performance. Therefore, 
we conducted 30 independent experiments using 12 datasets and 8 algorithms. For each 
algorithm and dataset combination, we calculated the average fitness value, standard 
deviation of the fitness value, and Friedman rank. Subsequently, the Wilcoxon rank sum 
test was employed to determine significant differences between the performance of dif-
ferent algorithms across various datasets. Throughout the experiment, a fixed population 
size of 10 and a maximum of 100 iterations were used. The 12 datasets were utilized to 
evaluate the 8 algorithms 300 times (tenfold cross-validation × 30 runs). It is essential to 
note that all algorithms were assessed using the same fitness function derived from the 
dataset, ensuring a consistent evaluation criterion across the experiments. By conduct-
ing multiple independent experiments and statistical analyses, the study aimed to pro-
vide a comprehensive and robust assessment of algorithm performance. This approach 
helps in drawing reliable conclusions regarding the comparative effectiveness of the 
algorithms under consideration across different datasets, accounting for the inherent 
variability and randomness in the experimental process.

Table  13 presents the average fitness calculation results from 30 independent experi-
ments for the eight algorithms, it is 55.23% higher than the original algorithm. According 
to the table, in the Ionosphere dataset, MCOA exhibits the best average fitness, albeit with 
slightly lower stability compared to ABC. Similarly, in the WarpAR10P dataset, MCOA 
achieves the best average fitness, with stability slightly lower than COA. After conducting 
Friedman ranking on the fitness calculation results of the 30 independent experiments, it 
is concluded that although MCOA shows slightly lower stability in some datasets, it ranks 
first overall. Among the other seven algorithms, PSO ranks second, ABO ranks third, COA 
ranks fourth, and ABC, SSA, FPA, and WSA rank fifth to ninth, respectively. These results 
demonstrate that MCOA exhibits robust optimization performance and high stability in 
solving high-dimensional feature selection problems. Moreover, MCOA outperforms COA, 
showcasing its superior improvement in solving these complex problems.
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Table 14 presents the accuracy calculation results of the eight algorithms for 30 inde-
pendent experiments, it is 10.85% higher than the original algorithm. According to the 
table, the average accuracy of MCOA is the highest across all datasets. Notably, in the 
Colon dataset, MCOA performs exceptionally well with a perfect average accuracy of 
100%. However, in the Ionosphere dataset, MCOA exhibits slightly lower stability com-
pared to ABC, and in the WarpAR10P dataset, it is slightly less stable than COA. Upon 
conducting Friedman ranking on the average accuracy calculation results of 30 independ-
ent experiments, it is evident that MCOA ranks first overall. Among the other seven algo-
rithms, PSO ranks second, ABC ranks third, COA ranks fourth, and ABO, FPA, SSA, and 
WSA rank fifth to ninth, respectively. These results highlight that MCOA consistently 
achieves high accuracy and stability in solving high-dimensional feature selection prob-
lems. Its superior performance across various datasets underscores its effectiveness and 
reliability in real-world applications.

Table 15 demonstrates that the MCOA algorithm has shown significant results in the 
Wilcoxon rank sum test for high-dimensional feature selection fitness. The comparison val-
ues with other algorithms are less than 5%, indicating that the MCOA algorithm exhib-
its significant differences compared to the other seven algorithms. This result serves as 
evidence that MCOA outperforms the other algorithms, showcasing its superior optimiza-
tion performance. Additionally, when comparing the results with the original algorithm, it 
becomes evident that the MCOA algorithm has a substantial and positive impact, demon-
strating its effectiveness and improvement over existing methods. These findings under-
score the algorithm’s potential and its ability to provide substantial enhancements in the 
field of high-dimensional feature selection.

7  Conclusions and future work

The Crayfish Optimization Algorithm (COA) is grounded in swarm intelligence, draw-
ing inspiration from crayfish behavior to find optimal solutions within a specific range. 
However, COA’s limitations stem from neglecting crucial survival traits of crayfish, such 
as crawling against water to discover better aquatic environments. This oversight weakens 
COA’s search ability, making it susceptible to local optima and hindering its capacity to 
find optimal solutions. To address these issues, this paper introduces a Modified Crayfish 
Optimization Algorithm (MCOA). MCOA incorporates an environmental updating mecha-
nism, enabling crayfish to randomly select directions toward better aquatic environments 
for location updates, enhancing search ability. The addition of the ghost opposition-based 
learning strategy expands MCOA’s search range and promotes escape from local optima. 
Experimental validations using IEEE CEC2020 benchmark functions confirm MCOA’s 
outstanding optimization performance.

Moreover, MCOA’s practical applicability is demonstrated through applications to 
four constrained engineering problems and high-dimensional feature selection challenges. 
These experiments underscore MCOA’s efficacy in real-world scenarios, but MCOA can 
only solve the optimization problem of a single goal. In future studies, efforts will be made 
to further optimize MCOA and enhance its function. We will exploitation multi-objective 
version of the algorithm to increase the search ability and convergence of the algorithm 
through non-dominated sorting, multi-objective selection, crossover and mutation, etc., to 
solve more complex practical problems. It is extended to wireless sensor network coverage, 
machine learning, image segmentation and other practical applications.
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