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Abstract
Artificial intelligence (AI) has emerged as a transformative technology with significant 
potential to revolutionize disease understanding and drug design in healthcare. AI serves 
as a remarkable accelerating tool that bridges the gap between understanding diseases and 
discovering drugs. Given its capacity in the analysis and interpretation of massive amounts 
of data, AI is tremendously boosting the power of predictions with impressive accuracies. 
This allowed AI to pave the way for advancing all key stages of drug development, with 
the advantage of expediting the drug discovery process and curbing its costs. This is a 
comprehensive review of the recent advances in AI and its applications in drug discovery 
and development, starting with disease identification and spanning through the various 
stages involved in the drug discovery pipeline, including target identification, screening, 
lead discovery, and clinical trials. In addition, this review discusses the challenges that 
arise during the implementation of AI at each stage of the discovery process and provides 
insights into the future prospects of this field.

Keywords Artificial intelligence · Machine learning · Disease identification · Drug 
discovery

1 Introduction

The classical drug discovery process is long and expensive. It takes around 10 to 15 
years for a drug to be in the market, at an approximate cost of around $161  million to 
$4.54  billion (Schlander et  al. 2021). Despite the investment of money, efforts, and 
resources, nearly 90% of the potential drug candidates fail in clinical trials (Sun et  al. 
2022). This is because of their reduced clinical efficacy, poor pharmacokinetic properties, 
or adverse side effects (Waring et al. 2015). More efforts are being put forward to develop 
alternative methods that can accelerate the drug discovery process while reducing the cost 
associated with it and increasing the success rate of lead compounds in clinical trials. Over 
the last decades, many methods, with AI and machine learning (ML) being at the forefront, 
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have been developed and successfully implemented at several stages of drug design, 
starting from disease identification to clinical trials. This extensive focus on AI research is 
exponentially growing, as evident from the number of scholarly outputs published over the 
years (Fig. 1).

With the rapid advances in computer-based technology, computational methods have 
quickly become indispensable for medical research. For instance, in the past decades, 
many efforts have been put into developing computational chemistry tools that can predict 
drug properties and their interactions in silico. Such tools have helped reduce the heavy 
dependence on wet-lab measurements, which tend to be expensive and time-consuming. 
These tools include molecular docking and molecular dynamics methods, both of which 
can be applicable to bulky biochemical systems; as well as quantum mechanics (QM) 
methods, which offer notable improvements in accuracy, yet are too computationally 
expensive to be tractable for the relatively large systems studied in drug design (Bolcer 
and Hermann 2007). Recently, more attention has been given to computer science, ML, 
and statistical methods that can predict the properties of large macrosystems with the 
accuracy of quantum methods, but at low computational costs. Such ML models are used 
as building blocks for developing AI tools. AI involves the development of machines 
with the ability to perform tasks that require human intelligence and predictive power. AI 
models are demonstrated to potentially have high accuracies in predictions and, thus, have 
the tendency to be reliable in decision support (Manallack and Livingstone 1999).

There are different classes of ML methods, among which the most commonly used 
methods in the drug discovery process are supervised learning, unsupervised learning, 
semi-supervised learning, ensemble learning, and deep learning (Patel et al. 2020). Table 1 
provides a list of some important summary tables and figures reported in the literature 
about AI in drug discovery and below is a brief description of the most used classes and 
subclasses of AI algorithms in this review.

Before describing how AI connects disease diagnosis with drug development, a con-
cise overview of the classes and subclasses of AI algorithms recurrently mentioned 
in this review is provided. Supervised learning is central to drug discovery. The key 
requirement to develop a supervised learning model is having a labeled dataset. For 
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Fig. 1  Number of research articles related to AI that were published between 1998 and 2022. The data was 
obtained from the Social/Scopus database as of January 6, 2024. The total number of scholarly output was 
extracted for the ‘World’ from the ‘Artificial Intelligence’ subject under the ‘Computer Science’ subject area
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example, assessing the activity of chemical compounds against a specific target involves 
using a dataset containing information about compounds, along with their correspond-
ing biological assay results (i.e., active or inactive). This labelling enables the model to 
learn the relationship between the chemical features of the compounds and their bio-
logical activity. The model can then be used to predict the biological activity of novel 
compounds. Examples of supervised learning algorithms are Support Vector Machine 
(SVM), Random Forest (RF), and naïve Bayes (Yang et al. 2019; Dara et al. 2021).

SVM is a binary classifier method that can be extended for multi-class classification 
tasks. SVM can perform both classification and regression tasks. It begins with labeled 
training data. Normalization or scaling of data is essential to ensure optimal results. 
During training, an SVM algorithm finds the optimal hyperplane or decision boundary 
to separate the data into different classes, calculated by finding support vectors and 
maximizing the margin (i.e., the distance between support vectors and the boundary). 
Mathematical optimization techniques are employed to optimize the margin while 
minimizing classification errors. The trained SVM model can then classify new, unseen 
data points (Yang et  al. 2019). SVM is versatile and effective in handling complex 
data separation tasks. However, it is sensitive to the choice of hyperparameters, such 
as the regularization parameter and kernel parameter, where a kernel is a function that 
computes the similarity between data points in a higher-dimensional space. SVM can 
also be affected by overfitting when the input data is noisy or when the kernel function 
is not well-suited to the problem (Vamathevan et  al. 2019). It has a wide range of 
applications in drug discovery such as virtual screening, predicting pharmacokinetic 
properties, and predicting toxicity (Heikamp and Bajorath 2013).

RF is a supervised and ensemble learning method that combines multiple decision 
trees to make predictions. It begins with bootstrapped sampling, where multiple subsets of 
the training data are created through random sampling with replacement. This introduces 
diversity in the dataset for each tree in the forest. Additionally, at each split point in the 
decision tree construction, a random subset of features is chosen. The next step involves 
growing multiple decision trees, each independently trained on these bootstrapped datasets 
and random feature subsets. This process generates a collection of diverse decision trees. 
When making predictions, the results from all the individual trees are combined. In 
classification tasks, this is achieved through majority voting, while in regression problems, 
predictions are averaged. Its advantages include high accuracy, resistance to overfitting, and 
suitability for various types of data (Patel et al. 2020). RF can handle large datasets with 
many features and is capable of ranking feature importance. However, its disadvantages 
involve reduced interpretability compared to individual decision trees. The model may not 
perform well on very noisy data. While RF is robust, it might not be the best choice for 
tasks requiring precise probability estimates.

Naïve Bayes is a probabilistic ML algorithm used for classification tasks. It is created 
by modeling the relationships between features and their associated classes using Bayes’ 
theorem. The ‘naïve’ assumption is that the features are conditionally independent, 
simplifying the modeling process and making it computationally efficient. The key 
advantages of this model involve the speed, and suitability for high-dimensional data. 
However, its naïve independence assumption may not hold in complex real-world datasets, 
potentially affecting accuracy. It also struggles with rare events and might require extensive 
data preprocessing (Yang et al. 2019).

Unsupervised learning deals with unlabeled data. Its primary objective is to uncover 
underlying structures and features within the data to facilitate the grouping of input samples 
into clusters or reduce dimensionality. These algorithms are useful in applications where 
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predefined target outcomes are not available. Unsupervised learning is distinguished by 
the absence of feedback signals for assessing solution quality. Notable techniques include 
clustering methods (such as k-means and hierarchical clustering) and dimensionality 
reduction approaches (for example, principal component analysis and self-organizing 
maps) (Dara et al. 2021).

Semi-supervised learning is a hybrid between supervised and unsupervised learning, 
proving particularly valuable in scenarios where an abundance of input data is available 
with limited labeled samples. It has predictive accuracy with minimal additional real-world 
experimental costs. Semi-supervised models are trained to use available labeled data to 
predict labels for unlabeled data, and their performance heavily relies on the amount and 
quality of labeled data available (Yang et al. 2019).

Reinforcement Learning (RL) is an ML algorithm where the model learns to make 
sequences of decisions through interaction with an environment. It is built on the idea of 
an agent taking actions to maximize cumulative rewards over time. The agent learns by 
exploring different actions to alter that environment and receiving feedback in the form 
of rewards or punishments. RL typically involves defining a reward function, selecting 
an appropriate RL algorithm (e.g., Q-learning, Deep Q Networks), and fine-tuning the 
agent’s policies through repeated interactions. While RL has been successful in various 
applications, it comes with challenges like the exploration-exploitation trade-off and can 
require significant computational resources and time. The key advantage of the RL model 
is that the training can be done even in sparse environments where few or no examples are 
available. It is especially suitable for sequential decision-making (Lutz et al. 2023).

Deep learning is focused on artificial neural networks (ANN) with multiple layers 
(deep neural networks). They consist of input and output layers, along with several 
hidden layers that learn progressively more abstract features. These networks are designed 
to automatically learn and extract features from raw data through a hierarchy of layers. 
Provided that they have sufficient data and resources, deep learning models can scale to 
handle complex problems such as natural language processing and speech recognition 
(Nag et al. 2022). Deep learning models are prone to overfitting on small datasets. Deep 
learning models are generally used to analyze and process large amounts of data for 
e.g., clinical imaging (Rajpurkar et al. 2018; Ding et al. 2019; Narin et al. 2021), virtual 
screening (Carpenter et  al. 2018; Gentile et  al. 2022), and bioactivity predictions (Bule 
et al. 2021). Examples of deep learning algorithms are Deep Neural Networks (DNN) and 
Convolutional Neural Networks (CNN).

DNNs are basic feedforward neural networks with multiple hidden layers. They are 
constructed by stacking multiple layers within which artificial neurons are interconnected 
and employ activation functions to introduce non-linearity. DNNs are trained using 
labeled data to minimize prediction errors through backpropagation and gradient descent. 
DNNs can be applicable in both supervised and unsupervised learning scenarios. A major 
limitation of DNNs is their complex nature which makes them challenging to interpret and 
they may involve meticulous hyperparameter tuning (Vamathevan et al. 2019; Nag et al. 
2022).

CNNs are suited for image and grid-structured data. They employ convolutional 
layers to detect local patterns. CNNs are constructed with several key components: 
convolutional layers, pooling layers, and densely connected layers. The network begins 
with an input layer, followed by convolutional layers that extract features from the 
input data. The characteristics of the convolutional layer are specified in terms of its 
three dimensions (width, height, and depth). It operates by scanning and capturing 
information from a small receptive field, typically a square of pixels, and the depth 
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corresponds to different channels of information sources in images. Activation functions 
introduce non-linearity, while pooling layers reduce spatial dimensions. Densely 
connected layers connect neurons across layers, leading to the final output layer, which 
produces predictions. CNNs use a loss function to quantify the prediction error, and 
optimization algorithms to adjust model parameters (Yang et al. 2019). They are trained 
on labeled data, evaluated for performance, and then used for making predictions. 
CNN architecture can be customized for specific tasks and datasets. One of the major 
disadvantages of this method is that it might not be the best choice for all types of data.

Ensemble learning combines multiple individual models or algorithms to create a 
more robust and accurate predictive model with reduced overfitting issues, and enhanced 
generalizations. Among the common ensemble methods are RF (as mentioned above) 
and Gradient Boosting (GB). GB is an ensemble of multiple combined models used for 
regression and classification tasks of complex datasets. The algorithm works iteratively, 
it focuses on the errors made by the previous models and optimizes the following model 
to correct those errors. Gradient Boosting requires careful parameter selection, and 
potentially longer training time (K and Mohan 2022).

As demonstrated in this review (see Fig.  2), the use of AI resulted in substantial 
advancements that helped bridging the gap between disease diagnosis and drug devel-
opment, ultimately increasing the chances of drug approval. Figure  2 depicts the key 
stages of drug discovery, along with their corresponding timelines. These stages include 
disease diagnosis, target identification, lead identification, lead optimization, preclinical 
trials, clinical trials, and drug approval. For each of these stages, a set of tasks that can 
benefit from AI is listed. For an extensive list of such AI tools, please refer to Table 2. 
For example, as depicted in Fig. 2 and Table 2, target identification can be enhanced by 
using ML methods for 3D structure prediction, image reconstruction, and druggabil-
ity prediction. Similarly, lead identification can benefit from AI in speeding up virtual 
screening, pharmacophore modeling, designing synthetic routes, and predicting bioac-
tivity and toxicity. For instance, using AI, the development of a drug called DSP-1181 

Fig. 2  A schematic diagram illustrating the drug discovery pipeline, including all stages from disease iden-
tification to drug marketing. The timeline provided for each stage is the average time needed without AI 
support. The points in the blue boxes are the steps where AI can be beneficial in speeding up task comple-
tion
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took only 12 months, from start to pre-clinical studies, compared to 4–5 years in the 
classical drug discovery process. The compound is developed by a British pharmaceuti-
cal company, called ExScientia, in collaboration with Sumitomo Dainippon Pharma in 
Japan (Burki 2020), more details are discussed in Sect. 3.4.

The present review first discusses how AI techniques can assist in disease 
identification, clinical diagnosis, genome analysis, and precision medicine, with a focus 
on diseases that have been extensively explored in AI studies such as infectious diseases, 
lifestyle-disorders, neurodegenerative disorders, and cancer (Sect.  2). Section  3 
highlights the application of AI techniques in target and lead identification, followed 
by examples of AI-enhanced clinical trials in Sect.  4. At the end of each section, we 
present a critical review on the AI-methods discussed, mainly the advantages and 
disadvantages. Section 5 discusses the challenges in implementing AI in drug discovery 
and its future perspectives.

2  AI in disease identification and clinical diagnosis

Laboratory investigations and clinical examinations are the most common methods 
used in clinical diagnosis, which is a the fundamental step in providing high-quality 
treatments. The remarkable ability of AI techniques in Clinical Diagnosis Decision 
Support (CDDS) has acquired a significant interest in medical research in recent years. 
The incorporation of AI in clinical workflows provides abundant opportunities to reduce 
clinical errors, improve treatment outcomes, lower treatment costs, detect diseases at 

Fig. 3  Applications of AI in clinical diagnosis of various diseases
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earlier stages, and track treatment progress over time. In this section, we will elaborate 
on the recent studies that have reported the use of AI technology for clinical disease 
diagnosis. Furthermore, we will highlight the applications of AI in genome analysis and 
personalized medicine (see Fig. 3).

2.1  Diagnosis of diseases using AI

AI is revolutionizing the way healthcare professionals identify, manage, and control 
diseases. AI algorithms can rapidly analyze large datasets of clinical symptoms and 
laboratory test results to detect diseases at early stages. This early detection allows 
for timely interventions and containment measures to prevent further spread. This 
section focuses on the recent AI-facilitated advancements in the diagnosis of both 
communicable diseases (e.g., infectious diseases such as sepsis, coronavirus disease, 
urinary tract infections, and bloodstream infections) and non-communicable diseases 
(e.g., lifestyle disorders such as diabetes, neurodegenerative disorders like Alzheimer’s 
disease, and cancer).

AI-powered diagnostic tools exhibit high accuracy and sensitivity in identifying 
infectious agents, thereby reducing the chances of misdiagnosis and unnecessary 
treatments. This leads to better patient outcomes. During the pandemic period of the 
Coronavirus disease 2019 (COVID-19), there was a particular focus on the development 
of AI models for its effective diagnosis. Given its availability and low cost, chest X-ray 
was one of the efficient indirect methods used for COVID-19 diagnosis (Castro et  al. 
2021). Many ML models have been developed to predict the presence or absence of 
particular patterns in X-ray radiographs. Panwar et  al. reported a supervised deep 
learning model called ‘cornet’ as a diagnostic method for COVID-19 (Panwar et  al. 
2020). The model accepts chest X-ray images as an input and completes analyses for 
any visual indications such as the hazy or shadowy patches on the lungs. The cornet 
model was shown to have an accuracy of ~ 97% in identifying COVID-19 patients. 
Further, Narin et al. proposed an automated CNN based diagnostic model for detecting 
pneumonia caused by coronavirus (Narin et  al. 2021). They developed pre-trained AI 
models using the X-ray radiographs of healthy individuals, patients with COVID-19, 
patients with viral pneumonia, and patients with bacterial pneumonia. The reported 
accuracy in classification reached up to 96%.

In addition to COVID-19, ML models have been built to assist in the diagnosis 
of other infectious diseases such as urinary tract infections (UTIs), which are often 
associated with diagnostic errors. Taylor et al. reported a retrospective cohort analysis 
of approximately 80,387 adults who visited the emergency department with UTI 
symptoms. Considering symptoms as well as blood and urine sample analyses, six AI 
algorithms were developed for the diagnosis of UTI: SVM, ANN, elastic net, adaptive 
boosting, RF, and Extreme Gradient Boosting (XGBoost). The models were built using 
a full set of 211 factors and a reduced set of 10 variables, e.g., gender, epithelial cells 
in the urine, history of UTI, and age. The XGBoost algorithm outperformed others in 
accuracy, with an area under the receiver operating curve (AUROC) of 0.88 and 0.90 for 
the full and reduced XGBoost models, respectively. The sensitivity and specificity were 
61.70 and 94.90 for the full, and 54.70 and 94.70 for the reduced models, respectively 
(Taylor et al. 2018).

The diagnosis of bloodstream infections, BSI, is yet another example that has 
benefited from AI technology. Bloodstream infections cause high morbidity and 
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mortality rates (15-30%) (Verway et al. 2022). However, predictions of the BSI treatment 
outcomes help in optimizing treatments and, therefore, reducing further complications 
of the infection. Zoabi et  al. reported ML models that use electronic medical records 
to predict the treatment outcome in BSI patients. The dataset for the study involved 
medical reports with information on demographics, laboratory results, diagnoses, and 
medical history of adult patients hospitalized with positive bacterial blood cultures 
over a six-year period. Predictions from different gradient-boosting architectures were 
made with the help of decision-tree. The best model has an AUROC of 0.82. Notably, 
this model outperformed the standard Charlson Comorbidity Index scoring system 
(with smaller AUROC values of 0.585–0.648) for mortality prediction. This model 
outperformed other existing models used for similar applications with AUROC of 
0.67 (Zhang et al. 2023) and 0.76 ± 0.04 (McFadden et al. 2023), respectively. A major 
limitation of this study is that it is based on retrospective electronic medical record data, 
which inherently carry biases (Zoabi et al. 2021). AI has also significantly assisted in 
the early detection of a life-threatening condition called sepsis, where the body develops 
an extreme immune response towards infections. ML algorithms have been developed 
to analyze vast amounts of patient data, including vital signs, laboratory results, and 
clinical notes in order to identify subtle patterns and changes indicative of sepsis onset, 
alerting healthcare providers in real-time, and enabling timely interventions. Sepsis 
Watch is a deep learningbased CDSS for the diagnosis of sepsis. The platform was 
trained with 50,000 patient records involving over 32  million data points, and it was 
proven to improve sepsis patient care (Sendak et  al. 2020). However, this study was 
limited to (i) some false positive predictions where the clinical action is prompted for 
patients who do not ultimately develop sepsis, and (ii) emergency department cases.

Lifestyle disorders such as diabetes, obesity, and hypertension, are associated with the 
way people live, i.e., their diet, levels of exercise, etc. Many AI-based algorithms have been 
developed for the early prediction and management of diabetes. Recently, Spänig et  al. 
developed an interactive AI model with the capability of speech recognition and speech 
synthesis. This model acts as a virtual doctor, it interacts directly with the patients and is 
able to predict Type-2 diabetes mellitus. This innovative approach involves a virtual doctor 
cabin equipped with various patient metric-gathering devices to measure weight, height, 
body mass index etc. An embedded AI system utilizes these metrics to assess potential 
health issues. The AI then recommends diagnostic steps to healthcare providers, in the 
context of diabetes. The model recommends whether the patient should or should not 
perform an HbA1c blood test, which is a long-term blood glucose level indicator based 
on the glycation of hemoglobin in the blood. To gather additional information about 
the patients, the system employs speech recognition, interviews, and questions about 
lifestyle to assess risk factors for developing diabetes. An automated speech recognition 
system called ‘CMUSphinx’ is used. The CMUSphinx system converts the spoken 
language into text with an AUROC of 0.84 (Spänig et  al. 2019). Diabetic patients are 
susceptible to retinopathy (Al-Maskari and El-Sadig 2007) which is generally diagnosed 
by visual examination of retinal images. Untreated diabetic retinopathy can lead to severe 
complications including vision loss. Gulshan et  al. developed a deep CNN model that 
bypasses the human capacity at interpreting, evaluating, and classifying retinal images. 
The model is trained using 128,175 retinal photographs which are evaluated by a panel of 
clinicians and ophthalmologists. The model is demonstrated to have a high sensitivity and 
specificity of 97.50% and 93.40%, respectively (Gulshan et  al. 2016). In 2018, the U.S. 
Food and Drug Administration has approved the marketing of the first AI-based medical 
device called IDx-DR (Heijden et al. 2017) for detecting diabetic retinopathy. The device 
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has a retinal camera through which the retinal image of the patient is taken and analyzed. 
The device is autonomous and decides on one of the following results based on the image 
quality (i) ‘more than mild diabetic retinopathy detected: refer to an eye care professional’ 
or (ii) ‘negative for more than mild diabetic retinopathy; rescreen in 12 months’ (Heijden 
et al. 2017).

Pulmonary hypertension is a complex cardiovascular disorder characterized by 
increased pressure in the pulmonary arteries, leading to impaired blood flow to the lungs. 
Timely identification of hypertension is crucial for early intervention to prevent adverse 
outcomes. In 2023, Kıvrak et  al. reported a classification model to identify pulmonary 
hypertension from the chest X-ray images (Kıvrak et al. 2023). The model is trained using 
chest X-ray images of patients with different types of pulmonary hypertension and healthy 
people (without pulmonary hypertension). Their model was able to attain an accuracy 
of 86.14% in identifying different types of pulmonary hypertension. The AUROC is 
calculated to be 0.945. However, the model needs to be improved as it yielded constrained 
performance outcomes in some patient groups.

Alzheimer’s disease (AD) is a neurodegenerative disorder in the brain. The lack of a 
widely accessible and low-cost screening method for AD can be attributed, in part, to the 
complexity of its diagnosis. AD diagnosis often relies on invasive tests typically limited to 
specialized clinical settings. One of the advances in imaging technology, namely fluorine-
18-fluorodeoxyglucose positron emission tomography (PET) of the brain, facilitated the 
early detection of AD. However, the challenge lies in the interpretation of the PET data. 
Ding et  al. developed a deep learning algorithm that interprets PET of the brain for the 
early prediction of AD. Their model showed a specificity and sensitivity of 82% and 100%, 
respectively. This model can predict AD, on average, 75.8 months before its diagnosis, 
with an AUROC of 0.98 (Ding et  al. 2019). Recently, Agbavor and Liang developed an 
end-to-end AI-powered system for the detection of AD as well as to predict the severity 
of the disease from raw voice recordings (Agbavor and Liang 2022). The dataset used 
to build the AI model includes a collection of speech recordings where individuals, both 
cognitively normal individuals and AD patients, provide descriptions of certain pictures. 
The AI model uses a pre-trained data2vec model, which is a self-supervised algorithm 
that can work directly with speech data, without the need for human-designed features 
or manual interventions. The AI model developed in this study is considered ‘end-to-
end’ because it encompasses the entire process, starting from the analysis of raw voice 
recordings and concluding with AD predictions. This approach eliminates the requirement 
for distinct manual steps involving feature extraction or pre-processing, as the AI system 
manages these tasks within a unified framework. In a nutshell, the model directly takes in 
raw voice data and autonomously processes it to deliver AD-related predictions. The model 
is tested using data from ‘DementiaBank’ and it predicted AD with an AUROC of ~ 0.84. 
This model can be used as an alternative low-cost diagnostic method for early detection of 
AD. Also, integrating this model into AD clinical trials can substantially curb the cost and 
duration of clinical trials which in turn speeds up the drug development process.

Cancer diagnosis and prognosis have highly benefited from the advancements in 
AI (Tanoli et  al. 2021). The key diagnostic methods for cancer are the clinical imaging 
techniques (Fass 2008) such as X-ray, Computed Tomography (CT), and Magnetic 
Resonance Imaging (MRI). AI has the potential to improve the speed of analysis and the 
accuracy of image interpretations. ‘AI Dermatologist’ (https:// ai- derm. com/) is a web-
platform based on deep learning to predict skin cancer from photographs. The tool can 
identify skin cancer from the image uploaded by the user. It can even classify benign 
and malignant tumors based on asymmetry, boundary, color, diameter, and change over 

https://ai-derm.com/
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time. The AI Dermatologist platform is built using deep learning algorithm by training a 
neural network on a vast database of dermoscopic images assessed by dermatologists. The 
AI dermatologist was able to achieve 87% sensitivity in picking up cancerous cells from 
body scans (Longoni et al. 2019). Esteva and co-workers (Esteva et al. 2017), developed a 
CNN model trained with images of skin lesions to classify different types of skin cancer. 
Typically, the initial diagnosis of skin cancer is by microscopic examinations of the tissues. 
However, skin lesions are highly variable from one skin disease to another, making it 
challenging to have accurate diagnoses. In their study, they have trained their model with a 
dataset of ca. 129,450 images of 2,032 different skin conditions from Stanford University 
Medical Center and other open-access public repositories. The model was validated in two 
different ways using three-class and nine-class disease partition. In the three-class disease 
partition, the CNN showed an overall accuracy of 72.10 ± 0.9%, while the dermatologists 
obtained ~ 66.0% accuracy. In the nine-class disease partition, the model’s and the 
dermatologists’ accuracies were comparable, 55.40 ± 1.7% and 53.3 ± 5.50%, respectively. 
This model is an example of a low-cost diagnostic tool that can be extended to analogous 
models for other specialties.

In another study, Causey et  al. developed an algorithm called NoduleX (see Table 2) 
for the prediction of malignant lung nodules from clinical CT data. The algorithm is based 
on a deep-learning CNN model. The authors used over 1,000 images of lung nodules from 
the Lung Image Database Consortium (LIDC) and the Image Database Resource Initiative 
(IDRI) cohort for training the model. NoduleX showed high-accuracy predictions with 
an AUROC of 0.99 (Causey et al. 2018). The tool is still under development to find the 
best model architectures for analyzing different patterns and features from radiological 
images. Another future aim of this study is to construct high-quality datasets for training, 
testing, and validation. Shiri et al. has evaluated the efficiency of different ML approaches 
developed for predicting the mutation status in the Epidermal Growth Factor Receptor 
(EGFR) and Kirsten rat sarcoma viral oncogene (KRAS) in Non-Small Cell Lung Cancer 
(NSCLC) patients. These approaches are based on radiomics analyses, using features 
extracted from around 150 images from low-dose CT, contrast-enhanced diagnostic 
quality CT (CTD), and PET imaging techniques. They highlighted multivariate ML-based 
AUROCs of 0.82 and 0.83 for the EGFR and KRAS mutations, respectively. The primary 
constraint of this study lies in the relatively limited size of the dataset employed for training 
and validation purposes (Shiri et al. 2020).

Histological analysis of tissue samples is another method for cancer diagnosis. 
Histopathologists visually examine tissue samples under the microscope to check for 
any irregularities in the shape of the cell, tissue distribution, or necrosis. Deep learning 
techniques that involve CNN models fueled the histological image analysis (Öztürk and 
Akdemir 2019; Hameed et al. 2020; Srinidhi et al. 2021). Sharma et al. reported a deep 
CNN model for the classification of gastric carcinoma from images of histopathological 
samples stained with hematoxylin and eosin. The model is developed for (i) cancer 
classification using immunohistochemical responses and (ii) necrosis detection in tissues. 
This model showed an accuracy of 0.699 for cancer classification, and 0.81 for necrosis 
detection. One of the disadvantages of this preliminary model is the limited size (454 
cases) of the data set used. Further, in the proposed CNN configuration, the training takes 
approximately two days, even with GPU implementations (Sharma et al. 2017). Recently 
in 2023, Tolkach et  al. introduced an AI algorithm designed for tumor tissue detection 
and tumor regression grading in surgical specimens. These are obtained from patients 
diagnosed with oesophageal adenocarcinoma or adenocarcinoma of the oesophagogastric 
junction (Tolkach et  al. 2023). The performance of the model is validated on a set of 
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histopathological slides. During the validation process, the AI tool demonstrated a 63.6% 
agreement with the analyses performed by a group of twelve pathologists at the case level. 
Notably, the AI-based regression grading was able to detect small tumor regions initially 
missed by pathologists. Moreover, AI helped significantly reduce the time required for the 
diagnosis per case, from 6 min to 1 min. These findings highlight the potential of the AI 
algorithm to enhance diagnostic accuracy, optimize the evaluation of tumor regression, and 
improve the efficiency of pathological analyses.

The key to obtaining accurate predictions lies in selecting appropriate models trained on 
specific data for a given disease in a particular population. In our opinion, algorithmic bias 
is one of the critical challenges associated with building ML models because it can result 
in incorrect or unfair diagnoses. It is also important to ensure that the training datasets used 
include diversity based on race, age, gender, etc. In addition, an efficient human-AI synergy 
can lead to more reliable decision-making support from AI. This synergy optimizes the 
benefits by combining human expertise with AI capabilities, such as the natural language 
processing capability of ML and deep learning methods.

2.2  AI in genome analysis

Around 80% of rare diseases are related to genetic variations (Liu et  al. 2019). Hence, 
the importance of diagnoses provided by genome sequencing. The advancements in Next 
Generation Sequencing (NGS) technology have led to the collection of vast amounts of 
data and provided rich information about individual genomes. The bottleneck in NGS 
lies in the analysis and interpretation of large-scale genome data and the identification of 
variants (Lucena-Perez et al. 2021). This can take days to weeks. AI-based models, such as 
deep learning models, opened a new chapter of research related to transforming this ‘big 
data’ into meaningful new information. AI technology has been applied in many areas of 
genomic analysis such as gene annotation, genotype-phenotype correlations, consanguinity 
diseases, mutation studies, cancer diagnosis, biomarker identification, gene function 
prediction, and variant calling.

ML models have surpassed the conventional bioinformatics tools for the sequence 
analysis and identification of variations such as insertions, deletions, or mutations within 
genomic sequences. Cai et  al. developed an ML tool called Concod to detect deletions 
in DNA. Concod outperformed four existing deletion detection tools (Pindel, SVseq2, 
BreakDancer, and DELLY) in sensitivity and precision (Cai et  al. 2017). However, this 
tool was limited to identifying only short structural variations in the sequences. Then a 
visualization-based ML model, DeepSV, was developed (Cai et  al. 2019). DeepSV is 
based on deep learning and is used for identifying long deletions within the genomic 
sequence. The tool is optimized to work with noisy training data. However, like many other 
supervised machine learning techniques, DeepSV requires properly labeled training data 
for its training process (Cai et al. 2019).

DeepVariant and DeepTrio are two AI tools developed by Google for the prediction 
of genomic variants from the NGS sequence data (DePristo and Poplin 2017; Kolesnikov 
et  al. 2021). DeepVariant is an open-source tool that was released in 2017. This deep 
learning model is based on CNN and is trained on using images of the sequence reads 
that are produced from reference genomes. The raw data from sequencing platforms 
(e.g., Illumina sequencing or polymerase chain reaction sequencing) consists of many 
reads of overlapping gene fragments. Raw sequence data is mapped to a reference 
genome and then analyzed by DeepVariant to identify the locations of variations such 
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as single nucleotide polymorphisms (SNPs) and short insertions and deletions (indels) 
(DePristo and Poplin 2017). The newer versions of this tool can accept the raw sequence 
data from Illumina or PacBio sequencing and Oxford Nanopore (DePristo and Poplin 
2017; Carroll 2020). One of the major limitations of DeepVariant is that it is well 
optimized to germline variants. So, it may not be as suitable for somatic variant calling 
in cancer genomics. DeepTrio further expanded the functionality of DeepVariant. It 
can predict the genomic variants in duos or trios, meaning that DeepTrio can be used 
to analyze child-mother-father (trio) or child-father/mother (duo) sequence data. The 
tool can provide a better understanding of Mendelian diseases and the transmission 
of genetic traits. DeepTrio specializes in pinpointing novel mutations, which are 
genetic changes present in the genome of a child but not the genome in either parent 
(Kolesnikov et al. 2021). Both these tools are excellent in variant calling; however, they 
have certain limitations. First is the requirement of intensive computational resources. 
Second, just like any other ML model, the accuracy of the prediction depends on the 
quality and diversity of the training data used to train these tools. Third, DeepVariant 
and DeepTrio can be complex to set up and configure, they require expertise in both 
genomics and machine learning. Last, these models are not self-contained, additional 
tools and expertise are required to interpret the complex variant calling results they 
provide.

Another challenge in the analysis of genome sequences is to distinguish benign 
from disease-causing gene variants for rare genetic disorders (Benowitz 2014). In 
a collaborative retrospective study between the company Fabric Genomics and Rady 
Children’s Institute, San Diego, researchers built an automated AI algorithm called 
Fabric GEM (where GEM stands for genomics). They used 179 diagnosed pediatric 
cases, mostly from the Neonatal intensive care unit (NICU) at Rady Children’s Institute, 
and five other clinics across the world (Vega et  al. 2021). Through analyzing NGS 
data, GEM can swiftly and accurately identify, in 90% of cases, the structural genes 
responsible for rare genetic disorders. This outperforms the existing variant-calling 
tools, which correctly identify the structural variants less than 60% of the time (Vega 
et  al. 2021). Fabric GEM utilizes advanced AI technology and integrates genetic, 
phenotypic, and clinical data to efficiently identify the most likely genetic causes of 
a medical condition. Unlike many other interpretation platforms that often require 
a thorough review of 20 to 50 potential genetic variants to pinpoint the causal one, 
Fabric GEM excels at prioritizing these variants. As a result, it significantly reduces 
the number of genetic causes that need to be reviewed for a medical condition to fewer 
than five. This enhanced efficiency streamlines the clinical review process (https:// fabri 
cgeno mics. com/ fabric- gem/). GEM also has the advantage of accurate predictions at 
low costs.

The need for high-quality data is one of the challenges in AI-assisted genome 
analysis. The genomic data is often complex and incomplete. Thus, it is important to 
properly clean data before using it for training the models. Overfitting is also common 
within AI models used in genome analysis due to the limited availability of data. This 
is further restricted by confidentiality issues. Nevertheless, it is recommended to have 
even more stringent rules and regulations to protect the data of patients. Another 
disadvantage of using AI in genome analysis is that the model needs to be reoptimized 
based on the population under study. As genome data grows exponentially, it becomes 
increasingly challenging for algorithms to scale and perform analyses on large datasets 
within a reasonable time frame. Also, genomes exhibit extensive structural and 
functional variability. Developing algorithms that can accommodate this variability and 

https://fabricgenomics.com/fabric-gem/
https://fabricgenomics.com/fabric-gem/
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provide robust results is a challenge. Moreover, bridging the gap between raw genomic 
data and existing biological knowledge databases is a complex process, as it requires 
advanced natural language processing and semantic integration techniques.

2.3  AI in personalized medicine

Traditionally, clinical practice has been based on the concept of ‘one therapy fits all’. 
However, drug molecules may undergo different metabolic activities in different patients. 
For example, a drug that works well for a group of people may not be as effective, or 
may have adverse side effects, for others. These differences in drug metabolism are 
mostly attributed to the differences in the genetic profile of individuals. Thus, a more 
futuristic approach is a personalized treatment, also known as precision medicine, where 
patients are treated based on their genetic profile. The aim is to maximize treatment 
outcomes while minimizing adverse effects per individual. Thus, different therapies 
and doses are customized per individual (or per group of patients that share similar 
genome profiles). AI has fostered considerable improvements in the development of 
personalized medicine (Boniolo et  al. 2021). For example, the AI-derived platform, 
CURATE.AI, predicts the optimal dosing along with the treatment outcomes based on 
the individual data of patients. It generates a profile for each patient, using their own 
medical records, and it dynamically recalibrates the predicted profile over time based on 
the progression or recession of the disease. CURATE.AI can optimize not only doses of 
single drugs, but also combinations of drugs (Pantuck et al. 2018; Blasiak et al. 2020). 
This is helpful given that, nowadays, therapies are becoming more sophisticated with 
emphasis on combination (or multimodal) treatments. These involve more than one 
drug or treatment offered either simultaneously or sequentially. Combination therapy 
is proven to have more efficacy compared to single-drug regimens, especially in the 
treatment of complex diseases like cancer (Kumar et al. 2005; MacDonald et al. 2017). 
The limitation of CURATE.AI is that its current version is not integrated with standard 
electronic medical record systems, which may limit its seamless adoption in healthcare 
facilities. This lack of integration could lead to challenges in effectively incorporating 
CURATE.AI into existing medical workflows and systems, potentially making it less 
accessible or efficient for healthcare professionals (Mukhopadhyay et al. 2022).

Since the efficiency, efficacy, and potency of a drug may vary among individuals, 
predicting the response of a patient to medications prior to the treatment can assist 
doctors in selecting the optimal treatment strategy. AI has remarkable applications in 
this area. To predict the efficacy of a chosen treatment, Kureshi et  al. developed an 
AI decision tree to establish a link between the characteristics of the patient and the 
tumor response in NSCLC (Kureshi et al. 2016). They used four classifiers (histology, 
mutation in epidermal growth factor receptor, targeted drugs, and smoking habits) for 
predicting the response of NSCLC patients to the EGFR tyrosine kinase inhibitors. The 
method showed an accuracy of 76.6%, and it can support clinicians in choosing the 
appropriate treatments. One of the drawbacks of this study is the small training set used 
(n = 355), and therefore, the omission of rare patterns such as duplication, deletions, 
insertions, and point mutations. Using a larger training set could further improve the 
predictive accuracy of this decision support model. Huang et  al. developed an SVM 
algorithm to predict the response of cancer patients to chemotherapy based on their 
gene expression profiles. The accuracy levels of this model exceeded 80% (Huang et al. 
2018). The ‘IBM Watson for oncology’ software was designed with the objective of 
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making a large impact on personalized treatment plans for cancer patients (Fu et  al. 
2015). The software was trained on thousands of clinical and health records of cancer 
patients, from medical journals, textbooks, and literature curated by the Memorial 
Sloan Kettering (MSK) cancer center. This software was determined to make accurate 
diagnoses and treatment recommendations by identifying related cases from databases 
of worldwide clinical trials (http:// www. clini caltr ials. gov) (Bach et al. 2013). However, 
a potential disadvantage of this software is its ‘bias’ towards cancer treatments adopted 
at the MSK cancer center, possibly resulting in inappropriate recommendations for 
patients treated elsewhere. Notwithstanding its language processing capabilities, which 
allowed it to extract insights from unstructured data like clinical notes and summaries, 
Watson fell short in terms of interpreting data at a level comparable to human doctors. 
A critical evaluation conducted in 2017, by the news website STAT, revealed that the 
platform recommended unsafe cancer treatments.

Recently, Sun and Chen reported an interpretable neural network based on deep learning 
to predict the survival chances of cancer patients based on drug prescriptions and personal 
transcriptomes (Sun and Chen 2023). The correlation between the predicted and actual 
months-to-death values is calculated to be 0.937, and the accuracy in classifying long-lived 
and short-lived cancer patients was 96%. AI has found its way into precision medicine for 
a wide range of diseases beyond cancer. For instance, Ferrè et al. implemented ML-based 
methods to identify a genetic signature in the genome of multiple sclerosis patients. They 
used clinical data along with demographic characteristics to predict the response of patients 
to a drug called Fingolimod. Using supervised ML methods such as RF, they identified 123 
SNPs responsible for the response of patients to this drug. The drug response prediction 
improved from an AUROC of 0.65 in a model trained exclusively with genetic data to an 
AUROC of 0.71 in another model trained with both clinical and genetic data. However, the 
study used a dataset of only 77 patients, which is too small to represent the complexity of 
genetic data (Ferrè et al. 2023).

AI and ML-based methods have significant potential to revolutionize personalized 
medicine. However, it is our belief that the concept of personalized medicine is still far 
from being fully implemented. This is because the concept of personalized medicine 
suggests an individualized approach to treatment, yet the current implementation often 
involves treating people in groups based on similarities in their genetic profiles. It is 
also worth noting that personalized treatment is expected to severely increase treatment 
expenses. The non-private healthcare sectors may not be ready to accommodate such 
costs, as they may already be facing financial limitations. To reduce such costs, we suggest 
improving the data-sharing systems to avoid redundancy in expensive tests while ensuring 
the protection of data privacy and confidentiality. Additionally, we recommend using AI 
technology to automate as many steps as possible in the process of personalized medicine. 
Lastly, ethical considerations, such as the potential for genetic discrimination or warranting 
the accessibility to personalized treatments for all patients, irrespective of their socio-
economic status, must be addressed.

http://www.clinicaltrials.gov
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3  AI in target and lead identification

3.1  Target identification

Target identification is about identifying key molecular druggable targets, proteins, or 
nucleic acids, associated with a given disease. It allows researchers to benefit from drug 
repurposing and to develop drugs with more successful treatments and improved efficacy. 
Since many diseases are associated with the upregulation or downregulation of certain 
proteins, it is important to correctly identify the protein responsible for causing a disease 
during drug development

3.1.1  AI in target prediction

In 2020, the AI-driven biotech company, Insilico Medicine, launched its AI-powered 
target discovery platform called ‘PandaOmics’ (Pun et  al. 2022). PandaOmics is an 
AI platform that searches for new therapeutic targets while significantly reducing the 
investment of time and resources. This deep learning-based platform has been trained 
on an extensive wealth of data from 3.8  million patents, 3  million grants, 30  million 
scientific publications, 1.3  million molecules, 342 thousand clinical trial information, 
and 5 million omics data. PandaOmics algorithms complete a comprehensive analysis of 
this vast data, to predict promising new targets and rank them based on multiple critical 
factors such as novelty, biological relevance, commercial potential, druggability, and 
safety. This platform is also trained to predict the likelihood of a potential target entering 
Phase I of clinical trials for various diseases in the upcoming five years. Additionally, it 
estimates the probability of a successful transition through subsequent trial phases (Pun 
et  al. 2022; Olsen et  al. 2023). PandaOmics uses a method called ComBat to reduce 
batch effects in data analysis. Batch effects are systematic variations in data caused by 
technical factors such as different experimental conditions or instruments. The ComBat 
method is employed to minimize these batch effects to improve data quality and 
accuracy. However, there are certain limitations associated with this batch correction 
method. First, ComBat is effective only with specific data types such as transcriptomics 
data, which includes data generated from technologies like microarrays and RNA 
sequencing (RNAseq). Secondly, there should be at least one dataset that includes both 
case and control groups within the same dataset, or else ComBat will not be applicable. 
By implementing PandaOmics in the drug discovery process, the Insilico Medicine 
company has already showcased successful instances and achieved advancements up to 
preclinical studies within a period of ~ 18 months (Pun et al. 2022; Ren et al. 2023). For 
detailed discussion on examples of successfully developed drugs using the PandaOmics 
platform, please refer to Sect. 3.4 which discusses the treatment of idiopathic pulmonary 
fibrosis and hepatocellular carcinoma.

Another model used to aid the target identification process is the deepDTnet. It is a 
network-based deep learning model developed by Zeng et  al. (Zeng et  al. 2020). The 
model was trained with chemical, genomic, and cellular network data for the accurate 
prediction of molecular targets. However, literature dependence and incompleteness of 
biomedical networks could introduce errors in prediction. The model is shown to have 
a high accuracy in predicting novel targets for the existing drugs, with an AUROC of 
0.96. In addition, using deepDTnet, a drug has been repurposed for the treatment of 
multiple sclerosis, and it was later found to be effective in the in vivo MS models.
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Using AI in target identification, Madhukar et al. developed a Bayesian ML platform, 
BANDIT, which is capable of predicting drug-binding targets (Madhukar et al. 2019). 
BANDIT was tested on more than 2000 small molecules and had a prediction accuracy 
of ca. 90%, although it is not able to identify potential drug targets for diseases or 
conditions that are not well-studied. BANDIT also made novel predictions that were 
experimentally confirmed through bioassays. This tool, among many others, opens 
advances in the field of drug repurposing.

In another study, Mamoshina et  al. developed ML techniques to analyze human 
muscle transcriptomic data to discover biomarkers associated with age-related diseases 
and to identify tissue-specific drug targets (Mamoshina et  al. 2018). They developed 
an AI-assisted approach to monitor age-dependent changes in the human skeletal 
muscle. The authors constructed a set of tissue-specific biomarkers for aging and used 
a combination of unsupervised and supervised ML algorithms to identify differentially 
expressed genes and gene modules that are associated with muscular dystrophy 
and sarcopenia. The performance of the model was subsequently assessed using 
gene expression samples from skeletal muscles. Their best model showed a Pearson 
correlation of 0.80 when predicting the age bin on the external validation set.

In drug discovery, using information from biomedical literature is crucial. Microsoft 
recently introduced an AI tool, named ‘BioGPT’, for biomedical text generation and 
mining (Luo et  al. 2022). It is a generative language model based on deep learning. 
BioGPT is pre-trained on a vast dataset comprising 15 million PubMed abstracts. This tool 
was tested for various biomedical natural language processing tasks, such as end-to-end 
relation extraction, question answering, document classification, and text generation. It 
demonstrated an accuracy of 81% on the question answering task on PubMedQA, a dataset 
developed to provide yes/no/maybe answers to research queries entered by the users based 
on the abstracts from PubMed. This surpasses the performance of a single human annotator 
(78%). BioGPT was used by Zagirova et  al. in an application related to the prediction 
of molecular targets related to aging and age-related diseases (Zagirova et  al. 2023). In 
addition to the 15 million PubMed abstracts used in the BioGPT tool, the authors further 
trained this tool with a dataset containing information from descriptions of biomedical 
grants involving target discovery. They identified two potential dual-purpose molecular 
targets for anti-aging and 14 age-related diseases.

3.1.2  AI in 3D structure prediction

The development of computational tools, high-performance computers, and ML algorithms 
enabled the generation of myriad drug discovery tools including, but not limited to, 
three-dimensional (3D) models of protein targets. This is a significant advancement over 
the experimental techniques that are fraught with challenges. For example, the X-ray 
diffraction technique is limited to crystallizable samples, which is a major experimental 
limitation. An alternative experimental technique for determining the structure of 
biological macromolecules is Cryogenic electron microscopy (Cryo-EM) (Murata and 
Wolf 2018). Cryo-EM involves producing thousands of two-dimensional (2D) images of 
frozen protein samples. Computer algorithms are then used to combine these images into 
a 3D structure representation, a process called ‘reconstruction’. Zhong et al. developed a 
DNN-based software called CryoDRGN for the reconstruction of cryo-EM images using 
neural networks (Zhong et al. 2021). The software has the potential to reconstruct all the 
possible 3D conformation of a protein from its 2D cryo-EM images. It encodes 2D particle 
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images into a low-dimensional latent space, where heterogeneous structures are assumed to 
exist. The model is trained using stochastic gradient descent and can generate 3D density 
maps based on latent variables, allowing for the visualization of particle distribution and 
reconstruction of representative structures. The software can also visualize the movements 
of proteins. Its remarkable strength lies in its ability to represent a wide range of complex 
structures without making any restrictive assumptions about the nature of this complexity. 
One of the limitation is that the users must decide on the dimensionality of the latent space, 
which can influence the quality of the results (Kinman et al. 2022).

AI has helped advance accuracy and speed in predicting 3D structures of biomolecules, 
such as proteins, DNA, and RNA. Reinforcement learning has also been instrumental in 
refining 3D structure predictions and generating energetically stable and biologically 
relevant conformations (Lu 2022; Yang et al. 2023). DNN has shown abilities in learning 
complex patterns and representations from vast datasets. An underlying principle of 
deep learning-based 3D structure prediction is the data-driven learning (Andronico et al. 
2011; Hoffmann et al. 2019). Such methods benefit from vast datasets of experimentally 
determined structures and sequences, to iteratively build relationships between amino acid 
sequences and their corresponding 3D structures; and ultimately make accurate and rapid 
predictions for uncharacterized biomolecules. An extensive project on protein structure 
prediction is DeepMind’s AlphaFold (Jumper et  al. 2021). AlphaFold is a deep learning 
tool that employs a two-step process: the fold recognition stage and the model refinement 
stage. In the fold recognition phase, the software searches for known protein structures 
by comparing the amino acid sequences of the target and template proteins. AlphaFold 
uses various tools to perform fold recognition, e.g., multiple sequence alignment (MSA) 
against structure databases. In the model refinement process, AlphaFold uses a neural 
network to refine the protein structure predictions by considering MSA, co-evolution, 
and geometric constraints. The MSA provides information about the evolutionary 
relationships between the new protein and the known proteins. Co-evolution provides 
information about the interactions between amino acids in the new protein. Geometric 
constraints provide information about the spatial arrangement of amino acids in the new 
protein. The development of this AI tool is substantial in drug discovery as it helped solve 
the structure of nearly 200 million proteins, that is ~ 98.5% of the proteins in the human 
body (Tunyasuvunakool et al. 2021). Together with the European Bioinformatics Institute 
(EMBL-EBI), a database called AlphaFold DB (https:// alpha fold. ebi. ac. uk/) is created to 
store all the structures solved so far with AlphaFold. However, the effect of mutation on 
the folding of proteins is beyond the capability of AlphaFold (Buel and Walters 2022). It 
is also limited to predicting only a single state of a given protein, it does not consider the 
dynamic nature of protein structures (Perrakis and Sixma 2021). Another limitation is that 
it does not predict other important aspects related to protein structures including co-factors, 
metal ions, ligands, etc. AlphaFold predictions does not account for post-translational 
modifications such as glycosylation or phosphorylation, as well as the presence of DNA, 
RNA, and their respective complexes (Bagdonas et al. 2021).

At the experimental level, mass information about protein fragments can help figure out 
the identity of a protein and its structure. Mass information can be obtained from Mass 
spectrometry (MS), which is an experimental technique used to characterize molecules 
including proteins (Loo et al. 1999). The digestion of proteins by protease enzymes like 
trypsin is a basic step in protein identification using MS. A few AI tools were developed 
to efficiently predict the digestion behavior of the protease enzymes (Yang et  al. 2021a; 
Sun et al. 2021). DeepDigest is the first algorithm developed using a deep learning method 
to predict the proteolytic cleavage sites of eight different protease enzymes (Yang et  al. 

https://alphafold.ebi.ac.uk/
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2021a). The predictive ability of the tool was evaluated by the AUROC, F1 scores, and 
the Matthews correlation coefficients (MCCs); the values were 0.956–0.98, 0.66–0.90, and 
0.65–0.84, respectively. However, this tool is not suitable for predicting the proteolytic sites 
in modified proteins or peptides via glycosylation or phosphorylation.(Yang et al. 2021a).

3.1.3  AI in binding site prediction

Once the structure of the receptor (protein, DNA, etc.) is known, more can be done in order 
to better understand the properties of the target. For example, in 2021, Kozlovskii and 
Popov developed a deep learning approach to predict the binding site for small molecules 
on nucleic acids, DNA, and RNA, based on their 3D structures (Kozlovskii and Popov 
2021). Their approach is called  BiteNetN (https:// sites. skolt ech. ru/ imole cule/ tools/ biten et/) 
and it is the first 3D CNN to learn features directly from the nucleic acid structures. They 
validated the model using two different protein structures, HIV-1 transactivation response 
element RNA and ATP-aptamer structures. The model showed an AUROC of ca. 0.87.

In 2020, Simonovsky and Meyers proposed a CNN-based model called ‘DeeplyTough’ 
for pocket matching (Simonovsky and Meyers 2020). The model can convert the 3-D 
representation of a protein pocket into descriptor vectors. These vectors are then used for 
comparing ligand binding pockets on protein by calculating pairwise Euclidean distances. 
The prediction ability of the tool is evaluated using three benchmark datasets. The model 
had a reasonable performance with AUROC values above 0.83 for all three datasets. This 
model can be useful in drug repurposing.

In addition to ‘pocket matching’, AI algorithms can be used to find potential allosteric 
modulators that could bind to the protein and alter its structure and possibly its function. 
Tian et  al. developed a webserver called PASSer (Prediction of Allosteric Sites Server) 
to predict allosteric sites in a given target. The webserver uses three ML models, (i) an 
ensemble learning model, (ii) an automated ML model, and (iii) a learning-to-rank 
model. PASSer makes remarkably rapid predictions, typically providing allosteric site 
results within seconds (Tian et al. 2021). The ensemble learning method involved both an 
XGBoost model and a graph-based CNN. The physical properties of the protein pockets 
are fed into the former model, and its atomic representation is fed into the latter. The model 
showed an accuracy of 0.97, a precision of 0.73, and a specificity of 0.98.

In another example, it is useful to predict cryptic pockets that are often involved in 
allosteric regulation and modulation of protein functions. These pockets are protein cavities 
that are not apparent from the surface of proteins but can open upon the binding of specific 
ligands or protein partners. Recently, Miller et al. developed a graph neural network called 
PocketMiner to predict the cryptic pockets within protein structures (Meller et al. 2023). 
The model is trained using the residues that are likely to form cryptic pockets identified 
from over 2,400 simulations of 35 different proteins. The model showed an AUROC value 
of 0.87.

The AI-driven models discussed in the target identification exhibit several similarities 
in their approach to drug design. They share a common foundation of data-driven learning, 
making extensive use of diverse datasets to draw insights and predictions. Deep learning 
techniques, such as DNN and CNN, are prevalent in these models, allowing them to 
discern intricate patterns and relationships within the data. XGBoost is also used in a few 
AI models used for target identification, as discussed in this section. Another important 
algorithm used in target identification is based on reinforced learning (Tian et al. 2021). 
Protein structure prediction involves searching for the lowest energy state, where the 

https://sites.skoltech.ru/imolecule/tools/bitenet/
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protein is most stable. Reinforced learning can help in navigating this energy landscape 
efficiently. The model can be trained to explore different conformations and refine them 
iteratively to approach the global energy minimum. This is particularly useful because 
the energy landscape for proteins is highly complex, with numerous local minima, and 
traditional optimization methods may get stuck in suboptimal solutions (Lutz et al. 2023). 
The relevance of these AI-driven models to the future of drug design is indisputable. 
They bring enhanced efficiency and speed to target identification, protein structure 
prediction, and drug repurposing, significantly expediting drug discovery. They can 
reach high precision and accuracy levels, offering a decent level of predictability. On the 
downside, they are heavily reliant on data, which may not always be comprehensive or 
readily available. For example, the protein-protein or protein-drug interaction maps are not 
completely available. These gaps in the data availability affect the performance of the AI 
models.

3.2  Lead identification

Lead identification involves the discovery of potential small molecules that can bind 
to the active site of identified targets. Computational virtual screening has made it 
possible to swiftly screen millions of compounds and identify a few potential molecules 
for experimental testing. Both structure-based virtual screening (SBVS), and ligand-
based virtual screening (LBVS) can benefit from AI (Labbé et al. 2015; Carpenter et al. 
2018). In SBVS, the 3D structure of the receptor (nucleic acid or protein) is utilized to 
screen molecules that can potentially bind to the active site. As mentioned previously, 
AI is helpful in predicting the 3D structure of the receptor in case it is unavailable or 
its experimentally determined structure is of poor quality. In addition, AI techniques 
are also used to enhance the efficiency of computer-aided drug discovery processes, 
which typically require intensive high-performance computing resources and significant 
computing hours. For example, Gentile et  al. reported an open-source protocol for 
AI-enabled virtual screening methods to screen libraries with billions of molecules. 
They used a screening platform called Deep Docking (https:// github. com/ james gleave/ 
DD_ proto col) which can accelerate structure-based virtual screenings by 100 folds. The 
method performs molecular docking for a small subset of a large library, followed by 
ligand-based prediction of the docking for the rest of the library. A key advantage of this 
protocol is that it can be used in conjunction with other docking programs such as Glide, 
Autodock-GPU, and FRED from OpenEye. Although the deep docking method provides 
faster screening, it is limited to (i) the availability of graphical processing units (GPU) 
and (ii) the quality and accuracy of the docking program used (Gentile et al. 2022).

In 2021, Yang et al. reported a protocol for hit identification by implementing active 
learning in the conventional docking protocol. This efficiently scales up the screening 
process for ultra-large compound libraries (Yang et  al. 2021b). First, a small subset 
of compounds is docked, then these results are used to train the ML model to predict 
docking scores that are then validated through molecular docking. This data is further 
incorporated into the ML model for a continued iterative process until the model 
converges. The authors have tested this protocol to virtually screen a large molecular 
library against D4, MT1, and AMPC targets. They achieved a notable retrieval rate of 
over 80% for experimentally validated hits while significantly reducing computational 
expenses by 14 fold.

https://github.com/jamesgleave/DD_protocol
https://github.com/jamesgleave/DD_protocol
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LBVS is based on selecting, from databases, molecules that share similar structural 
features with an active ligand. Pharmacophore-based virtual screening is one of the 
LBVS techniques. It involves building 2D fingerprints of one or more active ligands 
using molecular descriptors such as hydrogen-bond donors, hydrogen-bond acceptors, 
and aromatic rings. These 2D fingerprints are then used to identify molecules, from 
large chemical libraries, which have matching pharmacophoric features. ML also helps 
to study the correlation between molecular descriptors [or even atomic descriptors 
(Matta and Arabi 2011; Osman and Arabi 2022)] and the biological activity of a 
ligand. This is a broad category of research known as Quantitative Structure-Activity 
Relationship (QSAR), where the activity of a ligand depends on its pharmacophoric 
features. Melge et al. developed hybrid inhibitors using the pharmacophore fingerprint 
of two well-known anti-cancer drugs, Ponatinib and Vorinostat (Melge et al. 2022). They 
developed a supervised ML approach for 2D-QSAR and 3D-pharmacophore studies 
to predict the inhibitory activity of novel hybrid molecules. The model had AUROC 
values of 0.98 and 0.94 for the two different cancer targets, BCR-ABL and Histone 
deacetylase (HDAC), respectively. Based on in  vitro evaluations, the identified novel 
hybrid molecules showed the potential to develop into lead compounds. Dhamodharan 
et al. developed three AI models based on genetic function approximation (GFA), SVM, 
and ANN, to predict the activity of acetylcholinesterase (AChE) and Beta-Secretase 
1 (BACE1) dual inhibitors for AD treatment (Dhamodharan and Mohan 2021). The 
predictive power of the models was evaluated on a test set of 11 inhibitors of AChE and 
BACE1. The ANN model had the best predictive power with  r2 values of 0.85 and 0.78 
for AChE and BACE1, respectively. However, this study is limited to a smaller number 
of molecules in the dataset used to train and validate the model.

Chemistry42 is an AI-based software platform for the de novo designing and 
optimization of small molecules (Ivanenkov et  al. 2023). Since its launch in 2020, 
Chemistry42 has been utilized by more than 20 pharmaceutical companies. In the first step 
of the process, users have to upload their data onto the platform. The input data can be 
the structure of a small molecule, the structure or name of the molecular target, or their 
chemical properties. The second step, called the generation phase, involves running the 
platform with many generative models operating in parallel to create new structures. These 
new structures pass through various filters. Then, in the third step, the molecular structures 
are evaluated using multiple sets of reward and scoring modules, where the properties of 
the generated structures based on predefined criteria are evaluated. These modules serve as 
the cornerstone of Chemistry42’s generation protocol based on multiagent reinforcement 
learning. In the learning phase, the scores of the generated structures are used as feedback 
to the generative models, reinforcing and guiding the generative process toward producing 
high-scoring structures. The final step involves ranking the generated structures based on 
their predicted properties, such as synthetic accessibility, drug likeliness, shape similarity 
novelty, diversity, and more. The Chemistry42 provides a user-friendly interface and can be 
easily integrated into other software or platforms (Ivanenkov et al. 2023). Refer to Sect. 3.4 
for more details on the successful examples of drugs developed using Chemistry42.

Generative models present a promising approach to small molecule generation, which is 
key in lead identification. They address the challenge of determining the set of molecules 
that satisfy a desired set of properties. Generative models are trained to identify the 
underlying patterns and structures within the training dataset, in order to generate new 
instances that share similar characteristics with the molecules in the training data. A type 
of generative model called diffusion model is used by Hoogeboom et al. for generating 3D 
structures of small molecules from noisy SMILES or structural data (Hoogeboom et  al. 
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2022). This is the first diffusion model developed for predicting small molecules in 3D. 
In general, diffusion models work by introducing a chain of progressive noising steps, 
called a diffusion process, where random Gaussian noise is added to the real data until 
the original sample is unrecognizable. Then, a model is trained in such a way that it can 
denoise the data. In this study, the authors trained the model with pairs of noisy and clean 
molecule representations so that the model learns the relationship between noisy data and 
its underlying structural features. The Euclidean group in 3 dimensions E(3) Equivariant 
Diffusion Model developed by Hoogeboom et  al. learns to denoise, a diffusion process 
that works with both atom coordinates and atom types. The model utilizes a specific 
architecture that considers the Euclidean transformations, meaning the generated molecules 
maintain their identity even when rotated or translated in 3D space. The stability of the 
atom and the molecule in the predicted structure was compared with the other two existing 
E(3) models, G-Schnet, and Equivariant Normalizing Flows (E-NF). The E(3) Equivariant 
Diffusion Model outperformed the two other methods with 98.7% and 82.4% for the atom 
and molecule stability compared to 85.0% and 4.9% for E-NF, and 95.7% and 68.1% for 
G-Schnet, respectively. This implies that the E(3) Equivariant Diffusion Model generated, 
in half the training time, 16 times more stable molecules than the E-NF model.

Bagal et  al. reported a generative pre-training model, called MolGPT, for molecular 
generation (Bagal et  al. 2021). This AI-tool can generate small molecules with desired 
properties. The tool was pre-trained, on a large set of data of SMILES strings from 
ChEMBL, to learn the basic grammar and syntax of the SMILES molecular representations, 
and to develop an understanding of common chemical patterns. Using two databases, 
GuacaMol and MOSES, the model was then fine-tuned to generate molecules having 
desired properties. GuacaMol contains information of a subset of 1.6  million molecules 
from ChEMBL, while MOSES contains information on 1.9  million lead-like molecules 
derived from the ZINC database. MolGPT demonstrates the capability to generate 
molecules with property values that exhibit minimal deviation from the user-specified 
scores, with a deviation of 0.31 for partition coefficient, logP, 4.6 for the topological polar 
surface area metric, 0.2 for the synthetic accessibility score (a measure of difficulty of 
synthesizing a compound), and 0.075 for the Drug-likeness score. Furthermore, MolGPT 
can generate molecules that incorporate user-specified scaffolds with 75% of the predicted 
molecules exhibiting novelty and uniqueness scores exceeding 0.70.

Olivecrona et  al. reported a sequence-based generative model (REINVENT 1.0) for 
the generation of de novo molecules with desirable properties (Olivecrona et  al. 2017). 
The authors demonstrated different approaches for this model to generate structures. 
For example, in the first task, the model was trained to generate molecules with specific 
structural constraints, e.g., structures devoid of sulfur atoms. This shows the adaptability 
of the model to such structural constraints in the prediction. In a second task, the model 
was trained to generate molecules similar to a query structure, e.g., the Celecoxib drug. 
This showcases the capacity of the model for scaffold hopping and library expansion, 
demonstrating its utility in diversifying chemical space starting from a single reference 
molecule. Furthermore, the model also has the ability to generate active compounds against 
a user-specified molecular target, as tested on the example of the dopamine receptor type 
2. Notably, more than 95% of the generated structures are predicted to be active, including 
experimentally confirmed active compounds. This shows the efficacy of the model in 
proposing novel chemical entities with potential pharmacological relevance.

Inspired by this model, Blaschke et al. reported REINVENT 2.0, as a production-ready 
tool for de novo design of small molecules in drug discovery (Blaschke et al. 2020). The 
key components of this tool are the search space, the search algorithm, and the scoring 
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function. In REINVENT 2.0, a generative model is used as the search space. REINVENT 
2.0 is trained using data obtained from ChEMBL and exhibits the capability to generate 
compounds in the SMILES format. The tool uses reinforcement learning as the search 
algorithm, which is responsible for generating candidate molecules. The algorithm receives 
rewards based on the prediction scores per candidate, where the scores are based on several 
parameters such as calculated properties, pharmacophore shape, similarity criteria, etc. 
Gradually, the algorithm learns to prioritize actions that generate high-scoring molecules, 
effectively guiding the search towards promising drug candidates.

Wang et  al. proposed a conditional generative pre-trained transformer model, called 
cMolGPT, for designing target-specific active and drug-like molecules (Wang et al. 2023). 
The approach taken in this study involves the initial pre-training of the model on the 
MOSES dataset without incorporating target information. The model is subsequently fine-
tuned on three distinct target-specific datasets: EGFR, HTR1A, and S1PR1. The prediction 
accuracy of the model in generating novel chemical entities tailored for specific targets 
of interest is compared with eight different models: the Hidden Markov Model (HMM), 
N-gram generative model, SMILES variational autoencoder (VAE), combinatorial 
generator, adversarial autoencoder (AAE), junction tree VAE (JTN-VAE), character-
level recurrent neural network (CharRNN), and latent vector-based generative adversarial 
network (LatentGAN). The cMolGPT showed comparatively better performance metrices 
in terms of the fraction of valid molecules (0.988), uniqueness (~ 1.0), fragment similarity 
(~ 1.0), and similarity to the nearest neighbor (~ 0.578).

3.3  Interaction energies and toxicity prediction

The activity of drug molecules greatly depends on their binding affinities to the active 
site of the receptor. Ligands that share similar structural features are likely to exhibit 
comparable binding affinities when binding to a specific molecular target. Small molecules 
that exhibit weak binding affinities should be rejected, as they may bind to macromolecules 
other than their intended target receptor, resulting in toxicity and unfavorable side effects. 
AI tools such as DeepAffinity (Karimi et al. 2019) and DeltaVina (Wang and Zhang 2016) 
are capable of predicting binding affinities based on the chemical features of the small 
molecule and the active site of the receptor.

AI models can predict potential toxicities, helping researchers identify harmful 
compounds early in the drug development process. The majority of identified lead 
compounds tend to fail the pre-clinical trials because of their poor pharmacokinetic 
properties such as absorption, distribution, metabolism, elimination, and toxicity (ADME/
Tox) (Sun et  al. 2022). The National Institutes of Health, the Environmental Protection 
Agency, and the US Food and Drug Administration conducted a toxicity prediction 
challenge called ‘Tox 21 Data Challenge’ with the goal of comparing computational 
methods that predict toxicity. As part of the challenge, Mayr et  al. developed the best-
performing pipeline for toxicity predictions called ‘DeepTox’ (Mayr et al. 2016). DeepTox 
first normalizes the chemical structure into standard representations and then computes 
chemical descriptors such as atom count, surface area, mean polarizability, charge, etc. 
These descriptors are used as inputs to train the deep learning model, which can then 
predict the toxicity of new molecules. ‘ADMET Predictor’ is another AI-based prediction 
tool that can efficiently predict more than 175 properties including pKa, mutagenicity, logP, 
absorption, and solubility. Further, using multiscale weighted colored graph theory and 
gradient boosting decision tree algorithm, Jiang et  al. reported a geometric graph-based 
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toxicity prediction tool called ‘CGL-Tox’ (Jiang et al. 2021). It uses the gradient boosting 
decision tree (GBDT) and multiscale weighted colored graph (MWCG) features, which 
are a type of graph representation that captures the structural and chemical information of 
molecules. CGL-Tox uses these features to represent the molecular structures of drugs, and 
then uses the GBDT algorithm to train the model. The model showed an AUROC of ~ 0.87 
in predicting the toxicity of small molecules.

Because of the high complexity in the pathophysiology of diseases, many drugs have off-
target binding and are, therefore, dropped out from the pre-clinical trials (Harrison 2016). 
Reker et al. developed a method to predict molecular targets, including key-target and off-
target proteins, of known drugs and computer-generated de novo small molecules. This 
method is called self-organizing map-based prediction of drug equivalence relationships 
(SPiDER). Self-organizing maps are a type of ANN that can be used to visualize and 
analyze high-dimensional data. The software is trained using a manually curated collection 
of 12,661 active molecules (Reker et al. 2014). A 10-fold cross-validation was performed 
to estimate the predictive ability of SPiDER, the ROC was in the range of 0.86 to 0.93. 
Further, in 2022, Naga et  al. reported an open-source ML workflow called ‘Off-targetP’ 
to predict the off-target binding of small molecules (Naga et  al. 2022). This model is 
generated to assist the chemists in the drug design process, before synthesis, to reduce the 
attrition rate.

Investigating drug-drug interactions (DDIs) is important in drug development as certain 
combinations of drugs can cause dangerous interactions, including increased side effects. 
As the number of possible combinations of drugs can be massive, it is nearly impossible 
to experimentally test the safety of all combinations AI can assist in identifying DDI that 
might not be easily detected by traditional methods (Day et al. 2017; Vo et al. 2022). Shukla 
et  al. reported a deep-learning model to predict DDIs (Shukla et  al. 2020). Their model 
is built by integrating CNNs, recurrent neural networks, and mixture density networks. It 
has an accuracy of 98.50 ± 0.6%. Schwarz et al. reported an Explainable AI (XAI) model 
called ‘AttentionDDI’ for DDI predictions. The model is made explainable by adopting 
the Attention mechanism. AttentionDDI uses a deep learning architecture to learn features 
from known drug structures and DDIs, and it then uses the Attention mechanism to focus 
on the most important features for each prediction task. The model showed promising 
predictions with an area under the Precision-Recall curve (AUPRC) in the range of 0.77 to 
0.92 (Schwarz et al. 2021).

As with the AI models used in target identification and any other AI models, the lead 
identification is also based on data-driven learning, utilizing diverse datasets to make 
predictions and draw insights. The key algorithms used in the studies discussed above are 
deep learning, CNN, GFA, SVM, and ANN. One of the key advantages of utilizing AI 
models in SBVS and LBVS is to minimize the computational resources and time required 
for the conventional virtual screening methods. Also, AI models are not influenced by 
human biases (Turon et al. 2023). They provide objective and data-driven results, reducing 
potential biases in compound selection.

3.4  Examples of successful AI‑assisted drug discovery

There are several examples of AI-assisted lead discoveries that made it to clinical trials. In 
early 2020, the developers of DSP-1181, the first drug created with the assistance of AI, 
marked a significant milestone as it entered a Phase I clinical trial targeting the treatment 
of obsessive-compulsive disorder (OCD) (https:// www. exsci entia. ai/ dsp- 1181). DSP-1181 

https://www.exscientia.ai/dsp-1181
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is developed as a potent serotonin 5-HT1A receptor agonist. This achievement was made 
possible through a unique collaboration between Sumitomo Dainippon Pharma in Japan 
and the UK-based Exscientia. Exscientia uses an AI platform, known as ‘Centaur Chemist’, 
for the generation of new molecules and drug targets with a higher likelihood of success in 
clinical settings (Mak et al. 2021). The platform allowed them to screen through millions 
of potential small molecules, ultimately selecting and optimizing 10 to 20 candidates 
for rigorous laboratory experiments. Remarkably, this entire exploratory phase took just 
12 months compared to 4–5 years of lead discovery in the conventional drug discovery 
process. DSP-1181 emerged as the eventual drug candidate.

Zhavoronkov et  al. developed inhibitors for the discoidin domain receptor family, 
member-1 (DDR1) kinase enzyme using the generative tensorial reinforcement learning 
(GENTRL) method (Zhavoronkov et al. 2019). They trained the models with compounds 
from the ZINC database and known DDR1 kinase inhibitors. The authors then used this 
trained model to screen a large database of small molecules and identified several potential 
DDR1 kinase inhibitors. They then synthesized six compounds and experimentally 
validated their bioactivity. They further tested one of the promising compounds in vivo in 
a rodent model. The authors were able to identify lead compounds, including pre-clinical 
testing, in less than a month.

In early 2022, the AI-driven drug discovery company Insilico (www. insil ico. com) 
devoloped a treatment for idiopathic pulmonary fibrosis. The lead compound is currently 
undergoing clinical trials. The compound, called ISM001-055, is reported to target a novel 
protein identified through the AI-based target identification platform, PandaOmics. This 
compound was identified via an AI-based lead discovery platform, Chemistry42. This 
study took only 18 months to reach the clinical trials with an expenditure of $2.6 million. 
This could have taken up to 15 years through the traditional drug discovery process.

In 2023, Ren et al. reported a new inhibitor for cyclin-dependent kinase 20 (CDK20), 
utilizing AlphaFold generated structure (Ren et  al. 2023). The development of the new 
inhibitor was based on using multiple AI-based tools. The novel target for the hepatocellular 
carcinoma, CDK20 was predicted using the PandaOmics target prediction tool and then the 
structure was modelled using AlphaFold. Further, the putative small molecule inhibitors 
were generated using the Chemistry42 platform. A total of seven compounds were 
synthesized and tested in biological assays. Adopting this method, they have identified the 
small molecule inhibitor within a time span of 30 days after target selection. The developed 
small molecule inhibitor showed an experimental  IC50 of 33.4 ± 22.6 nM.

Researchers from the Massachusetts Institute of Technology (Stokes et al. 2020) used a 
deep learning approach to identify an anti-bacterial lead compound named ‘halicin’. They 
first trained a DNN model with 2,335 molecules which are known to inhibit the growth of 
Escherichia coli. This model was then used to identify and prioritize potential anti-bacterial 
compounds from large molecular libraries (> 107 million molecules). The ranking of the 
compounds was done using three criteria: the prediction score, the structural similarity 
with the known active compounds, and toxicity. They found experimental bactericidal 
activity for halicin against three bacteria: E. coli, carbapenem-resistant Enterobacteriaceae, 
and Mycobacterium tuberculosis.

This section demonstrated the potential of AI to enhance and accelerate target 
identification and lead discovery. Provided the complex nature of proteins and their 
interactions, future studies may focus on building prediction models that consider 
multiple simultaneous factors such as the activation or deactivation of proteins because 
of conformational changes, molecular interactions, signaling pathways, and allosteric 
interactions. As discussed above, the experimental determination of biomolecular 

http://www.insilico.com
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structures is a critical step in target discovery, yet it can be a challenging process. Building 
the training and testing datasets from structures collected using a diversity of experimental 
techniques such as X-ray crystallography, NMR, and CryoEM can affect the training of AI 
models. This is because different experimental techniques have different parameters and 
varying levels of resolution and noise. For example, X-ray crystallography can produce 
high-resolution structures but cannot capture the dynamic nature of proteins as they need to 
be crystallized (Srivastava et al. 2018). On the other hand, NMR can capture the dynamic 
nature of proteins, but at lower resolutions (Sapienza and Lee 2010). Therefore, to train AI 
models efficiently, we believe that most care must be taken when selecting structural data. 
Combining data from multiple experimental techniques can help ensure high quality and 
consistency. Considering the 80:20 data science dilemma, where researchers spend 80% of 
their time finding and cleaning data, and the varied content and formats across databases 
like Protein Data Bank, Cambridge Crystallographic Data Centre (CCDC), and National 
Centre for Biotechnology Information (NCBI) structure database, we propose establishing 
a comprehensive repository of protein structures with standardized data content and 
formats, This would streamline AI-driven research. This resource would be highly valuable 
in enabling convenient training of AI models on a wide range of protein structures from 
various databases, which can improve the accuracy and generalizability of the models and 
make them more effective at predicting protein structures.

4  AI in clinical trials and drug marketing

The implementation of AI in clinical trials can shed light on new dimensions regarding 
patient stratification, patient selection and recruitment, trial design, real-time monitoring, 
and data analysis. Clinical trials can take around six to seven years before a candidate 
drug makes it to the market (Norman 2016). Around 50% of the total drug development 
expenditure is associated with clinical trials, yet only 10% of drugs pass these trials (Harrer 
et  al. 2019; Sun et  al. 2022). Clinical trials can fail due to several reasons, including 
unexpected side effects, insufficient patient enrollment or inadequate patient selection, 
and challenges in conducting follow-up studies during the trial (Harrer et al. 2019). These 
challenges can be addressed by building AI models that utilize digital medical records, 
which are abundantly available in our digitalized world. AI models can also easily collect 
data from medical journals and efficiently analyze electronic medical reports and clinical 
trial reports. This AI capability may be used to identify the best-suited individuals to be 
recruited for clinical trials. For example, AiCure is a mobile application that utilizes AI 
to monitor treatments in real time during clinical trials (Salcedo et al. 2021). Using digital 
biomarkers, this platform can monitor the engagement of patients and their response to the 
tested drug. AiCure can, thus, reduce some of the burdens on medical practitioners during 
clinical trials, allowing them to be more focused on their patients. However, the limitation 
of AiCure is that it does not support data export to external platforms. The combination of 
AI models with wearable devices and the internet of things in medicine also helps in the 
real-time monitoring of treatment progress. In addition, in clinical trials, placebo control 
groups can raise serious ethical concerns regarding the potential breach of the rights of 
patients to receive treatment. This ethical concern must be urgently addressed without any 
further delays. A well-trained AI model that can predict disease progression may have the 
potential to replace the placebo control group in clinical trials (Lee and Lee 2020), which 
can mitigate ethical concerns and improve the accuracy of clinical trial results. Recently, 
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Insilico Medicine has introduced an AI platform called inClinico (https:// insil ico. com/ 
incli nico) to predict the success rate of clinical trials. It can also suggest alternative trial 
designs to improve the success rate of the clinical trial. Although AI has many potential 
advantages in clinical trials, there are significant risks to patients and liability concerns 
if the AI predictions (in data analysis, real-time monitoring, or any other application) are 
inaccurate. To address these concerns, it is recommended that AI predictions should not be 
relied upon entirely and that clinicians should remain involved to ensure quality control.

After FDA approval, large-scale drug manufacturing can also benefit tremendously 
from AI technologies. To improve efficiency and ensure high-quality products, drug 
manufacturing units are increasingly being automated using AI technologies. The team led 
by Steiner et al. at the University of Glasgow has developed a chemical-robotic laboratory 
platform, called ‘Chemputer’, that has the potential to synthesize chemical compounds 
from any given recipe (Steiner et  al. 2019). Steiner’s team validated the platform by 
synthesizing three well-known drugs (diphenhydramine hydrochloride, rufinamide, and 
sildenafil) without any human intervention. The purity and yield of these drugs were found 
to be similar to, or even better than, those synthesized using classical methods. This tool 
has the potential to automate the entire chemical synthesis process, and therefore speed up 
the drug production phase. The programming of this tool requires expertise in a chemical 
mark-up language called extensible markup language-based domain-specific language.

After manufacturing, the target is to advertise the drug. Using digital platforms, 
pharmaceutical companies can expedite the collection of data directly from consumers 
(Paul et  al. 2021). With the ever-expanding volume of data generated by clinical trials, 
patient records, and scientific literature, machine learning algorithms provide the means 
to extract valuable insights. These insights help pharmaceutical companies identify market 
trends, patient preferences, and competitor landscapes (Davenport et  al. 2019). Many of 
the major companies such as Johnson & Johnson, Pfizer, AstraZeneca, and Bristol Myers 
Squibb use AI for market analysis, trend predictions, and sales improvement. Machine 
learning models can predict the success of drug candidates, their potential side effects, and 
even recommend marketing strategies based on historical data. Moreover, they enable the 
tracking of emerging therapies and their adoption rates, helping pharmaceutical companies 
stay competitive and responsive to changing market dynamics.

In the area of drug manufacturing and regulatory approval, AI-driven technologies 
can be helpful. The automated synthesis capabilities of platforms like ‘Chemputer’ 
exemplify the potential to enhance efficiency, reduce production timelines, and maintain 
drug quality. Additionally, utilizing AI for market analysis, trend prediction, and sales 
promotions streamlines the drug approval process, enabling better-informed decisions 
and ensuring that products reach patients in need. However, while AI brings numerous 
advantages, the critical role of human attention cannot be neglected, especially in ensuring 
that AI-generated predictions and decisions align with quality and safety standards. The 
synergy between AI technologies and human expertise in drug manufacturing and approval 
not only offers efficiency but also upholds the highest levels of patient safety and quality 
control, shaping a promising future for pharmaceutical innovation.

https://insilico.com/inclinico
https://insilico.com/inclinico
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5  Challenges and future perspectives

In summary, the integration of AI in the drug design pipeline has already made 
considerable improvements. (Arabi 2021) It has been assisting in accelerating the drug 
discovery process, curbing costs, saving resources and manpower, and reducing attrition 
rates in clinical trials. In addition, we believe that AI can help minimizing animal 
sacrifice by reducing the excessive use of in vivo bioassays (Farnoud et al. 2022). Also, 
it is worth noting that AI is not limited to assisting in drug discovery. AI has the potential 
to revolutionize the medical world in many other aspects that are beyond the scope of 
this review. These applications include healthcare management systems such as triage 
models to improve patient flow (Ivanov et  al. 2021), surgeries (Hashimoto et  al. 2018), 
mRNA vaccination (Sharma et  al. 2022), preventive treatments (Harmon et  al. 2022), 
nutrigenomics (Kwon 2020), and many more.

Despite their advantages, AI models are fraught with challenges. In addition to the 
drawbacks listed per model in this review, we discuss here the overall challenges. AI 
models can have comparable or even better predictive and decision-making abilities than 
human researchers, yet they are still far from having human intuition. Therefore, we are 
convinced that the benefit of this technology remains limited to complementing human 
intelligence, it cannot replace humans. AI models are not perfect and can have detrimental 
limitations, such as false positive or false negative predictions, especially when dealing 
with unfamiliar cases. This can compromise the sensitivity and specificity of the model. In 
addition, AI is highly dependent on the quality of the training data, the appropriateness of 
the chosen model, the avoidance of bias and overfitting, and more. This is why we advocate 
for the idea that big data needs big theory (Coveney et al. 2016).

In addition, the challenge with earlier AI models is the lack of explainability, as they 
are often seen as ‘black boxes’ that do not provide explanations of how their predictions 
were made. This drawback makes it difficult to trust the decisions made by AI. Moreover, 
there are ethical considerations related to patient consent when participating in studies that 
employ unexplainable AI algorithms. To overcome these challenges, Explainable AI, XAI, 
has been developed (Mitchell et al. 1986). XAI can provide explanations for its decisions 
and actions in a way that can be easily understood by humans. However, we do not think 
that XAI is the ultimate solution, especially that it may involve privacy breach to offer 
explanations.

Like any other technology, AI is associated with its own drawbacks, and there are 
always opportunities for further improvements. We would like to highlight that AI 
technology heavily depends on super-computing power, which is rather costly financially 
and environmentally with respect to the carbon footprint. We foresee that the future of 
AI-assisted drug discovery involves the development of a comprehensive virtual human 
model that encompasses the intricate complexity of human beings. This will enable the 
virtual testing and accurate prediction of all possible molecular interactions, with the 
objective of exploring all therapeutic benefits as well as potential adverse effects.
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6  Conclusions

The exponential increase in the number of AI-related publications reflects the impact of 
this technology on society. Given the predictive ability and accuracy of AI models, they 
have proven to be significant in empowering decision-making in medicine. Overall, this 
review highlights the broad spectrum of applications of AI-based technology in all phases 
of drug design, starting as early as diagnosis, through target and lead identifications and 
clinical trials, to post-marketing analyses. In conclusion, AI can bridge the gap between 
understanding diseases and developing drugs. AI substantially contributes to the early 
prediction of diseases, clinical-decision support, development of personalized medicine, 
NGS analysis, optimization of drug doses, and the prediction of treatment outcomes. 
Target and lead identifications can be boosted with the help of ML tools that predict protein 
structures and biological activities of small molecules. AI also helps in the prediction 
of drug-like properties and off-target effects of de novo compounds before experimental 
validations are performed. In addition, AI technology can improve patient stratification, 
recruitment, monitoring, and follow-ups in clinical trials. Pharmaceutical companies 
are adopting AI-driven approaches to assist in various areas including FDA approvals, 
complete automation of drug synthesis and manufacturing, pharmacovigilance, and even 
post-market analyses. As detailed in this review, despite all its valuable advantages, AI 
can still benefit from numerous improvements at the technical level and in other aspects to 
overcome the challenges associated with its use in drug design and medicine.
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