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Abstract
With the increasing data availability in wind power production processes due to advanced 
sensing technologies, data-driven models have become prevalent in studying wind power 
prediction (WPP) methods. Deep learning models have gained popularity in recent 
years due to their ability of handling high-dimensional input, automating data feature 
engineering, and providing high flexibility in modeling. However, with a large volume of 
deep learning based WPP studies developed in recent literature, it is important to survey 
the existing developments and their contributions in solving the issue of wind power 
uncertainty. This paper revisits deep learning-based wind power prediction studies from 
two perspectives, deep learning-enabled WPP formulations and developed deep learning 
methods. The advancement of WPP formulations is summarized from the following 
perspectives, the considered input and output designs as well as the performance evaluation 
metrics. The technical aspect review of deep learning leveraged in WPPs focuses on its 
advancement in feature processing and prediction model development. To derive a more 
insightful conclusion on the so-far development, over 140 recent deep learning-based WPP 
studies have been covered. Meanwhile, we have also conducted a comparative study on 
a set of deep models widely used in WPP studies and recently developed in the machine 
learning community. Results show that DLinear obtains more than 2% improvements by 
benchmarking a set of strong deep learning models. Potential research directions for WPPs, 
which can bring profound impacts, are also highlighted.

Keywords Wind power prediction · Deep learning methods · Spatial–temporal data · 
Latent feature engineering · Neural networks-based models
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AS  Atomic search
Bi-LSTM  Bi-directional LSTM
CNN  Convolutional neural network
CRPS  Continuous ranked probability score
CS  Cuckoo search
CSA  Clonal selection algorithm
CSO  Crisscross optimization
CWC   Coverage width-based criterion
DA  Dragonfly algorithm
DBN  Deep belief network
DL  Deep learning
DL-WPP  Deep learning based WPP
DNN  Deep neural network
DT  Decision tree
ELM  Extreme learning machine
EMD  Empirical mode decomposition
EN  Elastic net
EWT  Empirical wavelet transform
GA  Genetic algorithm
GCN  Graph convolutional neural network
GMM  Gaussian mixture model
GNN  Graph neural network
GRU   Gated recurrent unit
GS  Grid search
GWO  Grey wolf optimization
KDE  Kernel density estimation
KF  Kalman filters
LASSO  Least absolute shrinkage and selection operator
LR  Linear regression
LSTM  Long short term memory
LUBE  Lower upper bound estimation
MAE  Mean absolute error
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1 Introduction

Wind power is a critical pillar in the pursuit of global carbon neutrality, and its installation 
capacity has steadily increased in recent decades as reported by Global Wind Energy 
Council (GWEC 2022). This upward trend provides a solid foundation for powering our 
society with clean and renewable energy, while also mitigating the environmental pollution 
caused by fossil fuels. However, the volatility of wind power and its increasing penetration 
pose new challenges to the safety and stability of power grid operations. Studying wind 
power prediction (WPP) is critical and valuable because accurate results can facilitate 
power grids and wind farms to better manage the wind power generation uncertainty. 
Accurate wind power predictions can benefit many downstream applications, such as more 
efficient wind power integration (Wang et al. 2019a), intelligent market operations (Usaola 
et al. 2004), and monitoring wind turbine performance (Ma et al. 2014). WPP has become 
a classical problem in the renewable energy field and has attracted a large volume of studies 
(Landberg 1999; Liu et al. 2010; Liu et al. 2021b, c, d, e, a; Woo et al. 2019). These studies 
persistently aim to develop new technologies that achieve state-of-the-art performance in 
terms of accuracy and reliability.

In the literature, various approaches have been proposed for improving the accuracy of 
wind power predictions. The advancements in this field can be analyzed from two aspects, 
the problem formulation and methodological advancement, as displayed in Fig. 1. The for-
mulation of the WPP problem can be further categorized based on input and output design 
considerations. Early studies attempted to estimate wind power using environmental and 
physical attributes (Landberg 1999), such as the topological information and meteoro-
logical information, with integrating wind power conversion dynamics or historical wind 
power generation records (Liu et  al. 2010). With the wide deployment and continuous 
advancement of supervisory control and data acquisition (SCADA) systems in commercial 
wind farms, recent studies (Liu et al. 2021d; Woo et al. 2019; Khodayar and Wang 2018) 
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have attempted to learn spatial–temporal correlations from the SCADA data to future wind 
power. To analyze temporal correlations, multivariate time series data were used to reflect 
the system dynamics, while to learn spatial correlations due to environmental factors, data 
collected from different sites were integrated into a tensor (Liu et al. 2021d). Another study 
(Woo et al. 2019) projected wind turbines into a 2-dimensional grid to reflect their geo-spa-
tial relationship while such strategy might lose its effectiveness in cases that turbines were 
sparsely distributed. An alternative solution (Khodayar et  al. 2018) involved organizing 
wind turbines into a graph constructed using locations and mutual information. Existing 
WPP studies can also be categorized based on various output considerations, which include 
the power output level, prediction horizon, and prediction type. Prediction of wind power 
outputs has been studied at three levels, the region, wind farm, and wind turbine. Depend-
ing on the prediction horizon, WPP tasks can be classified as short-term (0–6h ahead), 
medium-term (6–24h ahead), or long-term prediction (more than 24h ahead) (Khodayar 
et al. 2018). According to the considered output type, WPP tasks are classified into deter-
ministic and probabilistic predictions. Deterministic predictions provide estimated spot val-
ues of future wind power while probabilistic predictions quantify the uncertainty of future 
wind power by inferring confidence intervals, quantiles, or even distributions.

Metrics for assessing the performance of WPP constitute another important 
consideration in problem formulation. The choice of evaluation metric depends on the type 
of WPP tasks. For deterministic WPP tasks, RMSE is the most widely used evaluation 
metric. Other metrics, such as mean absolute error (MAE), mean absolute percentage 
error (MAPE), and their standard deviations, are also meaningful for measuring WPP 
performance from different perspectives. In probabilistic WPP tasks, well-known 
and commonly used metrics include continuous ranked probability score (CRPS) and 
prediction interval coverage probability (PICP).

In addition to the problem formulation, WPP studies can also be categorized based 
on methodological development as shown in the right part of Fig.  1. Existing efforts in 
studying WPP methods have been devoted into two directions, physics-based and data-
driven. Physics-based methods (Landberg 1999) focused on developing WPP models 
based on physical attributes and principles. On the other hand, data-driven methods 
(Sideratos and Hatziargyriou 2007; Brown et  al. 1984; Treiber et  al. 2016; Madhiarasan 
and Deepa 2017) focused on developing models for estimating future wind power outputs 
based on SCADA data and even a joint consideration of SCADA data as well as historical 
measurements and predictions of physical and environmental attributes. Three series of 

Fig. 1  The categorization of WPP studies in literature
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data-driven models (Sideratos and Hatziargyriou 2007) have been developed in literature, 
statistical models (Brown et  al. 1984), classical machine learning (ML) models (Treiber 
et  al. 2016), and recent deep learning (DL)-based models (Madhiarasan and Deepa 
2017). Statistical models include time series models, such as persistent method (PM) 
(Bludszuweit et  al. 2008), auto-regressive integrated moving average (ARIMA) (Chen 
et al. 2009), and Kalman filters (KF) (Bossanyi 1985), which model historical patterns of 
wind power to estimate its future, as well as linear regression (LR) models, such as least 
absolute shrinkage and selection (LASSO) (Cavalcante et  al. 2017), which incorporates 
data of exogenous factors in addition to the consideration of historical wind power 
records. Classical machine learning algorithms, such as support vector regressor (SVR) 
(Zendehboudi et al. 2018), shallow neural networks (SNN) (Wang et al. 2021b), tree-based 
models like decision tree (DT) for regression (Heinermann and Kramer 2016) and random 
forest (RF) for regression (Lahouar and Slama 2017), etc., have been applied to model 
nonlinearities in wind power generation using SCADA data. With the recent development 
of deep learning, there has been increasing interest in applying DL-based models for better 
WPP performance. Recent DL-based models include classical ones, such as deep neural 
network (DNN) (Methaprayoon et  al. 2007), convolutional neural network (CNN) (Liu 
et al. 2021d), recurrent neural network (RNN) (Cali and Sharma 2019), as well as latest 
ones, such as graph neural network (GNN) (Wu et al. 2022), attention-based model (AM) 
(Tian et al. 2022) and Physics-informed graph network (PINN) (Pombo et al. 2022).

DL-based methods have brought unique advantages on data processing and feature 
engineering into WPP modeling. Convolutional and recurrent mechanisms automate the 
process of embedding a vast input space from spatial and temporal aspects to derive a low-
dimensional representation. Researchers have hypothesized that this new data processing 
paradigm carries a larger scope of information in data to benefit WPPs. Two well-known 
variants of RNN models, long short term memory (LSTM) (Liu et al. 2019b, a) and gated 
recurrent unit (GRU) (Liu et al. 2022b, a), have been frequently applied to extract temporal 
patterns of wind power data. Signal processing techniques, such as the empirical mode 
decomposition (EMD) (Abedinia et  al. 2020), variational mode decomposition (VMD) 
(Abdoos 2016), and SSA (Dong et al. 2017), have been used to filter out noises and extract 
data fluctuation modes to facilitate recurrent neural networks to better learn latent patterns 
in time series for WPPs.

DL techniques have been developed to solve both deterministic and probabilistic WPP 
tasks. Various DL-based structures (Lahouar and Slama 2017; Methaprayoon et al. 2007; 
Liu et  al. 2021d; Cali and Sharma 2019) have been developed for direct inference of 
deterministic values of future wind power outputs. To perform probabilistic WPP tasks, 
DL-based models have been extended for the quantile regression (QR) (Nielsen et  al. 
2006), lower upper bound estimation (LUBE) (Khosravi and Nahavandi 2013), kernel 
density estimation (KDE) (Bessa et al. 2012), and mixture density network (MDN) (Zhang 
et al. 2020a, b, c). In a few studies, clustering algorithms, such as K-means (Wang et al. 
2018), C-means (Yang et al. 2021a), EM (Liu et al. 2018a, b, c), etc., have been employed 
to group wind power time series into different clusters representing different wind power 
fluctuation patterns, which help specify deep learning models into prediction scenarios.

Although deep learning has proven effectiveness in processing large volumes of 
data, its robustness and generalization ability across different WPP tasks still require 
further improvement. One possible reason for this is the fact that the hyperparameters 
and configurations of deep models, such as the number of layers and neurons in each 
layer, can greatly affect their performance. To address this challenge, a number of 
optimization algorithms have been developed, such as the grid search (GS) (Zhang et al. 
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2014), cuckoo search (CS) (Li et al. 2021), genetic algorithm (GA) (Huang et al. 2015), 
particle swarm optimization (PSO) (Amjady et  al. 2011), and grey wolf optimization 
(GWO) (Lu et al. 2020), which aim to attain the optimal architecture for a given deep 
learning model. Another attempt observed is incorporating attention mechanism for 
dynamically processing features after the input or latent layers to adaptively respond 
WPP scenarios (Yang and Zhang 2021). An emerging trend is developing PINN based 
WPP models (Huang and Wang 2022). Physics and domain knowledge were leveraged 
to better govern the network design and prediction performance to enable a better 
generalization in WPPs (Lagomarsino-Oneto et al. 2023).

This paper provides a survey of recent WPP studies powered by deep learning 
from two dimensions, the WPP formulations and WPP methods. We discuss recent 
innovations in WPP formulations in terms of the input designs, output types, and 
evaluation metrics. In terms of methodology, this paper offers a systematic summary 
of recent advancements in four main components of many deep learning-based WPP 
(DL-WPP) modeling pipelines, the input signal processing, data pattern clustering, 
latent feature engineering, and model architecture optimization. In addition, we review 
three types of learning schemes based on these four components. The review focuses 
particularly on the latent feature engineering component, which is a significant benefit 
of deep learning due to its ability to accommodate high-dimensional input space and 
automate the engineering of latent features representing such input space. Based on the 
characteristics of the deep learning models, 28 deep learning network configurations 
covered in this review are grouped into 8 types. Finally, future research directions are 
discussed by analyzing the limitations of current WPP studies and identifying the hot 
spots of great potential for benefiting the technical development in WPP studies. The 
contributions of this paper can be summarized as follows.

• Compared with existing WPP reviews (Vargas et al 2019; Qian et al. 2019; Khalid 
and Javaid 2020; Wang et  al. 2021c, 2016, 2020; Jung and Broadwater 2014; 
Marugán et  al. 2018; Liu et  al. 2020a, b), which commonly listed a large set of 
reported WPP methods, this paper surveyed the literature with jointly landing 
discussions in the WPP problem formulation evolution as well as the mechanism 
advancement in data-driven WPP from classical models to carefully generate a 
clearer image on the WPP advancement driven by the recent rapid DL development.

• This paper sheds light on surveying over 140 recent studies investigating DL-WPP 
methods. Based on this comprehensive analysis of recent state-of-the-art studies, 
this paper provides a high-level overview of the current frontiers of data-driven 
WPPs.

• This paper serves as an interface for accessing emerging WPP developments, 
indexing them from multiple perspectives. Readers can quickly refer to their 
interested WPP studies according to the data organization, feature engineering, 
evaluation metrics, deep learning-based modeling frameworks, etc.

• This paper provides details of current state-of-the-art DL-based modeling methods, 
guiding the audience to replicate these WPP models. Meanwhile, a comparative 
analysis of the performance of latest DL-based WPP models is conducted based 
on datasets of three commercial wind farms to facilitate the audience to further 
understand the effectiveness of these models on WPP tasks.

• Discussions of the up-to-date promising future research directions are provided 
via analyzing the limitations of existing WPP studies and identifying new DL hot 
spots for possibly advancing WPP performance. These future trends aim to serve as 
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guidance for researchers to study more advanced WPP methods leading to a more 
accurate and reliable WPP performance.

The remaining parts of this paper are organized as follows. Section 2 summarizes recent 
DL-WPP studies in terms of the problem formulations. Section 3 revisits and elaborates 
details of emerging deep learning-based methods for WPP tasks. Section  4 provides a 
discussion of promising future research trends and Sect. 5 concludes the insights of this 
survey study.

2  Data‑driven wind power prediction problem formulation

Let x represent the input data related to wind power generations and y represent the actual 
wind power output. The objective of data-driven WPP studies is to develop a model f (⋅) 
that predicts the wind power output, where the predicted output is denoted by ŷ = f (x) . 
Typically, the model f (⋅) is trained by minimizing the error measures between the 
prediction ŷ and the true value y.

Based on this formulation, new developments have occurred on the design of input 
x and the output y considered in WPP studies. Along with the innovation in problem 
formulation, we also observe new developments in metrics for more effectively evaluating 
WPP performance. Thus, a survey from this perspective is also needed. In this section, we 
first review on the scope of the considered input x and its organization forms. Then, we 
summarize the different settings of output y considered in WPP studies. Finally, we survey 
the evaluation metrics used in WPP tasks.

2.1  WPP input and its organization

As shown in Table  1, recent WPP studies have mainly focused on numerical weather 
predictions (NWP) and SCADA data as inputs. The NWP input data, x ∈ ℝ

T×NNWP , where 
T  represents the length of the sequence and NNWP represents the number of NWP attributes 
(e.g., the predicted temperature and wind speed), have been utilized in WPP model 
development (Bessa et  al. 2012). These NWP data are usually extracted from the data 
provided by other weather forecasting sources. For example, in studies (Hong et al. 2016; 
Klinges et al. 2022; Kokkos et al. 2021), the NWP data extracted from the global gridded 
weather data were utilized to enable the consideration of gridded macroclimatic variables 
as the input.

Wind turbine SCADA data is another frequently employed data source for developing 
inputs x ∈ ℝ

T×NSCADA , where NSCADA describes the number of SCADA attributes, e.g., the 
historical wind power, historical wind power ramp, wind speed, wind direction, generator 
torque, blade pitch angle, etc., in WPP studies (Methaprayoon et al. 2007; Liu et al. 2021b, 
c, d, e, a). With the advancement of the SCADA system, more related attributes become 
available for enhancing WPP. Several recent studies (Valsaraj et  al. 2020, 2022; Külüm 
et al. 2023; Weide et al. 2022) targeted at enriching the information supply for WPP tasks 
by including anemometric data collected at higher heights, which aimed to overcome the 
deficit of anemometers mounted on the back end of the turbine nacelle on measuring wind 
speeds.
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A joint consideration of both weather and historical data as the input for WPP tasks 
has also been reported (Ghadi et  al. 2014; Cali et  al. 2019). Both NWP and SCADA 
attributes were simply integrated into one input described as x = [xNWP, xSCADA] , where 
xNWP ∈ ℝ

TNWP×NNWP represents the part containing NWP data, xSCADA ∈ ℝ
TSCADA×NSCADA rep-

resents the input SCADA data, TNWP is the time length of NWP data considered, and 
TSCADA is the time length of SCADA data considered.

To incorporate more relevant attributes and enrich WPP input, recent studies (Pombo 
et  al. 2022; Huang and Wang 2022; Li and Zhang 2022; Zhang and Zhao 2021) have 
also considered applying the physics-informed methods to augment data and improve 
accuracy. Such efforts jointly consider knowledge from astronomy, fluid dynamics, 
power curve modelling, and the spatiotemporal correlation among sensors and actuators. 
Astronomy knowledge usually comprises of the solar position, which can be extracted 
by means of the azimuth and elevation angles, as well as the weather conditions which is 
usually captured by installed cameras. Fluid dynamics consider the flux which measures 
a quantity’s flow rate carried by a moving fluid per unit of normalized area, as well 
as the turbulence intensity which evaluates the level of velocity fluctuation of a fluid. 
Power curve presents the relationship between wind speed and output power.

To further improve WPP performance, studies (Liu et  al. 2021d; Woo et  al. 2019; 
Khodayar and Wang 2018) have explored incorporating higher dimensional informa-
tion from data sources to build more meaningful WPP inputs. Data considered in the 
input was expanded from a single wind turbine or a single wind farm site to a group of 
its neighbors with a size P which enables a consideration of the spatial influences, such 
as the wake effects, geostrophic wind, ground roughness, etc., as shown in Fig. 2. These 
studies (Liu et al. 2021d; Woo et al. 2019; Khodayar and Wang 2018) organized high 
dimensional input data using three strategies, the stacking, projection, and graph-based 
model. Meanwhile, although the following description is offered with using the SCADA 
data as an illustrative example, the joint consideration of meteorological measurements 
and predictions as well as SCADA data can also be expanded to a group of neighbors of 
the targeted turbine for learning the spatial pattern among those attributes.

Fig. 2  Three types of data organization considering spatial influence
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2.1.1  Stacking strategy

In (Liu et  al. 2021d), SCADA data collected from P turbines were directly stacked into 
a 3-dimensional tensor, x ∈ ℝ

T×P×NSCADA to consider richer information. However, the 
organized input x does not reflect the actual geographical distribution of the turbines.

2.1.2  Projection strategy

In (Woo et  al. 2019), data from multiple sources were projected onto a 2-dimensional 
grid to construct a 4-dimensional tensor x ∈ ℝ

T×W×H×NSCADA using the SCADA data of P 
turbines, where W and H are the width and height of grids. This strategy considers the 
geographical distribution of wind turbines. However, once the distribution of the turbines 
is sparse, the majority values in x are blank, leading to inefficiency and impaired WPP 
performance.

2.1.3  Graph‑based modeling strategy

In (Khodayar and Wang 2018; Liu et  al. 2023), a graph is developed to model the 
relationship between wind turbines via incorporating geographical information, such 
as the longitude, latitude, and altitude as well as the mutual information between the 
wind turbines. This strategy expands the input x to a tuple x = [G, xSCADA] , where 
xSCADA ∈ ℝ

T×P×NSCADA is the stacked SCADA data and G is the modeled graph given by the 
correlation matrix. Efficient correlation matrices considered include following candidates:

• Mutual information matrix: Gij = MI(i, j).
• Exponential negative distance matrix: Gij = e−Dis(i,j).
• Multiplication of mutual information and exponential Negative Distance: 

Gij = MI(i, j) × e−Dis(i,j)

• Mutual information controlled exponential Negative Distance: 

Gij =

{

0, ifMI(i, j) < 𝜏

e−Dis(i,j), ifMI(i, j) ≥ 𝜏

 where MI(i, j) is the mutual information of turbines i and j , Dis(i, j) is the distance between 
turbines i and j , as well as � is a predefined threshold.

2.2  WPP output settings

As shown in Table 2, recent WPP studies considered different output settings. Regarding 
the targeted prediction level, most studies targeted on either the wind turbine level power 
prediction (Liu et  al. 2021d; Woo et  al. 2019; Khodayar and Wang 2018; Zhang et  al. 
2019a, b) or the wind farm level power prediction (Dong et al. 2016; Ghadi et al; 2014). 
A few studies (Osório et  al. 2015; Catalão et  al. 2010) uniquely discussed predicting a 
regional level wind power output, which is the total power output of multiple wind farms.

Depending on the prediction output type, two WPP tasks, the deterministic WPP and 
probabilistic WPP, are studied. Deterministic WPPs (Treiber et al. 2016; Madhiarasan and 
Deepa 2017; Bludszuweit et al. 2008) predict the spot value of wind power. However, point 
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predictions are prone to errors and lack of the capability to quantify the future wind power 
uncertainty. To address this issue, probabilistic WPPs (Khosravi and Nahavandi 2013; 
Bessa et al. 2012) investigate the provision of the confidence interval, quantile, or distribu-
tion of the future wind power, which enable the uncertainty quantification.

Meanwhile, WPP prediction tasks are typically classified into three types based on the 
prediction horizons which aim to serve different downstream tasks:

1. Short-term WPP (0–6h ahead): Short-term WPPs are the most commonly discussed. 
The results can be applied to enhance the efficiency of wind power utilization in grids, 
scheduling (Wang et al. 2019a), reducing regulation costs in electricity market operations 
(Usaola et al. 2004), as well as optimizing and monitoring wind farm performances 
(Ma et al. 2014).

2. Median-term WPP (6–24h ahead): Median-term WPPs mainly aim to support dynamic 
operations in power systems, such as balancing between the wind generation and load 
(Menemenlis et al. 2012), energy scheduling (Shi et al. 2012), and load following 
(Paterakis et al. 2014).

3. Long-term WPP (more than 24 h ahead): Long-term WPPs contribute into a variety of 
downstream tasks, such as electricity pricing (Wang et al. 2017a, b, c), unit commitment 
(Wang et  al. 2008), turbine maintenance (Ren et  al. 2021), storage management 
(Blonbou et al. 2011), and power trading (Pircalabu et al. 2017).

  Another important extension of WPP involves wind power ramp prediction (Cui et al. 
2023; Hu et al. 2023), which uniquely sheds the research light on better supporting WPP 
tasks against the future sudden large wind speed changes. Both the point prediction of 
wind power ramps (Gallego et al. 2014) and the probabilistic prediction of wind power 
ramps (He et al. 2023) have been studied.

2.3  WPP performance evaluation metrics

To evaluate the WPP performance, a variety of assessment metrics have been designed and 
applied.

Table  3 summarizes the metrics applied in recent WPP studies (Chitsaz et  al. 2015; 
Osório et al. 2015; Catalão et al. 2010; Qureshi et al. 2017). These metrics can be divided 
into two groups, metrics for evaluating deterministic and probabilistic WPPs.

In deterministic WPPs, absolute error-based errors including MAE, NMAE, MAPE and 
symmetric MAPE (sMAPE) as well as squared error-based metrics including mean square 
error (MSE), mean square error (RMSE), and normalized mean square error (NRMSE) are 
most utilized. MAE is a basic but widely considered metric that takes the average absolute 
error of each pair of observed and predicted wind power outputs. NMAE presents the 
normalized version of MAE according to the maximal wind power generation. MAPE and 
sMAPE present the proportion of the absolute error comparing with the actual wind power 
generation and the average of prediction and actual wind power, respectively. Squared error 
metrics penalize the large prediction error via taking the square of the error. In the case that 
two models show the same performances in terms of MAE on a dataset, the one with larger 
errors in certain data points is more likely to obtain a larger RMSE.

Evaluating probabilistic WPP performance is more complex than evaluating determin-
istic WPP. Three types of metrics, prediction interval-based, distribution-based, and quan-
tile-based metrics, are considered. Regarding prediction intervals, reliability and sharp-
ness are critical performance measures. PICP is the most widely applied reliability metric, 
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reflecting the proportion of prediction intervals containing the actual wind power genera-
tion. Average coverage error (ACE) metric is another reliability metric, which measures 
the difference between PICP and the nominal confidence of the prediction interval. predic-
tion interval normalized average width (PINAW) is a typical sharpness metric, measur-
ing the average width of prediction intervals. To comprehensively consider both reliability 
and sharpness, the coverage width-based criterion (CWC) metric is defined as a multivari-
ate function of PINAW and PICP. CRPS and skill score are typical distribution-based and 
quantile-based metrics, respectively, which measure the fitness of the predicted distribution 
by comparing it with the actual wind power distribution.

3  Deep learning based wind power prediction methods

This section presents a comprehensive review of the DL-based methods in recent WPP 
studies. As shown in Fig. 3, most of reported DL-based WPP (DL-WPP) methods can be 
categorized into four groups, Scheme 1–Scheme 4, based on the adopted learning scheme, 
which consists of four information processing components, the signal processing compo-
nent fsp(⋅) , clustering component fc(⋅) , feature engineering component ffe(⋅) , and optimiza-
tion component fo(⋅) . First, we provide a review of Scheme 1–Scheme 4.

3.1  Learning schemes

Scheme  1 (Ma et  al. 2014; Woo et  al. 2019; Treiber et  al. 2016) presents the simplest 
end-to-end modeling pipeline based on deep learning. The ffe(⋅) is developed using deep 
learning algorithms as models to take the inputs and generate the wind power predictions. 
Optionally, a meta-learning process fo(⋅) can be conducted to optimize hyper-parameters of 
ffe(⋅) . The power prediction ŷ is obtained using Eqs. (1) and (2).

 where f ∗
fe
 is regarded as the optimal feature engineering component for generating 

predictions, x′, y′ are inputs and outputs of the training set.
Scheme  2 extends Scheme  1 via incorporating wind power sequence mode 

decomposition to generate prediction modes sharing similar patterns (Zu and Song 2018; 
Han et  al. 2019a, b; Dong et  al. 2017). The formulation of Scheme  2 is illustrated via 
Eqs. (3)–(6). The fsp(⋅) is used to decompose the input into m subseries s1, s2,… , sm . The 
ith subseries is processed using the corresponding feature engineering component ffei (⋅) . As 
in Scheme 1, optionally, all of the feature engineering components can also be optimized 
via fo(⋅) in Scheme 2.

(1)ŷ = f ∗
fe
(x)

(2)f ∗
fe
= fo(ffe, x

�, y�)

(3)ŷ =
∑m

i=1
ŷi

(4)ŷi = f ∗
fei

(

si
)

∀i = 1, 2,… ,m



Development and trending of deep learning methods for wind power…

1 3

Page 17 of 49   112 

Scheme 3 presents a further advancement on top of Scheme 2 by clustering data based 
on wind power sequence modes to create prediction modeling scenarios (Liu et al. 2021c; 

(5)s1, s2,… , sm = fsp(x)

(6)f ∗
fe1
, f ∗
fe2
,… , f ∗

fem
= fo(ffe1 ,… , ffem , fsp, x

�, y�)

Fig. 3  Four learning schemes for developing DL-WPP models
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Abedinia et al. 2020; Azimi et al. 2016). The formulation of Scheme 3 is described in Eqs. 
(7)–(10). The fsp(⋅) is applied to decompose the input into m subseries s1, s2,… , sm . The 
generated sub-sequences are then used to group data into n clusters cl1, cl2,… , cln using 
a clustering component fc(⋅) . Data of the ith cluster are processed using the corresponding 
feature engineering component ffei (⋅) , which can be optionally optimized by the ith 
optimization component foi (⋅).

Scheme  4 develops hybrid models to attain a greater flexibility in the specification. 
In Scheme  4, multiple models are used to generate predictions. The final prediction is 
calculated using an optimized ensemble process based on the performance of each model. 
The formulation of Scheme 4 is described by Eqs. (11)–(14).

Table 4 summarizes recent WPP studies and their adopted learning schemes. Next, we 
will conduct a comprehensive review on four components, fsp(⋅), fc(⋅) , ffe(⋅) , and fo(⋅) , of 
WPP methods.

3.2  Signal processing, clustering, feature engineering and optimization 
components

3.2.1  Signal processing component

In WPP studies, time series inputs are typically treated as a signal. Therefore, advanced 
signal processing methods may better capture the patterns of the input time series from 
different perspectives. As shown in Table  5, there are four types of signal processing 
methods, the frequency-based methods, mode decomposition-based methods, singular 
spectrum analysis-based methods, and combined methods.

3.2.1.1 Frequency‑based methods The frequency-based methods aim to study the raw 
signal in different frequency domains for improving WPP performance. The Fourier 

(7)ŷ = f ∗
fej
(x)

(8)j = fc(s1, s2,… , sm)

(9)s1, s2,… , sm = fsp(x)

(10)f ∗
fei

= foi

(

ffei , fsp, x
�

, y
�)

∀i = 1, 2,… , n

(11)ŷ =
∑m

i=1
ciŷi

(12)c1, c2,… , cm = fe(f
∗

fe1
, f ∗
fe2
,… , f ∗

fem
, x

�

, y�)

(13)ŷi = f ∗
fei
(x)∀i = 1, 2,… ,m

(14)f ∗
fei

= foi

(

ffei , x
�

, y
�)

∀i = 1, 2,… ,m
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transform (Zhou et al. 2022a, b) and wavelet transform (Catalão et al. 2010; Ahn and Hur 
2023; Nascimento et al. 2023; Zhang et al. 2022a, b; Chi and Yang 2023; Aly 2022) are 
two most widely applied frequency-based methods. The Fourier transform decomposes 
the input signal into frequency components, which are represented as the sum of sine and 
cosine of different frequencies. In comparison, the wavelet transform decomposes the 
input signal into wavelets, which are obtained via shifting and scaling a continuously dif-
ferentiable wavelet function. To enhance the performance of wavelet transform methods, 
some variants, such as wavelet packet decomposition (WPD) (Zu and Song 2018; Meng 
et al. 2016) and empirical wavelet transform (EWT) (Yan et al. 2020; Liu et al. 2018a, b, 
c), have been proposed.

• Mode decomposition-based methods: The mode decomposition-based methods 
including the VMD (Abedinia et  al 2020) and EMD (Abdoos 2016) aim to 
decompose the input signal into several intrinsic mode functions and the residual.

• Singular spectrum analysis-based methods: singular spectrum analysis (SSA) 
(Zhang et  al. 2019a) aims to obtain spectrum information on the input signal via 
singular value decomposition on trajectory matrix of the input time series.

• Secondary methods: Secondary methods (Wu et al. 2020a) combine multiple series 
decomposition methods to improve the efficiency of WPP.

The signal processing component can also serve filtering out the noises (Saffari 
et  al. 2021; Zhang et  al. 2022a; Wang et  al. 2023). In (Peng et  al. 2020), the wavelet 
transform is utilized to effectively denoise the original signals, while avoiding distortion 
and information loss to some extent, The mother wavelet in the wavelet transform can 
be scaled and time-shifted by the scale factor and the time-shifting factor, producing a 
series of sub-wavelets to extract the target features under different resolutions.

Table 4  Learning schemes in DL-WPP model development

Schemes References

Scheme 1 Ma et al. (2014), Woo et al. (2019), Treiber et al. (2016), Liu et al. (2021b, c, d, e, a), Cali 
et al. (2019), Khosravi et al. (2013), Bessa et al. (2012), Zhang et al. (2020a, b, c), Liu et al. 
(2018a, b, c), Huang et al. (2015), Ghadi et al. (2014), Li et al. (2015a, b), Men et al. (2016), 
Qureshi et al. (2017), Prósper et al. (2019), Yuan et al. (2019), Banik et al. (2020), Shi et al. 
(2012), Jahangir et al. (2020), Amjady et al. (2011), Li et al. (2015a), Jiao et al. (2018), 
Kisvari et al. (2021), Wang et al. (2019a, b), Hu et al. (2020), Mahmoud et al. (2018), Wang 
et al. (2017a, b, c), Wang et al. (2017a, b, c), Wan et al. (2016a, b), Yan et al. (2015), Wan 
et al. (2013a, b), Hu et al. (2018), Severiano et al. (2021), Ju et al. (2019), Wang et al. (2021a, 
b, c, d), Hong et al. (2019), Yu et al. (2019a, b), Woo et al (2018), Bessa et al. (2009), Zhang 
et al. (2019a), Yan et al. (2018), Ding et al. (2019), Gallego-Castillo et al. (2016), Zhang et al. 
(2015), Kou et al. (2014), Wan et al. (2013a), Yu et al. (2022a), Yu et al. (2020), Zhang and 
Wang (2018), Shi et al. (2017a, b), Dowell and Pinson (2015), Yu et al. (2019a), Liu et al. 
(2021b, c, d, e, a), Liu et al. (2022b, a)

Scheme 2 Yang et al. (2013), Zu and Song (2018), Han et al. (2019a, b), Dong et al. (2017), Wang et al. 
(2019a, b), Yan and Wu (2020), Zhang et al. (2016), Wang et al. (2017a, b, c), Sun and Zhao 
(2020), Han and Tong (2020), Heydari et al. (2021), Ding et al. (2020)

Scheme 3 Liu et al. (2021d), Abedinia et al. (2020), Azimi et al. (2016), Sun (2021), Zhang et al. (2019a, 
b)

Scheme 4 Bokde et al. (2019), Hossain et al. (2021), Hong and Rioflorido. (2019), Guo et al. (2022), 
Khazaei et al. (2022), Shahid et al. (2020a), Liu et al. (2020a)
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3.2.2  Clustering component

Clustering methods aim to extract intrinsic information from wind data by dividing the 
input data into groups based on their similarity. Each group is then processed by a different 
feature engineering module. In the WPP literature, K-means (Wang et al. 2018), C-means 
(Yang et al. 2021a), and expectation maximization (Liu et al. 2018a) are the most widely 
used clustering algorithms. Time series clustering methods, such as the K-shape algorithm 
(Liu et al. 2021d), may also improve WPP performance by directly analyzing the similarity 
among the time series.

3.2.3  Optimization component

Optimization algorithms are applied to attain the best architecture of the deep learning 
model, which includes determining the number of neurons and layers. The grid search 
(GS) algorithm (Liu et al. 2021d) is the simplest and most widely used algorithm. In the 
GS algorithm, a set of candidate architectures are defined based on domain knowledge or 
preliminary trials, and the best architecture is selected based on its performance on the 
validation set.

However, the performance of the GS algorithm is highly dependent on expert 
knowledge, as the number of candidates is usually limited to reduce computational cost. 
To explore a larger solution space, meta-heuristic algorithms, such as the GA (Liu et al. 
2021a), PSO (Ma et  al. 2014), shark smell optimization (SSO) (Abedinia et  al. 2020), 
atomic search (AS) (Li et al. 2020a, b, c), CS (Li et al. 2021), clonal selection algorithm 
(CSA) (Chitsaz et  al. 2015), crisscross optimization (CSO) (Yin et  al. 2017), dragonfly 
algorithm (DA) (Shi et al. 2017a, b), sparrow search (SS) (Abdoos 2016), and GWO (Lu 
et al. 2020), have been proposed. Table 6 summarizes the optimization algorithms used in 
WPP studies.

3.2.4  Feature engineering component

One significant advantage of deep learning is the ability of automating and adaptively 
learning a low-dimensional embedding, which is a set of latent features representing the 
raw high-dimensional input. Many deep learning methods can simultaneously serve the 
feature extraction and the prediction in WPP modeling. The feature extraction module ffe(⋅) 
aims to extract informative latent features from the input. The prediction module fp(⋅) aims 
to model the mapping from extracted features to the wind power output. Therefore, the 
entire process including the feature engineering to the prediction can be expressed by Eqs. 
(15) and (16),

where z is the input of the feature engineering module. It can be either the original input x 
or the subseries s.

Next, we will review a total of 28 deep learning models grouped into 8 types as listed 
in Table 7. Among these models, fully connected neural networks can be used for both the 

(15)ŷ = ffe(z) = fp(zf )

(16)zf = ff (z)
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feature extraction and prediction modules. Probabilistic output models can only be used for 
the prediction module. Deep learning models including autoencoders, convolutional networks, 
recurrent networks, etc., are usually regarded as the feature extraction module, which learn a 
low-dimensional representation from the input to be fed into an additional regression layer for 
generating predictions.

3.2.5  Fully connected neural networks

Figure 4 illustrates the structure of fully connected neural networks, which consist of three 
components: an input layer, one or more hidden layers, and an output layer. The input z or zf  
is initially flattened to a one-dimensional vector z1 , which is fed into the neural network. It is 
processed by n neural layers including n−1 hidden layers and one output layer. Finally, results 
are generated from the output layer. The last hidden layer provides the extracted features.

Let zi denote the output of the ith layer, which is also the input of (i + 1)th layer, the 
formulation of fully connected neural network is described in Eqs. (17)−(19),

where Wi is a learnable matrix, bi is a learnable vector, and fa is an activation function.
In WPP studies, the output layer of FNN is designed to provide an accurate prediction 

of the wind power ŷ . Therefore, the parameters Wi and bi are obtained by minimizing the 
error between ŷ and actual output y . Let z′ and y′ be the input and output of the training set 
respectively, and ŷ′ as the prediction. The parameters Wi and bi of FNN can be formulated as 
Eqs. (20) and (21),

(17)zi+1 = fa
(

Wizi + bi
)

∀i = 1, 2,… , n − 1

(18)zf = ff (z) = zn−1

(19)ffe(z) = fp
(

zf
)

= zn

Fig.4  Fully connected neural networks

Input
Layer

Hidden
Layer

Output
Layer
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where fFNN is the FNN model serving as either the feature extraction or prediction module,  
L(̂y�, y�) is a pre-defined loss function. Let Nt be the number of the instances in the 
training set. Common loss functions used are provided as follows, where MSE is the most 
frequently applied one.

• MSE: L
�

ŷ�, y�
�

=
1

Nt

∑Nt

i=1

�

ŷi� − yi�
�2

• MAE: L
�

ŷ�, y�
�

=
1

Nt

∑Nt

i=1
�̂yi� − yi��

• Huber Loss Function: L
�

�y�, y�
�

=
1

Nt

∑Nt

i=1

�

1

2

�

�yi� − yi�
�2
(if �

�

�yi� − yi�
�

�

> 1)

�

�

�yi� − yi�
�

�

−
1

2
(Otherwise)

Apart from the generic DNN (Methaprayoon et al. 2007; Abedinia et al. 2020), some 
variants of the FNN, such as restricted Boltzmann machine (RBM) (Peng et al. 2016), 
deep belief network (DBN) (Wang et al. 2018; Zhang et al. 2019a) and extreme learning 
machine (ELM) (Yin et al. 2017; Ding et al. 2020), are proposed to enhance the predic-
tion accuracy. The fuzzy neural network (Khodayar et al. 2022; Bilal et al. 2023; Qiao 
et al. 2022; Xu et al. 2022a; Li et al. 2020a), which utilizes fuzzy influence techniques 
to determine the values of the neurons, has also received discussions. The Fuzzy NN is 
well-known for its effectiveness in tackling the uncertainty in the SCADA data, making 
them well-suited for WPP with incomplete information or ambiguous data.

3.2.5.1 Autoencoders The generic autoencoder (AE) has the same structure as the FNN 
shown in Fig. 4. AEs aim to encode the input z into a latent representation zf  using the 
information of z itself. Hence, different from FNN, the output layer of AE targets to out-
put the reconstruction of the input z , and the values of the hidden nodes are regarded as 
the feature zf  . The parameters �AE of AE are inferred via minimizing the reconstruction 
loss between the input z and its reconstruction ẑ  . The formulation of AE is provided in 
Eqs. (22) and (23),

where fAE is the AE model, which serves as the feature extraction module.
Recently, a few variants of the AE have been proposed to improve the performance 

of WPPs:

• Stacked AE (SAE): In study (Wang et al. 2021a, b, c, d), the AE model is improved 
by stacking multiple AEs together. The first AE takes the original input z and outputs 
the latent feature z1 . The subsequent ith(i > 1) AE takes the output zi−1 of (i − 1)th AE 
as the input and produces the latent feature zi.

• Sparse SAE: In study (Yin et  al. 2021), a Sparse SAE is proposed to learn more 
concise features by introducing a sparse penalty term into the loss function of AE, is 
proposed. Let zi denote the average value of zi , and � denote a sparse parameter, 

(20)ŷ� = fFNN(W1, b1,… ,Wn, bn;z�)

(21)W1, b1,… ,Wn, bn = argminL(̂y�, y�)

(22)ẑ� = WfAE
(

�AE;z�
)

+ b

(23)W, b, �AE = argminL(̂z�, z�)
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which is set to a small number near 0. The sparse penalty term is defined as the 
Kullback–Leibler (KL) divergence of � and zi , KL

(

�||zi
)

= �log
(

�

zi

)

+ (1 − �)log(
1−�

1−zi
)

.
•  In study (Li et al. 2020a, b, c), rough neurons in the SAE are introduced to address 

the uncertainty of the wind. Different from generic AEs, the output zi is determined 
using the rough set theory.

3.2.5.2 Probabilistic output models In the literature, four probabilistic output models 
for generating probabilistic outputs are observed: QR, LUBE, KDE, and MDN. The 
descriptions of these models are provided as follows.

• QR: The QR aims to directly estimate the quantile with neural networks. In QR, the 
best parameters of NNs �QR can be obtained by minimizing the negative skill score.

• LUBE: The LUBE model aims to directly estimate the quantile with neural networks, 
which is usually trained by minimizing the CWC metric.

• KDE: KDE methods attempt to estimate the distribution of wind power, which is 
modeled by a probability density function.

• MDN: The MDN method mixes multiple PDFs to allow sufficient flexibility in 
modeling the wind power distribution. Usually, the Gaussian mixture model (GMM) 
is adopted to model the PDF because of its simplicity and convenience for sampling 
and computing the distribution. However, the GMM may lead to density leakage 
problems in the mixture model. Recent studies (Zhang et al. 2020a, b, c) addressed 
this issue by replacing the GMM with the beta kernel. The KDE and MDN models 
are usually optimized by maximizing the likelihood of the distribution. One recent 
study (Yang et  al. 2021a, b) further improved the training process by using a 
Wasserstein distance-based adversarial learning algorithm.

3.2.5.3 Convolutional neural networks CNNs (Liu et al. 2019b, a; He et al. 2020) are 
known for their shift invariance, meaning they can detect objects equally well regardless 
of their locations in the input. CNNs consist of convolution layers and pooling layers. 
In each convolution layer, a learnable kernel g is used to learn local features of the data. 
Typically, a pooling layer is used immediately after each convolution layer to aggregate 
the local information of the output of the convolution layer and select the most concise 
and efficient features. The general formulation of CNN is provided in Eqs. (24)–(26),

where n is the number of convolution and pooling layers, gi is the kernel of the ith 
convolution layer, ∗ denotes the convolution operator, and Pool(⋅) is a pooling function. 
Depending on the type of CNN used (1DCNN, 2DCNN, or 3DCNN), different types of 
convolution operators and pooling functions are utilized in WPP studies.

(24)ff (z) = zn+1

(25)zi+1 = Pool
(

gi ∗ zi
)

∀i = 1, 2,… , n

(26)z1 = z
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3.2.5.4 1‑dimensional CNN (1DCNN) As shown in the top part of Fig. 5, 1DCNN takes 
a one-dimensional vector as input. If the original input is multidimensional, it should be 
flattened to a vector before being fed to the 1DCNN. In 1DCNN, 1-dimensional convo-
lution operator and pooling functions are utilized. The formulation of 1D convolution 
operator is provided in Eq. (27), where k is the size of the kernel. Common pooling func-
tions including the max pooling and average pooling are described in Eqs. (28)–(29) and 
Eqs. (30)–(31), respectively, where l describes the size of pooling kernel.

3.2.5.5 2‑dimensional CNN (2DCNN) As shown in the bottom part of Fig. 5, the 2DCNN 
expands 1DCNN to a 2-dimensional grid with considering the input of a 2-dimensional 
matrix form. If the original input is three dimensional, z ∈ ℝ

T×P×Nfeat , where T is the length 
of time series, P is the number of wind turbines, and Nfeat is the number of features in each 
time step and wind turbine of input z , a common organization is to regard the time steps as 
different input channels, and the features of different wind turbines are organized as a matrix.

3.2.5.6 3‑dimensional CNN (3DCNN) The 3DCNN is typically used to extract spatial–tem-
poral features from the 3-dimensional input z ∈ ℝ

T×P×Nfeat . The definition of 3DCNN is 
similar to that of 1DCNN and that of 2DCNN.

(27)(g ∗ z)p =

p+
k

2
∑

j=p−
k

2

gj−p− k

2

zj

(28)Maxpool(z) = z̃

(29)z̃p = max
j=p×l,p×l+1,…,p×l+l−1

zj

(30)Avgpool(z) = z

(31)zp =
1

l

∑p×l+l−1

j=p×l
zj

Fig. 5  1D and 2D convolutional neural networks
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To obtain the best parameter estimation of the kernels g , the extracted features 
fCNN(z) = zn+1 are usually transformed into the prediction via an FNN. The loss L(⋅, ⋅) 
between the prediction and actual wind power in the training set is applied to optimize g , as 
shown in Eqs. (32) and (33).

3.2.5.7 Recurrent neural networks As shown in Fig. 6, RNNs are efficient models for pro-
cessing 2-dimensional multi-variate time series data z ∈ ℝ

T×Nfeat across T  time steps. In each 
step, the RNN takes zt , the tth time step of z , and the last hidden state ht−1 as inputs and 
outputs the current hidden state ht . The general formulation of RNN is provided in Eqs. (34) 
and (35).

 where h0 is pre-defined vector usually set to a vector of zeros. As the vanilla RNN 
encounters the gradient vanishing and explosion issues, variants of RNN, such as the GRU 
and LSTM, as well as an advanced development on top of RNN, such as the attention 
mechanism, BiLSTM, and ConvLSTM, more frequently appear in WPP studies.

  

• GRU: In each time step t , the GRU (Tian et  al. 2022) utilizes a reset gate rt and an 
update gate ut to control the hidden state ht . The reset gate rt  determines whether the 
last state ht−1 is considered or reset to a new state, and the update gate ut determines 
whether ht is updated by the new input zt or remains the old value ht−1

• LSTM: Similar to GRU, the LSTM (Neshat et al. 2021) uses an input gate it , a forget 
gate ft and an output gate ot to control the input, forget and output process of the hidden 
state ht.

• BiLSTM: The BiLSTM (Jahangir et al. 2020; Huang et al. 2022) is an efficient variant 
of LSTM. Different from the generic LSTM, which only considers the past information 
from ht−1 , the BiLSTM takes into consideration of both past and future information in 
each time step.

• Attention Mechanism: The gradient of the RNN models accumulates across all time 
steps, potentially leading to gradient vanishing and gradient exploding issues when 
the length of the input time series is long. To alleviate such issues, the attention 

(32)ŷ� = fFNN(fCNN(z))

(33)g1, g2,… , gn = argmaxL(̂y
�

, y)

(34)ff (z) = [h1, h2,… , hT ]

(35)ht = RNN(ht−1, zt)∀i = 1, 2,… , T

Fig. 6  Recurrent neural networks
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mechanism (Yang and Zhang 2021; Ren et al. 2022; Zhang et al. 2023) is introduced 
with considering all of the hidden states h1, h2,… , ht−1 in the past time steps.

• ConvLSTM: As shown in Fig.  7, the ConvLSTM (Wilms et  al. 2021) is a model to 
extract spatial–temporal patterns by leveraging convolution operations to modeling 
spatial correlations and the LSTM for learning temporal patterns. The ConvLSTM takes 
a four-dimensional input z ∈ ℝ

W×H×T×Nfeat , which is placed on a W × H grid according 
to the distribution of wind turbines. The formulation of ConvLSTM is provided in 
Eqs. (36)−(42).

where fConvLSTM(⋅) is the ConvLSTM model, Wzi,Whi,Wzf ,Whf ,Wzg,Whg,Wzo,Who are 
learnable kernels, and Wci,Wcf ,Wco, bi, bf , bg, bo are learnable vectors.

However, in WPP tasks which faces the sparse distribution of wind turbines, the large por-
tion of blank values may degrade the efficiency and performance of the model. In such cases, 
graph-based models are better choices for extracting spatial features.

3.2.5.8 Graph‑based neural networks Graph based neural networks leverage the graph that 
represents the geographical correlation of the wind turbines to extract the spatial features. As 
shown in Fig. 8, GNN is a generic graph-based neural network. In GNN, the input zi in each 
wind turbine i is transformed to the feature space via a DNN. The feature is then concatenated 

(36)fConvLSTM(z) = [h1, h2,… , hT ]

(37)it = sigmoid
(

Wzi ∗ zt +Whi ∗ ht−1 +Wci◦ct−1 + bi
)

∀t = 1, 2,… , T

(38)ft = sigmoid
(

Wzf ∗ zt +Whf ∗ ht−1 +Wcf◦ct−1 + bf
)

∀t = 1, 2,… , T

(39)gt = tanh(Wzg ∗ zt +Whg ∗ ht−1 + bg)∀t = 1, 2,… , T

(40)ct = ft◦ct−1 + it◦gt∀t = 1, 2,… , T

(41)ot = sigmoid
(

Wzo ∗ zt +Who ∗ ht−1 +Wco◦ct−1 + bo
)

∀t = 1, 2,… , T

(42)ht = ottanh(ct)∀t = 1, 2,… , T

Fig. 7  Illustration of ConvLSTM
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to form a matrix Mz , which is multiplied by the graph matrix G , and activated by an activation 
function fa . The general formulation of GNN is provided in Eqs. (43)–(45).

where fGNN(⋅) represents the GNN model.
The structure of GNN can be expanded to extract spatial–temporal features of the input z . 

There are two types of improvements to achieve this goal.
The first improvement is replacing the DNN with RNN. By this mean, the temporal 

features of each wind turbine are first extracted by the RNN, and the spatial–temporal features 
are finally provided by the GNN.

The second improvement is to reorganize the input z as a time series. In each time step, the 
GNN is used to extract the spatial feature. These features are finally concatenated together and 
processed by an RNN to obtain the spatial–temporal features.

Graph convolutional neural network (GCN) is an efficient variant of GNN. Unlike the 
original GNN, GCN utilizes a graph Laplacian L instead of G , which is formulated as Eq. (46).

where IP is an identity matrix with order P , the D is a diagonal matrix formulated as 
Eq. (47).

3.2.5.9 Self‑attention‑based neural networks Self-attention-based neural networks are con-
structed based on the attention mechanism, which is shown in Fig. 9. Transformer (Tian et al. 
2022) is a generic self-attention-based neural network that has been designed to extract tempo-
ral features of the input. In Transformer, the input z ∈ ℝ

T×N� is regarded as a time series with 
T time steps. Here, N� = Nfeat , if only data of the target turbine are considered, and having 

(43)fGNN(z) = zf

(44)zf = MzG

(45)Mz = [fDNN
(

z1
)

, fDNN
(

z2
)

,… , fDNN
(

zP
)

]

(46)L = IP − D
−

1

2GD
−

1

2

(47)Dij =

⎧

⎪

⎨

⎪

⎩

0(i ≠ j)
P
∑

j=1

Gij(i = j)

Fig. 8  Illustration of GNN
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N� = P × Nfeat , if data from neighboring P wind turbines are considered. To learn the relation-
ship between time steps, the input zt of each time step t is first transformed to the query, key 
and value vectors Qt,Kt,Vt ∈ ℝ

T×dh , where dh is the number of hidden dimensions, via three 
different DNNs respectively. The vectors Qt,Kt,Vt(t = 1, 2,… , T) are concatenated to form 
multivariate time series Q,K,V . The attention A of the input is evaluated as the similarity 
between Q and K . Finally, the features are produced by the activation value of multiplication of 
the A and V . The formulation of Transformer is provided in Eqs. (48)–(51).

where fTrans(z) is the Transformer model, fDNN,Q , fDNN,K , fDNN,V are three DNN models. 
Sim(⋅, ⋅) is a similarity function.

Latest WPP studies have explored the performance of Transformer-based models, such as 
the Informer (Zhou et al. 2021; Nascimento et al. 2023; Huang et al. 2022), Autoformer (Wu 
et al. 2021), Pyraformer (Liu et al. 2021b), and Fedformer (Zhou et al. 2022a, b; Deng et al. 
2022). Studies observed that the transformer-based models could improve WPP efficiency by 
sampling a set of informative queries and keys with incorporating signal processing methods. 
Additionally, the DLinear model (Zeng et al. 2023) reported the performance improvement of 
WPPs through a simpler attention scheme. In DLinear, the attention mechanism was defined 
as a linear transformation from the historical time steps to the future time steps.

3.3  Prediction performance analyses

In this section, we first conduct an analysis based on results of existing studies to con-
solidate views of the WPP improvement brought by DL-WPP methods comparing with 

(48)fTrans(z) = zf = fa(AV)

(49)A = Sim(Q,K)

(50)Q,K,V =
[

Q1,Q2,… ,QT

]

,
[

K1,K2,… ,KT

]

,
[

V1,V2,… ,VT

]

(51)Qt,Kt,Vt = fDNN,Q
(

zt
)

, fDNN,K
(

zt
)

, fDNN,V
(

zt
)

∀t = 1, 2,… , T

Fig. 9  Illustration of self atten-
tion mechanism



Development and trending of deep learning methods for wind power…

1 3

Page 33 of 49   112 

Ta
bl

e 
8 

 R
M

SE
 im

pr
ov

em
en

ts
 o

f d
ee

p 
le

ar
ni

ng
 m

et
ho

ds

Re
fe

re
nc

es
Pr

ed
ic

tio
n 

le
ve

l
In

st
al

le
d 

ca
pa

ci
ty

Pr
ed

ic
tio

n 
ho

riz
on

D
ee

p 
le

ar
ni

ng
 m

et
ho

d
B

es
t p

er
fo

rm
ed

 
co

nv
en

tio
na

l m
od

el
R

M
SE

 
im

pr
ov

em
en

t 
(%

)
M

od
el

s u
se

d
R

M
SE

M
od

el
s

R
M

SE

H
ua

ng
 e

t a
l. 

(2
02

2)
Fa

rm
2.

5 
M

W
10

 m
C

N
N

, B
i-L

ST
M

0.
34

 M
W

SV
R

2.
76

 M
W

87
.6

8
Zh

an
g 

et
 a

l. 
(2

02
0a

, b
, c

)
Fa

rm
0.

73
 M

W
24

 h
LS

TM
12

9 
K

W
R

F
13

4 
K

W
3.

7
Zh

ao
 e

t a
l. 

(2
02

3)
Fa

rm
2 

M
W

1–
24

 h
C

N
N

, G
RU

 
1.

58
 M

W
N

A
R

X
3.

10
 M

W
49

.0
Y

u 
et

 a
l. 

(2
02

2b
)

Fa
rm

0.
8 

M
W

30
 m

G
N

N
, A

E,
 C

on
vL

ST
M

1.
21

 M
W

SV
R

1.
61

 M
W

24
.8

Ti
an

 e
t a

l. 
(2

02
2)

Fa
rm

2 
M

W
10

 m
Tr

an
sf

or
m

er
, G

RU
 

11
2 

K
W

EN
20

8 
K

W
46

.2
Li

u 
et

 a
l. 

(2
02

1d
)

Tu
rb

in
e

2 
M

W
10

–6
0 

m
C

N
N

, G
RU

 
30

8 
K

W
LR

31
9 

K
W

3.
4

M
en

g 
et

 a
l. 

(2
02

2a
, b

)
Fa

rm
2 

M
W

10
 m

EL
M

, A
E

1.
70

 M
W

PM
13

.7
3 

M
W

87
.6

1
Li

u 
an

d 
Zh

an
g 

(2
02

2a
, b

)
Tu

rb
in

e
2 

M
W

10
–6

0 
m

In
fo

rm
er

19
3 

K
W

M
A

R
S

19
8 

K
W

2.
5

Li
u 

et
 a

l. 
(2

02
3)

Tu
rb

in
e

2 
M

W
10

–6
0 

m
G

C
N

, L
ST

M
33

6 
K

W
LA

SS
O

34
5 

K
W

2.
6

H
ua

ng
 a

nd
 Ji

an
g 

(2
02

2)
Fa

rm
0.

73
 M

W
10

 m
In

fo
rm

er
30

7 
K

W
D

N
N

87
1 

K
W

64
.8



 H. Liu, Z. Zhang 

1 3

  112  Page 34 of 49

traditional ones as reported in Table 8. Next, to horizontally compare the effectiveness of 
developed DL models in WPP tasks, we conduct a computational experiment replicating 
famous and recent DL models based on our collected wind farm SCADA datasets.

The performance improvement of the developed DL-WPP method over the best-
performed traditional machine learning WPP method is analyzed article-wise based on 
results reported of considered articles. Results of such analytics are reported in Table  8. 
In each article, the DL configuration of the reported DL-WPP method is analyzed and the 
best performed classical machine learning based WPP method is identified. As the Root 
Mean Square Error (RMSE) is the only metric that simultaneously utilized in all considered 
articles, RMSE values of the developed DL-WPP method and the best-performed traditional 
WPP method are retrieved and the RMSE improvement percentage is computed for each 
article. Analytical results in Table  8 revealed that existing studies unanimously observed 
the improvement generated by DL models and RMSE improvement could range from 2.5% 
to 87.68% across studies. Such significant variation can be caused by multiple reasons. 
First, the WPP task setups across studies differ in terms of considered prediction horizons 
and targets. Secondly, results of reported WPP methods were examined based on datasets 
collected by different research groups, which might possess completely different wind 
patterns. Moreover, the coverage of benchmarking models applied is different in studies 
reported in Table 8. Although we can conclude the performance improvement based on each 
work in Table  8, it is difficult to derive a fair conclusion via a horizontal comparison of 
DL-WPP methods developed in existing studies due to previously mentioned three reasons.

To discover more meaningful insights, in this work, we would like to further 
verify the effectiveness of recent DL-WPP method development via reproducing and 
comparing latest DL-WPP models based on our SCADA datasets collected from three 
commercial wind farms, which cover a larger population of wind turbines and more 
recent samples. Specific descriptions of three datasets are offered in Table 9.

Since deterministic short-term WPP is most frequently studied, we consider the wind 
turbine power output prediction with horizons ranging from 10 to 60 min in this compu-
tational experiment. Meanwhile, processed data are divided into the training set, valida-
tion set, and test set respectively with a 0.6:0.2:0.2 split ratio. The commonly considered 
RMSE metric is employed to evaluate the WPP performance of developed models. An 
extended set of promising DL models including DLinear, Informer, Transformer, CNN, 
LSTM, GRU and DNN are considered in this further computational experiment based on 
recent studies (Zhou et al. 2022a, b; Zhou et al. 2021; Zeng et al.2023).

Results of our computational experiments are reported in Table 10. It is observable 
that the DLinear model significantly outperforms other candidates on most datasets. 
Meanwhile, we also identify that, in more than 69% test cases, DLinear obtains 2.0% 
improvements compared with the best performed one from other considered DL models. 
The performance of Informer, Transformer, and GRU models are also promising, which 

Table 9  Dataset Descriptions

Dataset Collected period Rated wind 
power (MW)

No. of SCADA 
attributes

No. of WTs Sampling 
interval 
(min)

Dataset 1 Sep. 2019–Mar. 2020 2 10 33 10
Dataset 2 Sep. 2019–Mar. 2020 2 10 25 10
Dataset 3 Jan. 2016–Jun. 2017 2 10 11 10



Development and trending of deep learning methods for wind power…

1 3

Page 35 of 49   112 

are only 2.0%, 3.1% and 3.9% worse in average than that of the DLinear, respectively. 
Comparing the performance on different datasets, the DLinear model is 7.6%, 9.4% and 
2.8% better than the candidates on average. Thus, the DLinear model may be a better 
option for achieving the state-of-the-art performance in the considered short-term WPP 
task by comparing with other DL models.

4  Promising trends for future deep learning‑based WPP studies

In future WPP studies, DL techniques will take an increasingly important role with the 
rapid development and advancement. Although existing WPP studies have achieved 
promising performance in WPP, the WPP can be further improved by addressing the 
following limitations and issues.

• Inputs: Although spatial–temporal correlations are already considered in some stud-
ies, most of them are based on the self-correlation in the data and the locations of 
the wind farm sites. Some important factors, such as the wake effect and topological 
information, can be considered to improve the performance. In (Park and Park 2019), a 
Physics-informed graph network (PIGN) has been developed to attack such issues and 
promising results in the wind power estimation have been reported. More advanced 
mechanisms can be developed to bring more values into the WPP tasks.

Table 10  RMSE (KW) of deep learning models for short-term WPP

Prediction Horizon (min)

Dataset Model 10 20 30 40 50 60

Dataset 1 DLinear 122.10 172.55 203.50 226.68 245.22 260.08
Informer 131.08 178.63 205.31 230.15 249.21 263.84
Transformer 135.52 182.53 206.10 230.08 247.35 262.75
GRU 141.69 181.74 208.65 231.07 245.31 261.07
LSTM 164.79 196.61 221.54 241.15 257.22 270.86
CNN 194.06 215.48 233.48 248.45 260.69 271.80
DNN 187.72 213.04 233.05 249.60 263.61 275.99

Dataset 2 DLinear 171.22 256.02 308.63 346.94 376.83 401.07
Informer 191.29 264.18 313.56 353.21 379.57 405.82
Transformer 212.17 277.27 321.45 355.12 385.15 407.16
GRU 215.20 276.00 319.56 354.77 382.94 406.91
LSTM 242.82 292.77 333.99 367.92 397.43 418.97
CNN 304.10 333.88 372.06 395.97 425.88 443.58
DNN 273.22 308.84 359.45 388.66 410.67 429.44

Dataset 3 DLinear 155.69 204.78 233.55 255.65 274.68 292.10
Informer 158.63 209.43 236.78 258.31 275.78 291.57
Transformer 161.35 212.58 237.51 256.27 277.37 292.88
GRU 157.23 210.89 240.93 263.49 283.29 300.56
LSTM 165.42 211.28 239.23 260.56 280.23 296.62
CNN 186.17 222.78 247.03 266.16 283.46 299.29
DNN 177.10 214.38 239.51 259.62 277.65 293.79
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• Features: Existing deep learning-based WPP studies engineer the WPP features 
using well-designed models, which highly depend on the training data. More robust 
and reliable WPP features are required to improve the WPP performance.

• Models: With rapid development of the deep learning techniques, especially in the 
natural language processing and computer vision, the deep models evolve at a fast 
pace. Apart from the advanced deep models in other research communities, we can 
also design advanced models specific to WPP tasks based on our domain knowledge.

• Evaluation: RMSE and MAE are the most widely used metrics in recent studies. 
However, such metrics only present the error in average, which are inadequate in real 
grid applications. More specific metrics are required to evaluate the WPP performance 
specific to certain downstream grid operations.

Next, we present four promising research trends for applying DL techniques in WPP.

4.1  More advanced design of WPP input organization

In the WPP input organization, we observe three main trends, the incorporation of 
geographical information, the privacy-preserving data sharing paradigm, and the usage of 
multiple resolution data.

Geographical information is a crucial factor in physics-based methods (Landberg 1999). 
Current WPP studies (Khodayar and Wang 2018) have utilized the location of the wind 
turbines to depict their distribution and improve WPP performances. Other geographical 
information, such as topography and roughness, could also be utilized to better represent 
the actual geographical situations of wind turbines and wind farms.

Privacy-preserving data sharing is another important aspect in WPP studies. When 
data are distributed across different wind farms, sharing them may raise safety and 
privacy concerns in situations where WPP methods and service providers involve external 
entities. Moreover, wind power units from different power plants located in different 
regions or countries may not always be accessible due to various imposed regulations. To 
address these issues, (Liu and Zhang 2022a, b) proposed a bi-party data-driven modeling 
framework to learn the spatial–temporal features in different wind farms while preserving 
privacy. More methods with advanced privacy-preserving schemes for various WPP 
modeling tasks could be developed to further enhance the performance of WPP.

Most existing WPP studies have considered the sampling interval of SCADA data to 
be the same as the desirable WPP resolution. However, a recent study (Liu and Zhang 
2022a) has discovered that the usage of multiple sampling resolution data may significantly 
improve WPP performance. It is also interesting to investigate whether multiple resolution 
data in spatial dimension can enhance WPP. In other words, it may be possible to utilize 
turbine-level SCADA data to predict farm-level wind power output.

In summary, the WPP input organization plays a crucial role in determining the amount 
of information conveyed to WPP tasks. Therefore, further studies should be conducted to 
investigate advanced WPP input organizations, providing better references for predictions.

4.2  Identifying WPP features Benefiting Domain Generalization

As stated in Sect.  3, the input space considering spatial temporal correlation is 
ℝ

T×P×NSCADA , which is extremely large. In applying DL methods into WPPs, learning latent 
representations from the overwhelming input space may be too specific towards a particular 
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WPP task and dataset, resulting in the lack of generalizability. To alleviate this issue, 
the ML field has presented a study trend on identifying a subset of meaningful features 
which possesses the causal relationship towards the concerned output. These features are 
considered as ones helping the model domain generalizability.

To identify a subset of latent features beneficial to the domain generalization, several 
deep learning methods (Arjovsky et al. 2019) utilize the invariant risk minimization (IRM), 
which is a learning scheme from the causal learning paradigm that optimizes the loss 
function under different environments. This approach can identify causal features that are 
robust to shifts in the environment. Therefore, it is promising to apply such a technique 
to WPP studies due to the high volatility of wind and the high-dimensional attributes 
after considering the spatial–temporal-system dynamics correlations. It is foreseeable that 
more WPP studies will consider the domain generalization issue into the WPP feature 
engineering, which seem to be scarce in the current literature.

4.3  Efficient feature engineering models

Currently, various complex models, including CNN, RNN, and transformer-based models, 
are commonly used in WPP studies. However, these models cannot be considered superior 
to others in terms of the best performance in all situations. For instance, one study (Zeng 
et  al. 2023) showed that a simple linear model outperformed most of the complicated 
transformer-based models when predicting a long sequence. However, the reason behind 
this observation is still unclear. More studies are required to scientifically identify the 
optimal WPP methods for different WPP tasks.

Physics-informed WPP is also an interesting direction. Currently, physicals-informed 
techniques (Gijón et al. 2023; Wu et al. 2023; Tartakovsky et al. 2023; Pombo et al. 2022) 
are commonly utilized in expanding the dataset to obtain richer information. Because of 
the intrinsic relationship among the system dynamics in SCADA data, it is also promising 
to utilize physical principles for guiding the model design. Physics and domain knowledge 
can be leveraged to better govern the network design and prediction performance to enable 
a better generalization in WPPs (Lagomarsino-Oneto et al. 2023). With such development, 
it is possible to obtain a more reliable and robust prediction. In (Park and Park 2019), a 
PIGN has been developed to attack such issues and promising results in the wind power 
estimation have been reported. More advanced mechanisms can be developed to bring 
more values into the WPP tasks based on PINN.

4.4  Evaluation of the WPP performance in different scenarios

As stated in Sect. 2, deterministic WPP studies commonly utilized RMSE and MAE based 
metrics to evaluate the WPP performance. These metrics merely evaluate the difference 
between the prediction and actual power output. All instances are equally treated in these 
metrics. However, in some power grid operations, there are three additional requirements 
for wind power predictions.

• Concentration on the high wind power output instances: It is crucial to concentrate on 
high wind power output instances as it is more challenging for power systems to operate 
during periods of high wind power. Although predicting peaks is difficult, predicting 
high wind power output instances in WPPs should receive more attention.



 H. Liu, Z. Zhang 

1 3

  112  Page 38 of 49

• Prevention of adverse effect: It is important to prevent adverse effects which occur 
when the WPP prediction decreases while the actual WPP output increases, causing 
undesired operations in the power system. Therefore, more effective metrics need to 
be developed and utilized to evaluate the WPP performance, taking into account these 
requirements and other factors in power system operations.

• Wind power ramp consideration: The wind power ramp events possess a great potential 
of facilitating WPP models to address impacts brought by sudden large wind changes. 
Hence, it is of great practical value to study WPP methods together with better utilizing 
the historical wind power ramp pattern and with integrating more effective wind power 
ramp predictions.

Overall, these requirements highlight the need for more research in developing effective 
WPP methods and metrics that can meet the diverse needs of power grid operations.

5  Conclusions

This paper provided a comprehensive review of recent deep learning development in 
WPPs. It covered more than 140 recent WPP studies with advanced deep learning from 
two perspectives: WPP formulations and WPP methods.

First, different developments in WPP formulations including the new designs of 
inputs, new settings of outputs, and new application of evaluation metrics reported in 
recent WPP studies were summarized. The evolution of input designs was propelled by 
the broader availability of input sources and an increased interest in leveraging high-
dimensional data for WPPs. Early data-driven studies mostly considered one source of 
input, either historical SCADA or NWP data. Subsequently, the input design evolved to 
jointly consider data sources and model the spatial influence to convey richer information 
in modeling. Moreover, the scope of input data considered expanded from a targeted wind 
turbine or wind farm site to include a group of neighboring sites. This change enabled a 
more comprehensive analysis of the influence of spatial–temporal data patterns on WPP 
modeling. To efficiently utilize data information under such setting, new data organization 
strategies including stacking, projection, and graph modelling were presented. To cope 
with incorporating more relevant attributes and enriching the WPP input, physics-informed 
methods were also employed to augment data and subsequently improve the accuracy 
based on a joint consideration of relevant knowledge. Meanwhile, in the WPP model 
output setting, the distribution of the power output at different levels was considered to 
provide more value prediction outcomes and to enable the quantification of future power 
output uncertainty. Recent studies also explored the link between the wind power ramp and 
WPP tasks, which aimed at coping with the impact of sudden large wind changes on WPP 
performances.

Next, a comprehensive review of the deep learning-based modeling methods for WPPs 
was conducted. Based on the process of converting inputs to wind power prediction, most 
of presented deep learning based modeling frameworks could be decomposed into four 
components, the signal processing component, clustering component, feature engineering 
component, and optimization component. It was observed that many advances in WPP 
modeling facilitated by deep learning were seen in the feature engineering component, 
mainly leveraging higher dimensional information and engineering low-dimensional but 
representative latent features for attaining better WPP performances. To conduct a more 
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in-depth review of the development of feature engineering techniques, a total of 8 groups of 
28 state-of-the-art deep learning models were compared. The FNN model was one basic but 
well-known NN-based option. Via stacking multiple neural layers, the FNNs were able to 
transform the input to a set of latent features representing the useful information beneficial to 
the WPP task. Unlike FNNs, the AE models focused on extracting the latent representation 
based on the information of input itself. To address the uncertainty of the future wind 
power, probabilistic models were studied to provide the quartiles, confidence intervals, or 
distributions instead of a spot value of future wind power in WPP. Convolutional models 
and recurrent models were typically designed to extract the local spatial features and 
temporal features of the high-dimensional input data, respectively. To jointly analyze the 
spatial and temporal patterns, the ConvLSTM was proposed via integrating the advantages 
of convolution and recurrent models. However, the input data of ConvLSTM needed to be 
projected into a two-dimensional grid, which could be inefficient with a sparse distribution 
of the wind turbines or wind farms. To efficiently analyze the spatial patterns of wind 
data, graph-based models were also investigated. The attention-based models were also 
explored in WPP studies to adaptively analyze the spatial or temporal patterns of the input 
via attention mechanisms. Recent results reported that the attention-based models offered 
higher efficiency and better performance than convolutional and recurrent models in WPP 
tasks.

To verify the performance advancement brought by deep learning methods, we surveyed 
the existing literature and reported the improvement generated by deep learning methods 
against traditional models. We further verify the effectiveness of recent WPP development 
via reproducing and comparing latest deep learning models based on SCADA datasets 
collected from three commercial wind farms. The results demonstrated that DLinear 
achieved better performance on all of datasets considered in this work. The Informer, 
Transformer, and GRU model could also obtain promising results.

The future trends in WPP studies including the advanced input organization design, 
interpretable WPP features, more emerging modeling mechanisms, and more effective 
evaluation metrics were introduced and discussed. It is expected that these research areas 
will receive more attention in future WPP studies, as improvements in these aspects are 
likely to lead to further improvements in WPP accuracy and reliability.

In summary, this review serves as a guide for researchers and software developers 
dedicated to WPP studies and its downstream tasks.
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