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Abstract
In computer vision, a series of exemplary advances have been made in several areas involv-
ing image classification, semantic segmentation, object detection, and image super-res-
olution reconstruction with the rapid development of deep convolutional neural network 
(CNN). The CNN has superior features for autonomous learning and expression, and fea-
ture extraction from original input data can be realized by means of training CNN models 
that match practical applications. Due to the rapid progress in deep learning technology, 
the structure of CNN is becoming more and more complex and diverse. Consequently, it 
gradually replaces the traditional machine learning methods. This paper presents an ele-
mentary understanding of CNN components and their functions, including input layers, 
convolution layers, pooling layers, activation functions, batch normalization, dropout, fully 
connected layers, and output layers. On this basis, this paper gives a comprehensive over-
view of the past and current research status of the applications of CNN models in computer 
vision fields, e.g., image classification, object detection, and video prediction. In addition, 
we summarize the challenges and solutions of the deep CNN, and future research direc-
tions are also discussed.

Keywords Convolutional neural networks · Computer vision · Status quo review · Deep 
learning

1 Introduction

Computer vision is gaining popularity as a buzzword in the field of image processing. 
Human activity recognition (HAR), an established trend with numerous real-life appli-
cations including elderly care monitoring, rehabilitation activity tracking, posture cor-
rection analysis, and intrusion detection in security, is a prominent area of research in 
the field of computer vision (Singh and Vishwakarma 2019). Over the years, deep learn-
ing advances in computer vision have attracted the attention of many scholars in the field 
of human action recognition (Vishwakarma and Singh 2019; Singh and Vishwakarma 
2021; Dhiman and Vishwakarma 2020). The convolutional neural network (CNN) is 
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used to construct the majority of computer vision algorithms. A convolutional neural 
network (Li et al. 2021), known for local connectivity of neurons, weight sharing, and 
down-sampling, is a deep feed-forward multilayered hierarchical network inspired by 
the receptive field mechanism in biology. As one of the deep learning models, a CNN 
can also achieve “end-to-end” learning. Through multiple layers of feature transforma-
tion, the underlying feature representation of the original data is gradually transformed 
into a higher-level feature representation, and the processed data is fed into a prediction 
function to settle the final classification or other tasks. The representation learned by the 
machine itself can generate good features, avoiding “feature engineering”.

In 2006, Hinton et al. proposed several perspectives in their article, which was pub-
lished in Science (Hinton and Salakhutdinov 2006), including (1) that artificial neural 
networks with multiple hidden layers have a robust feature learning capability and (2) 
that the difficulty of training deep neural networks can be greatly reduced by the “layer-
by-layer initialization” method. Since then, deep learning has become a hot topic in both 
academia and industry, and it has made a splash in computer vision, speech recognition, 
machine translation, and other fields. Meanwhile, another learning boom in artificial 
neural networks (Yu et al. 2013) has kicked off. As a typical neural network model of 
deep learning, a CNN has also gained wide attention from all walks of life. One of 
the most widely concerned is AlexNet (Alom et  al. 2018), which won the ImageNet 
Large Scale Visual Recognition Competition (ILSVRC) in 2012 due to its excellent 
performance. With the improvement of AlexNet’s accuracy on computer vision tasks 
such as image classification, researchers started to remedy the defects of the network 
models based on AlexNet in the expectation of further enhancing their performance. 
Significant advances have been made in model optimization, and some of the most rep-
resentative neural network models are Visual Geometry Group (VGG) (Sengupta et al. 
2019), GoogLeNet (Khan et  al. 2019), Residual Network (ResNet) (Wightman et  al. 
2021), Squeeze and Excitation Network (SENet) (Jin et al. 2022), and MobileNet (Chen 
et al. 2022). With the development of these network architectures, neural network mod-
els tend to be deeper, wider, and more complex. Although this evolution can facilitate 
the networks to capture better feature representations, there is no guarantee that it can 
operate efficiently in all cases. Models still suffer from disadvantages such as the fact 
that the networks are more likely to fall into overfitting, and instead of decreasing, the 
error rate of the training set increases as the networks become deeper and more com-
plex. To remedy the shortcomings of these models, many scholars have come up with 
various techniques to optimize the structure of CNN, e.g., network pruning (Yang et al. 
2023), knowledge distilling (Guo et  al. 2023), and tensor decomposition (Fernandes 
et al. 2021).

Despite the significant achievements of CNN in computer vision applications such as 
image classification (Chandra and Bedi 2021), object detection (Ma et  al. 2023), speech 
recognition (Li et al. 2022), sentiment analysis (Chan et al. 2023), and video recognition 
(Yan et al. 2022), the field continues to face various challenges and opportunities. As com-
puter vision tasks become increasingly complex, there is a pressing need for CNN models 
and algorithms that offer higher performance and efficiency. Moreover, current research 
focuses on addressing key issues such as knowledge sharing across different tasks, domain 
adaptation, and interpretability. Given these things into account, this paper aims to com-
prehensively summarize and analyze the applications of CNN in computer vision, with 
a particular emphasis on the latest advancements in tasks including image classification, 
object detection, and video prediction. The contributions of this survey paper are summa-
rized below:
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• A holistic literature review of CNN in computer vision, including image classifica-
tion, object detection, and video prediction, is presented in this paper.

• A theoretical understanding of the CNN design principles and techniques, such as con-
volution, filter size, stride, down sampling, optimizer, etc., is explained in detail.

• The image classification and object detection performance obtained using the exist-
ing algorithms on the dataset of the domain to which they belong are compared, 
respectively.

• Classical architectures for deep learning and CNN-based visual models are high-
lighted.

• The current challenges involved and future research directions for CNN are identi-
fied and presented.

The remaining part of the paper proceeds as follows (shown in Fig. 1): Section 2 gives 
a basic introduction to the elementary components of CNN and their corresponding 
functions. Sections 3, 4, and 5 summarize the relevant research models and methods in 
three application directions, namely, image classification, object detection, and video 
prediction, respectively. In Sects. 6 and 7, through synthesizing the current research 
status, the issues of CNN are analyzed and summarized. In addition, an outlook on 
future research trends is provided.

2  Basic CNN components

Although there are numerous variations of CNN models, the overall architecture is essen-
tially the same and adheres to a fixed paradigm, consisting of an input layer, alternate lay-
ers of convolution and pooling layers, one or more fully connected layers, activation func-
tions, and an output layer at the end. The first half of the network comprises of a number 
of convolution and pooling layers stacked alternately to form a feature extractor, through 
which various operations can be performed to process the raw input data that is preproc-
essed into a more abstract and higher-level feature representation. Fully connected layers 
are used in combination with activation functions to execute tasks such as classification or 
regression on the extracted features. To maximize CNN performance, various regulatory 
units like batch normalization and dropout are also included in addition to various map-
ping functions (Bouvrie 2006). Fig. 2 shows various CNN components. The configuration 
of CNN components is essential to creating new architectures and, ultimately, to obtain-
ing improved performance. It is crucial to comprehend various CNN components and their 
respective applications in order to learn about the developments in CNN architecture in 
computer vision (Bhatt et al. 2021). The role of these components in a CNN architecture is 
covered in brief in this section.

Before being input to CNN, the raw data needs to be preprocessed. The common 
processing methods include homogenization (Stepanov et  al. 2023), normalization 
(Huang et al. 2023), and principal component analysis (PCA) (Uddin et al. 2021). To 
achieve homogenization, the average value calculated across the complete training 
set is subtracted to center each dimension of the input data at zero. Normalization is 
designed to normalize the data magnitude to the same range. By individually normal-
izing the input, dimension reduction with PCA can lessen the correlation between sev-
eral data dimensions.
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2.1  Convolution layer

The convolution layer, which may extract various features from different local regions of 
the input data, is composed of a collection of convolution kernels, with each neuron act-
ing as a kernel. Each convolution kernel has three dimensions: length (L), width (W), and 
depth (D). In the convolution layer of a CNN, the length and width of the convolution 
kernel are designed artificially, L ×W is also known as the size of the convolution ker-
nel. Commonly used sizes are 3 × 3 , 5 × 5 , etc. The number of channels, also known as 
the depth or the number of feature maps, is the number of feature maps output from each 
layer in the CNN, and the depth of the convolution kernel is the same as the number of 

Fig. 1  Layout of the paper illustrating the overall process (This paper is reviewed in the order of introduc-
tion, basic CNN components, image classification, object detection, video prediction,CNN challenges and 
future directions, and conclusion. Among them, the convolution layer, pooling layer, activation function, 
batch normalization, dropout, and fully connected layer are introduced in the basic CNN compositions. An 
introduction to image classification includes AlexNet, VGG, GoogLeNet, ResNet, SENet, and MobileNet. 
We overview object detection according to two-stage and one-stage. Video prediction is a popular area of 
research in the field of CNN. This part presents the state-of-the-art models in video prediction. The conclu-
sion summarizes the challenges related to CNN and outlines future research directions.)
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sheets of the feature map. The number of channels directly affects the feature extraction 
ability and computational complexity of the CNN. By increasing the number of channels, 
the feature extraction ability of CNN can be enhanced, but it also increases the compu-
tational complexity. A convolution operation is the process of sliding a convolution ker-
nel (filter) over the input image, multiplying the convolution kernel and the pixel values 
at the corresponding positions of the input image, and summing them to obtain a fea-
ture map. The convolution process is depicted in Fig.  3 using a single-channel original 
image 5 × 5 and a convolution kernel 3 × 3 . Each pixel value of the feature map obtained 
by convolution is obtained by multiplying and summing the corresponding pixel val-
ues of the original image covered by the convolution kernel at the corresponding posi-
tion. In Fig. 3, the − 4 on the blue background in the feature map is calculated as follows: 
−4 = (−1) × 1 + 0 × 0 + 1 × 7 + (−1) × 8 + 0 × 2 + 1 × 4 + (−1) × 6 + 0 × 5 + 1 × 0.

By convolving the original image with the filters and applying a nonlinear activation 
function to obtain new feature mappings, each feature mapping can be used as a class of 
extracted image features. To extract higher-level and more complete feature representa-
tions, the network model can stack multiple convolution layers. Convolutional operation’s 
weight-sharing technique allows multiple sets of features within an image to be retrieved 
by sliding a kernel with the same set of weights on the image, making it more efficient and 
effective for CNN parameters than fully connected networks. Furthermore, it also allows 

Fig. 2  Structure of CNN (Suppose this is an n-classification problem. The original data is convolved twice 
(Convolution 1, Convolution 2), pooled twice (Max Pooling 1, Max Pooling 2), and output to the fully con-
nected layer (Fully connection), and finally the Softmax activation function compresses the output vectors 
of the full connection layer into (0, 1) and outputs them in the output layer. The Data Cost 1 represents the 
probability of belonging to the n categories; the larger the value, the greater the possibility of belonging to 
the category.)

Fig. 3  Convolution procedure
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the network to have fewer neuron connections and a simpler network architecture, which 
facilitates the training of the network.

Stride is the number of rows and columns that the convolution kernel slides over the 
input matrix in order from left to right and top to bottom, starting from the top left of the 
input matrix. For example, in Fig.  3, the stride is 1 in both the height and width direc-
tions. In addition, we can also use a larger stride. Fig. 4 illustrates a convolution operation 
with a stride of 3 in the vertical direction and 2 in the horizontal direction. At the output 
of the second element of the first column, the convolution window is slid down 3 rows, 
and the elements used for the calculation are: (−1) × 3 + 0 × 3 + (−1) × 0 + 0 × 1 = −3 . 
The convolution window slides two columns to the right when the second ele-
ment of the first row is output. The elements that were used in the calculation are: 
(−1) × 0 + 0 × 7 + (−1) × 2 + 0 × 4 = −2 . Since the input elements cannot fill the con-
volution kernel window, no result is produced when the convolution window slides two 
more columns to the right on the input. The output data size, computational complexity, 
and feature extraction capability can all be impacted by the stride. The output data size 
reduces and the ability to extract features weakens as the stride increases, but the computa-
tion speed increases.

Padding is the process of adding a certain number of pixels to the edges of the input data 
so that the size of the output data can match the input data. As shown in Fig. 5, it is also 
known as padding some values on the boundary of the matrix to increase the size of the 
matrix, usually with 0 or copying the boundary pixels for padding. Padding is frequently 
used in CNN to prevent feature map sizes from shrinking at each layer. Furthermore, 

Fig. 4  Convolution procedure (stride=(2,3))

Fig. 5  Padding



A review of convolutional neural networks in computer vision  

1 3

Page 7 of 43 99

padding makes it easier for the convolution kernel to learn the information surrounding 
the input image. For instance, when the 5 × 5 × 1 image is reinforced into a 7 × 7 × 1 and 
applied to the 3 × 3 × 1 kernel over it, the complex matrix is shown to be of dimensions 
5 × 5 × 1 . It demonstrates that the dimensions of the input and output images are the same. 
If the same procedure is done without padding, the output might have a smaller-sized 
image. Consequently, a 5 × 5 × 1 image will be converted to a 3 × 3 × 1 image (Bhatt et al. 
2021).

2.2  Pooling layer

Upon acquiring the feature maps, a pooling (down sampling) layer must be added. The 
neurons in the pooling layer are connected to the local receptive domains of their input 
layer, i.e., the convolution layer, and the local receptive domains of different neurons do 
not overlap. The pooling procedure, like the convolution process, can be thought of as a 
pooling function without weights, in which the input feature mapping group is divided into 
many regions and each area is pooled to yield a value as a generalization of this region. 
Pooling functions that are commonly used are max pooling and average pooling.

For a region, max pooling selects the maximum activity value of all neurons as the rep-
resentation of this region and extracts the most significant features from the input feature 
mapping, which is generally used for low-level feature extraction. In the case of max pool-
ing (stride = 2), as shown in Fig. 6, a kernel of size 2 × 2 is moved across the matrix, and 
the maximum value is selected and put in the appropriate spot of the output matrix. For 
example, pooling the four numbers ’0, 1, 4, 8’ in the blue region yields 8, the maximum of 
these four numbers.

Average pooling takes the arithmetic mean of all elements in the region as the output 
result of the function, namely, the mean value of the local response of the extracted feature 
mapping.The average pooling results with filter = 2 × 2 and stride 2 are shown in Fig. 7. It 
is evident that the green region’s pooling result is (2 + 6 + 3 + 3)/4 = 3.5.

The introduction of a pooling layer not only effectively compresses the amount of data 
and parameters, reduces the feature map dimension, and minimizes overfitting, but also 
makes the network invariant to some small local morphological changes while having a 
larger perceptual field. Applying different pooling techniques also significantly shortens 
the time needed for model training and improves feature extraction and compression.

Fig. 6  Max pooling

Fig. 7  Average pooling
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2.3  Activation function

An activation function is a different mathematical function that receives the filter’s output. 
It plays an important role in neural networks, which strengthens the representational and 
learning capabilities of the network. Each layer’s input and output in a neural network is 
a linear summation process, and the output of the next layer simply takes over the linear 
transformation of the previous layer’s input function. On the contrary, with the introduc-
tion of the activation function, the neural network can approximate any other nonlinear 
function, making it applicable to a wider range of nonlinear models. In this section, we 
will introduce the most classical and widely used activation functions, including Sigmoid, 
Tanh, Softmax, ReLU, and Leaky ReLU.

The logistic function, also known as the sigmoid, has values between 0 and 1. As can 
be seen in Fig. 8, the sigmoid can be used to both normalize the output of each neuron and 
as a model that uses the predicted probabilities as the outputs. This is because the sigmoid 
maps any received vector to the (0,1) interval. The following is the expression for the sig-
moid function.

Figure  8 shows that the sigmoid gradient is smooth, preventing output values from 
jumping. Nevertheless, there are numerous issues with using Sigmoid. The next layer’s 
neuron inputs confront bias shift as a result of the non-zero-centered output, which also 
slows down the gradient descent’s convergence and decreases the weight update’s effi-
ciency. Secondly, the sigmoid function’s rate of change flattens out as it gets closer to 0 and 
1, meaning the sigmoid’s gradient converges to 0. Neurons with outputs near 0 or 1 do not 
have their weights updated when the neural network is backpropagated using the sigmoid 
activation function because their gradients are convergent to 0. Furthermore, the weights 
of the neurons connected to such neurons are slowly updated and are prone to gradient 

(1)f (x) =
1

1 + e−x

Fig. 8  Function curves of Sigmoid and Tanh
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vanishing. Finally, the sigmoid function is an exponential operation, which lengthens the 
model’s computation time.

Tanh, also known as the hyperbolic tangent activation function (HTAF), compresses the 
received vector into a range of − 1 to 1. Equation (2) and Fig. 8 show the function expres-
sion and curve, respectively.

Figure 8 shows that the Tanh and sigmoid function curves are relatively similar and resem-
ble an S-shaped curve. Furthermore, the Tanh function can be thought of as a zoomed and 
shifted sigmoid function. Tanh and Sigmoid have the following relationship:

Tanh is used with a higher priority than Sigmoid in practice because it improves on Sig-
moid and solves the problem of Sigmoid functions not centering the output at 0. However, 
like the sigmoid, when the input is large or small, the output is smooth and the gradient is 
small, which is inconvenient for weight updating.

Softmax is an activation function for multi-classification problems. For any real vector 
of length K, Softmax activation can compress it into a real vector of length K, with values 
in the range (0, 1) and vector elements summing to 1. In the K classification task, these 
values obtained by the activation function can be used to represent the predicted probabil-
ity of each category, with larger values indicating a higher probability of belonging to that 
category. As shown in Fig. 9, this is a 5-classification problem. All the output layer vectors 
(left column) are given a number (right column) within (0, 1) after Softmax, where the 
probability of the second row is 0.90, indicating that the classification task belongs to the 
second category. SoftMax is formulated as follows:

In contrast to the standard max function, which only returns the maximum value, Soft-
max ensures that smaller values have smaller probabilities and are not discarded outright.
The denominator of the Softmax function combines all the factors of the original output 
value, which means that the various probabilities obtained by the Softmax function are 
correlated with each other. When the input is negative, the gradient is zero, which means 
that the weights for activation in that region will not be updated during backpropagation, 
resulting in dead neurons that never activate. Furthermore, Softmax has the issue of being 
non-trivial at zero. Fig. 10 depicts the Softmax function image.

(2)f (x) =
2

1 + e−2x
− 1

(3)Tanh(x) = 2Sigmoid(2x) − 1

(4)Softmax(x) =
exi

∑K

j=1
exj

Fig. 9  Softmax schematic
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Softmax and Sigmoid also have some similarities and differences in some aspects. 
Softmax can be regarded as an extension of sigmoid, and softmax regression degener-
ates to sigmoid regression when the number of categories K = 2. A sigmoid maps a 
real value to the interval (0,1) and is used for binary categorization. Softmax puts a 
K-dimensional vector of real values ( a1, a2, a3, a4.... ) into ( b1, b2, b3, b4.... ), where bi 
is a constant from 0 to 1. The multi-categorization task can then be performed based on 
the probability magnitude of bi . Although multiple sigmoid can also achieve the effect 
of multi-categorization by superposition, multi-categorization by softmax regression is 
mutually exclusive between classes, i.e., an input can only be categorized into one class; 
multi-categorization by multiple sigmoid regression is performed, and the classes of the 
output are not mutually exclusive.

ReLU, also known as Rectified Linear Unit, is a segmented linear function, as shown 
in Fig. 11. The ReLU function is essentially a ramp function with the following formula:

To some extent, ReLU compensates for the lack of sigmoid and tanh. When the input 
is positive, the derivative is 1, which improves the gradient vanishing problem and 
speeds up gradient descent convergence. Second, because the ReLU function only has 
linear relationships, it is faster than the sigmoid and tanh functions. However, this acti-
vation function suffers from the Dead ReLU problem. (If the input is negative, the gra-
dient will be exactly zero, and the ReLU neurons are more likely to “die” during train-
ing.) Similar to Sigmoid, the output of the ReLU function is not zero-centered, which 
introduces a bias offset to the neural network in the next layer, affecting the efficiency of 
gradient descent.

To solve the problem of the vanishing gradient in ReLU, when x < 0, we use Leaky 
ReLU, a function that tries to fix the Dead ReLU problem. The function expression is as 
follows:

(5)f (x) = max(0, x)

Fig. 10  Function curves of Softmax
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where a is a very tiny value, like 0.01, 0.1, etc. As in Fig. 12, let a = 0.01 be displayed 
here.

Leaky ReLU mitigates the Dead ReLU problem to some extent by giving very small 
linear components to the negative inputs to adjust for the zero gradients of the negatives, 
extending the range of ReLU. Although Leaky ReLU has all the features of ReLU, such 
as being computationally efficient, having fast convergence, and not saturating in positive 

(6)f (x) =

{
x, x ≥ 0

ax, x < 0

Fig. 11  Function curves of ReLU

Fig. 12  Function curves of Leaky ReLU
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regions, it has not been fully proven in practice that Leaky ReLU is always better than 
ReLU.

The essence of deep learning lies in continuously updating weights to find values that 
minimize loss. When dealing with complex tasks, deep networks outperform shallow ones. 
However, in deep neural networks, gradients are unstable, either vanishing or explod-
ing, caused by the compounding effect of multiplication in gradient backpropagation. For 
example, the backpropagation (BP) algorithm, based on gradient descent, adjusts param-
eters in the negative gradient direction of the objective. Gradient calculation involves the 
derivative of the activation function. If the derivative is greater than 1, as network layers 
increase, the computed gradient update grows exponentially, leading to a gradient explo-
sion. This results in significant updates to network weights, making the network unstable. 
If the derivative is less than 1, the gradient update information decays exponentially with 
increasing layers, causing the vanishing gradient problem. This prevents the model from 
learning effectively from training data, even with prolonged training.

Choosing the appropriate activation function can effectively alleviate the issues of gra-
dients vanishing and exploding. If the derivative of the activation function is 1, there is no 
problem of gradients vanishing or exploding, and each layer of the network can update at 
the same rate. Sigmoid and Tanh are two classic activation functions, but Sigmoid has a 
drawback: when x is large or small, the derivative is close to 0, and the maximum value 
of the Sigmoid function’s derivative is 0.25. If Sigmoid is used as the activation function, 
its gradient cannot exceed 0.25. Consequently, gradient vanishing is likely to occur after 
the chain rule in backpropagation. Similar to Sigmoid, using Tanh as an activation func-
tion may still lead to the issue of gradient vanishing; although its derivative is better than 
Sigmoid, it remains less than 1. Therefore, Sigmoid and Tanh are generally not suitable 
for neural networks. The derivative of ReLU is constantly 1 in the positive part, so using 
ReLU as the activation function avoids the problems of gradients vanishing and explod-
ing. By allowing positive gradients to remain unchanged and setting negative values to 
zero, ReLU ensures that only positive gradients contribute to weight updates, mitigating 
the problem of gradients vanishing. Additionally, ReLU can prevent gradient explosion by 
truncating large gradient values. Other activation functions, such as Sigmoid or Tanh, can 
also partially alleviate the problem of gradient explosion to some extent. The activation 
function acts as a decision function and aids in the learning of complex patterns. Choos-
ing an appropriate activation function can hasten the learning process. Different activation 
functions are appropriate for various application scenarios. ReLU and its variants, on the 
other hand, are preferred because they aid in overcoming the vanishing gradient problem 
(Nwankpa et al. 2018).

2.4  Batch normalization

Gradient descent is a very versatile optimization algorithm that is well suited to solving a 
range of problems. The whole idea of gradient descent is to minimize the objective func-
tion by iteratively updating the parameters in the opposite direction of the gradient of the 
objective function. The gradient is the representation of the directional derivative of a 
function at that point along which the function achieves its maximum value. The gradient 
descent algorithm is shown in Fig. 13, where a random initial value is chosen, the gradient 
at that point is calculated, and then the independent variables are updated in the direction 
of the gradient until the value of the function changes very little or the minimum number of 
iterations is reached. The formula is as follows:
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where, � is the parameter to be solved, � the learning rate represents the learning step for 
each optimization, and J(�) is the objective function.

The learning step is an important parameter of gradient descent that determines just 
how far to try to advance on the objective function in order to find the minima point. There 
are two extremes that can occur with the setting of the learning step, as shown in Fig. 14: 
(a) If the learning step is too small, it will have to go through many iterations before the 
algorithm can converge, which is very time-consuming. (b) On the other hand, if the learn-
ing step is too large, the minimum point will be skipped or may not even be found.

However, not all objective functions resemble a standard bowl. They can be holes, 
ridges, plateaus, or any other irregular terrain that makes convergence difficult. Fig.  15 
depicts the two main gradient descent challenges: If a random initial value is chosen on 
the image’s left side, it will converge to a local minimum that is greater than the global 
minimum. It will take a long time to cross the plateau if it starts on the right, and if it stops 
training earlier than necessary, it will never reach the global minimum.

To address the various problems of gradient descent algorithms, the Google team pro-
posed the idea of batch normalization (BN) (Ioffe and Szegedy 2015). BN is a neural net-
work regularization technique that unifies the distribution of feature-map values by set-
ting them to zero mean and unit variance. Furthermore, the BN layer helps to alleviate the 
problem of gradient vanishing and gradient explosion, improves the network’s adaptability 
to different input data, speeds up the neural network’s training process, and improves the 

(7)� = � − �
�J(�)

��

Fig. 13  Gradient descent algo-
rithm

Fig. 14  Algorithms for gradient descent with excessively small or large learning steps
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network’s generalization. It also avoids the problem of data death in the ReLU and makes 
weight initialization easier.

2.5  Dropout

Dropout facilitates regularization in the network by randomly omitting some units or con-
nections with a predetermined probability, which eventually enhances generalization. This 
random dropping of some connections or units results in several thinned network archi-
tectures, from which one representative network is chosen with low weights. This chosen 
architecture is then regarded as an approximation of all proposed networks (Srivastava 
et al. 2014). Fig. 16 depicts the distinction between a fully connected layer and a dropout 
layer.

2.6  Fully connected layer

A fully connected layer is a global operation, as opposed to convolution and pooling, 
and is typically employed at the network’s conclusion for classification. Like a multi-
layer perceptron neural network (MLP) (Isabona et al. 2022), each neuron in the fully 
connected layer is connected one by one with all the neurons in its preceding layers. 
Once the feature mapping obtained after several convolution and pooling operations is 
sufficient to recognize the features of the image, the next thing to consider is how to 

Fig. 15  Two main gradient descent challenges

Fig. 16  Distinction between 
a fully connected layer and a 
dropout layer
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perform the classification. Generally, the CNN will pull the multiple feature mappings 
that are finally obtained at the end into a long vector and send it to the fully connected 
layer, followed by the output layer, for classification. For example, when it comes to an 
image triple classification problem, the output layer of a CNN will have three neurons. 
In addition, the fully connected layer can integrate local information that is class-dis-
tinctive in the convolution or pooling layers (Sainath et al. 2013).

3  Image classification

3.1  Subtask explanation

Image classification (Chandra and Bedi 2021), which seeks to differentiate between dis-
tinct classes of objects, such as flowers, figures, and vehicles, based on various properties 
reflected in the image, is one of the fundamental challenges in computer vision. In other 
words, a computer can identify the class to which the objects in an image or video belong. 
The main process of image classification includes preprocessing the original image, 
extracting image features, and classifying the image using a pre-trained classifier, in which 
the extraction of image features plays a pivotal role. The data flow diagram for image clas-
sification is shown in Fig. 17. Traditional image classification algorithms can achieve the 
expected results in simple classification tasks. However, their performance in complex 
classification tasks is not satisfactory. CNN uses convolution kernels to extract features 
from the original input and automatically learns feature representations from massive sam-
ple data, giving the trained models stronger generalization abilities when compared to con-
ventional image classification algorithms that manually extract features.

Fig. 17  Data flow diagram for image classification
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3.2  AlexNet

LeNet was proposed by LeCun in 1998 (LeCun et al. 1998). LeNet is a feed-forward neural 
network consisting of two fully connected layers after five alternating layers of pooling and 
convolution. LeNet-5 is a LeNet extension and improvement that adds more convolution 
and fully connected layers. As shown in Fig. 18, the LeNet-5 network model has seven lay-
ers. LeNet-5 can share convolution kernels, reduce network parameters, perform well on 
the small-scale MNIST dataset, and achieve more than 98 % accuracy. CNN was first used 
for image recognition tasks thanks to the work of LeNet and LeNet-5, which also offered 
crucial lessons and insights for the later creation of deeper neural networks.

The concepts presented by David et al. in their 1968 seminal paper served as the foun-
dation for the idea that LeCun and his colleagues implemented (Hubel and Wiesel 1968). 
The study on the striate cortex in monkeys categorized cells as simple, complex, or hyper-
complex. It found smaller receptive fields, increased sensitivity to stimulus orientation, and 
a minority of cells with color-coding abilities. The evidence supports two vertical column 
systems in the studied cortex. The first type features columns with cells sharing receptive-
field orientations, akin to cat orientation columns but likely smaller. The second system 
organizes cells into columns based on eye preference, with larger ocular dominance col-
umns. The boundaries of the two systems appear to be independent. The cortex exhibits 
dual organization patterns: a vertical system aligns cells with common features along a 
line, mapping stimulus dimensions independently in superimposed mosaics. The horizon-
tal system segregates cells hierarchically in layers, with lower orders (monocularly driven 
simple cells) near layer IV and higher orders in the upper and lower layers. These findings 
not only address the organizational aspects of receptive fields and functional structure but 
also provide a crucial foundation for further research into information processing in the 
cortical region of the brain.

However, due to the low performance of the hardware and the insufficiently rich data-
set at that time, LeNet was not suitable for complex problems. In 2012, Krizhevsky et al. 
proposed AlexNet (Alom et al. 2018), which consists of five convolution layers and three 
fully connected layers. Each convolution layer contains a convolution kernel, a bias term, 
a ReLU activation function, and a local response normalization (LRN) module. The first 
convolution layer convolves the 224 × 224 × 3 input image using 96 convolution kernels 
of size 11 × 11 × 3 and stride 4. The second convolution layer takes the output of the first 
convolution layer as input and filters it with 5 × 5 × 48 kernels. The third, fourth, and fifth 

Fig. 18  Architecture of LeNet-5
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convolution layers are connected to each other, with no pooling layer in between. The ker-
nels of the second, fourth, and fifth convolution layers are only connected to those kernel 
maps of the previous convolution layer that are also located on the same GPU. The kernels 
of the third convolution layer are connected to all the kernel mappings of the second con-
volution layer. The neurons in the fully connected layer are connected to all the neurons in 
the previous layer. The response normalization layer follows the first and second convolu-
tion layers. The max pooling layer follows the response normalization layer and the fifth 
convolution layer. The image is convolved, fully connected, and finally fed into a Softmax 
classifier with 1000 nodes, which converts the output of the network into probabilistic val-
ues that can be used to predict the category of the image.

The image classification task of the ILSVRC reflects the most notable breakthrough of 
deep CNN in this area. In the 2012 ILSVRC, AlexNet demonstrated the potential of deep 
learning and finally won the competition with a Top-5 classification error rate of 16.4% , 
surpassing the performance of the second-place algorithm that performed classification 
by traditional methods. This competition attracted the attention of many researchers, and 
since then, improved algorithms based on CNN have also obtained excellent results in the 
ImageNet competition. Meanwhile, AlexNet became the dividing line between traditional 
and deep learning algorithms and was the first deep CNN model in modern times. Dis-
tinguished from traditional algorithms, AlexNet adopts many modern technical methods 
of deep convolutional networks for the first time, including using dual GPU parallel con-
volution operations in training, which overcomes the limitation of hardware resources on 
the learning ability and thus accelerates the training of the model. In order to address the 
gradient disappearance issue and hasten the convergence of the network model, after con-
volution filtering, the output excitation of the convolution layer is obtained using the ReLU 
activation function, which is then output to the subsequent convolution layer after local 
response normalization and down-sampling operations. By utilizing dropout and data aug-
mentation approaches, AlexNet also lessens the model’s overfitting.

3.3  Visual geometry group

To examine the impact of a CNN’s depth on its accuracy, Karen Sengupta et  al. (2019) 
conducted a comprehensive evaluation of the performance of network models with increas-
ing depth using small convolution filters (3 × 3) instead of the previous large convolution 
kernels (5 × 5) and proposed a series of Visual Geometry Group (VGG) models in 2014. 
With a classification error rate for the Top-5 of 7.3% , VGG finished as the second-place 
network in ILSVRC 2014. VGG made the following advancements in comparison to ear-
lier neural network models: lowered the size of the convolution kernels while increasing 
the number of network layers. The modest size of the convolution kernels used in VGG, as 
opposed to the convolution kernels used in AlexNet, lowers the computational complexity 
and the number of training parameters. Simultaneously, the hypothesis that performance 
can be enhanced by continually deepening the network topology is also supported by VGG. 
To date, VGG-16 is still widely used in various tasks due to its simple structural features 
and its applicability in transfer learning.

3.4  GoogLeNet

The champion model in the 2014 ILSVRC is GoogLeNet (Khan et al. 2019). As shown in 
Fig. 19, GoogLeNet consists of nine Inception V1 modules, five down sampling layers, and 



 X. Zhao et al.

1 3

99 Page 18 of 43

a number of other convolution and fully connected layers. Though GoogLeNet has deeper 
network layers, it still has a lesser number of parameters compared to VGG. Consequen-
tially, when computer hardware resources are restricted, GoogLeNet is a superior solution 
for image classification. A GoogLeNet convolution layer has many convolution processes 
of varying sizes, allowing for the production of dense data while making optimal use of 
processing resources. Additionally, it makes use of sparse connections to eliminate redun-
dant data and cut costs by skipping through pointless feature maps. Last but not least, the 
GoogLeNet reduces the connection density by adopting global average pooling rather than 
a fully connected layer.

By adding more hidden layers to CNN, the recognition accuracy and performance of 
deep neural networks can be enhanced (Szegedy et al. 2015), but it can lead to many issues. 
On the one hand, as the number of network layers rises, the network must learn more 
parameters, which easily leads to the model being overfitted to the training data set. On the 

Fig. 19  Architecture of Goog-
LeNet
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other hand, networks with extra layers require robust hardware resources in order to main-
tain the required processing power. In order to overcome these problems, the research team 
at Google developed the concept of inception (Al Husaini et al. 2022), which aims to build 
the underlying neurons and a network topology for sparse high-performance computing. 
In in Fig. 20a, the original Inception structure is displayed. Based on experimental results, 
it is concluded that the structure’s 5 × 5 convolution is the root cause of the excessive 
parameter issue. As a result, a new structure called Inception V1 is proposed. The structure 
of inception V1 is shown in Fig. 20(b). The main idea of inception V1 is to extract fea-
ture information from the preceding layers with three different-sized convolution kernels, 
fuse them, and pass them to the succeeding layers. The 1 × 1 convolution kernel is the most 
commonly utilized among them for data dimension reduction, which reduces convolution 
computation when passing to the next 3 × 3 and 5 × 5 convolution layers, avoiding the huge 
computation due to the increase in network size. The following layer can extract more valu-
able features from various scales by combining the features of the four channels.

Following Inception V1, Szegedy et al. proposed some optimizations to the Inception 
V1 structure and released the Inception V2 model in 2015 (Szegedy et al. 2016). To reduce 
the number of parameters and increase the discriminative nature of feature information, 
Inception V2 is improved by using two 3 × 3 convolution kernels instead of 5 × 5 convo-
lution kernels, 1 × n convolution kernels, and n × 1 convolution kernels instead of n × n 
convolution kernels. Second, the pooling layer is optimized using a parallel structure to cut 
down on computation. Furthermore, by smoothing the probability distribution of labels, 
overfitting is minimized. Inception V3 is an improved version of Inception V1 and V2. The 
idea of Inception V3 was to reduce the computational cost of deep networks without affect-
ing generalization. For this purpose, Szegedy et  al. replaced large-size filters ( 5 × 5 and 
7 × 7 ) with small and asymmetric filters ( 1 × 7 and 1 × 5 ) and used 1 × 1 convolution as a 
bottleneck before the large filters (Szegedy et al. 2017).

3.5  Residual network

A degradation problem emerges when deeper neural networks start to converge: accuracy 
increases to a saturation point and then rapidly declines as network depth increases. Nev-
ertheless, the increase in layers that results in more training errors is what causes this deg-
radation, rather than overfitting. Prior to residual network (ResNet Wightman et al. 2021), 
networks had relatively low layer counts; for example, the 2014 VGG network had only 19 

Fig. 20  Architecture of inception and inception V1
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layers. ResNet, on the other hand, maintains greater accuracy while having 152 layers in its 
depth. ResNet alludes to the highway network concept Srivastava et al. (2015) and is com-
posed of stacked residual blocks. The structure of a residual block is illustrated in Fig. 21. 
In addition to containing weighted layers, a residual block directly connects the input x to 
the output through a shortcut connection. The residual mapping is denoted as F(x), and the 
output is obtained by adding the residual mapping to the input, resulting in F(x) + x, repre-
senting the original mapping. The residual network encourages the stacked weighted layers 
to fit the residual mapping F(x) rather than the original mapping. Learning the residual 
mapping is simpler and more easily optimized compared to learning the original mapping. 
Furthermore, the shortcut connections enable the exchange of features between different 
layers, to some extent alleviating the problem of gradient vanishing. The Top-5 error rate 
of the residual network on the image classification task was reduced to 3.6%.

3.6  Squeeze and excitation network

In recent years, the attention mechanism has been another focus of CNN research. When 
the human eye scans an image, it first looks at the whole picture and then focuses its atten-
tion on a certain detail, concentrating its attention on the valuable part and ignoring the 
less valuable part. When we are designing neural network models, we hope that the mod-
els can have the same ability. Attention can be understood as selectively filtering out a 
small amount of important information from a large pool of data and focusing on these 
crucial details, while ignoring the majority of less significant information. The process of 
focusing is reflected in the calculation of weight coefficients, where larger weights indi-
cate a stronger focus on the corresponding Value. In other words, the weights represent the 
importance of the information, and the Value is the corresponding piece of information. 
In this way, we can comprehend the attention mechanism (refer to Fig. 22). Imagine the 
constituent elements of Source as a series of <Key,Value> data pairs. Then, given an ele-
ment Query in target, by calculating the similarity or correlation between Query and each 
Key, get the weight coefficients of the Value corresponding to each Key, and then weight 
and sum the Value, that is, we get the final Attention value. So the attention mechanism is 
essentially a weighted sum of the values of the elements in the Source, and the Query and 
Key are used to calculate the weight coefficients of the corresponding values.

Abstracting the specific calculations of the attention mechanism can be summarized into 
two processes: the first process involves calculating weight coefficients based on Query and 
Key, and the second process entails weighting and summing the values based on these weight 

Fig. 21  A residual block
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coefficients. The first process can be further divided into two stages: the first stage computes 
the similarity or correlation between Query and Key, and the second stage normalizes the 
raw scores obtained in the first stage. Fig. 23 illustrates the three-stage calculation process of 
attention.

In the first stage, various computation mechanisms can be introduced to calculate the sim-
ilarity or correlation between Query and a given Key. The most common methods include 
computing the dot product of their vectors and calculating the cosine similarity, as illustrated 
below:

(8)DotproductSim
(
Query,Keyi

)
= Query ⋅ Keyi

(9)CosineSim
(
Query,Keyi

)
=

Query ⋅ Keyi

|Query| ⋅ |Keyi |

Fig. 22  The essential idea of attention

Fig. 23  Three-stage process for 
computing attention
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Due to the different methods used, the values produced in the first stage can have differ-
ent ranges. In the second stage, a computation method similar to Softmax is introduced to 
transform the scores obtained in the first stage. On one hand, this normalization ensures 
that the original computed scores are unified into a probability distribution where the sum 
of all element weights is equal to 1. On the other hand, the intrinsic mechanism of Softmax 
helps emphasize the weights of important elements. Typically, the calculation is performed 
using the following formula:

where Lx=|Source| represents the length of the Source. The computed result ai from the 
second stage represents the weight coefficient corresponding to valuei . Then, by perform-
ing a weighted sum, the attention value can be obtained:

Focusing on channel attention research, Hu proposed the squeeze-and-excitation block (SE 
block). The SE block explicitly models interdependencies between channels to recalibrate 
the feature responses within channels. This involves selectively enhancing useful channel 
features while suppressing irrelevant ones. Squeeze and excitation Networks (SENet Jin 
et  al. 2022) won the 2017 ImageNet competition, similar to ResNet, both with a largely 
reduced error rate compared to previous models and low network complexity. The two pri-
mary parts of SENet are squeeze and excitation. A block of squeeze-and-excitation net-
works is shown in Fig. 24. The ftr in the figure is the traditional convolution structure, x 
and u are the input and output of ftr , which are already present in the previous structures. 
The added part of SENet is the content after u . In the image recognition task, the input 
image’s dimensions are h, w, and c, where h stands for height, w for width, and c for chan-
nel count. The squeeze component is in charge of compressing the h × w × c dimension 
into 1 × 1 × c dimension, which is the same as condensing h × w into a single dimension, 
and this is typically accomplished using global average pooling ( fsq(.) in Fig. 24). The out-
put 1 × 1 × c data is then fully concatenated ( fex(.) in Fig. 24, which is the excitation pro-
cess), and finally, the self-gating technique is used to learn the excitation of each channel 
and scale this value to the c channels of u as the next level’s input data. Controlling the 
scale size allows squeeze-and-excitation networks to strengthen critical channel properties 
while weakening non-important channel features, yielding good results and providing a 
novel notion for future research in this approach.

(10)ai = softmax
�
Simi

�
=

eSimi

∑Lx
j=1

eSimj

(11)Attention(Query, Source) =
∑Lx

i=1
ai ⋅Valuei

Fig. 24  A block of squeeze-and-excitation networks
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3.7  MobileNet

In traditional CNN, the memory requirements and computational demands are substan-
tial, making it impractical for running on mobile and embedded devices. Howard and his 
colleagues proposed a lightweight network, MobileNetV1 (Howard et al. 2017), tailored 
for mobile and embedded applications. Compared to traditional CNN, MobileNetV1 
significantly reduces the model’s parameters and computational workload while expe-
riencing a minor decrease in accuracy. MobileNetV1 achieves 0.9% lower accuracy than 
VGG16, but with only 1/32 of the model’s parameters. MobileNetV1 employs depth-
wise separable convolution layers, as illustrated in Fig. 25. This involves first applying 
depthwise convolution to each channel of the feature map, followed by pointwise 1 × 1 
convolution, aiming to reduce computational load and model parameters. Two contrac-
tion hyperparameters, the width multiplier and the resolution multiplier, are introduced 
simultaneously to decrease computation, reduce volume, and improve accuracy. How-
ever, a drawback of this model is its low cost-effectiveness, as many convolution kernel 
parameters become zero during the training process. Subsequently, Google introduced 
MobileNetV2 (Sandler et al. 2018), which utilizes an inverted residual structure and a 
linear bottleneck structure. The inverted residual structure first employs a 1 × 1 convolu-
tion to increase dimensionality, deepening the channels to capture more feature informa-
tion. It then applies a 3 × 3 depthwise convolution operation and concludes with a 1 × 1 
convolution for dimensionality reduction, effectively reducing the number of parame-
ters. One drawback of this model is the loss of diversity between layers, which cannot 
guarantee accuracy.

ImageNet (Deng et  al. 2009), as one of the datasets for image classification tasks, 
has the characteristics of large-scale datasets and abundant image categories, and the 
trained model has good generalization ability, allowing it to obtain effective classifica-
tion results on other image classification datasets such as CIFAR-10/100 Krizhevsky 
et al. (2009), Caltech-101 (Fei-Fei et al. 2004), and SUN (Xiao et al. 2010). Deep CNN 
models have improved in training thanks to the availability of a wide range of large-
scale datasets, and models trained on these datasets have better generalization abilities. 
These generalization abilities can be used in practical applications to quickly learn the 
features of the datasets on their own and boost the effectiveness and efficiency of classi-
fication tasks. Performance comparisons of different architectures are shown in Table 1.

Fig. 25  Deep separable convolution layer structure
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• As shown in Table 1, from AlexNet to GoogLeNet, the accuracy of image classification 
increases progressively. This is attributed to the deeper architecture of the networks, 
which leads to more effective feature extraction.

• ResNet has a deeper network architecture compared to VGG, but the introduction of 
residual learning makes the network more easily optimized, mitigating gradient van-
ishing issues. Additionally, parameter sharing and reuse, along with a reduced param-
eter count, contribute to achieving higher performance with lower complexity and error 
rates.

• Deep neural networks incorporating attention mechanisms have achieved remark-
able performance, as exemplified by the SE block proposed by Hu, which effectively 
models dependencies among channel features. Through these methods, it becomes 
evident that the core function of attention mechanisms is to emphasize useful compo-
nents while disregarding those with relatively minor contributions to feature extraction. 
Consequently, integrating attention mechanisms into networks offers the advantage of 
enhancing model performance and improving the effective extraction of features.

• Although lightweight networks may not perform as well as classical deep CNNs in 
image classification on the ImageNet dataset, they significantly reduce the number of 
parameters. This indicates that lightweight networks effectively utilize model param-
eters by employing methods like depthwise separable convolution. This advantage is 
particularly valuable in resource-constrained environments, such as mobile devices 
or embedded systems, where they can still deliver relatively good performance while 
reducing model size. This makes them more suitable for practical deployment and oper-
ation.

Despite the fact that several CNN models have achieved outstanding performance in 
image classification, they have a number of drawbacks. Advanced CNN models frequently 
have intricate structures and a lot of parameters, requiring a lot of processing power and 
memory during training and deployment. The use of lightweight network topologies like 
MobileNet and EfficientNet, model pruning, and model compression, as well as other 
strategies to lessen model complexity and storage needs, can all be used to overcome this 
issue. The fact that many CNN models heavily rely on an enormous amount of labeled 
data to perform at their best is a huge hurdle. Large-scale annotated data can be expensive 
and time-consuming to acquire, though. Several techniques can be used to improve train-
ing data and lessen reliance on annotated data in order to address this difficulty. These 
techniques include transfer learning, semi-supervised learning, and data augmentation. 
Another problem is that typical CNN models may lose fine-grained information when used 

Table 1  Performance comparisons of different architectures

Top 5 error rate is reported for all architectures

Models Year Depth Parameters/M Error rate/%

AlexNet Alom et al. (2018) 2012 8 60 16.4
VGG Sengupta et al. (2019) 2014 19 138 7.3
GoogLeNet Khan et al. (2019) 2015 22 4 6.7
ResNet Wightman et al. (2021) 2016 152 25.6 3.6
SENet Jin et al. (2022) 2017 152 27.5 2.3
MobileNetV1 Howard et al. (2017) 2017 – 4.2 5–10
MobileNetV2 Sandler et al. (2018) 2018 – 3.47 3–6
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on small-sized images. Different strategies can be used to handle the limitations of small-
sized photos in order to solve this issue. These methods involve leveraging shallow net-
work designs, pyramid-style network structures, or smaller convolutional kernels. Recent 
years have seen the emergence of fresh study focuses and methodologies, like using trans-
former models for image categorization. Researchers have looked into replacing convolu-
tional blocks with transformer model structures or implementing self-attention processes 
from transformers straight into CNN. As evidenced by models like DeiT, pyramid vision 
transformer, and swin transformer, these initiatives have yielded promising outcomes. A 
significant area for future research will be the combination of deep learning and reinforce-
ment learning in image classification. The effectiveness of image classification models may 
be further improved by this fusion of methodologies.

4  Object detection

4.1  Subtask explanation

As a fundamental task in computer vision, object detection (Ma et al. 2023) is the key to 
solving more complex vision tasks such as image segmentation (Minaee et al. 2021), object 
tracking (Luo et al. 2021), behavior recognition (Hu et al. 2023), etc. The process of object 
detection and recognition typically consists of two steps: firstly, the prospective placement 
of each target object in a picture is localized, and secondly, the well-positioned objects are 
sorted into several categories. Compared with image classification, object detection focuses 
more on local regions of an image and specific sets of object classes. CNN has been used 
in object detection since the 1990’s. However, because of a lack of training data and hard-
ware resources such as computational power and storage devices, research on object detec-
tion using CNN received little attention and advanced slowly until 2012. The tremendous 
breakthrough of CNN in the ImageNet challenge in 2012 rekindled researchers’ interest in 
deep CNN-based object detection, which led to a dramatic increase in object detection and 
recognition rates. At the same time, object detection has been widely applied in real-world 
scenarios, including autonomous driving (Zablocki et al. 2022), virtual reality (VR) (Xiong 
et al. 2021), intelligent video surveillance (Huang et al. 2021), etc.

Before the prosperity of deep learning, object detection algorithms depended on the 
traditional sliding window approach and were designed manually. The commonly used 
feature descriptors are Haar (Papageorgiou et  al. 1998), Sift (Lowe 2004), Surf (Bay 
et  al. 2006), etc., to train a unique shallow classifier for each class of target objects. 
Traditional object detection process is shown in Fig.  26. However, due to the factors 
of objects and the imaging environment, the method of manually designing features 
suffers from a lack of robustness, poor generalization, and low detection accuracy 
(Dicong et al. 2021). The bottlenecks of traditional object detection algorithms in prac-
tical applications are twofold. On the one hand, because the traditional object detection 
algorithm requires the designer to extract the features of the sample using prior knowl-
edge, only a few parameters can appear in the feature design to lessen the difficulty of 
manually tuning the parameters. Shallow classifiers, on the other hand, require expo-
nentially more parameters and training data in the face of tough detection tasks due 
to the lack of model depth. In response to the problem of manual parameter tuning of 
traditional object detection algorithms, the research boom in deep networks has brought 
new opportunities for the development of object detection. Compared with traditional 
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object detection algorithms, deep CNN can automatically learn feature representations 
of parameters from massive data sets and do not require additional training classifiers, 
which greatly improves the efficiency of the feature learning process.

In this paper, we outline known strategies for object detection from two perspectives: 
the region-based object detection algorithm (two-stage detectors) and the regression-
based object detection algorithm (one-stage detectors). Fig.  27 depicts the basic pro-
cedure of two-stage detectors, which scan the whole image using multiple fixed-size 
sliding windows to generate a series of region proposal boxes, select the region proposal 
of the image, and then perform regression localization and classification of the targets 
that may exist in the region proposal to achieve object detection. One-stage detectors, in 
contrast, do not generate region proposals and combine feature extraction, object clas-
sification, and position regression into a single CNN to complete the process, simplify-
ing the object detection process into a form of the end-to-end regression problem, as 
illustrated in Fig. 28.

Fig. 26  Traditional object detection process

Fig. 27  Basic process of two-stage detectors

Fig. 28  Basic process of one-stage detectors
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4.2  Representative two‑stage detectors

Using CNN and region proposals, Girshick Girshick et al. (2014) introduced a deep learn-
ing object detection framework in 2014 called R-CNN. Initially, the model uses selective 
search (Ji et al. 2021), a non-deep learning algorithm, to propose candidate regions to be 
classified, and then feeds each candidate region into a CNN to extract features. Finally, 
these features are fed into a linear support vector machine for classification. To improve 
localization accuracy, a linear regression model is trained in R-CNN and used to correct 
the coordinates of the candidate region; this process is known as bounding box regression. 
On the PASCAL VOC object detection dataset, the model achieved an average correctness 
mean that was approximately 20% higher than the traditional algorithm, paving the way for 
the creation of two-stage detectors.

In R-CNN, approximately 2000 candidate regions are generated for each image, and 
each image’s candidate regions must be feature extracted separately, making feature extrac-
tion a bottleneck in total test time. A Microsoft Research team applied SPP-Net (Ma et al. 
2021), to object detection and elevated R-CNN’s shortcoming. For the candidate regions 
generated by the selective search algorithm, SPP-Net projects the coordinates of these 
regions to the corresponding positions of the feature maps output by the highest convolu-
tion layer and then inputs the features corresponding to each candidate region into the spa-
tial pyramid pooling layer to obtain a fixed-length feature representation. The subsequent 
stages keep similarities to R-CNN in that the fully connected layer receives these feature 
representations as input, a linear support vector machine uses the fully connected layer’s 
feature output for classification, and bounding box regression is used to correct the candi-
date region coordinates. On the PASCAL VOC, the network achieved similar accuracy to 
the R-CNN, but the total time spent on the test was significantly reduced due to the fact that 
the time-consuming convolution operation was performed only once for each input image.

Like R-CNN, SPP-Net has certain limitations: the multi-stage training process of region 
proposal creation, feature extraction, and object classification is challenging, and it needs a 
lot of storage space for the derived features. Additionally, SPP-Net ignores the parameters 
of the network model’s other layers and only adjusts the fully connected layer. To solve 
these problems, Fast R-CNN (Girshick 2015) was available in 2015; its structure is shown 
in Fig. 29. Compared with the CNN in R-CNN, Fast R-CNN improves on the last pool-
ing layer by proposing the Region of Interest (RoI) pooling layer. The role of this layer 
is similar to that of the spatial pyramid pooling layer used in SPP-Net, which is to output 

Fig. 29  Fast R-CNN architecture
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a fixed-dimensional feature vector for any size of input, except that only a single level of 
spatial block partitioning is performed in the RoI pooling layer. This improvement allows 
Fast R-CNN, like SPP-Net, to input the whole input image together with the coordinates 
of the candidate regions generated by the selective search algorithm into a CNN and then 
perform RoI pooling on the feature maps of the output of the last convolution layer for the 
features corresponding to each candidate region. RoI pooling is performed on the output 
feature mapping of the last convolution layer, thus eliminating the need to perform a sepa-
rate convolution computation for each candidate region. In addition, Fast R-CNN replaces 
the last softmax classification layer of the CNN with two side-by-side fully connected lay-
ers, one of which is still a softmax classification layer, and the other is a bounding box 
regressor, which is used for correcting the coordinate information of the candidate regions. 
During the training process, Fast R-CNN designs a multi-task loss function to train the 
two fully connected layers for classification and correction of candidate region coordinate 
information simultaneously. This training approach achieves better detection results on the 
PASCAL VOC dataset than the network obtained from the staged training previously used 
for R-CNN, thus eliminating the need for additional training of SVM classifiers in Fast 
R-CNN and realizing the integration of the process from extracting image features to com-
pleting detection.

These models have made improvements in the training process and the structure of 
CNN, however, they all use traditional algorithms to propose candidate regions, and these 
algorithms are implemented on CPUs, which makes the time of calculating candidate 
regions the bottleneck of the overall running time of the model. Therefore, in the Faster 
R-CNN model (Ren et al. 2015) designed by Ren Shaoqing et al., a candidate region net-
work is proposed to improve this step, and its structure is shown in Fig. 30. Faster R-CNN 
improves on Fast R-CNN by setting a sliding window on the feature mapping output from 
the last convolution layer, which is fully connected to the candidate region network. For 
each position that the sliding window slides over, several anchor points with different scales 
and aspect ratios centered on the center of the sliding window are given in the model, and 
the candidate region network will compute a candidate region based on each anchor point 

Fig. 30  Region proposal network (RPN)
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accordingly. Since the process of proposing candidate regions by Faster R-CNN is based 
on the features extracted from the first few convolution layers of the Fast R-CNN used for 
detection and the candidate region network is also implemented on GPUs, the time over-
head for proposing candidate regions is greatly reduced, the time required for detection is 
about 1/10th of the original, and the accuracy is improved, which suggests that the candi-
date region network is able to not only operate more efficiently but also improve the quality 
of the candidate regions produced.

Despite the fact that various applications have successfully recognized medium-size 
and large-size items in images with accuracy, small object detection remains problem-
atic. Small objects are very difficult to recognize due to indistinguishable characteristics, 
complicated backdrops, low resolution, insufficient context information, and so on. As a 
result, there is considerable research being done in this field, and numerous deep-learn-
ing approaches have been developed recently with promising outcomes. In 2017, Lin et al. 
(2017) used the pyramidal hierarchy property of CNN to connect top-down lateralized 
high-level features with low-resolution, high-semantic information and low-level features 
with high-resolution, low-semantic information to construct Feature Pyramid Networks 
(FPNs) with high-level semantic information at different scales. The proposed FPN greatly 
improved the detection accuracy of the network and achieved state-of-the-art object detec-
tion, which will also become one of the important techniques to improve the accuracy of 
major networks in the future. Moreover, compared with other object detection models, 
the performance of FPN to improve classification accuracy in small object detection has 
achieved good results.

He et al. presented Mask R-CNN (He et al. 2017) in 2017, which integrates the concepts 
of Faster R-CNN and FCN. The feature extraction section uses a feature pyramid network 
(FPN) architecture and replaces the RoI pooling layer with a RoI align pooling layer, as 
well as a Mask prediction branch. The new FPN architecture improves the model’s multi-
scale feature extraction capacity and improves the recognition of small objects. However, 
the detection speed is the same as Faster R-CNN, which is insufficient for real-time moni-
toring applications.

Cao suggested a novel two-stage detector, D2Det (Cao et al. 2020), in 2020, that can 
handle the difficulties of precise localization and accurate classification at the same time. 
The model uses dense local regression to estimate the object’s various dense frame offsets. 
Dense local regression is not confined to a fixed set of quantified key points but may also 
regress location-sensitive real dense offsets, allowing for more accurate localization. To 
improve classification accuracy, discriminative RoI pooling (DRP) is used to recover accu-
rate object feature areas from the first and second phases, respectively. Table 2 compares 
the performance of two-stage detectors.

Table 2  Performance comparison 
of two-stage detectors

Models Backbone Detection 
speed(f/s)

AP

R-CNN Girshick et al. (2014) AlexNet 0.03 –
SPPNet Ma et al. (2021) ZF-5 2.0 –
Fast R-CNN Girshick (2015) VGG-16 3.0 19.7
Faster R-CNN (Ren et al. (2015) VGG-16 6.0 36.2
Mask R-CNN He et al. (2017) ResNeXt-101 11.0 39.8
D2Det Cao et al. (2020) ResNet-101 – 50.1
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4.3  Representative one‑stage detectors

One-stage detectors separated input photos into a number of cells, and each cell was 
used to forecast the item’s center falling into the cell, as opposed to using pre-defined 
anchors for the object region. After just one stage, which has a quicker detection speed, 
the class and location of the object can be determined. However, compared to two-stage 
detectors, the detection accuracy is less accurate. The YOLO (you only look once) algo-
rithm is a typical example of such an algorithm. The first one-stage object detection 
algorithm is YOLO (Redmon et al. 2016). The fundamental concept behind YOLO is to 
break the image up into multiple cells, predict the bounding box coordinates, the objects 
inside the boxes, and their corresponding confidence levels for each cell, and then 
remove the overlapping boxes using a non-maximal value algorithm to get the desired 
predicted boxes to achieve object detection. For instance, if the center of an object that 
needs to be recognized falls within one of the image’s divided cells, the cell is in charge 
of determining the type and location of the target object.

When compared to two-stage detectors, the real-time object detector YOLO was 
incredibly quick. However, it struggles to accurately forecast bounding box scales and 
ratios, especially for small item detection, which leads to relatively low localization and 
classification accuracy. It also performs poorly on objects that are partially situated in 
one cell. In 2017, Redmon proposed YOLOv2 (Redmon and Farhadi 2017). YOLOv2 
adds a batch normalization layer to all convolution layers to accelerate model learn-
ing, employs DarkNet-19 (Al-Haija et  al. 2021) as the backbone, and employs a clas-
sification network, namely, a high-resolution classifier (Anuj and Gopalakrishna 2020), 
which pre-trains the model on high-resolution ImageNet datasets and then fine-tunes 
it using target datasets to improve model training stability. All of the strategies signifi-
cantly increased detection accuracy while remaining fast.

DarkNet-53 served as the backbone for YOLOv3’s extraction of picture character-
istics, and logistics was employed in place of softmax for classification. The predic-
tion was performed using the FPN network, and the previous frames were chosen using 
k-means clustering. In YOLOv3 (Redmon and Farhadi 2018), nine preceding frames 
were chosen, and three feature maps with various sensory fields were chosen to identify 
objects of various sizes.

YOLOv4 (Bochkovskiy et al. 2020) introduced mosaic data enhancement on the input 
images. In feature extraction, YOLOv4 integrated numerous novel techniques, including 
CSPDarkNet53 and the mish activation function. Instead of FPN, SPP and PAN were 
employed to extend the perceptual field and conduct feature fusion. Overall, YOLOv4 
is a significant improvement over YOLOv3 and has considerable technical value since 
it introduces the most recent research methods within the realm of deep learning for 
validation testing. The network topology of YOLOv5 can be broken down into four sec-
tions: input, backbone, neck, and prediction. This makes it quite similar to YOLOv4. On 
the input photos, YOLOv5 applies adaptive image scaling, adaptive anchor frame com-
putation, and mosaic data enhancement. A YOLOv5 invention, the backbone section 
employs a mix of focus structure and CSP structure, and the key is the slicing opera-
tion. Although YOLOv5 presently employs the same structure as YOLOv4, when it was 
launched, only the FPN structure was in use. The PAN structure was later introduced, 
and other network components were also modified. Although YOLOv4 already has a 
high level of detection precision, YOLOv5’s numerous network architectures are more 
adaptable in real-world experiments.
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Accuracy and speed are two critical performance characteristics in object identification, 
and how to balance them is critical in actual applications in industry. YOLOv6 (Li et al. 
2022), designed for industrial applications, was released in 2022, and it supports the entire 
chain of industrial application requirements, such as model training, inference, and multi-
platform deployment, as well as making several improvements and optimizations at the 
network structure, training strategy, and other algorithm levels. In terms of backbone, neck, 
head, and training approach, YOLOv6 outperforms earlier models. Li created a re-parame-
terizable and more efficient backbone network based on the RepVGG architecture, inspired 
by the notion of hardware-aware neural network design (Ding et al. 2021). The anchor-free 
paradigm is employed as the training approach, and to further increase the detection accu-
racy, the SimOTA (Ge et al. 2021) label assignment technique and SIoU (Gevorgyan 2022) 
bounding box regression loss are included. In terms of accuracy and speed, YOLOv6 sur-
passes other methods of the same volume on the COCO datasets.

Tan proposed EfficienDet (Tan et al. 2020), which is based on EfficienNet (Tan and Le 
2019), in order to establish a model that balances detection speed and accuracy. This model 
introduces a collaborative scaling strategy while enabling quick multi-scale feature fusion 
using EfficienNet as the backbone and a bi-directional feature pyramid network as the fea-
ture network. Additionally, the concept of weighting is used. Joint scaling may evenly scale 
the depth, breadth, and resolution of the frame-class prediction network, the feature net-
work, and the backbone network to produce the best outcomes.

Dong introduced CentripetalNet (Dong et al. 2020) to address the issue that key point-
based detectors are prone to matching mistakes. This approach matches the corner points 
more precisely than the conventional embedding method, and this model can anticipate the 
corner point location and centripetal displacement of the item and match its correspond-
ing corner. In the meantime, the cross-star-shaped variability convolution is proposed to 
maximize the learning of the cross-star feature in the partial feature map created after the 
corner pooling layer. On the COCO datasets, the model experimentally outperforms all 
other object detectors without anchor frames. The datasets are an important measure for 
the training and evaluation of different supervised algorithms. The two datasets that are 
most often utilized for object detection tasks are PASCAL VOC (Shetty 2016) and Micro-
soft COCO (Lin et al. 2014). Table 3 compares the performance of one-stage detectors.

The accuracy of the method is improved by optimizing the network structure by making 
the model more complicated, but this decreases the training and detection speeds, mak-
ing it challenging to satisfy the requirement for real-time detection. Therefore, concentrat-
ing on the combination of accuracy and speed will be the direction of future study. We 

Table 3  Performance comparison of one-stage detectors

Models Backbone Detection speed(f/s) AP

YOLO Redmon et al. (2016) VGG-16 45.0 –
YOLO-v2 Redmon and Farhadi (2017) DarkNet-53 40.0 33.0
YOLO-v3 Redmon and Farhadi (2018) DarkNet-19 20.0 21.6
YOLO-v4 Bochkovskiy et al. (2020) CSPDarkNet-53 31 43.0
YOLO-v5 Focus+CSP 140.0 –
EfficienDet-D7 Tan et al. (2020) EfficienNet-B7 – 52.2
CentripetalNet Dong et al. (2020) Hourglass-104 – 48.0
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simultaneously increase the accuracy and speed of object recognition to establish a balance 
between precision and speed that would satisfy the real demand. This is done by combin-
ing the high accuracy of region-based algorithms with the high speed of regression-based 
algorithms. An individual detection algorithm may perform SOTA on task A but may not 
perform as well on other tasks due to factors such as complex object backgrounds with 
substantial noise interference, and low contrast between object and background colors, 
which makes it challenging for the network to extract discriminate features, and small 
object sizes, which are challenging to detect. Therefore, a specific analysis of the difficul-
ties of each detection task is beneficial to designing techniques that perform SOTA on a 
specific task.

In the past several years, object detectors based on CNN have entered the fast track of 
development, during which certain results have been achieved, but there is still room for 
further development. The following provides the frontier issues and research directions in 
this field to promote the research and improvement of subsequent object detectors. 

(1) Weakly supervised and small sample detection: At this stage, the object detection 
model is trained by large-scale instance-labeled data, and data labeling is a time-
consuming and labor-intensive project. Weakly supervised object detection reduces 
the cost of data annotation and efficiently trains the network with a little quantity of 
annotated data. The labeled data can be transferred from related domains through 
transfer learning and then trained with a small amount of labeled data in the desired 
domain to improve object detection in the desired domain.

(2) Multi-modal detection: To overcome the problem of monolithic data set categories, data 
from multiple modalities such as RGB images, 3D images, etc. can be fused, which is 
crucial for fields such as autonomous driving and intelligent robotics. Therefore, how 
to fuse data from different modalities and train the relevant detection models to migrate 
to multi-modal data will be the focus of future research.

(3) Video detection: There are a good deal of issues in video detection involving redun-
dant feature information, video focus disorder, and occlusion, and so on, resulting in 
lower computational redundancy and detection accuracy. Therefore, the study of object 
detection algorithms based on video sequences will become one of the future research 
directions.

5  Video prediction

5.1  Subtask explanation

Transformer (Vaswani et al. 2017), with its strong capabilities in long-range modeling and 
parallelized sequence processing, has gradually attracted the interest of researchers in the 
fields of image processing and computer vision. It has demonstrated excellent performance 
in applications such as object tracking, image generation, and image enhancement. Fig. 31 
illustrates a simplified architecture diagram of the Transformer model.

The transformer consists of two parts: encoder and decoder, and the detailed composi-
tion of each encoder and decoder is depicted in Fig. 32. The encoder employs a multi-head 
self-attention mechanism (MHSA), where the input matrix is linearly mapped to a feature 
subspace composed of multiple independent attention heads for dot product operations. 
Subsequently, the feature vectors and linear mappings are concatenated to obtain the final 
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output, achieving the extraction of global information. Following this, a feedforward neural 
network (FFN), primarily consisting of two linear layers and a non-linear activation layer, 
is employed to transform dimensions and extract richer semantic information. The decoder 
is composed of self-attention, encoder-decoder attention, and feedforward components. 
For example, in Fig.  31, inputting the Chinese sentence ’I have a cat’ goes through six 
encoders and produces something similar to a context vector. This can be understood as the 
encoder’s understanding of the current input sentence. The obtained vector is then fed into 
the decoder. Each decoder performs self-attention on the output of the previous decoder, 
simultaneously applying encoder-decoder attention to the vector passed from the encoder. 
The result is then processed through a feedforward network, constituting one decoder. By 
stacking six decoders, the model learns and produces the final output.

Deep learning algorithms are mostly trained through a supervised approach, where 
model training is time-consuming and likely to be dependent on large amounts of labeled 
data. A key element we lack is predictive or unsupervised learning: the ability of a machine 
to simulate its environment, to predict future possibilities, and to understand how the world 
works through observation and engagement. Video prediction is a technique in which a 
computer learns spatio-temporal features inside a video frame and applies the learned fea-
tures to the analysis and prediction of future frames. Since spatio-temporal information 
implies a large number of intrinsic laws of the real world and video prediction can be 
trained by a vast volume of unlabeled data, video prediction has attracted a lot of attention 
in academia, such as in human motion prediction (Liu et al. 2022), climate change (Ank-
rah et al. 2022), and traffic flow prediction (Gao et al. 2022). The goal of video prediction 

Fig. 31  Simplified architecture for transformer

Fig. 32  Encoder and decoder
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is to infer future frames from previous ones. Given a video sequence Xt,T =
{
xi
}t

t−T+1
 , at 

time t with the past T frames, our goal is to forecast the sequence of events in the future 
Yt,T � =

{
xi
}t+T �

t
 , at time t that contains the next T ′ frames, where xi ∈ ℝ

C,H,W is an image 
with channels C, height H, and width W. Formally, the predicting model is a mapping 
Γ
�
∶ Xt,T → Yt,T � with learnable parameters � , optimized by:

Where Φ can represent various loss functions; in our scenario, we specifically utilize Mean 
Squared Error (MSE) loss.

5.2  Deep learning applications

In response to the complexity and future uncertainty of video itself, scholars have achieved 
impressive results in a video in recent years by introducing various new neural operators, 
such as various RNNs (Wang et al. 2022), transformers (Ren et al. 2022), refinement struc-
tures (Chang et al. 2022), and applying different training strategies, involving adversarial 
training (Chan et al. 2022), etc. In order to assess the forecast’s accuracy and the level of 
the predicted visuals, the procedure of creating video prediction models is also crucial. A 
majority of the current prominent video prediction models, such as self-encoders (Baldi 
2012), recurrent neural networks (Medsker and Jain 2001), and generative adversarial net-
works (Creswell et al. 2018), are suggested based on deep learning, which has opened up 
new possibilities for video prediction.

Most video prediction models use self-encoders for video downscaling and genera-
tion since they can compress coding efficiently. Shi Shi et al. (2015) proposed the Con-
volutional LSTM (ConvLSTM) model that can solve the spatio-temporal sequence pre-
diction problem after combining the sequence processing capability of LSTM and the 
spatial feature representation capability of CNN. Unlike various recurrent neural net-
works that acquire image features by using convolution operations on the input sequence 
images, which are one-dimensional word vector inputs when recurrent neural networks 
are applied to tasks such as translation, ConvLSTM acquires two-dimensional image 
inputs and can also input three-channel color images, i.e., three-dimensional inputs, 
depending on the task. ConvLSTM takes a single channel of 64× 64 digital sequence 
images as input in the video frame prediction task. The ConvLSTM model, as illustrated 

(12)�
∗ = argmin

�

Φ
(
Γ
�

(
Xt,T

)
,Yt,T �

)

Fig. 33  Convolutional LSTM 
structure
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in Fig. 33, contains the same three gate control units and one hidden layer as the LSTM 
model, namely an input gate, a forgetting gate, an output gate, and a hidden layer. The 
main distinction is that a single layer of convolution is computed after merging the input 
with the hidden layer at the present time, and this difference is critical for obtaining 
spatial structural information. Subsequently, Wang Wang et al. (2017) employed Con-
vLSTM units to develop an encoder that collected the spatio-temporal data contained in 
video frames and worked excellently in video prediction tasks. Lotter, inspired by “pre-
dictive coding” in neuroscience (Egner and Summerfield 2013), utilized ConvLSTM 
units to construct Prednet (Lotter et  al. 2016), a multi-layer recurrent neural network 
that transmits the error caused by each layer of prediction to the next layer to assure 
the correctness of the network’s final layer. ConvLSTM and an optical flow predictor 
are used in the spatio-temporal video auto-encoder (Patraucean et  al. 2015) to record 
changes over time. ConvLSTM still struggles with the issue of producing ambiguous 
prediction frames, even though it partially resolves the issue of gathering and process-
ing spatio-temporal information from video prediction frame sequences and increases 
prediction accuracy. Wang et  al. (2019) presented a three-dimensional CNN architec-
ture in conjunction with LSTM to distinguish various activities from video frames in 
order to address the issues of poor dynamic information obtained by the model, low 
prediction accuracy, and bad quality of the produced pictures. Wang’s model outper-
forms others in terms of prediction accuracy, according to experimental data. The CNN 
encoder and RNN decoder are combined in a variable generation framework in condi-
tional VRNN (Castrejon et al. 2019). According to CrevNet (Yu et al. 2020), the input 
for information-preserving feature transformation should be encoded and decoded using 
a CNN-based normalized stream module.

Contrary to popular belief, a completely CNN-based architecture is less widespread 
than the aforementioned models since its simplicity frequently necessitates the use of 
sophisticated modules and training techniques to increase novelty and performance, such 
as adversarial training (Yang et  al. 2023), knowledge distillation (Feng et  al. 2023), and 
optical flow approaches (Sui et  al. 2022). Thus, Gao et  al. introduced SimVP, a simple 
yet effective CNN video prediction model (Gao et al. 2022). SimVP is capable of achiev-
ing SOTA outcomes without the need for sophisticated modules, techniques, or tricks. Its 
minimal computing cost also makes it simple to scale to various scenarios. SimVP may 
function as a robust baseline and provide fresh perspectives for further study. Mean square 
error (MSE) loss is a way to train the model end-to-end, and it is totally constructed on top 
of CNN. The encoder, translator, and decoder of the SimVP model are all made entirely of 
CNN. Spatial feature extraction is done by the encoder, temporal evolution is learned by 
the translator, and spatial and temporal information are combined by the decoder to antici-
pate future frames.

More application possibilities for video prediction will be possible owing to improved 
model prediction performance and accuracy. First, deep learning-trained video prediction 
models have previously been used in areas like action identification and video interpre-
tation. Additionally, for the self-driving industry, which has seen substantial progress in 
recent decades, if accurate future scene predictions can be made using the information cur-
rently available about the scene as it is being observed in real-time, driverless cars will be 
able to take the necessary precautions and, to the greatest extent possible, avoid risks. In 
the realm of computer vision, video prediction is an intriguing and challenging job. Most 
of the preceding models can forecast certain basic scenes successfully. Thus, future studies 
may begin with delicate circumstances, while the accuracy of prediction will be increased 
if the probability distribution of dynamic scenes can be modeled and predicted.
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6  CNN challenges

Deep CNNs have demonstrated strong performance on data with a grid-like topology 
or that is time series in nature. However, in real-world applications, deep CNN archi-
tectures have run into additional difficulties. The different researchers have fascinating 
discussions about CNN’s performance on different machine learning tasks. The follow-
ing list includes some of the difficulties encountered when training deep CNN models:

• Given that deep CNNs are generally like black boxes, interpretation and explanation 
may be lacking. As a consequence, it can be difficult to verify them at times.

• The choice of hyper-parameters (for example, learning step, stride, and filter) has 
a substantial influence on CNN performance. However, because selecting optimal 
hyper-parameters involves a great deal of knowledge and talent and these hyper-
parameters are tremendously internally dependent, any tiny alteration can have a 
significant influence on the final training outcomes. As a result, careful selection of 
hyper-parameters is a key design challenge that must be handled using an appropri-
ate optimization technique. In this context, meta-heuristic algorithms may be uti-
lized to automatically tune hyper-parameters by doing both random and directed 
searches based on prior findings.

• Deep CNN models for mobile devices are difficult to implement due to the necessity 
of maintaining model accuracy while taking into account the model’s size and per-
formance.

• Deep neural networks need a lot of data and processing power to be trained. Even 
when using the same set of datasets for various tasks, the data labeling varies, mak-
ing the task of manually collecting large-scale and annotated datasets challenging. 
This results in a significant increase in labor and time costs for labeling the data-
sets created for a particular task. The success of the model training might also be 
significantly impacted by the datasets’ annotation quality. Therefore, the creation of 
extensive and precisely labeled datasets has emerged as a critical issue for computer 
vision research. By using unsupervised learning approaches to extract hierarchical 
features, the requirement for a lot of labeled data may be reduced. Simultaneously, 
further research into how to construct effective and scalable parallel learning algo-
rithms is imperative to accelerate the learning process.

• CNN deep models, when evaluated, need plenty of memory to hold numerous 
parameters and are highly time-consuming, making them unfeasible for deployment 
on resource-limited mobile platforms and other portable devices. As a result, it is 
critical to research ways to minimize the level of sophistication in neural networks 
while producing models that execute rapidly without sacrificing accuracy.

• Despite the outstanding performance of deep CNN in various applications, there is 
still a lack of theoretical and mathematical foundations. The neural network model 
is evolving toward deeper layers and a greater parameter scale as deep learning tech-
nology advances. Hence, discovering strategies to lower the computational complex-
ity of the model is critical, which necessitates ongoing optimization in theory and 
experiment. Meanwhile, deep learning’s mathematical theory is not flawless, and 
model optimization at this point is heavily reliant on the designer’s prior knowl-
edge, which is detrimental to the whole theoretical framework of deep learning. As a 
result, understanding what characteristics deep networks have learned and the basics 
of deep CNN to achieve high performance is an increasingly prominent study field.
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7  Future directions

The incorporation of novel ideas into the design of CNN architectures has shifted the focus 
of research, particularly in the field of computer vision. Research on CNN architecture is 
very promising, and one of the most popular deep learning methods in the future is prob-
ably going to be related to it.

• One of the potential areas of CNN research is ensemble learning. By extracting differ-
ent levels of semantic representations, the combination of multiple and diverse archi-
tectures can help the model improve its robustness and generalization to a variety of 
image categories.

• CNNs and their variations are extensively employed in diverse computer vision appli-
cations; however, the majority of CNN architectures are tailored to specific uses. Bet-
ter-performing generic architectures are always needed (Patel et al. 2022).

• The key process by which the human visual system acquires information from images is 
attention. Furthermore, the attention mechanisms extract key information from images 
and store it in context with other visual components. The spatial relevance of objects 
and their distinguishing features can be maintained in subsequent learning stages in 
future research.

• CNN learning power is typically increased by increasing network size, which can be 
accomplished in a reasonable amount of time using the Nvidia DGX-2 supercomputer. 
However, in terms of memory usage and computational resources, training deep and 
high-volume architectures continues to be a significant overhead. As a result, numerous 
advancements in hardware technology are still needed to speed up CNN research.

• Deep CNNs have a large number of hyper-parameters, such as learning step, stride, 
filter, and so on. The selection of hyper-parameters and the evaluation time of deep 
networks make the parameter tuning task quite difficult. In this context, meta-heuristic 
algorithms can be used to automatically tune hyper-parameters by performing both ran-
dom and directed searches based on previous results.

• The future of network design is neural architecture search, which has grown in popu-
larity due to the time-intensive and labor-intensive nature of human network design. 
It does, however, have some requirements for the experimental environment due to its 
lengthy training period and significant memory resource consumption.

• Human activity recognition is a popular area of research in the field of CNN. The vari-
ous CNN variants for human activity and pose recognition have been described in ref-
erences (Vishwakarma and Singh 2019; Singh and Vishwakarma 2021; Dhiman and 
Vishwakarma 2020).

8  Conclusion

CNN has made impressive strides, particularly in image processing and video-related 
tasks, which has rekindled interest in deep learning among academics. Several stud-
ies have been done in this context to enhance CNN’s performance, including activa-
tion, optimization, regularization, and innovations in architecture. This paper reviews 
the research progress of CNN architecture in computer vision, especially in image clas-
sification, target detection, and video prediction. In addition, this paper also covers the 
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fundamental elements of CNN, its applications, challenges, and future directions. We 
have shown that CNN outperforms classical methods when it comes to classification, 
detection, and prediction. Through exploiting depth and other structural modifications, 
CNN’s learning performance has dramatically improved over time. According to recent 
literature, the increase in CNN performance is primarily attributable to the replacement 
of the conventional layer structure with blocks. The function of an auxiliary learner can 
be performed by a block in a network. These additional learners leverage spatial or fea-
ture-map information or even enhance input channels to increase performance. Addi-
tionally, modular learning is supported by CNN’s block-based design, which makes the 
structure easier to grasp.

As a review, this paper will inevitably suffer from the following shortcomings: First, it 
is limited by the scope of literature and time, resulting in the failure to comprehensively 
cover all relevant research work. Research on certain emerging areas or specific applica-
tion scenarios may fail to be covered, and there are certain research blind spots. Second, 
considering the influence of subjectivity, we realize that the review may be influenced by 
the subjective judgment of the authors, which may have a certain impact on the objectivity 
of the research area. As a result, in future studies, we will need to sift through the relevant 
literature more thoroughly and deal with the subjective factors more cautiously in order to 
comprehend and investigate the application of CNN in computer vision in a more compre-
hensive and in-depth manner.

Acknowledgements This work was supported by the National Social Science Fund of China under Grant 
No. 22BTJ057.

Author contributions Xia Zhao: Conceptualization, Methodology, Investigation, Writing-original draft, 
Writing-review & editing. Limin Wang: Writing-review & editing, Project administration, Funding acquisi-
tion. Yufei Zhang: Writing-review & editing. Xuming Han: Writing-original draft, Investigation, Supervi-
sion. Muhammet Deveci: Writing-review & editing, Supervision. Milan Parmar: Conceptualization, Lan-
guage polish.

Declarations 

 Conflict of interest The authors have no competing interests to declare that are relevant to the content of this 
article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Al-Haija QA, Smadi M, Al-Bataineh OM (2021) Identifying phasic dopamine releases using darknet-19 
convolutional neural network. In: 2021 IEEE International IOT, Electronics and Mechatronics Con-
ference (IEMTRONICS), pp. 1–5.

Al Husaini MAS, Habaebi MH, Gunawan TS, Islam MR, Elsheikh EA, Suliman F (2022) Thermal-based 
early breast cancer detection using inception v3, inception v4 and modified inception mv4. Neural 
Comput Appl 34(1):333–348

http://creativecommons.org/licenses/by/4.0/


A review of convolutional neural networks in computer vision  

1 3

Page 39 of 43 99

Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Van Esesn BC, Awwal AAS, Asari VK 
(2018) The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv 
preprint arXiv: 1803. 01164

Ankrah J, Monteiro A, Madureira H (2022) Bibliometric analysis of data sources and tools for shoreline 
change analysis and detection. Sustainability 14(9):4895

Anuj L, Gopalakrishna M (2020) ResNet50-YOLOv2-convolutional neural network based hybrid deep 
structural learning for moving vehicle tracking under occlusion. Solid State Technol 63(6):3237–3258

Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of ICML 
Workshop on Unsupervised and Transfer Learning, pp. 37–49. JMLR Workshop and Conference 
Proceedings

Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. Lecture Notes Comput Sci 
3951:404–417

Bhatt D, Patel C, Talsania H, Patel J, Vaghela R, Pandya S, Modi K, Ghayvat H (2021) CNN variants for 
computer vision: history, architecture, application, challenges and future scope. Electronics 10(20):2470

Bochkovskiy A, Wang C-Y, Liao H-YM (2020) Yolov4: Optimal speed and accuracy of object detection. 
arXiv preprint arXiv: 2004. 10934

Bouvrie, J (2006) Introduction Notes on Convolutional Neural Networks,” (1)
Cao J, Cholakkal H, Anwer RM, Khan FS, Pang Y, Shao L (2020) D2det: Towards high quality object 

detection and instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp. 11485–11494

Castrejon L, Ballas N, Courville A (2019) Improved conditional vrnns for video prediction. In: Proceedings 
of the IEEE/CVF International Conference on Computer Vision, pp. 7608–7617

Chan ER, Lin CZ, Chan MA, Nagano K, Pan B, De Mello S, Gallo O, Guibas LJ., Tremblay J, Khamis S 
(2022) Efficient geometry-aware 3d generative adversarial networks. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, pp. 16123–16133

Chan JY-L, Bea KT, Leow SMH, Phoong SW, Cheng WK (2023) State of the art: a review of sentiment 
analysis based on sequential transfer learning. Artif Intell Rev 56(1):749–780

Chandra MA, Bedi S (2021) Survey on SVM and their application in image classification. Int J Inf Technol 
13:1–11

Chang Z, Zhang X, Wang S, Ma S, Gao W (2022) Stau: A spatiotemporal-aware unit for video prediction 
and beyond. arXiv preprint arXiv: 2204. 09456

Chen Y, Dai X, Chen D, Liu M, Dong X, Yuan L, Liu Z (2022) Mobile-former: Bridging mobilenet and 
transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 5270–5279

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA (2018) Generative adversarial 
networks: an overview. IEEE Signal Process Mag 35(1):53–65

Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image data-
base. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255.

Dhiman C, Vishwakarma DK (2020) View-invariant deep architecture for human action recognition using 
two-stream motion and shape temporal dynamics. IEEE Trans Image Process 29:3835–3844

Dicong W, Chenshuai B, Kaijun W (2021) Survey of video object detection based on deep learning. J Front 
Comput Sci Technol 15(9):1563

Ding X, Zhang X, Ma N, Han J, Ding G, Sun J (2021) Repvgg: Making vgg-style convnets great again. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13733–13742

Dong Z, Li G, Liao Y, Wang F, Ren P, Qian C (2020) Centripetalnet: Pursuing high-quality keypoint pairs 
for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 10519–10528

Egner T, Summerfield C (2013) Grounding predictive coding models in empirical neuroscience research. 
Behav Brain Sci 36(3):210–211

Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An 
incremental bayesian approach tested on 101 object categories. In: 2004 Conference on Computer 
Vision and Pattern Recognition Workshop, pp. 178–178.

Feng Z, Guo Y, Sun Y (2023) CEKD: Cross-modal edge-privileged knowledge distillation for semantic 
scene understanding using only thermal images. IEEE Robot Autom Lett 8(4):2205–2212

Fernandes S, Fanaee-T H, Gama J (2021) Tensor decomposition for analysing time-evolving social net-
works: an overview. Artif Intell Rev 54:2891–2916

Gao Z, Tan C, Wu L, Li SZ (2022) Simvp: Simpler yet better video prediction. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition, pp. 3170–3180

Ge Z, Liu S, Wang F, Li Z, Sun J (2021) Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv: 2107. 
08430

http://arxiv.org/abs/1803.01164
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2204.09456
http://arxiv.org/abs/2107.08430
http://arxiv.org/abs/2107.08430


 X. Zhao et al.

1 3

99 Page 40 of 43

Gevorgyan Z (2022) Siou loss: More powerful learning for bounding box regression. arXiv preprint arXiv: 
2205. 12740

Girshick R (2015) Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, 
pp. 1440–1448

Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and 
semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 580–587

Guo G, Han L, Wang L, Zhang D, Han J (2023) Semantic-aware knowledge distillation with parameter-free 
feature uniformization. Visual Intell 1(1):6

He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE International Con-
ference on Computer Vision, pp. 2961–2969

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 
313(5786):504–507

Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilen-
ets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv: 1704. 
04861

Hu K, Jin J, Zheng F, Weng L, Ding Y (2023) Overview of behavior recognition based on deep learning. 
Artif Intell Rev 56(3):1833–1865

Huang C, Wu Z, Wen J, Xu Y, Jiang Q, Wang Y (2021) Abnormal event detection using deep contrastive 
learning for intelligent video surveillance system. IEEE Trans Industr Inform 18(8):5171–5179

Huang L, Qin J, Zhou Y, Zhu F, Liu L, Shao L (2023) Normalization techniques in training dnns: Methodol-
ogy, analysis and application. IEEE Transactions on Pattern Analysis and Machine Intelligence

Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Phys-
iol 195(1):215–243

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep network training by reducing internal 
covariate shift. In: International Conference on Machine Learning, pp. 448–456. pmlr

Isabona J, Imoize AL, Ojo S, Karunwi O, Kim Y, Lee C-C, Li C-T (2022) Development of a multilayer 
perceptron neural network for optimal predictive modeling in urban microcellular radio environments. 
Appl Sci 12(11):5713

Ji X, Yan Q, Huang D, Wu B, Xu X, Zhang A, Liao G, Zhou J, Wu M (2021) Filtered selective search 
and evenly distributed convolutional neural networks for casting defects recognition. J Mater Process 
Technol 292:117064

Jin X, Xie Y, Wei X-S, Zhao B-R, Chen Z-M, Tan X (2022) Delving deep into spatial pooling for squeeze-
and-excitation networks. Pattern Recognit 121:108159

Khan RU, Zhang X, Kumar R (2019) Analysis of ResNet and GoogleNet models for malware detection. J 
Comput Virol Hacking Tech 15:29–37

Krizhevsky A, Hinton G, et al (2009) Learning multiple layers of features from tiny images
LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. 

Proc IEEE 86(11):2278–2324
Li Z, Liu F, Yang W, Peng S, Zhou J (2021) A survey of convolutional neural networks: analysis, applica-

tions, and prospects. IEEE transactions on neural networks and learning systems
Li J et  al. (2022) Recent advances in end-to-end automatic speech recognition. APSIPA Transactions on 

Signal and Information Processing 11(1)
Li C, Li L, Jiang H, Weng K, Geng Y, Li L, Ke Z, Li Q, Cheng M, Nie W, et al (2022) Yolov6: A single-

stage object detection framework for industrial applications. arXiv preprint arXiv: 2209. 02976
Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: 

Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, 
Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740–755. Springer

Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object 
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
2117–2125

Liu Z, Wu S, Jin S, Ji S, Liu Q, Lu S, Cheng L (2022) Investigating pose representations and motion con-
texts modeling for 3d motion prediction. IEEE Transn Pattern Anal Mach Intell 45(1):681–697

Lotter W, Kreiman G, Cox D (2016) Deep predictive coding networks for video prediction and unsupervised 
learning. arXiv preprint arXiv: 1605. 08104

Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110
Luo W, Xing J, Milan A, Zhang X, Liu W, Kim T-K (2021) Multiple object tracking: a literature review. 

Artif intell 293:103448
Ma X, Guo J, Sansom A, McGuire M, Kalaani A, Chen Q, Tang S, Yang Q, Fu S (2021) Spatial pyramid 

attention for deep convolutional neural networks. IEEE Trans Multimedia 23:3048–3058

http://arxiv.org/abs/2205.12740
http://arxiv.org/abs/2205.12740
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/2209.02976
http://arxiv.org/abs/1605.08104


A review of convolutional neural networks in computer vision  

1 3

Page 41 of 43 99

Ma P, Li C, Rahaman MM, Yao Y, Zhang J, Zou S, Zhao X, Grzegorzek M (2023) A state-of-the-art 
survey of object detection techniques in microorganism image analysis: from classical methods to 
deep learning approaches. Artif Intell Rev 56(2):1627–1698

Medsker LR, Jain L (2001) Recurrent neural networks. Des Appl 5:64–67
Minaee S, Boykov Y, Porikli F, Plaza A, Kehtarnavaz N, Terzopoulos D (2021) Image segmentation 

using deep learning: a survey. IEEE Trans Pattern Anal Mach Intell 44(7):3523–3542
Nwankpa C, Ijomah W, Gachagan A, Marshall S (2018) Activation functions: Comparison of trends in 

practice and research for deep learning. arXiv preprint arXiv: 1811. 03378
Papageorgiou CP, Oren M, Poggio T (1998) A general framework for object detection. In: Sixth Interna-

tional Conference on Computer Vision (IEEE Cat. No. 98CH36271), pp. 555–562. IEEE
Patel C, Bhatt D, Sharma U, Patel R, Pandya S, Modi K, Cholli N, Patel A, Bhatt U, Khan MA (2022) 

DBGC: dimension-based generic convolution block for object recognition. Sensors 22(5):1780
Patraucean V, Handa A, Cipolla R (2015) Spatio-temporal video autoencoder with differentiable mem-

ory. arXiv preprint arXiv: 1511. 06309
Redmon J, Farhadi A (2017) Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition, pp. 7263–7271
Redmon J, Farhadi A (2018) Yolov3: An incremental improvement. arXiv preprint arXiv: 1804. 02767
Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detec-

tion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
779–788

Ren S, He K, Girshick R, Sun J (2015) Faster r-cnn: Towards real-time object detection with region pro-
posal networks. Advances in neural information processing systems 28

Ren J, Zheng Q, Zhao Y, Xu X, Li C (2022) Dlformer: Discrete latent transformer for video inpainting. 
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 
3511–3520

Sainath TN, Kingsbury B, Mohamed A-r, Dahl GE, Saon G, Soltau H, Beran T, Aravkin AY, Ramabhad-
ran B (2013) Improvements to deep convolutional neural networks for lvcsr. In: 2013 IEEE Work-
shop on Automatic Speech Recognition and Understanding, pp. 315–320. IEEE

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C (2018) Mobilenetv2: Inverted residuals and 
linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition, pp. 4510–4520

Sengupta A, Ye Y, Wang R, Liu C, Roy K (2019) Going deeper in spiking neural networks: VGG and 
residual architectures. Front Neurosci 13:95

Shetty S (2016) Application of convolutional neural network for image classification on pascal voc chal-
lenge 2012 dataset. arXiv preprint arXiv: 1607. 03785

Shi X, Chen Z, Wang H, Yeung D-Y, Wong W-K, Woo W-c (2015) Convolutional lstm network: A 
machine learning approach for precipitation nowcasting. Advances in neural information process-
ing systems 28

Singh T, Vishwakarma DK (2019) Video benchmarks of human action datasets: a review. Artif Intell 
Rev 52:1107–1154

Singh T, Vishwakarma DK (2021) A deeply coupled convnet for human activity recognition using 
dynamic and RGB images. Neural Comput Appl 33:469–485

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to 
prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

Srivastava RK, Greff K, Schmidhuber J (2015) Highway networks. arXiv preprint arXiv: 1505. 00387
Stepanov S, Spiridonov D, Mai T (2023) Prediction of numerical homogenization using deep learning 

for the Richards equation. J Comput Appl Math 424:114980
Sui X, Li S, Geng X, Wu Y, Xu X, Liu Y, Goh R, Zhu H (2022) Craft: Cross-attentional flow trans-

former for robust optical flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision 
and Pattern Recognition, pp. 17602–17611

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A 
(2015) Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 1–9

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for 
computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 2818–2826

Szegedy C, Ioffe S, Vanhoucke V, Alemi A (2017) Inception-v4, inception-resnet and the impact of residual 
connections on learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31

Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. In: Interna-
tional Conference on Machine Learning, pp. 6105–6114.

http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1511.06309
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1607.03785
http://arxiv.org/abs/1505.00387


 X. Zhao et al.

1 3

99 Page 42 of 43

Tan M, Pang R, Le QV (2020) Efficientdet: Scalable and efficient object detection. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10781–10790

Uddin MP, Mamun MA, Hossain MA (2021) PCA-based feature reduction for hyperspectral remote sensing 
image classification. IETE Tech Rev 38(4):377–396

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) Atten-
tion is all you need. Advances in neural information processing systems 30

Vishwakarma DK, Singh T (2019) A visual cognizance based multi-resolution descriptor for human action 
recognition using key pose. AEU-Int J Electron Commun 107:157–169

Wang Y, Long M, Wang J, Gao Z, Yu PS (2017) Predrnn: Recurrent neural networks for predictive learning 
using spatiotemporal lstms. Advances in neural information processing systems 30

Wang Y, Jiang L, Yang M-H, Li L-J, Long M, Fei-Fei L (2019) Eidetic 3d lstm: A model for video predic-
tion and beyond. In: International Conference on Learning Representations

Wang Y, Wu H, Zhang J, Gao Z, Wang J, Philip SY, Long M (2022) Predrnn: a recurrent neural network for 
spatiotemporal predictive learning. IEEE Trans Pattern Anal Mach Intell 45(2):2208–2225

Wightman R, Touvron H, Jégou H (2021) Resnet strikes back: An improved training procedure in timm. 
arXiv preprint arXiv: 2110. 00476

Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A (2010) Sun database: Large-scale scene recognition from 
abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pp. 3485–3492.

Xiong J, Hsiang E-L, He Z, Zhan T, Wu S-T (2021) Augmented reality and virtual reality displays: emerg-
ing technologies and future perspectives. Light Sci Appl 10(1):216

Yan S, Xiong X, Arnab A, Lu Z, Zhang M, Sun C, Schmid C (2022) Multiview transformers for video rec-
ognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
pp. 3333–3343

Yang J, Soltan AA, Eyre DW, Yang Y, Clifton DA (2023) An adversarial training framework for mitigating 
algorithmic biases in clinical machine learning. NPJ Digit Med 6(1):55

Yang W, Yu H, Cui B, Sui R, Gu T (2023) Deep neural network pruning method based on sensitive layers 
and reinforcement learning. Artif Intell Rev 56:1897–917

Yu K, Jia L, Chen Y, Xu W (2013) Deep learning: yesterday, today, and tomorrow. J Comput Res Dev 
50(9):1799–1804

Yu W, Lu Y, Easterbrook S, Fidler S (2020) Efficient and information-preserving future frame prediction 
and beyond

Zablocki É, Ben-Younes H, Pérez P, Cord M (2022) Explainability of deep vision-based autonomous driv-
ing systems: review and challenges. Int J Comput Vision 130(10):2425–2452

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Xia Zhao1 · Limin Wang1 · Yufei Zhang2 · Xuming Han3 · Muhammet Deveci4,5,6 · 
Milan Parmar7

 * Limin Wang 
 20211016@gdufe.edu.cn

 * Xuming Han 
 hanxuming@jnu.edu.cn

 Muhammet Deveci 
 muhammetdeveci@gmail.com

1 School of Information Science, Guangdong University of Finance & Economics, 
Guangzhou 510320, China

2 School of Computer Science and Technology, Changchun University of Science and Technology, 
Changchun 130022, China

http://arxiv.org/abs/2110.00476


A review of convolutional neural networks in computer vision  

1 3

Page 43 of 43 99

3 School of Information Science and Technology, Jinan University, Guangzhou 510632, China
4 Department of Industrial Engineering, Turkish Naval Academy, National Defence University, 

34942 Tuzla, Istanbul, Turkey
5 The Bartlett School of Sustainable Construction, University College London, 1-19 Torrington 

Place, London, WC1E 7HB, UK
6 Department of Electrical and Computer Engineering, Lebanese American University, Byblos, 

Lebanon
7 Department of Computer Science and Engineering, Mississippi State University, Starkville, 

MS 39762, USA


	A review of convolutional neural networks in computer vision
	Abstract
	1 Introduction
	2 Basic CNN components
	2.1 Convolution layer
	2.2 Pooling layer
	2.3 Activation function
	2.4 Batch normalization
	2.5 Dropout
	2.6 Fully connected layer

	3 Image classification
	3.1 Subtask explanation
	3.2 AlexNet
	3.3 Visual geometry group
	3.4 GoogLeNet
	3.5 Residual network
	3.6 Squeeze and excitation network
	3.7 MobileNet

	4 Object detection
	4.1 Subtask explanation
	4.2 Representative two-stage detectors
	4.3 Representative one-stage detectors

	5 Video prediction
	5.1 Subtask explanation
	5.2 Deep learning applications

	6 CNN challenges
	7 Future directions
	8 Conclusion
	Acknowledgements 
	References




