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Abstract

One of the primary challenges in applying deep learning approaches to medical imaging
is the limited availability of data due to various factors. These factors include concerns
about data privacy and the requirement for expert radiologists to perform the time-consum-
ing and labor-intensive task of labeling data, particularly for tasks such as segmentation.
Consequently, there is a critical need to develop novel approaches for few-shot learning
tasks in this domain. In this work, we propose a Novel CNN-Transformer Fusion scheme to
segment Multi-classes pneumonia infection from limited CT-scans data. In total, there are
three main contributions: (i) CNN-Transformer encoders fusion, which allows to extract
and fuse richer features in the encoding phase, which contains: local, global and long-range
dependencies features, (ii) Multi-Branches Skip Connection (MBSC) is proposed to extract
and fuse richer features from the encoder features then integrate them into the decoder
layers, where MBSC blocks extract higher-level features related to the finer details of dif-
ferent infection types, and (iii) a Multi-classes Boundary Aware Cross-Entropy (MBA-CE)
Loss function is proposed to deal with fuzzy boundaries, enhance the separability between
classes and give more attention to the minority classes. The performance of the proposed
approach is evaluated using two evaluation scenarios and compared with different baseline
and state-of-the-art segmentation architectures for Multi-classes Covid-19 segmentation.
The obtained results show that our approach outperforms the comparison methods in both
Ground-Glass Opacity (GGO) and Consolidation segmentation. On the other hand, our
approach shows consistent performance when the training data is reduced to half, which
proves the efficiency of our approach in few-shot learning. In contrast, the performance of
the comparison methods drops in this scenario. Moreover, our approach is able to deal with
imbalanced data classes. These advantages prove the effectiveness and efficiency of the
proposed EMB-TrAttUnet approach in a pandemic scenario where time is critical to save
patient lives.
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1 Introduction

Over the past three years, the world has been facing a global crisis due to the spread of the
Covid-19 pandemic, which has affected all world’s countries (Amyar et al., 2020; Bou-
gourzi et al., 2022). By November 2023, more than 770 million cases and about than 7
million deaths as declared by World Health Organization (WHO) WHO (2023). The
Covid-19 pandemic is caused by the infectious SARS-CoV-2 virus, which mainly affects
the lungs and spreads to other organs (Parasher 2021). Since the start of the pandemic,
medical imaging has been widely used for Covid-19 analysis, including: Covid-19 diag-
nosis (Vantaggiato et al. 2021), segmentation (Pezzano et al. 2021; Bougourzi et al. 2022),
and severity estimation and prediction (Li et al. 2021; Bougourzi et al. 2021). Medical scan
modalities include: X-ray, Computerized Tomography (CT) and Ultrasound (Vantaggiato
et al. 2021; Bougourzi et al. 2021; Roy et al. 2020. In fact, CT-scans are more efficient for
Covid-19 analysis because they provide more details about the spread and severity of the
infection, which allows to following-up the patient state and taking the right decision to
save the patient’s life (Shi et al. 2020; Zhang et al. 2020). In particular, Covid-19 infection
segmentation from CT-scans is a very important step in detecting, quantifying and evaluat-
ing the infection and predicting its severity (Shi et al. 2020; Zhang et al. 2020).

In the last decade, Deep Leaning (DL) approaches have become the dominant trend in
many machine learning and computer vision tasks (Van der Velden et al. 2022; Bougourzi
et al. Apr. 2022; Goceri 2023). In particular, DL approaches have been widely studied
for automatically analysing various infections and diseases using different medical imag-
ing modalities, which can assist or even replace experienced physicians and radiologists
in diagnosing and analysing the diseases (Xie et al. 2023; Bougourzi et al. 2023; Soomro
et al. 2022). However, In the case of the Covid-19 pandemic, the number of cases in a short
period of time is enormous, which overwhelming the resources and personnel of hospi-
tals, including physicians and radiologists. Therefore, it is necessary to develop automatic
machine learning solutions to support the control of this disease and reduce the workload
of medical staff (Vantaggiato et al. 2021; Roy et al. 2020; Rehman et al. 2023).

In the last decade, semantic segmentation tasks have been extensively studied and numer-
ous deep learning segmentation approaches have been proposed (Ghosh et al. 2019; Minaee
et al. 2021). In particular, the segmentation of Covid-19 infections has been widely investi-
gated, which is a very challenging task due to two main factors. First, the available labelled
data are very limited due to the significant time and effort required for the labelling process,
with physicians and radiologists being overwhelmed due to the pandemic (Wang et al. 2020;
Pezzano et al. 2021; Yao et al. 2021). The second factor is related to the nature of Covid-19
infection, which progress differently from one case to case. Moreover, Covid-19 infection
exhibits high variability in terms of intensity, shape, position and type depending on the
stage of infection (early vs. advanced), symptoms (asymptomatic vs. symptomatic patients),
and severity (Shi et al. 2020; Zhang et al. 2020). In fact, the literature works have concen-
trated on segmenting Covid-19 infection as a binary task (background or infection) Pezzano
et al. (2021); Paluru et al. (2021); Cong et al. (2022a, 2022b); Yao et al. (2021), as the avail-
able labelled data for Covid-19 infection types (Multi-classes) are very limited. However,
segmentation of Covid-19 infections into multiple classes provides more details about infec-
tion progression, stage, and severity (Hefeda 2020; Salehi et al. 2020).

In this paper, a new CNN-Transformer based approach is proposed for segment-
ing Covid-19 infections into multiple classes from limited data. In detail, the proposed
EMB-TrAttUnet consists of two main components: (i) CNN-Transformer architecture
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(MB-TrAttUnet) and (ii) Multi-classes Boundary Aware Cross-Entropy (MBA-CE) Loss
function. The MB-TrAttUnet is an Encoder-Decoder architecture that follows the Unet
architecture family (Ronneberger et al. 2015). The encoder of the proposed MB-TrAt-
tUnet architecture combines CNN and Transformer layers to extract local, global, and
sequential features in the encoding phase. Instead of the traditional Unet skip connection,
a Multi Branches Skip Connection (MBSC) is proposed to extract high-level features,
interpret the encoder features, and select the most important features. The decoder of
the proposed MB-TrAttUnet is similar to the encoder of the Att-Unet architecture (Oktay
et al. 2018), where the attention gates are better exploited because the encoder layers and
the MBSC extract higher and richer features for Multi-classes Covid-19 Segmentation.
The MBA-CE Loss function is designed to give more attention to the classes bounda-
ries to enhance boundaries segmentation, the separability between classes and minority
classes decision. The main contributions can be summarized as follows:

e We propose a novel hybrid Transformer-CNN architecture (MB-TrAttUnet) for
Multi-classes Covid-19 infection segmentation from CT-scans. The Encoder of
TrAttUnet architecture combines CNN and Transformer blocks using Encoders
Fusion Block (EFB). On the other hand, the Decoder of MB-TrAttUnet is AttUnet-
like decoder.

e Furthermore, Multi Branches Skip Connection is introduced to extract more
advanced features and to interpret and select the most significant ones from the
encoder features and pass them to the decoder block.

e We propose a Multi-classes Boundary Aware Cross-Entropy (MBA-CE) Loss func-
tion to cope with fuzzy boundaries, enhance the separability between classes and
give more attention to the minority classes. The trained MB-TrAttUnet with MBA-
CE is called EMB-TrAttUnet.

e The comparison between the proposed approach and both baseline and state-of-the-
art segmentation architectures clearly demonstrates the superior performance of our
method, particularly when faced with limited training data availability. The pro-
posed EMB-TrAttUnet architecture is publicly available at: https://github.com/fares
bougourzi/EMB-TrAttUnet.

The remainder of this paper is organized as follows: Sect. 2 summarizes the segmen-
tation architectures for medical image segmentation and related work on Covid-19
infection segmentation. Section 3 explains the proposed approach. The datasets and
evaluation metrics used are described in Sect. 4. Section 5 presents and discusses
the experiments and results. Section 6 provides a visual analysis of the segmentation
results of the proposed approach and the comparison methods. Finally, Section 7 con-
cludes the paper.

2 Related work

This section is dedicated to describing the related works concerning state-of-the-art
deep learning architectures for medical image segmentation, deep learning approaches
for respiratory diseases, and deep learning approaches for COVID-19 infection
segmentation.
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2.1 DL architectures for medical imaging segmentation

In the last decade, Deep Learning approaches have proved their efficiency in many medi-
cal imaging tasks using different medical imaging modalities including but not limited to:
Magnetic Resonance Imaging (MRI), X-rays, Computed Tomography (CT) and Ultrasound
images (Litjens et al. 2017; Paladini et al. 2021). In particular, medical image segmentation
is one of the most studied tasks in recent years. Since the development of Unet architecture
in 2015, CNN-based architectures have become the dominant approaches in medical image
segmentation. Consequently, plenty of the Unet Ronneberger et al. (2015) variants have
been proposed such as Att-Unet Oktay et al. (2018), Unet++ Zhou et al. (2018), ARU-GD
Maji et al. (2022), FANet Tomar et al. (2022), and KiU-Net Valanarasu et al. (2021).

In short, Unet Ronneberger et al. (2015) has an Encoder-Decoder structure with
a“U”shape. The encoder of the Unet architecture consists of successive convolutional
blocks followed by max-pooling operators to extract high-level features from the input. On
the other side, Unet’s decoder exploits the extracted features of the encoder to reconstruct
the segmentation mask through successive deconvolution layers. Moreover, the skip con-
nections incorporate the feature maps of the encoder layers into the decoder layers to pre-
vent the loss of detailed features due to the shrinking of the encoder spatial dimensionalty.
In the Att-Unet architecture (Oktay et al. 2018), Attention Gates (AGs) are placed between
the skip connections and the decoder layers to select the most important salient parts from
the encoder features and pass them to the decoder.

In recent years, Transformers have shown great success in Natural Language Process-
ing (NLP) domain (Vaswani et al. 2017; Khan et al. 2021). This inspired the computer
vision community to exploit the transformer for vision tasks (Dosovitskiy et al. 2020; Liu
et al. 2021; Touvron et al. 2021). In particular, transformers have shown promising per-
formance for segmentation tasks in medical imaging (Li et al. 2023). Therefore, plenty
of Transformer-based segmentation architectures have been proposed, such as UNETR
Hatamizadeh et al. (2022), GT U-Net Li et al. (2021), and Swin-Unet Cao et al. (2021).
In Li et al. (2021), a Group Transformer Unet (GT U-Net) architecture was proposed for
tooth root segmentation. In more details, GT U-Net keeps the general structure of the Unet
architecture, with the encoder and decoder consisting of Group Transformer blocks com-
bining CNN and Transformer components. Also, SwinUnet Cao et al. (2021) architecture
follows the same structure as Unet. However, the encoder and decoder of the Swin-Unet
were purely constructed using Swin Transformer blocks (Liu et al. 2021) without any con-
volutional operations. The experimental results in Cao et al. (2021) proved the efficiency of
the Swin-Unet architecture compared to CNN-based segmentation architectures for multi-
organ and cardiac segmentation tasks.

In addition to pure Transformer architectures, hybrid Transformer-CNN architectures
have been investigated in the last two years in the field of medical imaging segmentation
(Wang et al. 2022; Huang et al. 2022; Wang et al. 2022). In Wang et al. (2022), the same
structure as Unet was retained while proposing a Mixed Transformer Module (MTM),
which aims to learn inter and intra-affinity features. MTM consists of a Local-Global
Gaussian-Weighted Self-Attention (LGG-SA) and an External Attention (EA) block. In
Huang et al. (2022), the aim of the MISSFormer architecture is to propose an Enhanced
Transformer Block by using convolutional operations. Additionally, the authors introduced
the Enhanced Transformer Context Bridge to extract long-range dependencies and local
context from multi-scale features.
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In contrast to these state-of-the-art hybrid approaches, our method involves two encoder
paths. The first one is designed to extract global and long-range dependency features, while
the second encoder aims to combine Transformer features at different levels with the local
features extracted by the CNN blocks. Furthermore, a Multi-Branch Skip Connection
(MBSC) mechanism is proposed to enhance the traditional skip connection or Att-Unet
architecture. MBSC extracts higher-level features from different branches and concatenates
their outputs to pass them to the second filtering stage through the attention gates.

2.2 DL approaches for respiratory diseases analysis

Over the last decade, deep learning approaches have been widely utilized for the analysis of
respiratory diseases, including chronic obstructive pulmonary disease, pneumonia, asthma,
tuberculosis, fibrosis, lung cancer, etc Bharati et al. (2020); Jasmine Pemeena Priyadarsini
et al. (2023). Despite the wide variety of deep learning methods available, most of the
research on respiratory diseases has predominantly employed Convolutional Neural Net-
works (CNNs) as the primary technique. These applications encompass numerous tasks,
such as the recognition of multiple respiratory diseases from X-ray images (Bharati et al.
2020; Jasmine Pemeena Priyadarsini et al. 2023), the detection of tuberculosis from X-ray
images (Duong et al. 2021), the identification of Covid-19 from X-ray images (Duong
et al. 2023; Vantaggiato et al. 2021), and Covid-19 segmentation from CT scans (Miiller
et al. 2021; Ilhan et al. 2023; Saood and Hatem 2021; Fung et al. 2021). In Bharati et al.
(2020), S. Bharati et al. introduced a hybrid deep learning framework that combines CNNs,
data augmentation, and a spatial transformer network (STN) for the detection of lung dis-
eases in X-ray images. This framework includes 15 different classes, one of which is“No
findings,”while the others represent various diseases. In Fung et al. (2021), the authors
proposed a two-stage approach with a self-supervised learning strategy for Covid-19 seg-
mentation. They utilized the InfNet architecture as the backbone and integrated generative
adversarial image inpainting to enhance the segmentation of lung lesions.

In addition to the CNN architectures, transformers have been investigated for respira-
tory diseases tasks (Duong et al. 2021), especially for Covid-19 analysis (Liang et al.
2021; Chaudhary et al. 2022). In Duong et al. (2021), L. D. Tuan et al. proposed a hybrid
CNN-Transformer architecture for detecting tuberculosis from X-rays. First, they used a
CNN backbone (EfficientNet) to extract 2D feature maps from the input X-ray, then they
used an Encoder-Decoder Transformers. The first Transformer aims to contextualize
features from the CNN features, and the second Transformer aims to auto-regressively
generate one channel for each input feature at every time step. In Liang et al. (2021), S.
Liang et al. proposed a hybrid CTNet framework that exploits CNN and Transformer
approaches. In this approach, they used a CNN feature extractor with an SE attention
Block and then passed the obtained results to a ViT module. Their approach demon-
strated a good capability to learn discriminative features from 3D CT scans for Covid-19
infection recognition. S. Chaudhary et al. proposed Chaudhary et al. (2022) exploited
the strength of the Swin Transformer to extract the feature from the CT slice and pass
it through MLP layers for Covid-19 infection percentage estimation. To utilize the
recent developments in Vision Transformers, we proposed a Hybrid Transformer-CNN
approach for Covid-19 infection segmentation with multiple classes from limited train-
ing data.

@ Springer



90 Page6of 35 F. Bougourzi et al.

2.3 DL approaches for Covid-19 infection segmentation

Since the spread of the Covid-19 pandemic in 2019, Covid-19 infection segmentation has
been extensively studied by the machine learning and computer vision community. Most of
the existing works have been concentrating on segmenting Covid-19 infections as a binary
task (infection and background) Bougourzi et al. (2023); Pezzano et al. (2021); Yao et al.
(2021); Ding et al. (2021); Paluru et al. (2021); Cong et al. (2022a, 2022b). Fewer works,
however, have attempted to segment Covid-19 infection as Multi-classes (Jin et al. 2022; Yu
et al. 2022). In Wu et al. (2021), G. Pezzano et al. proposed a multi-stages approach which
consists of the following steps: (i) lung delineation, (ii) Covid-19 detection, and (iii) Covid-19
infection segmentation. First hand, they proposed a Unet variant with Multiple Convolutional
Layers structure, that performs lung segmentation within a novel pipeline for direct Covid-19
detection and segmentation. They also proposed a new customized loss function for optimiz-
ing the performance.

Mu et al. (2021) proposed a progressive global perception and local polishing (PCPLP)
approach for Covid-19 infection segmentation. In detail, the PCPLP encoder follows the
VGG-19 (Simonyan and Zisserman 2014) architecture to extract multi-level low and middle
features. On the other hand, the decoder of PCPLP integrates the multi-scale to learn high-
level features for Covid-19 segmentation. To this end, the following blocks were proposed
GPM, LPM, and BMS, which aim to localise the global feature of the infected regions, extract
the local features of the infected regions contours and preserve the edge-related features,
respectively. In Wang et al. (2022), X. Wang et al. proposed a new architecture called Spatial
Self-Attention Network (SSA-Net), which exploits both the self-attention mechanism and spa-
tial convolution to expand the receptive field, strengthen the learning process, and accelerate
the training convergence. In addition to the proposed SSA-Net architecture, a semi-supervised
few-shot iterative approach is proposed to cope with the limited labelled data available for
training (Wang et al. 2022).

Since there is a paucity of work addressing the segmentation of Covid-19 infections as
Multi-classes, this work focuses on this task, which is very important for identifying the stage
of infection and predicting its progression and severity (Hefeda 2020; Salehi et al. 2020).
This allows following-up the patient’s state and taking the right actions to save the patient’s
life (Hefeda 2020; Salehi et al. 2020). Unlike the state of the art, our proposed approach effi-
ciently combines CNN and Transformer encoders to segment Covid-19 infection into multiple
classes. Moreover, a new skip-connection block is proposed to interpret and extract higher-
level features from the encoder features and pass them to the decoder layers to preserve the
finer details associated with the Multi-classes Covid-19 infection. Finally, transfer learning
and freezing strategies are exploited to segment complicated task from very limited data.

3 The proposed approach
Our proposed approach consists of two main components. First, we propose a CNN-Trans-
former based architecture, which is described in detail in Sect. 3.1. Second, a Multi-classes

Boundary Aware Cross-Entropy (MBA-CE) Loss function is proposed. This is described in
Sect. 3.2. Finally, the evaluation metrics are described in Sect. 3.3.
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3.1 MB-TrAttUnet architecture

The proposed MB-TrAttUnet architecture is summarized in Fig. 1. Our proposed MB-TrAttU-
net is an Encoder-Decoder architecture where the encoder consists of two components: Trans-
former path and Encoders Fusion Block (EFB). On the other hand, the decoder is an Att-Unet-
like decoder consisting of Attention Gates and Deconvolution blocks. To connect the encoder
and the decoder, an MBSC layer is proposed. Figure 2 shows the detailed structure of our
proposed MB-TrAttUnet architecture.

3.1.1 Transformer path

As shown in Fig. 2, the input image x € R¥*WXC where H, W and C are the height, width, and
input channels, respectively, is fed into two paths: Unet-like path and Transformer path. In the
Transformer path, x is divided into uniform non-overlapping 2D patches x, = [x&, ;x%; ;x’v\’ 1,
where each patch is represented by a row vector xi € R¥*C, where (S X S) is the spatial size
of the patch and N is the number of the patches N = (H x W)/S2. These patches are projected
into Embedding space z, using a linear transformation E € R®"O*K where K is the dimen-

sion of the embedding space, which is fixed for all of the transformer layers. z,, is defined by:
%= [xiE;xfE; . XVE] (1)

The embedded features z, € R¥*K are fed into Transformer layers similar to Dosovitskiy
et al. (2020); Vaswani et al. (2017). As shown in Fig. 4c, the Transformer layer consists of
two Layernorm (LN) blocks, a Multi-Head Self-Attention (MSA) block, a multilayer per-
ceptron (MLP) block and residual connections. For the Transformer layer (), the embedded
input features z;,_, are fed into Layernorm (LN), followed by a Multi-Head Self-Attention
block, which is then summed with z,_; by a residual connection, as shown in equation (2):

Z; = MSA( LN(ZZ,I) ) + 21— (2)

The embedded features of z;_, passed by the first LN are denoted by s = LN(z;_;).

GT Edges Pred Edges

Encoders

Transformer = Fusion
Encoder Block

Decoder

/

J

Fig.1 The summary of our proposed EMB-TrAttUnet approach
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Fig.2 Our proposed MB-TrAttUnet architecture

These features are processed by 2 heads. Multi-head attention allows the model to
jointly attend to information from different representational subspaces. Each head gener-
ates attended features with a dimensionof K/h. MSA is defined by:

MSA = [SA(5);SA5(8); ... sSA, ()] X U0 3)

where SA,,SA,,...,SA, are self-Attention results provided by the individual heads, and
U, € RE*K is the global projection matrix for the SA features.

The z; is fed into Layernorm block followed by MLP block, and then summed by z;_,
through the residual connection, as depicted in equation (4):

z,=MLP(LN(z)) +2 4)

where MLP consists of two linear layers with a GELU nonlinearity. The first lin-
ear layer (MLP, € R¥*Kur) projects LN(z)) into Ky p, then the second linear layer
(MLP, € RXwr*K) projects it back onto K features.

In our approach, the number of layers of the Transformer, L, is set to 12, h to 12,
K =786 and K;;p = 3072. The input image x size is 224 X 224 X3 (W = H = 224) and
the transformer patch size is §> = 16 x 16 pixels. Consequently, the number of patches is
196. To obtain diversity of learned features from different Transformer layers (levels), the
embedded features of layers 4, 7, 10 and 12 are selected. These layers are denoted as 77,
Tr,, Try and Tr,, respectively. Consequently, four layers from the Transformer path were
injected into the Encoders Fusion Block (EFB), all of which are of shape 196 x 786. To
obtain a 3D tensors, z; is reshaped to 14 x 14 x 786, since 14 X 14 = 196. The reshaped
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features of the embedded features of 7r,, Tr,, Tr; and Tr, are denoted by z,,, 2,,, z3, and z,,.,
respectively.

3.1.2 Encoders dusion block (EFB)

Encoders Fusion Block combines the classical CNN features and Transformer features
through ResBlocks in a hierarchical manner. Its main goal is to enrich the representations
of the encoder at several stages. To inject the transformer features into different layers of
the EFB and combine them with the CNN features, UpResBlock is introduced as depicted
in Fig. 4-b. UpResblock consists of linear upsampling followed by ResBlock, which is
depicted in Fig. 4-a. ResBlock consists of two consecutive 3 by 3 convolutional blocks,
each followed by Batch Normalization and ReLU activation function. In addition, the
input is summed with the output of the two convolutional layers using the residual connec-
tion, which consists of a 1 by 1 convolutional block, followed by Batch Normalization and
ReLU activation function, as shown in equations (5) and (6):

X = ReLU( BN(Conv3 X 31(xin) ) (5)

out,

Xour = ReLU( BN(Conv3 X 3,(x,,, )+

ReLU( BN(Conv1 X 1(x;,))) ©

where x,,, and x,, are the outputs of the first 3 by 3 convolutional block and the whole
ResBlock, respectively. Conv3 X 3, Conv3 X 3, and Convl X 1 are convolutional kernels
that transform the input number of channels into C,

out*

The injected transformer features into the EFB are denoted by z,,,, 2, Zp, and z,,, .
respectively, which are defined by:

Zyp, = UpResBlock( UpResBlock( UpResBlock(z,,))) )

Zyp, = UpResBlock( UpResBlock(z,,)) (8)

Zyp, = UpResBlock(zs,) 9)

Zp, = ResBlock(z,,) (10)

Equations (7), (8) and (9) illustrate the number of UpResBlocks required to match the out-
put of the transformer layers to the corresponding EFB level, using three, two, and one
UpResBlock for Tr,, Tr, and Tr, respectively. For the Tr, layer, ResBlock is used instead of
UpResBlock since no upsampling is required here to match the last EFB level, as depicted
in equation (10).

On the other hand, the Encoders Fusion Block has five layers which will be denoted by
Un,, Un,, Un,, Un, and Uns, respectively. The first layer uses ResBlock on the input image
x € REXWXC 16 obtain the first EFB feature maps as shown in equation (11).

x; = ResBlock(x) (11)
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The second, third, fourth and fifth EFB layers combine the transformer features with the
max-pooled features of the previous EFB layer as shown in equations (12), (13), (14) and
(15):

X, = ResBlock([z,, :MP(x,)]) 12)

x3 = ResBlock([z,, :MP(x,)]) (13)

x4 = ResBlock([z,,, ;MP(x3)]) (14)

X5 = ResBlock([zup4 sMP(x,)]) (15)

where Max-Pooling layers (MP) reduces the spatial demensionality into half.
3.1.3 Multi-branches skip connection (MBSC)

Since the encoder of the proposed MB-TrAttUnet architecture generates composite and
richer features by combining CNN and Transformer features, a more efficient skip connec-
tion is required to extract higher features and pass them to the decoder. As shown in Fig. 2,
the encoder and decoder are connected thought Multi-Branches Skip Connections (MBSCs),
where MBSC is depicted in Fig. 5. In detail, the proposed MBSC consists of four parallel
paths, where each path performs different convolutional operations to learn the salient parts
features from variety of feature sources (CNN and Transformer) x;. The first path consists of
a 1 by 1 convolutional block followed by a BN layer. The second path consists of an Average
Pooling (AP) block, followed of a 1 by 1 convolutional Block. The third path consists of three
consecutive convolutional kernels, which are 1 by 3, 3 by 1 and 3 by 3, each followed by BN
layer. The fourth path consists of five consecutive convolutional kernels, which are 1 by 3, 3
by 1, 1 by 5, 5 by 1 and 5 by 5, each followed by BN layer. It should be noted that each path
reduces the number of input channels into half in the last convolutional layer. The four paths
are joined by concatenation, resulting a doubled number of feature maps of the input features
(x;). The concatenated features are passed into 3 by 3 convoutional kernel followed by BN
layer, which reduces the number of feature maps into half (match the x; number of feature
maps). Finally, a skip residual is used as depicted in Fig. 5 and followed by a ReLU activation
function. For an input x; and four MBSC paths output Skip; , Skip; , Skip; , and Skip; , respec-
tively. The skip connection on the i” level Skip;, is defined by:

Skip., = [Skip; ;Skip; ;Skip; ;Skip;, | (16)

Skip; = ReLU(BN(Conv3 x 3(Skipci))+

BN(Convl x 1(x;))) an

where Skip, and Skip; are the concatenation of the four Skip paths output and the Skip fea-
tures passed to the decoder, respectively. In the proposed MBSC the following properties
are considered:

e The n X n convolution block is split into two consecutive convolution block of 1 X n and
n X 1, to reduce the number of parameters.
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e The last branch is implemented by increasing the kernel size to capture progressively
higher features.

e Since the higher number of parameters block in the third and fourth branches (n X n
convolutional block) are the last convolutional blocks, the number of channels of this
block is reduced to the half to decrease the number of parameters.

e All branches features are concatenated, and then passed to a 3 by 3 convolutional block
to summarize and capture the most important features from all of the four branches.
Finally, the residual connection is added, and then passed to the ReLU activation func-
tion. As can be seen in Fig 5, the MBSC blocks do not change the dimesion of the 3D
input tensors.

3.1.4 The decoder of MB-TrAttUnet architecture

The decoder of MB-TrAttUnet is an Att-Unet-like decoder, as shown in Fig. 2. In detail,
the bottleneck feature maps x5 of the encoder are fed into the first expansion layer of the
decoder. First, x5 is up-sampled using a linear transformation to obtain ds, and then passed
to the decoder as shown in equation (18). On the other hand, the encoder feature maps
X1,%,,%; and x, are forwarded to the decoder layers of MB-TrAttUnet via MBSC connec-
tions, as shown in Fig. 2. Following the Att-Unet architecture Oktay et al. (2018), three
linear upsampling layers (US), four decoder layers, four Attention Gates (AG), and four
ResBlocks are used, as shown in the following equations:

ds = US(xs) (18)
d, = ResBlock( [AG( MBSC,(x), US(x5));US(x5])) (19)
dy = ResBlock( [AG(MBSC;(x5), US(d,));US(d,])) (20)
d, = ResBlock( [AG( MBSC,(x,), US(d5));US(d3])) (21)
d, = ResBlock( [AG( MBSC,(x,), US(d,));US(d,])) (22)

where ’;’ denotes features concatenation.

Finally, a 1 by 1 convolutional block is used to match the feature map dimension of d; to
the infection mask prediction, which consists of three channels for the Multi-classes seg-
mentation (Background, GGO, and Consolidation).

The Attention Gate (AG) is depicted in Fig. 3 (Oktay et al. 2018), and is defined as
follows:

M, = v; (ReLUBN( W, MBSCi(x;)) + BN(W, g,))) (23)

att,

where W, and W, are two 1 by 1 convolution kernels performing linear transformations of
the number of channels (¢, and ¢, of x; and g;, respectively) to ¢;,,. y; consists of W,, € R!X!
followed by Batch Normahzatlon (BN) and sigmoid activation function to learn the spatial
attention coefficient M,,, for each pixel. The obtained spatial coefficients M, are applied

to the skip feature maps of the encoder x;.

Xoy = My, @ MBSCi(x;) (24)
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g(h,w, chg)==> Conv(1 X 1 X chint) G(hyw, chine) Aalhch
Y itinsy)
z(h,w,chx)fb Conv(1 x 1 X chin) (B, w,Chint)

Fig. 3 Attention Gate block, where g is the gating signal and the x is the input feature maps. A(h, w) is the
obtained spatial attention, which is applied for all channels of the input feature maps (x)

z(w, h, cin) }—
ResBlock SR UpResBlock N Norm
Ipdampling g
z(wx 2,h X 2,¢in) ‘% ;—1—;
Lconud x3 | , ‘ $ Multi-Head
conv3 x 3 | 2 q
B 5 Attention
Rl [ convl x1 | | BN "§
e —_—
- /:l: . ; L comlx1 |
| com3x3 | L BN RelU | l
] e Norm
‘ BlN " RelU | conv3 x 3 J
RelU |
‘I BN * ’ MLP
| RelU |
E(UJ, hv Cout)
z(w X 2,h X 2, Cout)
(a)ResBlock (b)UpResBlock (c)Trans former Layer
Fig. 4 Description of ResBlock, UpResBlock and TransformerLayer
' Skipi, (1, h, cin2)
- Skipi (1, h,Cin2)
afuhen) Conv1x - Skipg b, x2) Skig (1, hyci Skipi(u by i)
i o Skip %) L3~y B Rell ——

(Conu 1 x 3 BN }{Conv 3 x IH{ BN }5{Conu 3 x 3{ BN} -
Skipi,(w,h,cin/2)
3 o BT -{Goms x B

|
h
>{Conv 1 x 1H{BN} Zlohcu)

Fig.5 Description of the proposed MBSC block

where ® is element-wise multiplication operator.
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3.2 Multi-classes boundary aware cross-entropy (MBA-CE) loss function

In the field of medical imaging, objects can exhibit high variability in terms of their
shapes, intensities, and positions (Bougourzi et al. 2023). This can make it challenging
for traditional loss functions, such as Cross-Entropy, to accurately segment the target
boundaries, resulting in fuzzy segmented object boundaries (Qin et al. 2019; Bougourzi
et al. 2023). To address this issue, we propose a new Edge Aware Loss function for
multi-class segmentation that specifically concentrates on segmenting infection bounda-
ries, improving the separation between different classes, and giving greater attention to
minority classes. Our proposed Multi-classes Boundary Aware Cross-Entropy (MBA-
CE) Loss Functionis defined as following:

Liyipa = Lipp + & Liggoe (25)

Here, £,,; and Lp,,,, are the Multi-classes infection and edges losses, respectively. Moreo-
ver, the value of the weight a is obtained experimentally and equals 2. By emphasizing
the edges between infection types, the MBA-CE Loss Function encourages the model to
focus on correctly predicting the boundaries between them, thereby improving its ability to
distinguish between different types of infections. For the ground-truth mask width (W) and
height (H), £, loss is defined by:

Ly ==Y, X, G log(p;) (26)

where G; and p; are the infection types ground-truth probability distribution and the model
prediction probability distribution of pixel i, respectively. M is the total number of classes.
The L, is defined by:

W-H M

Liges == D, D E, log(q;) @7
=1 c=1

where, E; and g; are the boundary ground-truth probability distribution and boundary
prediction probability distribution of pixel i, respectively. As depicted in Fig. 6, the edge

. o .

Geeo o

Gradient

GC(msolidation

Fig.6 The summary of Ground-truth Boundary edges process. Green and red colors represent GGO and
Consolidation infection types, respectively
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ground-truth E is obtained by multiplying the ground-truth mask G with the union of the
morphological gradient applied to the ground-truth masks of GGO and Consolidation. In
other words:

E =G ® (Grad(Gsgp) Y Grad(G,,)) (28)

Here, Grad() denotes the morphological gradient operation.

Similarly, the edge prediction maps g is obtained by multiplying the model output map
p with the union of the morphological gradient applied to the ground-truth masks of GGO
and Consolidation. In other words:

q=p ® (Grad(Gsgp) Y Grad(G,,)) (29)

3.3 Evaluation measurements

The following evaluation metrics are used: Fl-score (F1-S), Dice-score (D-S), Intersection
over Union (IoU), and Hausdorff Distance (HD95) in pixels, to compare between different
architectures and items. It should be noted that each infection type is evaluated using the
four metrics.

It should be noted that F1-score and IoU (Jaccard Index) are micro metrics, where they
are calculated for all images at one time using True Positives (7P), True Negatives (TN),
False Positives (FP) and False Negatives (FN). However, the Dice-score is the macro ver-
sion of the F'1 — score. For N training or test images, it is defined by:

N
Dice-score = 100 - 1 Z 2. TP (30
N &° 2 TP+ FP,+ FN,

where TP;, TN,, FP; and FN, are True Positives, True Negatives, False Positives and False
Negative for the ith image, respectively.

4 Experiments and results
4.1 Datasets and splitting configurations

Table 1 displays datasets labeled for multi-class COVID-19 infection segmentation. To
replicate the urgency of pandemic situations, our approach is assessed in two scenarios:
Scenario 1, depicting standard data availability, and Scenario 2, concentrating on the influ-
ence of limited training data on the segmentation approaches performance. Crafting an
effective approach in the latter scenario is especially vital in pandemic situations.

In total, we performed four splitting configurations, in the first two, Dataset_1 RADI-
OLOGISTS (2019) and Dataset_2 RADIOLOGISTS (2019) are used. In the first splitting
configuration, Dataset_1 and 50% of Dataset_2 are used as training data and the remaining
50% of Dataset_2 is used as test data. In the second splitting configuration, the training
data are reduced to half to study the efficiency of the proposed approach in a more chal-
lenging few-shot learning strategy (less training data are available). More specifically, for
the second splitting configuration experiment only 50% of CT-scans from Dataset_1 and
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Table 1 The available Covid-19 Segmentation datasets with Multi-classes Covid-19 Infection Segmentation
(GGO and Consolidation)

Name Dataset #CT-scans  #Slices  Classes Settings
Dataset_1  Segmentation datasetnr. 2 9 829 Background Resolution: 512 x 512
RADIOLOGISTS (2019)
GGO
Consolidation
Dataset_ 2 COVID-19 CT segmenta- 40 100 Background Resolution: 512 X 512
tion RADIOLOGISTS
(2019)
GGO
Consolidation
Dataset_ 3 CC-CCII Liu et al. (2020) 150 750 Background Slicing: 1.0 mm
GGO Resolution: 512 x 512
Consolidation

25% of slices from Dataset_2 are used as training data. In the third and fourth configuration
splittings, Dataset_3 is used. Where in the third one, 60% of Dataset_3 is used as training
data and the remaining 40% is used as testing data. The fourth configuration corresponds to
the second evaluation scenario where only 15% of Dataset_3 is used as training data.

Table 2 provides an overview of the four evaluation configurations. It’s important to note
that not all slices necessarily exhibit infection, mirroring the real-world scenario where the
prevalence of infected slices can vary across cases. Additionally, an infected slice may con-
tain either a single infection type (GGO or Consolidation) or both, a critical aspect for
tracking disease progression and severity. In the first two splitting configurations (as shown
in Table 2), it’s evident that the number of infected slices constitutes approximately half
of the total slices in the training dataset. However, when considering all four splitting con-
figurations, it becomes apparent that the number of slices infected with Consolidation is

Table 2 Data splits for the four splitting configurations

Splitting Phase Involved dataset  Total # slices # Infected slices #Slices ~ #Slices with
configura- with consolida-
tion GGO tion
First Train Dataset_1 879 (9420 CT-scans) 422 345 272
50% of Dataset_2
Test  50% of Dataset_2 50 (20 CT-scans) 50 50 40
Second Train 50% of Dataset_1 304 (5+10 Ct-scans) 183 181 90
25% of Dataset_2
Test  50% of Dataset_2 50 (20 CT-scans) 50 50 40
Third Train  60% of Dataset_3 445 (90 CT-scans) 321 315 192
Test  40% of Dataset_3 305 (60 CT-scans) 228 225 150
Fourth Train 15% of Dataset_3 110 (942 CT-scans) 80 78 48
Test  40% of Dataset_3 305 (60 CT-scans) 228 225 150

The details include the used dataset for each splitting configurations, number of slices (in brackets the num-
ber of CT-scans), infected slices among the total, slices with GGO infection, and slices with consolidation
specified for each evaluated splitting configuration
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notably lower, especially in the second evaluation scenario. This imbalance in the training
data poses a significant challenge for multi-class Covid-19 infection segmentation.

4.2 Experimental setup

Paszke et al. (2019) Library with NVIDIA RTX A5000 GPU with 24 GB of memory is
used to train and test our approach and the comparison ones. The used machine has 11th
Gen Intel(R) Core(TM) i9-11900KF (3.50GHz) CPU and 64 of RAM. All models are
trained for 60 epochs with batch size of 6 images and a learning rate schedule where the
initial /r = 0.01 and then it decays by 0.1 twice after 30 and 50 epochs, respectively. In the
training, two augmentation techniques are used: (i) Active Rotation using random angle
between [—35°,35°], and (ii) random horizontal and vertical flipping. Multi-classes CE
loss is used for all experiments as the loss function. To investigate the stability of the each
architecture performance, each experiment is repeated five times and then the mean and
standard deviation are declared for each evaluation metric.

4.3 Experimental results of the first splitting configuration

Table 3 summarizes the experimental results of the first splitting configuration. In order to
compare our approach performance with state-of-the-art architectures, three CNN-Based
Segmentation architectures (Unet Ronneberger et al. (2015), Attention-Unet Oktay et al.
(2018)and Nested-Unet Zhou et al. (2018)), three recent approaches that were designed
to segment Covid-19 from the CT-scans (CopleNet Wang et al. (2020), AnamNet Paluru
et al. (2021), and SCOATNet Zhao et al. (2021)), and four Transformer-Based architec-
tures (SwinUnet Cao et al. (2021), MTUnet Wang et al. (2022), MISSFormer Huang et al.
(2022), and UCTransNet Wang et al. (2022)) are evaluated as shown in Table 3. These
results show that our proposed approach outperforms the comparison approaches by con-
siderable margin for both GGO and Consolidation segmentation. For the GGO segmen-
tation results, most of the comparison architectures achieved close performance (except
for CopleNet and MTUnet, which achieved the lowest performance). The best comparison
approach is MISSFormer for both GGO and Consolidation segmentation. Our approach
outperformed the performance of MISSFormer by 1.41%, 6.75%, 1.6% and 3.97 for F-S,
D-S, IoU and HD95 for GGO segmentation, respectively. By looking on the standard
deviation values of the best comparison architecture, we find that our approach not only
outperforms the best competing architecture, but also exhibits more stable performance at
different running.

On the other hand, MISSFormer architecture performed the best in all metrics com-
pared to the other state-of-the-art approaches for Consolidation segmentation. However,
our approach outperformed its performance by 7%, 7.15%, 6.81% and 0.9 for F-S, D-S,
IoU, and HD95 respectively. Compared with the results of GGO, it is noticed that the per-
formance margin between our approach and the state-of-the-art architectures is larger. This
proves that our approach can perform accurately even in unbalanced class segmentation
scenarios, as is the case in most of Multi-class segmentation tasks in medical imaging
domain. The results of GGO and Consolidation show that our approach has a high ability
to segment different types of Covid-19 infections.
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4.4 Experimental results of the second splitting configuration

Table 4 summarizes the experimental results of the second evaluation scenario, where half
of the training data of first splitting configuration is used to investigate the efficiency of the
proposed approach in more critical few shot-shot learning scenario. To compare the perfor-
mance of our approach with state-of-the-art architectures, three CNN-based segmentation
architectures (Unet Ronneberger et al. (2015), Att-Unet Oktay et al. (2018), Unet++ Zhou
et al. (2018)), three recent approaches that were designed to segment Covid-19 from the
CT-scans (CopleNet Wang et al. (2020), AnamNet Paluru et al. (2021), and SCOATNet
Zhao et al. (2021)) and four and four Transformer-Based architectures (SwinUnet Cao et al.
(2021), MTUnet Wang et al. (2022), MISSFormer Huang et al. (2022), and UCTransNet
Wang et al. (2022)), are evaluated as shown in Table 4. Similar to what noticed in the first
evaluation scenario, our approach outperforms all of the comparison architectures on all of
the four evaluation metrics for both GGO and Consolidation segmentation.

In more details, the three CNN baseline architectures (Unet Ronneberger et al. (2015),
Att-Unet Oktay et al. (2018), Unet++ Zhou et al. (2018)) performed similar to the first
scenario for GGO segmentation. In contrast, the three CNN baseline architectures failed
to segment the Consolidation infection type. Similar behavior is observed for the CopleNet
and AnamNet architectures. Table 4 shows that the SCOATNet architecture outperforms
the other comparison architectures in segmenting GGO for F1-S, D-S and IoU metrics.
Comparing the performance of SCOATNet in the first and second evaluation scenarios
(Tables 3 and 4), it is noticed that SCOATNet achieves similar results for GGO segmenta-
tion. However, the segmentation results for Consolidation dropped to one-third by reducing
the training data to half. For GGO segmentation in the second evaluation scenario, our
approach outperforms SCOATNet architecture by 1.91%, 5.67%, and 1.65% for F-S, D-S,
and IoU, respectively and outperforms MISSFormer by 7.12 for the HD95 metric. For the
transformer based architecture, it is also noticed that their performance in segmentation
GGO is decreased. From Consolidation results, it is noticed that the proposed approach
surpasses MISSFormer architecture (the best comparison architecture) by a large margin:
8.68%, 3.7%, 71.26% and 1.8 for F-S, D-S, ToU and HD95, respectively. On the other hand,
the comparison between the standard deviation values of our approach and the MISS-
Former architecture in the second evaluation scenario shows that the performance of our
approach is consistent across different runs.

The comparison between the results of the first and the second evaluation scenarios
(from the first and second splitting configurations) shows that our approach performs con-
sistently, although the training data in the second evaluation scenario are reduced to half.
This proves the efficiency of the proposed components, which will be discussed in detail in
the ablation study section.

4.5 Experimental results of the third splitting configuration

Table 5 summarizes the results of the third splitting configuration, where our proposed
approach is compared with three baseline CNN architectures, three state-of-the-art
approaches for Covid-19 segmentation, and four Transformer-based architectures similar to
the first and second splitting configurations. From these results, it is noticed that SCOAT-
Net and UCTransNet achieve similar performance in segmenting both classes (GGO and
Consolidation), outperforming the other comparison approaches. However, our approach
demonstrates its efficiency by outperforming the best competitor for each metric. For GGO

@ Springer



Page 190f35 90

Emb-trattunet: a novel edge loss function and transformer-CNN...

yoeoidde uosrredwod 1sq 9y} SMOYS 1Ll Y[,
KJoanoadsar “x9) pue Jq1xa) Aq paxjrew are douewiojrad 159q puodas oy pue doueuriofrad 1s9q Y], ‘pajeniead e ((Zz0)

‘Te 10 Suepy IONSUBILD) PUe ‘(7z07) ‘Te 10 Sueny JOWIOJSSIIN ‘(7207) ‘Te 10 Suepy 19UNLIN ‘(1207) ‘T8 10 08D IQUNUIMS) SOINJOANIYIIR Pased-IoWIOJsuel], In0j pue Inoj
pue ((1202) ‘Te 12 0_yZ ™NLVODS PUe ‘(1Z07) ‘Te 10 nunfed JoNweuy ‘(0z0z) ‘T8 12 Suep 19N[doD) sueds-1) Y3 Wolj §]-pIao)) Judw3as 0} pausisap 21om jey) saydeordde
JU2221 231 “((8107) T8 32 noyzZ ++12un) (8107 Te 10 A 19UN-NY (ST0T) ‘Te 10 19319qauuoy Jou()) SAININIYdIR UONRIUSWSIS Paseq-NND 91y ‘yoeordde pesodoid ing

89T + 6C°S¢ €50 F €EHe SST F200¢ 6S0F 1118 9¢TF €9°1C 70+ 6€£CS €€ T F91°6S SS0+ 269 RPUNIVIL-GINT
68°E F60LE It *L0LC $S'TF2E9¢ tr'S F ELTH 9T F6L8C 6L'1 F+¥T0S 0’1 + 858y 65T 9899 (2207 TPUIOISSTIN
'8 F 80ty 65+ L101 ELTF99¢CTT 'L+ SI'8I YOS+ T69¢ IT°¢€+6C9 08°¢ F0L9Y 66'C+TTEY (2T07) 1oNSsuBILDN
€8°C F oV Sy SI'L+ SY9Il S6'LF €961 ITIT+8SLT IFHIY I8 1T FI€LE ¥6'1 + 8¢9¢ €6'T ¥ CEHS (T202) PUNLIN
€V'TF 69°TH TLLFLLEY 0S9FT6¢l LLTT F 1¥°¢T CITF 10V YL'S ¥ 9¢°6€ €09 F8L'LE €19 F $7°9¢ (T707) wunUIMS
96'Y F 6L'tY WLFYE6 LE9FYLL 89°CI + TCIIT 6L°¢C F L80¢E L9 T F#LOS pL'T F 61°ES LY T FIEL9 (1200) LANLVODS
SL'LF86'1S LO0OF €00 LO'0 F 00 $1°0+ LOO LY'S F €€y LY'E F €CTY 99°S ¥ 9¢°9% e F 0v'8S (1207) 1PNwery
19+ 8T6b SETFT60 8TT F 160 19CF6LT 819 F SLOY oSy F €TV SE9F €L9¢ ILY F€T8S (0202) 1oN21doD
8SY F9S°LY 88'¢ F86'1 Sty +LTT 80'L+79°¢ Y1I'S F999¢ 8Y'I+ v6'LYy YETF OL'1S SETF 0819 (8107) ++0un
1€°¢€+ 2108 99'0 F €€°0 IT'T+ 650 0€'T+590 IS €+ TTLE YT F66'LY 0TT* 90 90'C F €89 (8107) 1uN-Ny
- 00F00 00+00 00+00 TL'TF85°8¢ ELTF 108y S6'T F8¢'IS 65T+ 9819 (S102) 3°UN
1 S6dH 1 not ls-a 1 S-1d 1 S6dH 1 not ls-a 1s-1d

UoONEpI[OSU0) 09D QINJOANYOIY

'SuROS-1,) WOIJ UOTBIUAWISIS UOTIOUI §]-PIA0D) SASSR[I-NNJA J0f uonemsyuo)) Sumifdg puooag ays Jo synsai fejuowtradxa oy, f d|qel

pringer

As



F. Bougourzi et al.

90 Page 20 of 35

yoeoidde uosrredwod 1sq 2y} SMOYS 1Bl Y[,

K[oanoadsar nxe) pue Jq1xa) Aq payrew are souewiojrad 1saq puodss oy} pue douewriojrad 1saq oy, “pojen[ead
are ((7Z07) 'Te 12 Suepp 1ONSUBILD() PUe (2Z07) ‘T8 19 Sueny JoWIOJSSIIN (2202) ‘T8 10 Suepy 19UNLIA (1207) ‘T8 10 0BD J2UNUIMS) SAINJOAIYDOIR PIseg-IoULIOJSuRL], IN0J
pue ((1202) ‘Te 12 0_YZ ™NLVODS PUe (1Z07) ‘Te 10 nunfed JoNweuy ‘(0z0z) ‘Te 12 Suep 19N2[doD) sueds-1D) Y3 Wwolj §]-pIao)) Judw3as 0} pausisap 21om jey) saydeordde
JU2221 231 “((8107) T8 32 noyzZ ++12un) (8107) e 10 A 19UN-NY (ST0T) ‘Te 10 19319qauuoy Jou()) SAININIYdIR UONRIUSWSIS Paseq-NND 91y ‘yoeordde pesodoid inQ

L90F08'L 6V’ 1 FTT19 €0 F 6€°LT II'T F€6'SL STT+8I'El £€9°0 F ¥S'€S €S0 F €T LE €50 F ¥L°69 PUNNVIL-dINF
L0 F 8501 18'% F26'St €€TFS60C S9v + 6,779 0L T+ 6591 0¢'€ FTI9¢ 8STF8LYT 6S°¢ ¥ 86CS (2207 1ouI0gSSTIN
£C0F208 60 F LESS $C0F£69C [£0F6LEL S0 F SOl SO'T +9L7TS IT'T +8T6¢ 160 + LO69 (2T07) 1ONSUBILDN
9¢'T + L601 0C¢ + €8LY SLOF$STC S6'T+ S99 8TTF 61 8€'¢ F¢0°8¢ 69'T +01'8C 6S°¢€ +T0°SS (2202) PUNLIN
0C0+8T6 91 F vrLy LL'OF ¥€0C 0€'T F €9 00T F S¥'ST ¥8'T + 85°8¢ SLOF01°ST €6'T FS9°6S (T707) wunuIMS
ISOFIY'8 8L°0 F ¥€8S 0S°0 +2€9C 90F69°€L €8°0 F 8011 SSTFTHES LY0F LESE [€TF£9°69 (1207) TANLVODS
LTOF08'8 9L'0 F96°¢€S SSOFITYC $9°0 F 60°0L $8'0 F ¢TSI 0L'0 F IS°61 €90 F 6t'1¢ 790 FTT99 (1207) 1oNuwreny
¥90F LL6 e F 6908 09'T +9T'CC wyTFLY ¥8'0 F €981 89°¢ F LS'8¢ 96'C F 95T 08¢ F LS'SS (0202) 1NRIdoD
€90+ 968 YI'CTF LO9S TCTF€89C LT FEQIL P70 F 201 81T +80°0S L8O FSTEE Y0'T F €L°99 (8107) ++1un
S0 F €6'8 It'T + 0SS 8L'0 F TH'HC 8I'T+CI'IL €6'0F STV €CTF LS8y 6v'1 F0TCE LTTF 59 (8107) 1UN-NY
LEOFILS 0S'TFTI°sS ITT+9T%C YTTFSOTL STOFITVI oF'T + €708 SSTF6LTE STTF+0°L9 (S102) 3°UN
1 S6dH 1 not ls-a Ls-1d T S6aH I not ls-a 1S-1d
UONEPI[OSU0)) 00D QINJOANYOIY

SUBIS-ID) WOIJ UOTBIUSWTS UOTIIJUT ] -PIA0D) SISSE[O-NNJA J0J uoneiSyuo) Sumids pIryy, oy jo sjnsal [eyuowriodxo oy, §a|qel

pringer

Qs



Emb-trattunet: a novel edge loss function and transformer-CNN... Page 210f35 90

segmentation results, our approach achieves better performance than the top competitor
by 0.11%, 1.66%, 0.12%, and 0.87 for F-S, D-S, IoU, and HD95, respectively. Similarly,
for Consolidation segmentation, our approach outperforms the best competitor by 2.14%,
1.66%, 0.12%, and 0.87 for F-S, D-S, IoU, and HD95, respectively. In this splitting con-
figuration, with a substantial training dataset from nearly 100 CT scans, it is noticeable
that some state-of-the-art approaches come close to our approach, but our approach still
exhibits superiority. Furthermore, when compared to the previous two splitting configu-
rations, UCTransNet emerges as one of the top competitors instead of the MISSFormer
architecture, which showed lower performance than the best competitors. On the other
hand, SCOATNET continues to perform as one of the best competitors. This demonstrates
that the performance of certain architectures can vary depending on the scenario and the
dataset used. In contrast, the proposed EMB-TrAttUnet consistently delivers strong perfor-
mance across different scenarios.

4.6 Experimental results of the fourth splitting configuration

Table 6 summarizes the results obtained from the fourth splitting configuration. These
results represent the second evaluation scenario of the third splitting configuration, in
which the training dataset is reduced to a fourth. The comparison with state-of-the-art
approaches reveals the superiority of our approach. When compared with the results from
the first evaluation scenario in Table 5, it is noticed that the performance of all approaches
has significantly decreased. For example, the F1-score of the top two competitors (SCOAT-
NET and UCTransNet) has decreased by 12.34% and 11.11% for GGO segmentation,
respectively. Similarly, their Fl-score for Consolidation has decreased by 15.32% and
17.99%, respectively. In contrast, our approach demonstrates consistent performance, with
the F1-score decreasing by only 4.2% and 3.86% for GGO and Consolidation, respectively.

4.7 Ablation study

In this section, the significance of each component of the proposed EMB-TrAttUnet
approach is studied, which includes Transformer Encoder Path (TE), MBSC connection
blocks (MBS), and Multi-classes Boundary Aware Loss Function (MBA). Tables 7 and
8 summarize the ablation study for the first and second evaluation scenarios correspond
to the first and second splitting configurations, respectively. The Att-Unet architecture is
considered as the baseline architecture for both evaluation scenarios. From Table 7, the
comparison between the baseline architecture and the first ablation experiment shows that
the Transformer path significantly improves the GGO and Consolidation segmentation
results. This shows that the Transformer Path provides diversity of features in the encoding
phase. In other words, the fusion of the global contextual and long-range dependencies fea-
tures using the Transformer path and the local contextual features using the CNN Convolu-
tional blocks provides finer details in the encoding phase, allowing to distinguish between
infected, non-infected tissues and different infection types. In the second ablation experi-
ment of Table 7, the results of the Att-Unet architecture with MBSC blocks are depicted.
The results show that there is no improvement for GGO segmentation, but the results for
Consolidation have dropped. The explanation of this result is that adding more Convolu-
tional layers without rich and diverse features extraction tends to lead to more over-fitting.
Experiment (3) shows that adding the Transformer path and MBSC connection blocks
improves the results compared to both the baseline experiment and experiment (1) for both
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segmentation classes. Experiments (4) proves the effectiveness of the proposed Boundary
Aware loss function in segmenting the two classes of Covid-19 infections. Compared with
the results of Experiment (3), the GGO results are improved by 1%, 3.5%, and 1.19% for
F-S, D-S, and IoU, respectively. Similarly, the Consolidation segmentation results are con-
siderably improved by 2.51%, 5.46%, and 2.51% for F-S, D-S, and IoU, respectively.

Table 8 summarizes the ablation study results of the second evaluation scenario. Similar
to what were noticed in the first evaluation scenario (Table 7), the Transformer Path pro-
vides richer features in the encoding phase, leading to better segmentation performance,
especially for the minor class (Consolidation). On the other hand, it is noticed from Experi-
ment (2) that adding the MBSC connection blocks to the baseline architecture (Att-Unet)
significantly improves the Consolidation segmentation results, while the GGO results
slightly decrease. This shows that MBSC connection blocks can help hard class segmen-
tation when less labelled data is available. However, this can affect the performance of
the other classes in the case of only CNN encoder is used. Similar to the first evaluation
scenario, Experiment (4) prove the effectiveness of the proposed loss function. By compar-
ing with the results of Experiment (3), the GGO results are improved by 0.8%, 1.7%, and
0.38% for E-S, D-S, and IoU, respectively. Significantly, the Consolidation segmentation
results are considerably improved by 8%, 3.93%, and 6.69% for F-S, D-S, and IoU, respec-
tively. These results shows the efficiency of the proposed MBA-CE loss function in few-
shot learning scenario, with imbalanced classes.

5 Discussion
5.1 Segmentation visualization analysis

Figures 7 and 8 depict visual comparison examples from the first and second evaluation
scenarios which correspond to the first and second splitting configurations, respectively.
The approaches that demonstrated the best segmentation performance in comparison to our
approach are Att-Unet, SCOATNET, UCTransNet, and MISSFormer. All six examples in
Fig. 7 demonstrate that our approach achieves superior segmentation performance for both
GGO and Consolidation when compared to the other methods.

In more detail, the first example in Fig. 7 illustrates cases where the infection has spread
in both lungs, manifesting as multiple small regions of GGO and Consolidation. In con-
trast to the comparison methods, our approach effectively segments most of the infected
regions, including the smaller ones. This highlights the efficiency of combining CNN and
Transformer encoders, where the Transformer path treats the input image as a collection
of 2D patches, enabling the extraction of finer infection details, including small regions.
Additionally, our proposed loss function places more emphasis on smaller regions.

The second example depicts a case where the infection has spread throughout most of
the lung field as GGO, with Consolidation appearing in the lower region of the right lung.
The segmentation masks generated by the comparison methods reveal their difficulty in
accurately matching the ground truth masks for the GGO regions, particularly near the
boundaries. In contrast, our approach demonstrates a strong ability to match the infec-
tion boundaries, thanks to the use of our proposed boundary-aware loss function. While
some of the comparison approaches have identified Consolidation in the lower regions,
many of them misalign with the ground truth mask. Notably, Att-Unet, SCOATNET, and
UCTransNet show Consolidation in both lungs, which is inconsistent with the ground

@ Springer



90 Page 26 of 35 F. Bougourzi et al.

Ex6

o
»
A
=
»
oS

€

-
.

GT

AttUnet

SCOAT-
Net

UCTransNet

MISS-
Former

Ours

Ex4 Ex5
€3 0
s "; B

e
HEEREE

Fig.7 Visual Comparison of COVID-19 Segmentation Results from the First Evaluation Scenario. The
seven rows represents the input slice, ground truth, and the segmentation results of Att-Unet, SCOATNET,
UCTransNet, MISSFormer and our proposed EMB-TrAttUnet, respectively. GGO is presented by the green
color and Consolidation by the red color

truth. In contrast, MISSFormer and our approach accurately locate the region of Consoli-
dation infection (the lower region of the right lung).

The third example presents a case where the infection appears in both lungs and is a
combination of medium and small spots, with small Consolidation areas in the lower lung
regions. The segmented masks demonstrate that most of the comparison methods strug-
gle to segment the small regions and differentiate between the infection types. In contrast,
our approach efficiently segments both medium and small infections and accurately dis-
tinguishes between the two classes (GGO and Consolidation), aligning with the ground

@ Springer



Emb-trattunet: a novel edge loss function and transformer-CNN... Page 27 of 35 90

)

Ex6

=
»
w0

~

a
o

Slice

GT

AttUnet

SCOAT-
Net

UCTransNet

MISS-
Former

Ours

I
SRR |

e

Fig.8 Visual Comparison of COVID-19 Segmentation Results from the Second Evaluation Scenario. The
seven rows represents the input slice, ground truth, and the segmentation results of Att-Unet, SCOATNET,
UCTransNet, and MISSFormer and our proposed EMB-TrAttUnet, respectively. GGO is presented by the
green color and Consolidation by the red color

truth. This underscores that our proposed approach has a better capability to segment small
regions, as well as medium and large ones, compared to the state-of-the-art approaches.
The last three examples depict cases where the infection has a peripheral distribution
with a mixture of GGO and Consolidation infection types, and Consolidation appears in
the lower half of the lung regions. In the fourth example, the predicted masks of the seg-
mentation methods struggle to distinguish between the infection classes and their sizes. For
instance, the MISSFormer approach segments all infections as Consolidation, while other
approaches consider most of the infected areas as Consolidation. Although our approach
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identifies most of the infected regions, it shows limited distinguishability between the two
infection types in this case.

In the fifth example, the comparison approaches segment all infections as GGO. In con-
trast, our approach demonstrates a high capability to segment both classes accurately. Simi-
larly, our approach performs well in the last example. However, some of the comparison
approaches exhibit lower performance, such as UCTransNet and SCOATNet, as they strug-
gle to segment the infection due to the low contrast between the infection and lung borders.

Figure 8 displays the segmented masks for the second evaluation scenario, where the
training data was reduced to half compared to the first splitting configuration. From the vis-
ualized six examples, the following observations can be made: In the first example, almost
all comparison approaches failed to segment any infection. However, our approach contin-
ues to demonstrate good performance in scenarios with more challenging data available. In
the second example, all approaches are still capable of segmenting the widely spread infec-
tion and also successfully segment the Consolidation type in the lower part of the right
lung. However, the accuracy varies from one approach to another. MISSFormer matches
the Consolidation prediction, while our approach accurately captures the details of GGO
infection in terms of shape and boundaries. This once again highlights the efficiency of the
proposed methods, particularly the proposed loss function in this case. In the third exam-
ple, our approach continues to perform well in segmenting small and medium infection
regions with the correct infection type. The last three examples reveal that the comparison
approaches miss a significant portion of the infection, especially UCTransNet and SCOAT-
Net in examples 4 and 6. Additionally, it’s worth noting that, as in the previous evaluation
scenario, some approaches entirely predict only one infection class. However, our approach
still demonstrates a high segmentation capability to accurately segment the infection and
efficiently identify its type in scenarios with more data availability limitation regime.

5.2 Early stage infection localization and segmentation

One of the most important steps to stop the spreading of Covid-19 disease and save the
infected person live is to detect the infection in the early stages. Where the golden standard
RT-PCR test has a considerable false negative rate in this case (Jin et al. 2020). We propose
to test the efficiency of our approach in detecting the early infection regions. To do so, we
manually selected four CT-scans from Dataset_1 as the testing data, which shows infection
in early stages. The remaining CT-scans of Dataset_1 and Dataset_2 are used as the train-
ing data. In order to compare with the state-of-the-art, the best performed approaches in
the previous evaluated splitting configurations, which are Att-Unet (Oktay et al. 2018), and
SCOATNet (Zhao et al. 2021), MISSFormer (Huang et al. 2022), and UCTransNet (Wang
et al. 2022). Table 9 summarizes the obtained results, which show the superiority of our
approach compared with the comparing ones for both infection types segmentation.

Figure 9 depicts three slices from two CT scans (each scan is represented by 3 slices)
and the predicted masks of the four comparison approaches and our approach. The first
three examples show that our approach correctly localizes the position and the number
of tiny infected regions and classifies them as GGO. However, most of the comparison
approaches failed to segment these infected regions. This once again demonstrates the
efficiency of the proposed approach in dealing with even the tiniest infected regions in
the early stage, allowing for the identification of infections in their very early stages.
The second case (examples 4 to 6) depicts a situation where the infection is beginning
to develop, and consolidation is starting to appear. In this case as well, it is evident that
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Fig.9 Visual Comparison of COVID-19 Segmentation Results for Early Infection Segmentation Scenario.
The seven rows represents the input slice, ground truth, and the segmentation results of The seven rows rep-
resents the input slice, ground truth, and the segmentation results of Att-Unet, SCOATNET, UCTransNet,
and MISSFormer and our proposed EMB-TrAttUnet, respectively. GGO is presented by the green color and
Consolidation by the red color

our approach has a high ability to detect small consolidation regions attached to the
GGO infection, as well as small GGO infections spreading in both lungs. These two
cases highlight our approach’s capability to localize and segment infections at differ-
ent stages, including the early stage, which is crucial for detecting infected individuals,
preventing the spread of the Covid-19 pandemic, and monitoring the patient’s condition.
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5.3 Model size and inference time comparison

In this section, we investigate the number of parameters and inference times of our
approach and the compared ones. Table 10 summarizes these comparisons. It is worth not-
ing that our approach features a higher number of parameters compared to most of the
compared architectures. This is due to the proposed Hybrid Encoder and the MBSC block,
both of which have proven their efficiency in handling the complex task with very limited
training data. Despite the larger parameter count, our approach still delivers competitive
inference times. In fact, the inference time for a batch size of 50 slices is less than half a
second, which is suitable for real-time scenarios.

6 Conclusion

In this paper, we proposed a Hybrid CNN-Transformer (MB-TrAttUnet) architecture and a
Multi-classes Boundary Aware Cross-Entropy (MBA-CE) Loss function for Multi-classes
Covid-19 infection segmentation. The Encoder of the proposed MB-TrAttUnet architecture
fuses CNN and Transformer blocks to extract richer features, including local, global, and
long-range dependencies features. On the other hand, the Decoder of the MB-TrAttUnet is
similar to the Att-Unet decoder, which consists of AG and deconvolutional blocks. In addi-
tion, we proposed a new skip connection (MBSC) to integrate the encoder features into the
decoder layers, where the MBSC blocks extract and combine higher level features related
to the finer features of different infection types. On the other hand, MBA-CE Loss func-
tion is designed to enhance boundaries segmentation, the separability between classes and
minority classes decision.

The performance of the proposed approach is evaluated and compared with three
CNN-Based Segmentation architectures (Unet, Nested-Unet and Attention Unet), three
proposed segmentation approaches for Covid-19 infection segmentation (CopleNet,
AnamNet, and SCOATNet) and four recent Transformer based segmentation architec-
tures (SwinUnet, MTUnet, MISSFormer, and UCTransNet) in two evaluation scenarios
using two splitting configurations. From which, our approach outperformed the com-
parison methods for both Ground-glass opacity (GGO) and Consolidation segmen-
tation. On the other hand, our approach showed consistent performance in the more

Table 10 Number of parameters

of different architectures and Architecture Number of Parameters Inference Time

'ngsstiﬂ:ge STime for a batch size of Unet 785M 89ms
AttUnet 7.98 M 102ms
Unet++ 2651 M 244ms
CopleNet 15.05M 95ms
AnamNet 25.63M 117ms
SCOATNET 4021 M 407ms
SwinUnet 41.38 M 160ms
MTUnet 79.07M 629ms
UCTransNet 66.43 M 423ms
MISSFormer 4246 M 223ms
EMB-TrAttUnet 80.13 M 475ms
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critical“few-shot”learning scenario (training data, in terms of scans, were reduced by
half). In contrast, the performance of the comparison methods decreased in this sce-
nario. Moreover, our approach showed a good ability to deal with imbalanced data and
segmenting the infection in early stages. These advantages demonstrate the effectiveness
and efficiency of the proposed EMB-TrAttUnet approach in a pandemic scenario where
time is critical to save patient lives. As part of our future work, we intend to leverage
recent advancements in vision transformer architectures to reduce the number of param-
eters in our model. Additionally, we plan to extend the application of our approach to
various other medical imaging segmentation tasks.
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