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Abstract
In this paper, we propose a three-way decision  (TWD) method on multi-scale single-
valued neutrosophic decision systems (MS-SVNDSs). First, to explore the application of 
single-valued neutrosophic sets (SVNSs) in multi-scale environment, we establish a rough 
set model of MS-SVNDSs. Then, aiming at the problem of knowledge acquisition in MS-
SVNDSs, we present the corresponding optimal scale selection and reduction methods by 
using evidence theory, a more direct and simpler algorithm is also discussed. For obtain-
ing decision results that are more in line with human cognition, we further provide a novel 
three-way decision method. Comparative experiments are subsequently conducted to dem-
onstrate the effectiveness of our approach. The experimental results show that our method 
not only improves the classification accuracy but also raises decision efficiency.

Keywords Multi-scale · Optimal scales and reducts · Rough sets · Single-valued 
neutrosophic sets · Three-way decision

1 Introduction

Yao (2009, 2010, 2011) introduced the notion of TWD in 2010s, which is focused on 
grouping all objects into three distinguishable and relevant sections and then design an 
appropriate strategy for each section, i.e. non-commitment, rejection, and acceptance. 
Different from the usual decision-making mode, TWD adds an uncertain part to better 
deal with the situation that it is hard to make an exact decision of acceptance or rejection 
directly with insufficient or incomplete information. As it is more in consistent with the 
characteristics of human mind, three-way decision has been attracted research interest of 
many researchers.

Up to now, there have been a lot of theoretical and applied achievements on TWD. Some 
scholars extended the traditional TWD on the basis of different situations. For example, 
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Qian et  al. (Qian et  al. 2022) discussed sequential TWD problem in multi-granularity 
environment to obtain reliable decisions when there are several different granularity levels. 
Li et  al. (2017a) established a TWD model with generalizations on the basis of subset 
evaluation. Yao (2018) proposed a model for three-way granular computing. A generalized 
multi-granularity sequential TWD model with multiple thresholds was developed by Qian 
et al. (2019). In order to realize the sorting and classification of intuitionistic fuzzy objects, 
Dai et al. (2023) constructed a TWD model with intuitionistic fuzzy concept consideration 
of the decision-maker’s preference. There has also been significant concern about the TWD 
procedure improvement. Chen et al. (2012) gave a method to find the threshold of TWD 
without setting the initial value. According to decision-theoretic rough sets with interval 
values, Liang and Liu (2014) put forward an optimum method for TWD to go a step further 
reduce the entire uncertainty. A method of aggregation for combining various TWD spaces 
was put forth by Hu et al. (2016). A sequential strategy was put up by Xu et al. (2020a) to 
address the issue of decision conflict by gradually introducing more precise knowledge. 
Based on criteria importance, Zhu et  al. (2021) constructed a novel risk assessment 
framework to alter traditional failure mode and effect analysis method and aid maintenance 
supervision. The distinctive preponderance of TWD makes it popular in medical diagnosis 
(Chu et  al. 2020; Yao and Azam 2015), decision support (Liang and Liu 2015; Zhang 
et al. 2020a), recommender system design (Zhang and Min 2016), classification (Xu et al. 
2020b; Yue et al. 2020), uncertainty analysis (Zhang et al. 2020b, 2020c, 2020d), and so 
forth.

As Smarandache (1999) proposed neutrosophic sets (NSs) in 1999, Dai et  al. (2011) 
developed the idea of SVNSs, which provided a better approach for dealing with uncer-
tain and inaccurate information. Since then, multitudinous scholars have begun to launch 
intensive study on the theory and application of SVNSs. Özlü (2023a, b) and Özlü and 
Karaaslan (2022) developed single-valued neutrosophic type-2 hesitant fuzzy sets and 
gave some basic dice measures. Using the evaluation function, Mohamed et al. (2018) suc-
cessfully combined TWD with SVNSs, and gave an AHP-QFD framework for resource 
selection. Ye (2015) optimized the cosine similarity measures of simplified NSs to realize 
the comparison among simplified NSs. On the basis of NSs, the representation of lattice 
combining TWD and fuzzy concept was discussed by Singh (2017). Furthermore, Singh 
(2018) proposed a lattice combining multi-granularity, TWD and n-valued neutrosophic 
concept. By summarizing various existing sorting methods, Huang et al. (2022) provided 
an approach for sorting the numbers in SVNSs (SVNNs).

In real-world data processing tasks, participants prefer to data with a hierarchical struc-
ture so as to obtain the knowledge of data in different hierarchies, then choose the data in 
a certain hierarchy that best suits their actual needs to proceed with processing. To address 
that above problem, Wu and Leung (2011, 2013) introduced the idea of multi-scale, that 
is, every object may have several values for a single attribute. Aiming at the issue of opti-
mal scale selection (OPS) and reduction (OPR) in multi-scale decision systems (MSDSs), 
numerous scholars have launched discussions. In order to better identify and process the 
hyperspectral image, Dao et al. (2021) propose a novel OPS methodology. Li et al. (2017b) 
initially put forward the concept of the importance of multi-scale attributes and provided a 
simpler step-by-step OPS method. Wu et al. (2018a, b) considered the problem of global 
and local granularity selection in generalized decision systems with incomplete multi-gran-
ular labels and inconsistent generalized MSDSs respectively. Zhang et al. (2022) provided 
an updated way for OPS by using TWD and Hasse diagram.

Taking into account the illustrations above, the motives for this study are summarized 
below:
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(1) The existing researches on MSDSs are almost carried out under symbolic data envi-
ronment, fuzzy data environment, intuitionistic fuzzy data environment and so on. 
Whereas there are few studies on MS-SVNDSs. For the sake of better solving problems 
with indeterminacy in real world, we establish the rough set model of MS-SVNDS.

(2) According to the known research, the introduction of Pawlak rough sets, fuzzy rough 
sets, intuitionistic fuzzy rough sets and so on into MSDSs can effectively simplify data 
and improve the efficiency of rule extraction, so can the combination of single-valued 
neutrosophic rough sets and MSDSs perform better? For this problem, we discuss 
how to obtain optimal scales and optimal scale reducts using multi-scale single-valued 
neutrosophic rough sets and a pair of functions in evidence theory (DS).

(3) The majority of previous studies focused on obtaining an optimal scale reduct of 
MSDSs and then make classification directly. While a good deal of judgments can-
not be made immediately in reality, so it is necessary to introduce deferred decisions. 
Therefore, a novel TWD method on MS-SVNDSs is provided in this paper.

Comparison between this paper and our previous studies and the formation of this paper 
are displayed in Fig. 1. The organization of this paper is as follows. In the next section, we 
review the notions of TWD, SVNSs, MSDSs and DS. In Sect. 3, we construct a rough set 
model of MS-SVNDS and present the corresponding OPS and OPR methods. In Sect. 4, 
we give a novel TWD method. The experimental analyses of our method are carried out in 
Sect. 5. This paper’s work is concluded in Sect. 6.

2  Preliminaries

We review the notions of TWD, SVNSs, MSDSs and DS in this section to facilitate the 
further analysis.

Fig. 1  Comparison and formation of this paper
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2.1  TWD

The following defines the TWD model as it was proposed by Yao (2012).

Definition 1 (Yao 2012). Assume O⊆ is an object set which is non-empty and finite, sup-
pose that va ∶ O⊆

→ Pa and vr ∶ O⊆
→ Pr are respectively the acceptance evaluation func-

tion and the rejection evaluation function on O⊆ , where 
(
Pa,≤a

)
 and 

(
Pr,≤r

)
 are both par-

tially ordered sets. Let P+
a
 and P−

r
 be non-empty subsets of Pa and Pr . Then Three regions 

induced by 
(
va, vr

)
 and 

(
P+
a
,P−

r

)
 are defined as follows:

Considering that it is unnecessary to use two evaluation functions in some practical situ-
ations, va and vr can be combined into one function for evaluation.

Definition 2 (Yao 2012). Given O⊆ , suppose that v ∶ O⊆
→ P is an evaluation function, 

where (P,≤) is a partially ordered set. Given two disjoint non-empty subsets P+ and P− of 
P , three regions induced by v and 

(
P+,P−

)
 are outlined below:

Definition 3 (Yao 2012). Given O⊆ , (P,≤) is a totally ordered set, suppose that v ∶ O⊆
→ P 

is an evaluation function. Given thresholds �, � ∈ P and 𝛽 < 𝛼 , three regions induced by v 
and (�, �) are outlined below:

2.2  SVNSs

To more accurately depict the ambiguity in real-world issues, Wang et al. (2010) provided 
the following SVNSs definition.

(1)POS(P+
a
,P−

r )
�
va, vr

�
=
�
x ∈ O⊆�va(x) ∈ P+

a

⋀
vr(x) ∉ P−

r

�

(2)NEG(P+
a
,P−

r )
�
va, vr

�
=
�
x ∈ O⊆�va(x) ∉ P+

a

⋀
vr(x) ∈ P−

r

�

(3)BND(P+
a
,P−

r )
�
va, vr

�
=

�
x ∈ O⊆�

�
va(x) ∈ P+

a

⋀
vr(x) ∈ P−

r

�
∨�

va(x) ∉ P+
a

⋀
vr(x) ∉ P−

r

�
�

(4)POS(P+,P−)(v) =
{
x ∈ O⊆|v(x) ∈ P+

}

(5)NEG(P+,P−)(v) =
{
x ∈ O⊆|v(x) ∈ P−

}

(6)BND(P+,P−)(v) =
{
x ∈ O⊆|v(x) ∉ P+ ∧ v(x) ∉ P−

}

(7)POS(𝛼,𝛽)(v) =
{
x ∈ O⊆|v(x) ≥ 𝛼

}

(8)NEG(𝛼,𝛽)(v) =
{
x ∈ O⊆|v(x) ≤ 𝛽

}

(9)BND(𝛼,𝛽)(v) =
{
x ∈ O⊆|𝛽 < v(x) < 𝛼

}
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Definition 4 (Wang et  al. 2010). Let U be an object set which is non-empty and 
finite, O =

�
⟨x, TO(x), IO(x),FO(x)⟩�x ∈ U

�
 is a SVNS in U , where TO(x) ∈ [0, 1] rep-

resents the degree of truth, IO(x) ∈ [0, 1] represents the degree of indeterminacy and 
FO(x) ∈ [0, 1] represents the degree of falsity. For ∀x ∈ U , the SVNN in SVNS is noted as (
TO(x), IO(x),FO(x)

)
.

Shi and Ye (2017) further gave the definition of single-valued neutrosophic similarity 
degree.

Definition 5 (Shi and Ye 2017). Let U be an object set which is non-empty and finite, 
there are two SVNSs O1 =

�
⟨xi, TO1

�
xi
�
, IO1

�
xi
�
,FO1

�
xi
�
⟩�xi ∈ U, 1 ≤ i ≤ n

�
 and 

O2 =
�
⟨xi, TO2

�
xi
�
, IO2

�
xi
�
,FO2

�
xi
�
⟩ ���xi ∈ U, 1 ≤ i ≤ n

�
 in U , then.

is defined as the similarity degree between O1 and O2.

Property 1 (Shi and Ye 2017). Given two SVNSs O1 =
�
⟨x, TO1

(x), IO1
(x),FO1

(x)⟩�x ∈ U
�
 

and O2 =
�
⟨x, TO2

(x), IO2
(x),FO2

(x)⟩�x ∈ U
�
 , S

(
O1,O2

)
 is the similarity degree between O1 

and O2 , then

(1) (1)0 ≤ S
(
O1,O2

)
≤ 1;

(2) (2)S
(
O1,O2

)
= S

(
O2,O1

)
;

(3)  If S
(
O1,O2

)
= 1 , then TO1

(x) = TO2
(x) , IO1

(x)=IO2
(x) , FO1

(x) = FO2
(x).

2.3  MSDSs

Definition 6 (Wu and Leung 2011). Tuple S = (U,AT ,V , f ) represents a multi-
scale information system, where U =

{
x1, x2,… , xn

}
 is the universe of discourse, 

AT =
{
a1, a2,… , am

}
 is a non-empty and finite set of conditional attributes, 

∀aj ∈ AT(1 ≤ j ≤ m) can assume various values at various scales. V  is the domain of con-
ditional attributes, f  is a map from U × AT  onto V  . S =

�
U,AT

⋃
{d},V , f

�
 is considered 

to be a MSDS, where d ∉ AT  is a decision attribute.

Above is the definition of the original Wu–Leung model (2011, 2013)). Based on it, Li and 
Hu (2017) provided a novel model definition.

Definition 7 (Li and Hu 2017). Let 
S = (U,AT ,V , f ) =

(
U,

{
ak
j
|k = 1, 2,… , Ij, j = 1, 2,… ,m

}
,V , f

)
 be a multi-scale infor-

mation system, where ak
j
∶ U → Vk

j
 is a surjective mapping and Vk

j
 is the domain of the 

attribute aj on the k th scale. For ∀1 ≤ k ≤ Ij − 1 , there exists a surjective mapping 
g
k,k+1

j
∶ Vk

j
→ Vk+1

j
 such that ak+1

j
= g

k,k+1◦

j
ak
j
 , ak+1

j
(x) = g

k,k+1

j

(
ak
j
(x)

)
 , x ∈ U . Based on 

(10)S
�
O1,O2

�
=

1

n

∑n

i=1

TO1 (xi)TO2 (xi)+IO1 (xi)IO2 (xi)+FO1
(xi)FO2

(xi)√
T2
O1
(xi)+I2O1 (xi)+F

2
O1
(xi)

√
T2
O2
(xi)+I2O2 (xi)+F

2
O2
(xi)
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the above, we consider S =
�
U,AT

⋃
{d},V , f

�
 a MSDS, where d ∉ AT  is a decision 

attribute.

Definition 8 (Li and Hu 2017). Let S =
�
U,AT

⋃
{d},V , f

�
 be a MSDS, 

where each attribute aj has Ij scales (1 ≤ j ≤ m) . There forms a decision sys-
tem SK when attributes a1, a2,… , am are respectively restricted on their lj th 
scale (1 ≤ j ≤ m) , where K =

(
l1, l2,… , lm

)
 is the scale combination of SK in S . 

L =
{(

l1, l2,… , lm
)
|1 ≤ lj ≤ Ij, j = 1, 2,… ,m

}
 is the scale collection of S , which contains 

all the scale combinations in S.

2.4  DS

For better coping with uncertain information and uncertain situations, DS was put forward.

Definition 9 (Niu et al. 2019). Let SK =
�
U,ATK ⋃

{d},V , f
�
 , X ⊆ U , RATK is the equiv-

alent relation on SK , R
ATK (X) and RATK (X) are respectively the lower approximation and 

upper approximation of X w.r.t. RATK . Then the belief function and plausibility function of 
U are respectively defined as

where the corresponding mass function is noted as

Hence for Di ∈ U∕d, there exists

3  OPS and OPR of MS‑SVNDS

We give the definition of the rough set model of MS-SVNDS in this section. The corre-
sponding OPS and OPR methods are further explored. Hence, we have laid the environ-
mental foundation for the discussion of the following TWD method on MS-SVNDS.

(11)Bel
ATK (X) = P

(
R
ATK (X)

)
=

|||RATK (X)
|||

|U|

(12)Pl
ATK (X) = P

(
R
ATK (X)

)
=

|||RATK (X)
|||

|U|

(13)m
ATK (X) =

{
P(X) =

|X|
|U| , X ∈

U

R
ATK

0, X ∉
U

R
ATK

(14)BelATK (d) =
∑

Di∈
U

d

BelATK

�
Di

�
=
∑

Di∈
U

d

�����
R
ATK

_

(Di)
�����

�U�

(15)PlATK (d) =
∑

Di∈
U

d

PlATK

�
Di

�
=
∑

Di∈
U

d

���RATK (Di)
���

�U�
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3.1  MS‑SVNDS

First, we construct the rough set model of MS-SVNDS and give the related properties.

Definition 10 Let MS − SVNDS =
�
U,AT

⋃
{d},V , f

�
 be a multi-scale single-valued 

neutrosophic decision table, where U =
{
x1, x2,… , xn

}
 is the universe of discourse, 

AT =
{
a1, a2,… , am

}
 denotes a non-empty finite set of conditional attributes and each 

aj ∈ AT  has Ij scales (1 ≤ j ≤ m) . When a1, a2,… , am are respectively restricted on their 
lj th (1 ≤ j ≤ m) scale, there form a single-valued neutrosophic decision table SK , where 
K =

(
l1, l2,… , lm

)(
1 ≤ lj ≤ Ij, 1 ≤ j ≤ m

)
∈ L is denoted as the scale combination of 

SK in S and L =
{(

l1, l2,… , lm
)
|1 ≤ lj ≤ Ij, j = 1, 2,… ,m

}
 is the scale collection of S . 

d ∉ AT  is a decision attribute, U∕d =
{
D1,D2,… ,Dm

}
 constitutes an accurate division of 

U . V  is the domain of AT
⋃

{d} and f  : U ×
�
AT

⋃
{d}

�
 → V  is a mapping function. For 

∀x ∈ U, a ∈ AT , f (x, a) =
(
Tx(a), Ix(a),Fx(a)

)(
Tx(a) ∈ [0, 1], Ix(a) ∈ [0, 1],Fx(a) ∈ [0, 1]

)
 

represents the SVNN of object x under the conditional attribute a . The finest scale 
combination K0 =

(
l1 = 1, l2 = 1,… , lm = 1

)
 . For ∀aj ∈ AT(1 ≤ j ≤ m) , we have 

a1
j

(
xi
)
≤ a2

j

(
xi
)
≤ ⋯ ≤ a

Ij

j

(
xi
)
(1 ≤ i ≤ n, 1 ≤ j ≤ m).

Definition 11 Let MS − SVNDS =
�
U,AT

⋃
{d},V , f

�
 , where 

AT =
{
a1, a2,… , am

}
 and each aj ∈ AT  has Ij scales (1 ≤ j ≤ m) , 

scale combination K =
(
l1, l2,… , lm

)(
1 ≤ lj ≤ Ij, 1 ≤ j ≤ m

)
 , for 

∀x ∈ U, a ∈ AT , f (x, a) =
(
Tx(a), Ix(a),Fx(a)

)(
Tx(a) ∈ [0, 1], Ix(a) ∈ [0, 1],Fx(a) ∈ [0, 1]

)
 , 

Di ⊆ U(1 ≤ i ≤ m),

is denoted as the single-valued neutrosophic similarity degree between object x and object 
y in U on K . Then, SK is the single-valued neutrosophic similarity relation induced by K.

is the single-valued neutrosophic similarity set w.r.t. x derived from K.

We call the pairs 
(
SK
_

(
Di

)
, SK

(
Di

))
 as rough sets of Di w.r.t. K in MS − SVNDS . If 

SK
_

(
Di

)
= SK

(
Di

)
 , then Di is called definable w.r.t. K ; if not, Di is called undefinable w.r.t. 

K.
For Di ∈ U∕d , the belief function and plausibility function w.r.t. K are defined below:

(16)SK(x, y) =
1

m

∑m

j=1

Tx

�
a
lj

j

�
Ty

�
a
lj

j

�
+Ix

�
a
lj

j

�
Iy

�
a
lj

j

�
+Fx

�
a
lj

j

�
Fy

�
a
lj

j

�

�
T2
x

�
a
lj

j

�
+I2

x

�
a
lj

j

�
+F2

x

�
a
lj

j

��
T2
y

�
a
lj

j

�
+I2

y

�
a
lj

j

�
+F2

y

�
a
lj

j

�

1 ≤ j ≤ m, 1 ≤ lj ≤ Ij

(17)[x]SK =
∑

y∈U
SK (x,y)

y

(18)SK
_

(
Di

)
(x) =

{
x ∈ U||[x]SK ⊆ Di

}

(19)SK
(
Di

)
(x) =

{
x ∈ U||[x]SK ∩ Di ≠ ∅

}
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Proposition 1 The following properties hold based on Definition 9:

(1) ∀Di ⊆ U , SK
(
D

i

)
⊆ SK

(
D

i

)
;

(2) SK(U) = SK(U) = U;

3.2  OPS of MS‑SVNDS

On the basis of the exposition in the previous section, each object has a set of attributes 
with several scales and each attribute takes on different SVNNs at different scale levels 
when in a MS-SVNDS. Obviously, the workload of directly gaining the rules from such 
a huge amount of data is very difficult and complicated. Therefore, in order to effectively 
solving the problem of knowledge acquisition, we discuss the OPS method of MS-SVNDS 
in this section.

For the purpose of elaborating the OPS method of MS-SVNDS, we first review the lat-
tice model proposed by Li and Hu (Li and Hu 2017) as following.

Definition 12 (Li and Hu 2017). Let K1 =
(
l1
1
, l1
2
,… , l1

m

)
 , K2 =

(
l2
1
, l2
2
,… , l2

m

)
∈ L.

Perceptibly, (1, 1,⋯ , 1) ≤
(
l1, l2,… , lm

)
≤
(
I1, I2,⋯ , Im

)
.

(L,≤,∧,∨) is referred to as a lattice, where L is the scale collection of MS-SVNDS, ≤ is 
a partial relation, ∧ and ∨ respectively stand for the operation of taking the maximum and 
the minimum value.

The definitions of optimal scale combinations of MS-SVNDS are given below.

Definition 13 Let MS − SVNDS =
�
U,AT

⋃
{d},V , f

�
 , where AT =

{
a1, a2,… , am

}
 

and d ∉ AT  constitutes a set of divisions U∕d =
{
D1,D2,… ,Dm

}
 . K =

(
l1, l2,… , lm

)
 

and K0 = (1, 1,… , 1) are respectively a combination in L and the finest combination in L , 
L =

{(
l1, l2,… , lm

)
|1 ≤ lj ≤ Ij, j = 1, 2,… ,m

}
.

(20)BelK(d) =
∑

Di∈
U

d

BelK
�
Di

�
=
∑

Di∈
U

d

����
SK
_
(Di)

����
�U�

(21)PlK(d) =
∑

Di∈
U

d

PlK
�
Di

�
=
∑

Di∈
U

d

���S
K(Di)

���
�U�

(22)K1 ≤ K2 ⟺ l1
j
≤ l2

j
, 1 ≤ j ≤ m

(23)K1 = K2 ⟺ l1
j
= l2

j
, 1 ≤ j ≤ m

(24)K1 < K2 ⟺ K1 ≤ K2 ∧ K1 ≠ K2

(25)K1 ∧ K2 =
(
min

(
l1
1
, l2
1

)
,min

(
l1
2
, l2
2

)
,⋯ ,min

(
l1
m
, l2
m

))

(26)K1 ∨ K2 =
(
max

(
l1
1
, l2
1

)
,max

(
l1
2
, l2
2

)
,⋯ ,max

(
l1
m
, l2
m

))
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(1) If there exists BelK(d) = BelK0
(d) , K is then considered as a consistent belief scale. 

Based on above, if there always exists BelK�(d) ≠ BelK0
(d) for ∀K� ∈ L that satisfies 

K′ > K , K is then considered as an optimal belief scale.
(2) If there exists PlK(d) = PlK0

(d) , K is then considered as a consistent plausibility scale. 
Based on above, if there always exists PlK�(d) ≠ PlK0

(d) for ∀K� ∈ L that satisfies 
K′ > K , K is then considered as an optimal plausibility scale.

In view of the above, we give the OPS algorithm of MS-SVNDS in the following.

Algorithm 1 Optimal belief scale selection algorithm of MS-SVNDS

In the above algorithm, we first initialize � to be equal to the scale collection L . Next, 
we separately compute the belief functions w.r.t. K0 and K(∀K ∈ L) . By comparing the 
belief functions w.r.t. the above two, we determine whether to delete or retain K , i.e. delete 
K whose belief function is different from the belief function w.r.t. K0 . Then, we delete all 
scales finer than the reserved scales and obtain the optimal belief scales of MS-SVNDS.

One can achieve the optimal plausibility scale selection procedure of MS-SVNDS by 
replacing BelK0

(d) with PlK0
(d) and replacing BelK(d) with PlK(d) . Apparently, Algo-

rithm 1’s time complexity is O
�
n2

∏m

j=1
Ij

�
.

3.3  OPR of MS‑SVNDS

After selecting the optimal scales of MS-SVNDS, we acquire the coarsest scales that are 
coordinated with the finest scale, which effectively simplifies the data. However, not all 
attributes in MS-SVNDS are necessary and some of them may lead to redundancy. Thus, 
we discuss the acquisition of optimal scale reducts of MS-SVNDS in this section.

We start by providing the following description of sub-scale. Then, the OPR approach 
of MS-SVNDS is subsequently presented.

Definition 14 LetMS − SVNDS =
�
U,AT

⋃
{d},V , f

�
 , K =

(
l1, l2,… , lm

)
∈ L , sub-

scale K⊆ =
(
−,⋯ ,−, li,−,… ,−, lj,−,⋯ ,−

)
⊆ K, L is the scale collection of MS-

SVNDS. When there existsK⊆ ⊂ K , K⊆ is said to be a proper sub-scale, where "-" denotes 
the deletion of the relevant attribute.



 X. Yang et al.

1 3

109 Page 10 of 21

Definition 15 Let MS − SVNDS =
�
U,AT

⋃
{d},V , f

�
 , K =

(
l1, l2,… , lm

)
∈ L , 

K⊆ ⊆ K , U∕d =
{
D1,D2,… ,Dm

}
.

(1) If BelK⊆ (d) = BelK(d) is met, then K⊆ is called as a consistent belief sub-scale of K . 
When K⊆ is the only one that meets the above conditions, K⊆ is referred to as a consist-
ent belief scale reduct of K.

(2) If PlK⊆ (d) = PlK(d) is met, then K⊆ is called as a consistent plausibility sub-scale of 
K . When K⊆ is the only one that meets the above conditions, K⊆ is referred to as a 
consistent plausibility scale reduct of K.

Evidently, we can get the reducts of all optimal scales according to the above method. 
In order to handle the circumstance that we need to quickly obtain a set of the most refined 
knowledge in real life more effectively, we provide an algorithm to directly obtain an opti-
mal scale reduct of MS-SVNDS.

Algorithm 2 Obtaining an optimal belief scale reduct of MS-SVNDS

In Algorithm 2, we first initialize AT′ to be equal to the conditional attribute set AT  
and K′ to be equal to the finest scale K0 . Next, we separately compute the belief functions 
w.r.t. K′ and K��

{
aj
}
(∀K ∈ L) . We delete aj when the belief function w.r.t. K′∖

{
aj
}
 are 

the same as the belief function w.r.t. K′ . Otherwise, we raise the scale level of the reserved 
aj to the maximum under the condition of keeping the belief function unchanged. After 
checking the conditional attributes one by one and outputting the final K′ , we acquire an 
optimal belief scale reduct of MS-SVNDS.

The algorithm for calculating an optimal plausibility scale reduct of MS-SVNDS can be 
obtained by replacing all belief functions with plausibility functions. Apparently, Algo-
rithm 2’s time complexity is is O

�
n2

∏m

j=1
Ij

�
.
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4  A TWD method on MS‑SVNDS

In the previous section, we construct the rough set model of MS-SVNDS, the selection and 
reduction of the optimal scale combinations are also investigated. Thus the effective knowl-
edge in the decision table can be obtained and reliable decisions can be made. However, con-
sidering that not all decision problems in reality can get two diametrically opposed results, we 
introduce TWD method to classify objects into three different categories: non-commitment, 
rejection and acceptance, thereby forming more accurate decision results.

In the contents that follow, we address the TWD issue directly based on the optimal 
scale reduct obtained by Algorithm 2.

Definition 16 Let OP − SVNDS =
�
U,AT

⋃
{d},V , f

�
 , where U =

{
x1, x2,… , xn

}
 and 

AT =
{
−,⋯ ,−, a

li
i
,−,… ,−, a

lj

j
,−,⋯ ,−

}(
1 ≤ i ≤ j ≤ m, 1 ≤ li, lj ≤ Ij

)
 , each conditional 

attribute in AT  is restricted on its local optimal scale level and “ − ” represents that the cor-
responding conditional attribute is deleted. For 
∀x ∈ U, a ∈ AT , f (x, a) =

(
Tx(a), Ix(a),Fx(a)

)(
Tx(a) ∈ [0, 1], Ix(a) ∈ [0, 1],Fx(a) ∈ [0, 1]

)
 . 

OP =
{
−,⋯ ,−, li,−,… ,−, lj,−,⋯ ,−

}
 is the scale combination of OP − SVNDS.

is denoted as the single-valued neutrosophic similarity function on OP , where n ∈ (0, m] is 
the number of reserved conditional attributes in AT .

is the �-level ( � ∈ (0, 1] ) single-valued neutrosophic similarity class w.r.t. x derived from 
OP , where SOP

�
 is called a �-level single-valued neutrosophic similarity relation.

Definition 17 Let OP − SVNDS =
�
U,AT

⋃
{d},V , f

�
 and �(O1,O2) =

|O1∩O2|
|O1|  be an 

evaluation function. Given thresholds �, � ∈ (0, 1] and 𝛼 > 𝛽 . For any O ⊆ U,

Proposition 2 Given a three-way decision model 
(
U, SOP

�
,�, �, �

)
 , for 

O1,O2,O3 ⊆ UandO1 ⊆ O2 , if there exists �
(
O3,O1

)
≤ �

(
O3,O2

)
 , then

(1) POS(𝛼,𝛽)
(
O1

)
⊆ POS(𝛼,𝛽)

(
O2

)
;

(2) NEG(𝛼,𝛽)

(
O2

)
⊆ NEG(𝛼,𝛽)

(
O1

)
.

(27)SOP =
1

n

∑m

j=1

Tx

�
a
lj

j

�
Ty

�
a
lj

j

�
+Ix

�
a
lj

j

�
Iy

�
a
lj

j

�
+Fx

�
a
lj

j

�
Fy

�
a
lj

j

�

�
T2
x

�
a
lj

j

�
+I2

x

�
a
lj

j

�
+F2

x

�
a
lj

j

��
T2
y

�
a
lj

j

�
+I2

y

�
a
lj

j

�
+F2

y

�
a
lj

j

�

aj ≠ −, 1 ≤ j ≤ m, 1 ≤ lj ≤ Ij

(28)[x]SOP
�

=
{
y ∈ U|SOP(x, y) ≥ �

}

(29)POS(�,�)(O) =
{
x ∈ U|�

(
[x]SOP

�
,O

)
≥ �

}

(30)NEG(�,�)(O) =
{
x ∈ U|�

(
[x]SOP

�
,O

)
≤ �

}

(31)BND(𝛼,𝛽)(O) =
{
x ∈ U|𝛽 < 𝜑

(
[x]SOP

𝜔
,O

)
< 𝛼

}
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Proof (1) Obviously, for ∀x ∈ POS(�,�)
(
O1

)
 , there is �

(
[x]SOP

�
,O1

)
≥ � . Considering that 

�

(
[x]SOP

�
,O2

)
≥ �

(
[x]SOP

�
,O1

)
 , we have �

(
[x]SOP

�
,O2

)
≥ � , which represents that 

x ∈ POS(�,�)
(
O2

)
 . Therefore, we obtain that POS(𝛼,𝛽)

(
O1

)
⊆ POS(𝛼,𝛽)

(
O2

)
.

(2) For ∀x ∈ NEG(�,�)

(
O2

)
 , there is �

(
[x]SOP

�
,O2

)
≤ � . According to 

�

(
[x]SOP

�
,O1

)
≤ �

(
[x]SOP

�
,O2

)
 , we have �

(
[x]SOP

�
,O1

)
≤ � , which represents that 

x ∈ NEG(�,�)

(
O1

)
 . Therefore, we obtain that NEG(𝛼,𝛽)

(
O2

)
⊆ NEG(𝛼,𝛽)

(
O1

)
.

On an optimal scale reduct of MS-SVNDS, we present the specific algorithm for the 
TWD approach as follows.

Algorithm 3 The algorithm of TWD method

5  Experimental analysis

In this section, we employ experimental analysis to confirm the accuracy and viability of 
our method. Figure 2 shows the experimental process. The experiment was conducted with 
MATLAB R2022a. We utilize seven UCI data sets to assess the efficacy of our method, 
i.e. Wine, Iris, Algerian Forest Fires, Glass, Thyroid, Bupa and Seeds. Table 1 shows these 
data sets’ specifics.

All data sets are preprocessed before the evaluation experiment. Since the seven data 
sets are all single-scale, the multi-scale environments of them are firstly constructed. Use 
the data set Thyroid as an illustration. Figure 3 and 4 present the feature distribution and 
visualization of Thyroid. Based on the approach in Wu and Leung (2011), we first find out 
the maximum and minimum values of each feature in Thyroid and do subtraction between 
the two. Then the difference value obtained from each feature can be divided by 4 to get a 
4-value interval 

[
i−1

4

(
Amax − Amin

)
,
i

4

(
Amax − Amin

)]
 as the value on the coarser scale level, 

and so on to construct multiple scale hierarchies. After the above steps, the scale levels of 
features in Thyroid are finally set to (1,3,2,2,3).
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After constructing the multi-scale environment, we then convert all the data in data set 
into SVNNs. We start by calculating the Euclidean distance between each feature value and 
the maximum, minimum, and average values in the feature column, then use the absolute 
value that results from deducting the normalized distance from 1 to determine the degree to 
which the feature in the data set is true, indeterminate or false. Thus, we have established a 
rough set model of MS-SVNDS in the data set.

In the next step, we employ our Algorithm 2 to acquire an optimal scale reduct based 
on the established model. First, we calculate the belief function when all the features are 
at the first scale level, and then eliminate each feature one at a time to determine whether 
the belief function following the removal of a particular feature is equivalent to the belief 
function before. If so, confirm the deletion; If not, the belief function on the coarse scale of 
the feature is examined to see if it equals the original belief function. If they are the same, 
the scale hierarchy of the feature will be upgraded accordingly; if they are not, the original 
scale hierarchy of the feature will be kept. The final scale level of the feature is the maxi-
mum value that satisfies the above equality condition. Thus, we can get an optimal scale 
reduct of the data set, which simplifies the data to some extent.

Still take Thyroid as an example. The reserved features of Thyroid after OPR and their 
corresponding scale levels are (1,2,2,2,0), in which the feature of ‘0’ represents deleted. 
The feature distribution and visualization of Thyroid after processing are shown in Fig. 5 
and 6.

Table 1  Datasets details No Data sets Instances Number of 
features

Num-
ber of 
classes

1 Wine 178 13 3
2 Iris 150 4 3
3 Fire 244 10 2
4 Glass 214 9 6
5 Thyroid 215 5 3
6 Bupa 345 6 2
7 Seeds 199 7 3

Fig. 2  Experimental flow chart
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As shown in Table 2, we construct a multi-scale environment in each data set. By using 
our algorithm to process the multi-scale data sets, several redundant features are deleted 
and the scale level of some features is improved, thus effectively simplifying the data. The 
average classification accuracy of the comparison algorithm in Wang et al. (2023) and our 
algorithm obtained by 5 times of tenfold cross validation with KNN algorithm is shown 
in Table  3. Apparently, our algorithm can obtain relatively high average classification 
accuracy with simplified data sets, and the classification performance of our algorithm is 
improved compared with the comparison algorithm, which verifies the effectiveness and 
feasibility of our algorithm. The comparison of the experimental results is shown in Fig. 7 
and 8.

To carry out further tests, we employ the win/draw/loss analysis presented by Chen 
et al. (2020) for sign and binomial test of classification accuracy. A total of 50 test samples 
of classification accuracy are obtained by performing 5 times of tenfold cross validation 
using the comparison algorithm and our algorithm. The p values here are the two-tail sign 
and binomial test results. It can be clearly concluded from Table 4 that our algorithm can 
achieve better classification effects.

Fig. 3  Feature distribution of Thyroid

Fig. 4  Visualization of Thyroid
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Upon the simplification of the data set, we recalculate the similarity degree between the 
objects and divide them into ω-level similarity classes by setting the similarity threshold 
ω. We finally get the partition of objects by comparing the evaluation values of ω-level 

Fig. 5  Feature distribution of Thyroid after reduction
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similarity classes and subsets of objects with the introduced thresholds � and � . The three-
way decision results of data set Thyroid are shown below, where � is set to 0.7259.

The processed data set Thyroid consists of 215 alternatives and 4 features. The scale 
levels of 4 features are respectively 1, 2, 2, 2. From the classification results of Thyroid 
in Table  5, we can find that 35 alternatives are considered to belong to POS(F) , 34 

Fig. 6  Visualization of Thyroid after reduction
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Fig. 7  Comparison of number of features

Fig. 8  Comparison of classification accuracy

Table 2  OPS and OPR results No Data sets Set scale Final scale

1 Wine (3,2,2,2,2,3,3,2,2,2,3,3,2) (1,0,2,2,0,0,2,0,2,0,1,1,2)
2 Iris (3,2,3,2) (0,0,3,2)
3 Fire (3,2,2,3,3,2,3,2,2,2) (1,2,1,0,3,0,0,1,2,1)
4 Glass (3,2,3,2,2,2,2,3,2) (0,0,1,1,1,1,1,1,2)
5 Thyroid (1,3,2,2,3) (1,2,2,2,0)
6 Bupa (3,3,2,3,2,2) (1,1,2,3,0,1)
7 Seeds (3,2,2,2,3,2,2) (0,2,0,1,2,2,2)
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alternatives are considered to belong to BND(F) and 146 alternatives are considered 
to belong to NEG(F) in view of Class 2. It means that it can be confirmed that Class 2 
contains at least 35 alternatives, 34 alternatives need further inspection to conclusively 
confirm whether they fall into Class 2 and 146 alternatives belong to other classes. The 
classification of all alternatives is effectively achieved. The effectiveness and feasibility of 
our approach is therefore validated.

6  Conclusions

We have designed a TWD method on MS-SVNDS in this paper. Considering the inad-
equacy of existing rough set models in describing uncertainty, we employ the theory of 
SVNSs, MSDSs and DS so as to construct a rough set model of MS-SVNDS. To address 

Table 3  Classification results

No Data sets Number of reserved 
features

Classification accuracy of 
comparison algorithm (%)

Classification accu-
racy of our algorithm 
(%)

1 Wine 8 91.16 91.41
2 Iris 2 89.12 89.36
3 Fire 7 92.99 93.32
4 Glass 7 61.69 61.89
5 Thyroid 4 85.98 86.25
6 Bupa 5 58.88 59.01
7 Seeds 5 91.97 92.17

Table 4  Statistical test results

Wine Iris Fire Glass

W/D/L p W/D/L p W/D/L p W/D/L p

19/21/10 0.2026 19/19/12 0.3222 24/18/8 0.0328 17/19/14 0.6718

Thyroid Bupa Seeds Total

W/D/L p W/D/L p W/D/L p W/D/L p

23/20/7 0.0328 15/22/13 0.8877 18/17/15 0.6718 135/136/79 0.0032

Table 5  Classification results of all alternatives in the data set ‘Thyroid’

Category � � Number of alternatives 
in POS(F)

Number of alternatives 
in BND(F)

Number of 
alternatives in 
NEG(F)

Class 1 3/4 1/2 82 118 15
Class 2 1/7 1/8 35 34 146
Class 3 1/6 1/7 6 90 119
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the knowledge acquisition issues involved in MS-SVNDS, we present the corresponding 
OPS and OPR approaches. Based on an optimal scale reduct of MS-SVNDS, we provide 
a novel TWD method to implement the classification. The experimental analysis is finally 
carried out to verify our method. The experimental results show that our method is reliable 
and effective.

The following list includes this paper’s significant contributions and advantages:

(1) A rough set model of MS-SVNDS is established. Compared with other existing models, 
our model has significantly improved the processing ability of inaccurate and uncertain 
information. At the same time, the model is closer to the real life needs and data col-
lection way.

(2) The OPS and OPR methods for MS-SVNDS are proposed. Through the above meth-
ods, we can obtain the simplified effective knowledge in MS-SVNDS according to the 
actual needs. And the classification performance based on the knowledge obtained by 
our method is better.

(3) A TWD method on MS-SVNDS is given. The method differs from other methods in 
that it is based on simplified effective knowledge and the knowledge is in the form of 
SVNNs. More reliable classification and decision results can be obtained by using our 
method.

For our method, there exists two main limitations:

(1) The introduction of SVNSs allows for a more detailed description of the data, but also 
leads to a much higher volume of data in pre-processing.

(2) Our proposed TWD method is based on an obtained optimal scale reduct of MS-
SVNDS. Although it can effectively implement classification, the operation is com-
plicated.

Some of our considerations for future research topics are as follows:

(1) We will further explore the integration of SVNSs and MSDSs.
(2) We will further explore how to apply TWD method to the knowledge acquisition in 

MSDSs.
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