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Abstract
Total dissolved gas (TDG) concentration plays an important role in the control of the 
aquatic life. Elevated TDG can cause gas-bubble trauma in fish (GBT). Therefore, 
controlling TDG fluctuation has become of great importance for different disciplines 
of surface water environmental engineering.. Nowadays, direct estimation of TDG is 
expensive and time-consuming. Hence, this work proposes a new modelling framework 
for predicting TDG based on the integration of machine learning (ML) models and 
multiresolution signal decomposition. The proposed ML models were trained and validated 
using hourly data obtained from four stations at the United States Geological Survey. 
The dataset are composed from: (i) water temperature (Tw), (ii) barometric pressure (BP), 
and (iii) discharge (Q), which were used as the input variables for TDG prediction. The 
modelling strategy is conducted based on two different steps. First, six singles ML model 
namely: (i) multilayer perceptron neural network, (ii) Gaussian process regression, (iii) 
random forest regression, (iv) random vector functional link, (v) adaptive boosting, and 
(vi) Bootstrap aggregating (Bagging), were developed for predicting TDG using Tw, BP, 
and Q, and their performances were compared. Second, a new framework was introduced 
based on the combination of empirical mode decomposition (EMD), the variational mode 
decomposition (VMD), and the empirical wavelet transform (EWT) preprocessing signal 
decomposition algorithms with ML models for building new hybrid ML models. Hence, 
the Tw, BP, and Q signals were decomposed to extract the intrinsic mode functions (IMFs) 
by using the EMD and VMD methods and the multiresolution analysis (MRA) components 
by using the EWT method. Then after, the IMFs and MRA components were selected and 
regraded as new input variables for the ML models and used as an integral part thereof. 
The single and hybrid prediction models were compared using several statistical metrics 
namely, root mean square error, mean absolute error, coefficient of determination (R2), 
and Nash–Sutcliffe efficiency (NSE). The single and hybrid models were trained several 
times with high number of repetitions, depending on the kind of modeling process. The 
obtained results using single models gave good agreement between the predicted TDG and 
the situ measured dataset. Overall, the Bagging model performed better than the other five 
models with  R2 and NSE values of 0.906 and 0.902, respectively. However, the extracted 
IMFs and MRA components using the EMD, VMD and the EWT have contributed to 
an improvement of the hybrid models’ performances, for which the  R2 and NSE were 

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-10707-4&domain=pdf
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significantly increased reaching the values of 0.996 and 0.995. Experimental results 
showed the superiority of hybrid models and more importantly the importance of signal 
decomposition in improving the predictive accuracy of TDG.
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Abbreviations
ANN  Artificial neural network
AdaBoost  Adaptive boosting
BP  Barometric pressure
Bagging  Bootstrap aggregating
CO2  Dioxide de carbone
CART   Classification and regression tree
Cv  Coefficient of variation
DENFIS  Dynamic evolving neural-fuzzy inference system
DT  Decision tree
EWT  Empirical wavelet transform
ELM  Extreme Learning Machine
EMD  Empirical mode decomposition
GA  Genetic algorithm
GRNN  Generalized regression neural network
GPR  Gaussian process regression
GBT  Gas-bubble trauma
H-RSM  High-order response surface method (H-RSM)
IMF  Intrinsic mode functions
KIM  Kriging interpolation method



New formulation for predicting total dissolved gas…

1 3

Page 3 of 37 85

Kcfs  Thousands cubic foot by second
LSSVM  Least squares support vector machine
M5Tree  M5 model tree
MARS  Multivariate adaptive regression Spline
ML  Machine Learning
MLPNN  Multilayer perceptron neural network
MAE  Mean absolute error
MLPNN  Multilayer perceptron neural network
MRA  Multiresolution analysis
NSE  Nash–Sutcliffe efficiency
N2  Azote
O2  Oxygen
PC-ELM  Parallel chaos search based incremental extreme learning machine
Q  Discharge
RSM  Response surface method
RFR  Random forest regression
RVFL  Random vector functional link
RMSE  Root mean square error
R  Correlation coefficient
Sx  Standard deviation
SVR  Support vector regression
TDG  Total dissolved gas
Tw  Water temperature
Xmean  Mean value
Xmax  Maximal value
Xmin  Minimal value
USGS  United States Geological Survey
VMD  Variational mode decomposition

1 Introduction

Nowadays, high dam’s reservoir has become more numerous and play an important role 
for the production of hydropower energy (Qin et al. 2022). Another important role of high 
dams is the creation of artificial flood over the spillways of hydropower stations (Wang 
et al. 2019b), which is the major cause of the formation of total dissolved gas (TDG) along 
the river downstream of high dams (Yuan et  al. 2018; Huang et  al. 2021). TDG can be 
defined as the quantity of dissolved air available in water, and it is considered a natural 
phenomenon resulting from the interaction between air and water near surface water (Li 
et al. 2023a). From a computational point of view, the formation of TDG (i.e.,  N2,  O2 and 
 CO2) persisted if pressure of TDG become superior to the atmospheric pressure (Yuan 
et al. 2022). Elevated TDG concentration affects the dynamics of aquatic life (Cheng et al. 
2021), and thus an important ecological indicator that can be utilized for the evaluation 
of the state of the aquatic life downstream of high dam’s reservoirs (Yuan et  al. 2023). 
However, water managers and decision makers are conducting an ongoing risk assessment 
of the elevated TDG concentration leading to the conclusion that; TDG supersaturation 
should not be exceeded the amount of 110% of saturation. If not, this will lead to many 
serious problems designated as the ‘’gas-bubble trauma in fish’’, i.e., “GBT”, and a 
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downward correction of the elevated concentration become imminent (Zeng et al. 2020). 
Downstream of the high dam’s reservoirs, fish suffer from elevated concentration of TDG. 
Among other ecological indicators that can help in increasing TDG concentration, water 
temperature, barometric pressure and discharge are particularly important as they influence 
the fluctuation of TDG (Li et al. 2022; Chen et al. 2023). Furthermore, due to the limited 
in situ sampling sites for controlling TDG, knowledge on the formation, fluctuation, and 
spatiotemporal distribution of TDG along the rivers downstream of high dams is relatively 
sparse, except for some locations in USA and China. Nevertheless, at Columbia and Snake 
rivers, USA, increased in  situ stations and continuous monitoring of TDG have enabled 
researchers to gain insight about formation and behaviors of TDG supersaturation.

The literature revealed many researchers have done several works on TDG concentration 
prediction (Li et  al. 2009, 2022; Lu et  al. 2019; Zhang et  al. 2023). More precisely, 
previous investigations were mainly focused on understanding two important phenomena: 
(i) how TDG supersaturation is generated near downstream of dams, and (ii) how TDG 
can be dissipated to avoid the GBT (Ma et  al. 2019). Furthermore, for achieving these 
two objectives, available research papers were focalized and mainly oriented toward the 
application of numerical models and simulation approaches. Understanding the fluctuation, 
dissipation and the overall behavior of TDG is of high importance for the protection and 
control of the fish and many other ecological phenomena’s in rivers (Yuan et al. 2018). The 
complexity of TDG supersaturation formation depends mainly on the environmental factors 
responsible for the increase of the TDG rates, and recent recognition of the environmental 
causes are good steps towards a more comprehensive framework for the TDG simulation.

Nowadays, the role of numerical models seems to be crucial, and they significantly 
helped in improving our understanding of TDG formation and dissipation. Several 
numerical models have been developed and applied for predicting TDG dissipation (Lin 
et al. 2022). Among the proposed models, it is worth to point out: the 1-D unsteady TDG 
model proposed by (Ma et al. 2016), the depth averaged 2-D for the dissipation of TDG 
(Shen et  al. 2016), the numerical 2-DTDG model for analyzing the link between water 
temperature and TDG (Feng et al. 2013), a basic prediction water renewal model for TDG 
proposed by (Peng et  al. 2022a), the two phases flow model proposed by (Wang et  al. 
2019a). Several other models are available in the literature. For example; a study proposed 
a mass transfer for modelling TDG using water depth as predictor, and the unsteady 3D 
two-phase (Politano et al. 2007, 2009, 2012, 2017). Despite the benefits of numerical and 
fluid mechanic models for TDG simulation, they also have some disadvantages.

However, they have been faced to several particular difficulties mainly related to the 
high number of variables needed for calibrating the numerical models (Zhang et al. 2022). 
Certain TDG conditions can be ambiguous, hard to understand, and the environmental 
factors that contribute to their control and diagnosis cannot be accurately determined using 
single models. To solve the forgoing limitation, multi-resolution signal decomposition 
is an ensemble of methods that help to alleviate these underlying problems. Among the 
disadvantages of the numerical and fluid mechanic models, it can be highlighted: (i) the 
need of very large number of variables for model calibrations, (ii) the difficulties to use 
the calibrated models outside of the calibration sites, (iii) the need for a large dataset based 
on the laboratory experiment for which, the operator’s intervention is required and the 
equipment shall be placed at the most adequate measuring point to ensure safe and timely 
access data.

Over the past few years, the exploration of newly developed modelling strategy based 
on the application of machine learning (ML) models has been established and successfully 
applied for modelling TDG concentration (Heddam 2017; AlOmar et al. 2020; Wang et al. 



New formulation for predicting total dissolved gas…

1 3

Page 5 of 37 85

2022). Among the proposed models, extreme learning machine (ELM) and support vector 
regression models proposed by (AlOmar et  al. 2020), ELM optimized genetic algorithm 
(GA-ELM) developed by (Wang and Sheng 2022), multilayer perceptron neural network 
(MLPNN) used by (Han et al. 2019), the generalized regression neural network (GRNN) 
proposed by (Heddam 2017). The parallel chaos search based incremental extreme learning 
machine (PC-ELM) developed by (Heddam 2023), dynamic evolving neural-fuzzy 
inference system (DENFIS) (Heddam and Kisi 2021), the kriging interpolation method 
(KIM) and response surface method (RSM) (Heddam and Kisi 2020), and the least squares 
support vector machine (LSSVM) used by (Keshtegar et  al. 2019). All above reported 
models were successfully applied for modelling TDG and the obtained results were found 
to be very promising. However, previous ML approaches for TDG prediction have been 
faced to several particular difficulties mainly related to the high number of variables 
needed for calibrating the numerical models (Zhang et al. 2022). Certain TDG conditions 
can be ambiguous, hard to understand, and the environmental factors that contribute to 
their control and diagnosis cannot be accurately determined using single ML models. 
Multiresolution signal decomposition is an ensemble of methods that help to alleviate these 
underlying problems.

The aim of this paper is to continue the work already undertaken in the context of TDG 
prediction. Hence, this work seeks to propose new formulation for TDG estimation aiming 
at improving the prediction accuracy of TDG, and at the same time introducing a new 
modelling framework, that contributes to the improvement of standalone ML methods by 
reducing the error calculated between measured and predicted TDG data. For this purpose, 
we make use of different multiresolution signal decomposition techniques namely; the 
empirical mode decomposition (EMD), the variational mode decomposition (VMD), and 
the empirical wavelet transform (EWT) techniques. The basic steps involved in our new 
modelling framework can be summarized as follow. Initially, the EMD, VMD, and the 
EWT are performed on the available input variables. The Tw, BP, and Q input variables 
are then decomposed into various intrinsic mode functions (IMFs) by using the EMD and 
VMD methods and the multiresolution analysis (MRA) components by using the EWT 
method. After decomposition, the IMFs and the MRA were used as new input variables 
for the ML approaches. Compared to the single models, the use of the EMD, VMD, 
and EWT have the advantages of extracting and combining the multitude of nonlinear 
information available in the original signal, producing new input variables with greater 
useful information, making the establishment of an appropriate relationship between TDG 
and the Tw, BP, and Q more practical. For convenience, we refer to Tw, BP, and Q as the 
input variables for the single models, while the IMFs and MRA typically represent the 
input variables of the hybrid models.

2  Materials and methods

2.1  Study area and data

In this study, TDG (% saturation), water temperature (Tw: °C), barometric pressure (BP: 
mmHg), and discharge (Q: kcfs) data, were collected from four United States geological 
survey (USGS) stations. All data are available at (https:// or. water. usgs. gov/ cgi- bin/ graph 
er/ table_ setup. pl). These stations were selected tacking into account continuous data avail-
ability. Supporting details characteristics of the stations are reported in Table 1. According 

https://or.water.usgs.gov/cgi-bin/grapher/table_setup.pl
https://or.water.usgs.gov/cgi-bin/grapher/table_setup.pl
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to Table 1, we can see that, the period of record varied between stations, and all available 
data have been used, however, the presence of the incomplete days with missing values in 
data records make the length of data varied between stations. All data were available at 
hourly time step and composed from TDG, Tw, BP, and Q. The study area and locations 
of in situ measured data are shown in Fig. 1, in which the different stations are represented 
by different colors. For each station, we split the dataset into training (70%) and validation 
(30%). Thus, TDG was predicted using three input variables namely, Tw, BP and Q, and all 
variables were standardized using the Z-score method (Eq. 1) by subtracting the mean and 
dividing by the standard deviation.

where: Zn is the normalized value of the variable n; xn is the measured value of the variable 
n; xm and σx are the mean value and standard deviation of the variable x.

Table 2 lists a brief descriptive statistic for all data and for all stations. In the Table 2, 
the mean value (Xmean), the maximal value (Xmax), the minimal value (Xmin), the standard 
deviation (Sx), the coefficient of variation (Cv), and the coefficient of correlation calculated 
between TDG and the three input variables are summarized. Finally, it is noted that, TDG 
was predicted according to two different scenarios: (i) modelling TDG using three input 
variables (i.e., Tw, BP and Q), and (ii) the Tw, BP and Q variables were decomposed into 
several IMFs and MRA using the EMD, VMD and EWT.

2.2  Machine learning methods

In the present study, six ML models were developed for predicting TDG supersaturation 
namely: (i) multilayer perceptron neural network (MLPNN), (ii) Gaussian process 
regression (GPR), (iii) random forest regression (RFR), (iv) random vector functional link 
(RVFL), (v) adaptive boosting (AdaBoost), and (vi) Bootstrap aggregating (Bagg). The 
theoretical description of these models is given below.

(1)Zn =
xn − xm

�x

Fig. 1  The location of the studied sites “USGS stations” at the north-west of United States
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Table 2  Summary statistics of total dissolved gas concentration and input variables

Variables Subset Unit Xmean Xmax Xmin Sx Cv R

USGS 14019240 Columbia River below Mcnary Dam near Umatilla, Oregon, USA
 TDG Training % 108.271 130.000 95.000 8.522 0.079 1.000

Validation % 108.246 128.000 95.000 8.557 0.079 1.000
All data % 108.264 130.000 95.000 8.533 0.079 1.000

 Tw Training °C 12.248 22.400 2.300 6.263 0.511 0.380
Validation °C 12.095 22.400 2.300 6.255 0.517 0.396
All data °C 12.202 22.400 2.300 6.261 0.513 0.385

 BP Training mm Hg 755.309 773.000 733.000 5.397 0.007 -0.328
Validation mm Hg 755.323 773.000 734.000 5.575 0.007 -0.354
All data mm Hg 755.313 773.000 733.000 5.451 0.007 -0.336

 Q Training kcfs 169.403 472.000 54.000 74.106 0.437 0.746
Validation kcfs 169.413 471.000 53.900 73.806 0.436 0.747
All data kcfs 169.406 472.000 53.900 74.014 0.437 0.746

USGS 13341000 NF Clearwater River at Ahsahka Idaho, USA
 TDG Training % 100.893 122.000 92.000 3.685 0.037 1.000

Validation % 100.845 122.000 92.000 3.751 0.037 1.000
All data % 100.878 122.000 92.000 3.705 0.037 1.000

 Tw Training °C 6.794 10.600 4.400 1.608 0.237 0.007
Validation °C 6.761 10.500 4.500 1.614 0.239 0.018
All data °C 6.784 10.600 4.400 1.609 0.237 0.353

 BP Training mm Hg 736.238 752.000 719.000 5.276 0.007 -0.001
Validation mm Hg 736.222 752.000 719.000 5.258 0.007 0.001
All data mm Hg 736.233 752.000 719.000 5.270 0.007 -0.261

 Q Training kcfs 5.090 25.200 1.300 3.950 0.776 0.001
Validation kcfs 5.127 25.200 1.300 3.976 0.775 -0.001
All data kcfs 5.101 25.200 1.300 3.958 0.776 0.036

USGS 14019220 Columbia River at Mcnary Dam lock near Umatilla, Oregon, USA
 TDG Training % 109.765 123.000 100.000 4.277 0.039 1.000

Validation % 109.694 122.000 100.000 4.312 0.039 1.000
All data % 109.744 123.000 100.000 4.290 0.039 1.000

 Tw Training °C 15.308 22.800 5.600 4.853 0.317 0.009
Validation °C 15.438 22.700 5.600 4.828 0.313 -0.014
All data °C 15.347 22.800 5.600 4.847 0.316 0.002

 BP Training mm Hg 751.239 767.000 733.000 3.968 0.005 -0.242
Validation mm Hg 751.255 767.000 734.000 3.986 0.005 -0.269
All data mm Hg 751.244 767.000 733.000 3.981 0.005 -0.250

 Q Training kcfs 217.112 472.000 70.000 88.259 0.407 0.800
Validation kcfs 216.237 470.000 69.500 86.951 0.402 0.814
All data kcfs 216.849 472.000 69.500 87.905 0.405 0.804

USGS 13352950 Lake Sacajawea Forebay at Ice Harbor Dam, Washington, USA
 TDG Training % 113.388 126.000 100.000 5.832 0.051 1.000

Validation % 113.406 126.000 100.000 5.807 0.051 1.000
All data % 113.393 126.000 100.000 5.827 0.051 1.000
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2.2.1  Multilayer perceptron neural network (MLPNN)

Artificial neural network (ANN) was inspired from the structure of the human brain. Thus, 
the basic component of the brain, i.e., the biological neurons were simulated to be artificial 
neurons arranged in several layers and dealing with specific tasks (Salman and Kadhum 
2022). In the present study, the famous and well-known multi-layer perceptron neural net-
work (MLPNN) was used for modelling total dissolved gas (TDG). The MLPNN includes 
several layers: (i) input layer with three input variables, i.e., BP, Tw and Q, each one desig-
nated as  xi, (ii) one or more hidden layers arranged in parallel and possess an ensemble of 
neurons, and (iii) on output layer with only one neuron, i.e., the TDG. Similar to the bio-
logical neuron, the information is disseminated rapidly from the input to the output layer 
using an ensemble of parameters called the weight factors and biases, which need to be 
updated during the training process. Consequently, we can summarize the mathematical 
formulas of the MLPNN as follow:

where, Aj is the output of the hidden neuron j, Wij is the weight linking the input variable 
 xi to the hidden neuron j, and  bj is bias of the hidden neuron j. Before passing the Aj to the 
next layer, the sigmoid activation function is used as follow:

Finally, the output of the MLPNN is calculated as follow:

(2)Aj =

(
N∑
i=1

Wijxi

)
+ bj

(3)kj = f
(
Aj

)
= sigmoid

(
Aj

)
=

1

1 + e−Aj

(4)y =

(
N∑
j=1

Wjkkj

)
+ bo

Table 2  (continued)

Variables Subset Unit Xmean Xmax Xmin Sx Cv R

 Tw Training °C 15.553 22.800 5.600 5.093 0.327 -0.263

Validation °C 15.717 22.700 5.500 5.037 0.321 -0.289

All data °C 15.602 22.800 5.500 5.077 0.325 -0.271
 BP Training mm Hg 748.616 764.000 732.000 3.896 0.005 -0.069

Validation mm Hg 748.584 764.000 732.000 3.916 0.005 -0.090
All data mm Hg 748.607 764.000 732.000 3.908 0.005 -0.075

 Q Training kcfs 61.436 238.000 10.300 39.850 0.649 0.740
Validation kcfs 60.500 236.000 10.400 38.239 0.632 0.756
All data kcfs 61.155 238.000 10.300 39.415 0.645 0.744

Xmean mean, Xmax, maximum, Xmin minimum, Sx standard deviation, Cv coefficient of variation, R coefficient 
of correlation with TDG, Tw  river water temperature, TDG total dissolved gas, BP Barometric pressure, Q 
discharge, kcfs thousand cubic foot by second
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where, y is the output of the MLPNN model, Wjk is the weight linking the hidden layer to 
the output layer, and  b0 is bias of the single output neuron. More details about the MLPNN 
can be found in large number of published papers.

2.2.2  Gaussian process regression (GPR)

The Gaussian Process Regression (GPR) proposed by (Williams and Rasmussen  2006) 
can be formulated as follow (Ouyang et al. 2022; Zhao et al. 2023):

In the above equation, x refers to the input vector; m(x) refers to the mean function, 
while k

(
x, x

′) corresponds to the covariance (kernel) function. For example, the Radial 
basis function (RBF) can be expressed as follow (He and Zhou 2022):

In the above equation, σ2
f
 is the variance of the dataset (i.e., the signal), and l, is the 

length scale of the uncertainty fluctuations. The GPR is derived from the standard linear 
model as follow:

In the above equation, ε refers to the noise having a mean zero and variance σ2
f
 (He and 

Zhou 2022; Ouyang et al. 2022; Zhao et al. 2023).

2.2.3  Random forest regression (RFR)

Random forest regression (RFR) is an ensemble of classification and regression tree 
(CART) models built on a serie of trees with a training process made using the concept of 
Bagging by random smpaling with replacement, tacking into account the statbility and the 
imporvement in the terms of accuracy (Breiman 2001; Takoutsing and Heuvelink 2022). 
As the model is based on improving the performances of week learners and making a final 
decision using averaging or majority voting, the RFR use the ‘’out-of-bag: OOB’’ for 
quantifying the calculted error and for ranking the variables in terms of importance using 
the permutation strategy. Building a RFR model can be achieved according to the follwing 
steps: (i) start by extracting an ensemble of subset randomly form the original dataet, (ii) 
growing a tree for each subset, (iii) repeat this until the constrution of k decision tree (DT), 
and (iv) the final response is than calculted based on averaging (AVG) the response of all 
DT (Zong and Zhang 2019; Giri et al. 2023). However, it is important to note that, RFR 
works only with two parameters: the total number of trees and the number of predictors 
at each node of the subset (Weiqi et  al. 2022). Furthermore, the remaining paprt of the 
data not included in the subset, i.e., the OOB is used for chacking the regression or the 
classificiation performances (Zong and Zhang 2019). Finally, we can summarize the 
adavatage of the RFR as follow: (i) can not be affected by the nonlinearity between 
variables, (ii) high capability for avoinding over fitting problem, (iii) the gerated trees are 
uncorrelated, and (iv) the predicotors can be ranked in terms of their contribution (Chong 
et al. 2019).

(5)f(x) ∼ GP
(
m(x), k

(
x, x

�))

(6)kSE
(
xi, xj

)
= σ2

f
exp

(
−

(
x − x

�)2
2l2

)

(7)y = f(x) + ϵ
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2.2.4  Random vector functional link (RVFL)

The random vector functional link neural network (RVFL) can be viewed as an improved 
version of the original single layer neural network with an important difference (Pao et al. 
1992; Pao et  al. 1994): in addition to the transition from the input to the output layer 
through the hidden layer, there is a direct link between the input and output layer. Regarding 
the model parameters, the weights between the input neurons and the hidden neurons (also 
called enhancements neurons) were randomly assigned and remain unchangeable during 
the training process (Wij), while the remaining weight (Wjk) should be updated during the 
training of the model. Given a set of data point (xi, i = 1, …, N) with the corresponding 
output (yi), the response of the enhancements, neurons can be calculated as follow (δj):

In Eq. 8, Wj refers to the weight between the input and the hidden neurons, βj is the 
bias of the hidden neuron j, and S refers to the scale factor determined during the training 
process. The final output can be calculated as follow (Jiao et al. 2023; Nabih et al. 2023):

In Eq.  9, B1 corresponds to the input data, and B2 corresponds to the output of the 
enhancements neurons. Finally, the weight w is calculated using the Moore–Penrose 
pseudo inverse as follow (Jiao et al. 2023; Nabih et al. 2023):

More details about the RVFL can be found in (Pao et al. 1992; Pao et al. 1994; Jiao et al. 
2023; Nabih et al. 2023).

2.2.5  Adaptive boosting (AdaBoost)

The adaptive Boosting (AdaBoost) developed by (Freund and Schapire 1997), is one of the 
most widely reported ensemble ML method. Similar to the ensemble models, AdaBoost 
is a series of weaker learners (i.e., trees) and each one take into account one subset. An 
important point to note is that, the data that are hardly predicted (i.e., complex) should 
weighted stronger, and during the training process of the AdaBoost, the weights are 
being reshuffled and consequently they are increased for the poor learned dataset: this is 
a ‘‘sequential procedure’’ (Truong et  al. 2022; Saha et  al. 2023; Zhu et  al. 2023). This 
process is very important as it helps the poor learners improve their performances during 
the training and at the end, we can obtain a robust model by weighted averaging of the 
response of poor regressor. From a mathematical point of view, the AdaBoost model can 
be expressed as follow (Truong et al. 2022):

where, δM(x) is the form training of the AdaBoost model, M corresponds to the number of 
iterations, φm(x) is the weak learner (Truong et al. 2022; Saha et al. 2023; Zhu et al. 2023).

(8)δj
[
Wjxi + βj

]
=

1

1 + e−(Wijxi+βj)
, βj ∈ [0, S],Wj ∈ [−S,+S], j = 1, 2,… , Nh

(9)Y = Bw,w ∈ RN+P, andB =
[
B1B2

]

(10)w = B†Z

(11)δM(x) =

M∑
m=1

φm(x)
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2.2.6  Bootstrap aggregating (Bagg)

The bootstrap aggregating, i.e., Bagging (Bagg) is used for combining an ensemble of 
weak learners for composing a strong model which can help in decreasing the variance 
and avoiding the overfitting (Li et al. 2023b). However, an important point to note is, the 
Bagging model should be handled as being a suite of multiple similar learners arranged 
in parallel, and the final response is calculated as the average (Khozani et  al. 2019). 
For simplicity, the initial dataset is divided into an ensemble of sub-training set using 
bootstrap sampling with replacement, this cause to have some sample available multiple 
time in the training set while other none, which involve looking to repeat this several 
times. From a mathematical point of view, if the training dataset is designated as δ and 
composed of an ensemble of pairs as follow (Nancy Jane et al. 2023; Sun 2023):

Each individual subset is affected by an equal (1/M) weight, and consequently 
a specific weak learner is attributed to one subset, and based on this the error is 
calculated. The procedure of updating the weight is then started. If the example is 
correctly predicted or classified, its weight is reduced and vice versa, until the end of 
the training. The final response is calculated as the average (AVG) (Nancy Jane et  al. 
2023; Sun 2023).

2.3  Signal decomposition methods

In the present study, three signal decomposition algorithms were used, namely, the varia-
tional mode decomposition (VMD) (Dragomiretskiy and Zosso 2014), the empirical mode 
decomposition (EMD) (Huang et  al. 1998), and the empirical wavelet transform (EWT) 
(Gilles 2013). The three algorithms were used for decomposing the input variables, i.e., 
Tw, BP, and Q, into several subcomponents. Thus, in EMD and VMD, the components are 
called intrinsic mode functions (IMF), while the components of the EWT are called mul-
tiresolution analysis (MRA) components (Bokde et al. 2020). An example of BP decom-
position is provided in Fig. 2. According to Fig. 2, the BP signal depicted at the top of the 
Figure was decomposed into nine IMFs using the VMD and EMD, and nine MRA using 
the EWT. Furthermore, the extracted subcomponent were arranged from high frequency to 
low frequency. The number of extracted IMF is determined by trial and error, and in our 
present study, nine subcomponent was found to be sufficient and their aggregation have 
helped in providing excellent predictive accuracies. This process of decomposition make a 
very complicated signal very simpler (Rezaie-Balf et al. 2020). When the whole process of 
decomposition is finished, the obtained IMFs and MAR were aggregated and used as input 
variables of the models. The example trend shown in Fig. 3 is considered to demonstrate 
the decomposition process. If we consider that each input variable, i.e., the BP, Tw, and Q 
was decomposed into nine subcomponents, then, in total twenty-seven new input variables 
are used by the ML models. Theoretical description of these algorithms is given below. 
The flowchart of the overall modelling framework is depicted in Fig. 4.

According to Fig.  4, our investigation were oriented toward a deeply comparison 
between standalone single models and hybrid models. Thus, our study originality can be 
summarized as follow:

(12)δ =
[(
x1, y1

)
,
(
x2, y2

)
,… ,

(
xm, ym

)]
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• To the best of the author’s knowledge, this is the first study in the literature focused on 
the application of machine leaning combined with signal decomposition for modelling 
TDG in river.

• The primary objective of the present paper is to demonstrate whether signal 
decomposition can be presented as a good and robust tool for predicting TDG.

• Fewer variables are used for modelling TDG, i.e., Tw, BP, and Q.
• Three robust signal decomposition are selected and compared, i.e., VMD, EMD and 

EWT.

Fig. 2  Barometric pressure (BP) signal decomposition using the EMD, VMD, and EWT

Input variables

Tw BP 

EMD, VMD, EWT 

IMF1
IMF2
IMF3

IMF4

IMF5
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IMF7
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AdaBoost 
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Q

Fig. 3  The schematic diagram of the preprocessing signal decomposition with the aggregation of the intrin-
sic mode function (IMFs) with machine learning approaches
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USGS 13352950USGS 13341000 USGS 14019220USGS 14019240

Water released through spillway of dams, 
causing air to be entrained in the water, leading 

to an increase of total dissolved gas (TDG)  
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Fig. 4  Flowchart of the proposed modelling framework
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2.3.1  Variational mode decomposition (VMD)

Variational mode decomposition (VMD) is a preprocessing signal decomposition developed 
by (Dragomiretskiy and Zosso 2014). The VMD is highly recognized by its capability to 
find the suitable nombre of modal decompositions tacking into account the actual situation 
(Qiao et  al. 2022). The VMD is used for decomposing a specific signal into a series of 
intrinsic model function (IMF) components having a particular bandwidth and starting by the 
construction of a variational problem (Xiong et al. 2022). From a mathematical point of view, 
the VMD decomposes a signal f(t) into M narrowband IMFs as follow:

In the above equation, the IMFs have the following characteristics (Netsanet et al. 2022):

• Each IMF has an envelope ∅m(t)    and phase Am(t)  as follow:

• The envelopes of all IMF are positive and will progress more slowly.
• An instantaneous frequency ( ∅�m(t) ) is attributed to each IMF and it should be 

concentrated around a central frequency ( wm).

More details about the VMD can be found in (Dragomiretskiy and Zosso 2014).

2.3.2  Empirical mode decomposition (EMD)

Empirical mode decomposition is a preprocessing signal developed by (Huang et al. 1998). 
The EMD is used for analyzing nonlinear and smooth signal, and it works by decomposing an 
original signal into a series of intrinsic mode function (IMF) components. Each component 
(i.e., each IMF) becomes himself a new signal with respect to a particular frequency, 
without requiring prior knowledge, and it works by supposing that: (i) signal and noise are 
‘’uncorrelated’’ and (ii) denoising the signal can be done by discarding lower order IMF 
signals (Li et al. 2023b). Suppose we have an original signal:

where K denotes the number of extracted IMF and rt is the residual. The EMD works by 
applying a ‘’sifting’’ process as follows (Li et al. 2023b; Shamaee and Mivehchy 2023):

• The mean envelope δavg(t) is calculated as follow:

where δmax(t), δmin(t) are the maximum and minimum envelopes of the initial signal.
• Thus, the calculated mean envelope is then extracted from the original signal as follow:

(13)f (t) =

M∑
m=1

um(t)

(14)um(t) = Am(t)cos
(
∅m(t)

)

(15)Xt = Signal(t) + Noise(t) =

K∑
k=1

IMFk + rt

(16)δavg(t) =
δmax(t) + δmin(t)

2
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• Stop, control and check that the conditions are correctly satisfied. If ok, the first IMF is 
therefore obtained, if none, repeat:

• The first residual is therefore calculated and considered to become the original signal 
(X(t)):

This process of decomposition and extraction shall continue to grow until the function 
become a “monotonic function”. Finally, we obtain the function as follow:

More details about the EMD can be found in (Huang et al. 1998).

2.3.3  Empirical wavelet transform (EWT)

The empirical wavelet transform (EWT) was developed by (Gilles 2013). This algorithm of 
decomposition is based on ‘’revolutionary’’ rather than the ‘’stochastic volatility’’ available 
in the data (Karbasi et al. 2022). The EWT can be used as robust decomposition algorithm 
for any nonlinear and non-stationary signal because it can select the ideal value of frequency 
(Rout et al. 2022). Briefly, using the EWT we can obtain, and ensemble of subcomponents 
called the multiresolution analysis (MRA) components, to make a reasonable extraction 
efficiency. This can be achieved by dividing any signal X (t) into suite of MRA in the range of 
‘’frequency’’ domain, and keep by building wavelet ‘’band-pass’’ filters for each sub-interval 
(Ren et al. 2022). From a mathematical point of view, the EWT extract the sub-components 
using two particular functions: the empirical wavelet functions ( ̂�n(�) ) and the empirical scale 
function �̂n(�) , expressed as follow (Peng et al. 2022b; Wang and Sheng 2022):

The function α(x) ∈  Lk ([0, 1]) is an arbitrary function and expressed as follow (Gilles 
2013):

(17)β(t) = X(t) − δavg(t)

(18)γ(t) = β(t)

(19)r1(t) = X(t) − γ(t)

(20)x(t) =

K∑
k=1

γ(t) + r(t)

(21)�̂n(�) =

⎧⎪⎨⎪⎩

1

cos
�
�

2
�
�

1

2�n
��� − �n+�n

��

0

if ��� ≤ �n−�n

if �n−�n ≤ ��� ≤ �n+�n

otherwise

(22)�̂n(�) =

⎧
⎪⎪⎨⎪⎪⎩

1 if�n+�n ≤ ��� ≤ �n+1−�n−1

cos
�
�

2
�
�

1

2�n+1
��� − �n+1+�n+1

��
if �n+1−�n+1 ≤ ��� ≤ �n+1+�n+1

sin
�
�

2
�
�

1

2�n
��� − �n+�n

��
if �n−�n ≤ ��� ≤ �n+�n

1 otherwise
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where (�) is the n-th maxima of the Fourier spectrum (Peng et al. 2022b; Ren et al. 2022; 
Wang and Sheng 2022). More details about EWT can be found in (Gilles 2013).

2.4  Performance assessment of the models

The performances of all models developed in the present study were evaluated 
using root mean square error (RMSE), mean absolute error (MAE), coefficient of 
determination  (R2), and Nash–Sutcliffe efficiency (NSE) (Yaseen 2021), calculated as 
follow:

where TDGobs and TDGest are the mean measured and mean forecasted TDG, respectively, 
and TDGobs and TDGest specifies the observed and forecasted total dissolved gas for ith 
observations, and N shows the number of data points.

2.5  Models development

In this study, hybrid predictive models based on the EMD, VMD and EWT algorithms 
and ML methods are developed to predict the TDG in rivers. To build the models, dif-
ferent scenarios are considered. First, the six ML models, i.e., the MLPNN, RVFL, 
RFR, GPR, AdaBoost and Bagg were applied using three input variables (i.e., Tw, BP 
and Q). Second, the same models were combined with the EMD, VMD and EWT and 
further compared. The models’ accuracies are assessed using model efficiency indi-
ces, including MAE, RMSE, R and NSE. Tables 3, 4, 5 and 6 show the performances 
of the developed models for the four stations. It is noteworthy that the models desig-
nated as MLPNN, RVFL, RFR, GPR, AdaBoost and Bagg correspond to the single 
models without decomposition. The MLPNN_EWT, RVFL_EWT, RFR_EWT, GPR_
EWT, AdaBoost_EWT and Bagg_EWT correspond aux hybrid models based on the 
EWT signal decomposition. Similarly, the MLPNN_VMD, RVFL_VMD, RFR_VMD, 

(23)�(x) =

{
0 x ≤ 0

1 x ≥ 1
and�(x) + �(1 − x) = 1∀ x ∈ [0, 1]

(24)RMSE =

√
1

N

∑N

i=1
[(TDGobs)i − (TDGest)i]

2, (0 ≤ RMSE < +∞)

(25)MAE =
1

N

∑N

i=1
|(TDGobs)i − (TDGest)i|, (0 ≤ MAE < +∞)

(26)R2 =

⎡
⎢⎢⎢⎣

∑N

i=1

�
TDGobs,i − TDGobs

��
TDGest,i − TDGest

�
�∑N

i=1
(TDGobs,i − TDGobs)

2 ∑N

i=1
(TDGest,i − TDGest)

2

⎤
⎥⎥⎥⎦

2

(27)NSE = 1 −

�∑N

i=1
[TDGobs − TDGest]

2

∑N

i=1
[TDGobs − TDGobs]

2

�
, (−∞ < NSE ≤ 1)
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GPR_VMD, AdaBoost_VMD and Bagg_VMD correspond aux hybrid models based 
on the VMD signal decomposition. Finally, the MLPNN_EMD, RVFL_EMD, RFR_
EMD, GPR_EMD, AdaBoost_EMD and Bagg_EMD correspond aux hybrid models 
based on the EMD signal decomposition. Details of the obtained results are depicted 
and discussed hereafter, and only model’s performances during the validation stage 
were highlighted and compared.

Table 3  Performances of different models at the USGS 14019240 station

Models Training Validation

R2 NSE RMSE MAE R2 NSE RMSE MAE

Standalone models without decomposition
 MLPNN 0.861 0.862 3.167 2.281 0.861 0.862 3.182 2.319
 AdaBoost 0.797 0.797 3.837 3.001 0.783 0.784 3.977 3.118
 Bagg 0.947 0.945 2.005 1.408 0.903 0.900 2.699 1.911
 GPR 0.867 0.867 3.105 2.205 0.863 0.864 3.158 2.275
 RFR 0.947 0.944 2.024 1.427 0.901 0.900 2.706 1.922
 RVFL 0.752 0.752 4.246 3.385 0.757 0.756 4.223 3.345

Models based on empirical wavelet transform (EWT)
 MLPNN_EWT 0.994 0.994 0.674 0.478 0.990 0.990 0.865 0.624
 AdaBoost_EWT 0.976 0.975 1.336 0.987 0.953 0.952 1.871 1.351
 Bagg_EWT 0.998 0.998 0.387 0.225 0.988 0.988 0.919 0.585
 GPR_EWT 0.996 0.996 0.532 0.349 0.994 0.993 0.707 0.477
 RFR_EWT 0.998 0.998 0.387 0.225 0.988 0.989 0.917 0.584
 RVFL_EWT 0.794 0.793 3.876 3.171 0.794 0.795 3.876 3.163

Models based on variational mode decomposition (VMD)
 MLPNN_VMD 0.958 0.959 1.728 1.328 0.941 0.941 2.076 1.585
 AdaBoost_VMD 0.901 0.900 2.693 2.072 0.872 0.872 3.055 2.394
 Bagg_VMD 0.996 0.995 0.593 0.401 0.976 0.976 1.328 0.934
 GPR_VMD 0.893 0.893 2.791 2.157 0.863 0.864 3.157 2.480
 RFR_VMD 0.996 0.995 0.595 0.403 0.976 0.976 1.334 0.939
 RVFL_VMD 0.729 0.729 4.438 3.656 0.731 0.731 4.435 3.639

Models based on empirical mode decomposition (EMD)
 MLPNN_EMD 0.992 0.993 0.738 0.519 0.988 0.989 0.900 0.653
 AdaBoost_EMD 0.980 0.980 1.198 0.863 0.960 0.960 1.721 1.231
 Bagg_EMD 0.998 0.998 0.397 0.229 0.986 0.985 1.044 0.655
 GPR_EMD 0.994 0.993 0.711 0.477 0.990 0.990 0.875 0.598
 RFR_EMD 0.998 0.998 0.396 0.229 0.986 0.986 1.030 0.650
 RVFL_EMD 0.899 0.899 2.709 2.110 0.897 0.897 2.740 2.136
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3  Experimental results

3.1  USGS 14019240 station modeling results

Table 3 presents the results of TDG prediction using all models at the USGS 14019240 
station. The values stated in Table 3 clearly demonstrated that using single models, the 
RFR and Bagg achieved the high prediction efficiencies among all the developed mod-
els based on the four performances metrics (RMSE≈2.706, MAE≈1.922,  R2≈0.901, 
NSE≈0.900). In general, the two models MLPNN and GPR appear to have performed 
better than the RVFL and AdaBoost models based on the different efficiency indices 
and the differences between the two is negligible. However, it is worth nothing that 
the RVFL was the poorest one and they worked with a moderate degree of accuracy 
(RMSE≈4.223, MAE≈3.345,  R2≈0.757, and NSE≈0.756). In overall, obtained results 
reported in Table  3 confirm the good level of efficiency of the developed single ML 
models without including the signal decomposition algorithms and more importantly, 
using only fewer inputs variables, i.e., Tw, BP, and Q. Figure 5 displays the scatterplot 
of measured and predicted TDG data for the USGS 14019240 station. In accordance 
with the depicted data points, it is evident that the two models RFR and Bagg appear to 
predict TDG more accurately and with more precision than the other models, and this is 
reflected by the data, which are less scattered, while the RVLF model was characterized 
by a high-scattered data. According to Table 3 and Fig. 5 (i.e., the scatterplot), there is 
a remarkable improvement of the model’s performances gained using the three signals 
decomposition algorithms. Using the EWT algorithm, it is clear that all models show 
their numerical performances improved by an increase of the  R2 and NSE values and a 
decrease of the RMSE and MAE indices. Using the  R2-values as a basis for comparison, 
it is clear that the MLPNN_EWT, Bagg_EWT, GPR_EWT, and RFR_EWT model’s 
performances were similar with negligible difference, and in the case of Bagg_EWT, 
and RFR_EWT, the equality between the two is obvious. The comparison between sin-
gle and hybrids models is further highlighted using Taylor diagram (Fig. 6), for which 
the superiority of the hybrid models is obvious.

Although the hybrid models exhibit a statistically similar performance (e.g., statistically 
similar values for the RMSE, MAE,  R2 and NSE), the GPR_EWT model seems to be 
slightly more accurate showing the biggest  R2 (≈0.994) and NSE (≈0.993) values, and the 
lowest RMSE (≈0.707) and MAE (≈0.477) values. Overall, the EWT algorithm helped 
in improving the performances of MLPNN_EWT, AdaBoost_EWT, Bagg_EWT, GPR_
EWT, and RFR_EWT by ≈72.816%, ≈52.954%,≈65.950%,≈77.612%, and ≈66.112% 
in terms of RMSE metric, and by ≈73.092%, ≈56.671%,≈69.388%,≈79.033%, and 
≈69.615% in terms of MAE metric, respectively. However, the improvement of the RVFL_
EWT model is less than the other models and does not exceed the ratios of ≈8.217% and 
≈5.441% in terms of RMSE and MAE metrics, respectively. Using the VMD algorithm 
as reported in Table 3 and Fig. 5 (i.e., the scatterplot), it is clear that, for all models, the 
improvements gained are less than those obtained from the EWT. Furthermore, using 
the VMD, it clear that, only the Bagg_VMD and the RFR_VMD have guaranteed great 
improvement (e.g., ≈50.797%, ≈50.702% for the RMSE, and ≈51.125%, ≈51.145% for the 
MAE). No improvement was recorded for the GPR_VMD model, while using the RVFL_
VMD, a decrease in terms of models performances was recorded. More precisely, using 
the EWT algorithm, the performances of the RVFL model were decreased by ≈4.780% 
and ≈8.079% in terms of RMSE and MAE metrics, the performances of the GPR model 
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Fig. 5  Scatterplot of measured versus predicted TDG concentration using all models for the USGS 
14019240 station
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remains constant, the performances of the MLPNN_VMD and AdaBoost_VMD were 
improved by ≈34.758%, ≈23.183% for the RMSE and by ≈23.183%, ≈23.220% for the 
MAE, respectively. Finally, in the case of the EMD signal decomposition algorithm as 
reported in Table 3 and Fig. 5 (i.e., the scatterplot), the performances evaluation metrics 
RMSE and MAE showed an improvement (i.e., decrease) by more than ≈60% and ≈65% 
for all models except the RVFL_EMD for which the improvement rate has note exceeded 
≈35% and ≈36%, respectively. Furthermore, the higher improvement rates were achieved 
using the GPR_EMD model with ≈72.293% and ≈73.714% in term of RMSE and MAE, 
and it is clear that, the GPR_EMD model was the only one for which high  R2 and NSE 
values were obtained, i.e., ≈0.995 and ≈0.990, respectively. It can be seen that, beyond 
the RVFL model for which a negligible improvement was gained using the signal 
decomposition algorithms, all other models were significantly improved and the percentage 
of improvement is higher for the EMD than that for the VMD and EWT. Furthermore, 
there is not yet any clear superiority concerning all performances metrics.

3.2  USGS 13341000 station modeling results

Table 4 presents the results of TDG prediction using all model’s at the USGS 13341000 
station. The single RVFL model tend to have moderate performances having an  R2 and 
NSE values of approximately ≈ 0.656 and ≈ 0.626, respectively, while the RVFL_VMD 
tend to have the worst performances with  R2, NSE, RMSE, and MAE of approximately 
≈ 0.335, ≈ 0.336, ≈ 3.050 and ≈ 2.373, respectively. More in depth analysis of the numeri-
cal results reported in Table 4 revealed that, the Bagg and the RFR models show the same 
numerical performances, and they were more accurate compared to the other models 
exhibiting an  R2 and NSE values of approximately ≈  0.906 and ≈  0.902. Furthermore, 
the RMSE and MAE values for the single models ranged from ≈ 1.156 to ≈ 2.269 and 
from ≈ 0.818 to ≈ 1.726, respectively, while the  R2 and NSE values were in the range of 
≈ 0.656 to ≈ 0.906 and ≈ 0.626 to ≈ 0.903, respectively. Among all three decomposition 
algorithms, it is clear that, the most accurate simulation of the TDG was obtained using the 
EWT algorithm, followed by the EMD, while the VMD was ranked last. The comparison 
between the singles and hybrids models was also conducted using the scatterplot (Fig. 7) 

Fig. 6  Taylor diagram for models 
comparison using the validation 
dataset: USGS 14019240 station
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and the Taylor diagram (Fig. 8). It is clear from the figures that, the hybrid models exhib-
ited high numerical performances.

Comparison of the models one by one revealed that, the GPR_EWT was the most 
accurate in terms of  R2, NSE, RMSE, and MAE, with values of ≈ 0.978, ≈ 0.978, ≈ 0.548 
and ≈  0.392, respectively. The GPR_EWT was slightly higher than the GPR_EMD 
who provided the values of ≈  0.976, ≈  0.976, ≈  0.579 and ≈0.401, respectively, while 
the RVFL_VMD model was the worst among all hybrid models for which the values of 
≈ 0.335, ≈ 0.336, ≈ 3.050 and ≈ 2.373 were obtained. In this regard, it is important to 
note that, the performances of the RVFL model were significantly decreased using the 
EMD, VMD, and EWT algorithms, and the AdaBoost benefits less from the these three 
algorithms. Regarding the RVFL model, it is clear that, the VMD algorithm leads to a 
slightly decrease of the model’s performances for which the  R2 and NSE values were 
dropped from (≈ 0.656 and ≈ 0.626) to (≈ 0.335 and ≈ 0.336), while the RMSE and MAE 
were raised from (≈ 2.269 and ≈ 1.726) to (≈ 3.050 and ≈ 2.373), respectively. Among 

Table 4  Performances of different models at the USGS 13341000 station

Models Training Validation

R2 NSE RMSE MAE R2 NSE RMSE MAE

Standalone models without decomposition
 MLPNN 0.857 0.857 1.399 1.019 0.863 0.863 1.374 1.008
 AdaBoost 0.824 0.825 1.546 1.156 0.826 0.826 1.548 1.165
 Bagg 0.916 0.911 1.103 0.782 0.906 0.902 1.161 0.823
 GPR 0.880 0.880 1.281 0.912 0.880 0.879 1.291 0.929
 RFR 0.916 0.912 1.099 0.779 0.906 0.903 1.156 0.818
 RVFL 0.651 0.627 2.260 1.721 0.656 0.626 2.269 1.726

Models based on empirical wavelet transform (EWT)
 MLPNN_EWT 0.982 0.981 0.504 0.371 0.972 0.972 0.616 0.454
 AdaBoost_EWT 0.904 0.905 1.141 0.864 0.832 0.832 1.520 1.129
 Bagg_EWT 0.992 0.992 0.330 0.215 0.964 0.963 0.712 0.477
 GPR_EWT 0.984 0.984 0.470 0.334 0.978 0.978 0.548 0.392
 RFR_EWT 0.992 0.992 0.329 0.215 0.966 0.964 0.704 0.474
 RVFL_EWT 0.529 0.528 2.540 1.990 0.531 0.531 2.540 1.992

Models based on variational mode decomposition (VMD)
 MLPNN_VMD 0.958 0.958 0.752 0.564 0.897 0.893 1.223 0.851
 AdaBoost_VMD 0.815 0.814 1.587 1.178 0.766 0.764 1.819 1.345
 Bagg_VMD 0.990 0.989 0.385 0.257 0.956 0.952 0.816 0.573
 GPR_VMD 0.895 0.894 1.200 0.883 0.812 0.811 1.625 1.193
 RFR_VMD 0.990 0.989 0.389 0.259 0.956 0.952 0.818 0.573
 RVFL_VMD 0.339 0.339 2.996 2.320 0.335 0.336 3.050 2.373

Models based on empirical mode decomposition (EMD)
 MLPNN_EMD 0.980 0.981 0.512 0.374 0.970 0.969 0.650 0.485
 AdaBoost_EMD 0.916 0.916 1.071 0.778 0.835 0.836 1.502 1.044
 Bagg_EMD 0.992 0.992 0.332 0.215 0.912 0.908 1.127 0.708
 GPR_EMD 0.988 0.988 0.404 0.280 0.976 0.976 0.579 0.401
 RFR_EMD 0.992 0.992 0.332 0.216 0.912 0.906 1.136 0.708
 RVFL_EMD 0.590 0.589 2.370 1.870 0.585 0.586 2.388 1.879
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Fig. 7  Scatterplot of measured versus predicted TDG concentration using all models for the USGS 
13341000 station



 S. Heddam et al.

1 3

85 Page 24 of 37

all hybrid model’s as stated in Table  4, it is clear that, the best predictive accuracies 
was gained using the hybrid GPR_EWT for which the  R2, NSE, RMSE, and MAE were 
immediately increased to reach their extreme values with improvement rates of ≈ 10.020%, 
≈10.123%, ≈ 57.552%, and ≈ 57.804%, respectively. The GPR_EWT was followed by the 
MLPNN_EWT with  R2, NSE, RMSE, and MAE values of ≈ 0.972, ≈ 0.972, ≈ 0.616, and 
≈ 0.454, respectively. Thus, the improvement observed using the EWT was more obvious, 
followed by the EMD and the VMD in the last round.

3.3  USGS 14019220 station modeling results

Table 5 presents the results of TDG prediction using all model’s at the USGS 14019220 
station. As clearly stated in Table  5, as we combine the signal decomposition with the 
ML models, an improvement can be seen in all models except: the AdaBoost_EWT, the 
GPR_VMD and the RVFL_VMD. More precisely, using the EWT algorithm, the  R2 and 
NSE values of the AdaBoost were dropped from (≈ 0.827 and ≈ 0.836) to (≈ 0.815 and 
≈ 0.810), while the RMSE and MAE were raised from (≈ 1.745 and ≈1.377) to (≈ 1.881 
and ≈ 1.340). According to Table 5, using single model’s it is clear that the Bagg and the 
RFR were the most accurate model’s exhibiting the higher  R2 and NSE values of ≈ 0.901 
and ≈ 0.899, respectively, and the lowest RMSE and MAE value of ≈ 1.360 and ≈ 1.021, 
respectively. Among all single model’s, the RVFL was found to be the poorest one having 
the lowest numerical performances with  R2 ≈ 0.773, NSE ≈ 0.772, RMSE ≈ 2.060 and 
MAE≈1.629, respectively.

Further comparison between the hybrid model’s based on the EWT algorithm revealed 
that, the GRP_EWT was the most accurate model having the greatest numerical perfor-
mances  (R2 ≈ 0.992, NSE ≈ 0.992, RMSE ≈ 0.394, MAE ≈ 0.297), respectively, slightly 
higher than the MLPNN_EWT, while the RVFL_EWT  (R2  ≈  0.808, NSE  ≈  0.808, 
RMSE ≈ 1.889, MAE ≈ 1.502) was the less accurate model. Using the VMD algorithm, it 
is clear from the results reported in Table 5 that, the Bagg_VMD and the RFR_VMD were 
the most accurate model’s compared to the all other and they exhibited high numerical per-
formances of approximately  (R2 ≈ 0.972, NSE ≈ 0.972, RMSE ≈ 0.723, MAE ≈ 0.507). 

Fig. 8  Taylor diagram for models 
comparison using the validation 
dataset: USGS 13341000 station
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Finally, using the EMD algorithm, it is clear that the GPR_EMD was the most accurate 
with the biggest numerical performances of approximately  (R2  ≈  0.984, NSE  ≈  0.984, 
RMSE ≈ 0.540, MAE ≈ 0.370).

The Scatterplot (Fig. 9) and Taylor diagram (Fig. 10) have helped in providing a con-
cise and solid comparison between the singles and hybrids models. According to Fig. 9, it 
is clear that the comparison between measured and predicted data demonstrated that the 
hybrids models exhibited less scattered data compared to the single models.

3.4  USGS 13352950 station modeling results

Table 6 presents the results of TDG prediction using all models at the USGS 13352950 
station. The performances of the singles and hybrid models were assessed through a 
comparative analysis based on the performances metrics reported in Table  6. First, the 

Table 5  Performances of different models at the USGS 14019220 station

Models Training Validation

R2 NSE RMSE MAE R2 NSE RMSE MAE

Standalone models without decomposition
 MLPNN 0.870 0.870 1.544 1.207 0.861 0.859 1.618 1.259
 AdaBoost 0.852 0.851 1.648 1.295 0.837 0.836 1.745 1.377
 Bagg 0.943 0.939 1.053 0.792 0.901 0.899 1.369 1.033
 GPR 0.885 0.886 1.446 1.105 0.874 0.873 1.538 1.185
 RFR 0.943 0.940 1.045 0.783 0.901 0.900 1.360 1.021
 RVFL 0.760 0.759 2.101 1.670 0.773 0.772 2.060 1.629

Models based on empirical wavelet transform (EWT)
 MLPNN_EWT 0.996 0.996 0.284 0.218 0.990 0.991 0.412 0.321
 AdaBoost_EWT 0.943 0.943 1.019 0.785 0.815 0.810 1.881 1.340
 Bagg_EWT 0.996 0.997 0.251 0.172 0.953 0.949 0.973 0.558
 GPR_EWT 0.996 0.996 0.262 0.195 0.992 0.992 0.394 0.297
 RFR_EWT 0.996 0.997 0.251 0.172 0.953 0.949 0.976 0.556
 RVFL_EWT 0.808 0.808 1.876 1.508 0.808 0.808 1.889 1.502

Models based on variational mode decomposition (VMD)
 MLPNN_VMD 0.988 0.989 0.450 0.347 0.960 0.959 0.875 0.607
 AdaBoost_VMD 0.945 0.944 1.009 0.782 0.901 0.899 1.370 1.036
 Bagg_VMD 0.996 0.995 0.292 0.206 0.972 0.972 0.727 0.509
 GPR_VMD 0.908 0.908 1.295 1.003 0.869 0.868 1.564 1.198
 RFR_VMD 0.996 0.995 0.293 0.207 0.972 0.972 0.723 0.507
 RVFL_VMD 0.753 0.753 2.127 1.683 0.764 0.763 2.097 1.649

Models based on empirical mode decomposition (EMD)
 MLPNN_EMD 0.994 0.994 0.325 0.253 0.980 0.981 0.599 0.403
 AdaBoost_EMD 0.978 0.977 0.642 0.494 0.869 0.858 1.626 1.146
 Bagg_EMD 0.996 0.997 0.244 0.168 0.955 0.954 0.923 0.670
 GPR_EMD 0.996 0.996 0.280 0.206 0.984 0.984 0.540 0.370
 RFR_EMD 0.996 0.997 0.243 0.167 0.955 0.953 0.933 0.666
 RVFL_EMD 0.869 0.869 1.548 1.221 0.863 0.862 1.600 1.246
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Fig. 9  Scatterplot of measured versus predicted TDG concentration using all models for the USGS 
14019220 station
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models were arranged from the highest  (R2 and NSE) to the lowest (RMSE and MAE), and 
consequently the models were arranged as follow: RFR(1), Bagg(2), GPR(3), MLPNN(4), 
AdaBoost(5) and RVFL(6). It is clear that, the RFR and Bagg revealed the best 
performances by presenting the lowest RMSE and MAE values of ≈ 1.914 and ≈ 1.400, 
respectively, and the highest  R2 and NSE values of ≈  0.891 and ≈  0.891, respectively. 
The RVFL model presented the worst results compared to all other models with  R2, NSE, 
RMSE, and MAE values of ≈ 0.724, ≈ 0.722, ≈ 3.061 and ≈ 2.410, respectively. Moreover, 
according to the previous results, we can conclude that, obtained results demonstrated that 
RFR and Bagg would be more feasible for modelling TDG and possess more capability of 
nonlinear mapping, followed by the GPR and the MLPNN models.

The previous statement was further confirmed by analyzing the results obtained using 
the VMD, EMD and EWT signal decomposition. According to Table 6, the VMD, EMD 
and EWT further improve the model’s performances, which lead to a great improvement 
with the involvement of these techniques in overcoming some limitations of the standalone 
models, especially, the capabilities in capturing the nonlinearity present in the input vari-
ables. As results of this, we can see that, the  R2 and NSE metrics reached extreme values of 
≈ 0.996 and ≈ 0.995 (i.e., the maximal values obtained at the 13,352,950 station) obtained 
using the GPR_EWT accompanied by an improvements rate of ≈ 80% and ≈ 80.44% in 
terms of RMSE (≈  0.405) and MAE (≈  0.303) reduction compared to the single GPR 
model. Notably, the EWT is the sole algorithm for which the performances of all-single 
models were improved. We can note that the MLPNN_EWT was slightly lower than the 
GPR_EWT with negligible difference in terms of model’s performances, while the Bagg_
EWT and RFR_EWT worked equally. By further analysis of the obtained results, the fol-
lowing conclusions can be drawn. First, the GPR_EMD yielded the best performances 
(equally with the MLPNN_EMD) compared to the other models, while the AdaBoost_
EMD was the worst model. More precisely, the  R2 and NSE values of ≈ 0.992 and ≈ 0.990 
were obtained using the GPR_EMD and MLPNN_EMD against ≈  0.839, and ≈  0.828 
obtained using the AdaBoost_EMD. Second, the improvement gained using the VMD was 
the least significant and two models have shown their performances decreased compared 
to the single models, i.e., the GPR_VMD and the RVFL_VMD, for which the  R2 and NSE 
values were dropped from (≈  0.880 and ≈  0.879) to (≈  0.859 and ≈  0.858), and from 

Fig. 10  Taylor diagram for mod-
els comparison using the valida-
tion dataset: USGS 14019220 
station



 S. Heddam et al.

1 3

85 Page 28 of 37

(≈ 0.724 and ≈ 0.722) to (≈ 0.694 and ≈ 0.693), respectively. Yet, it is important to note 
that, high accuracy was obtained using the MLPNN_VMD, RFR_VMD, and Bagg_VMD, 
for which the  R2 and NSE values have raised the values of ≈ 0.978 and ≈ 0.970, respec-
tively. The scatterplot of measured and calculated TDG using all models are depicted in 
Fig. 11. The Taylor diagram in Fig. 12 is presented for further highlighting the superiority 
of the hybrid models compared to the single models.

4  Summary and remarks

It is clear from the above discussed results that the proposed hybrid models based on signal 
decomposition are valuable for modelling TDG concertation. Meanwhile, the superiority, 
robustness and effectiveness of the VMD, EMD and EWT algorithms were justified and 

Table 6  Performances of different models at the USGS 13352950 station

Models Training Validation

R NSE RMSE MAE R NSE RMSE MAE

Standalone models without decomposition
 MLPNN 0.878 0.877 2.042 1.595 0.861 0.859 2.182 1.651
 AdaBoost 0.891 0.891 1.929 1.521 0.857 0.855 2.209 1.730
 Bagg 0.956 0.954 1.246 0.921 0.891 0.891 1.914 1.401
 GPR 0.899 0.898 1.861 1.434 0.880 0.879 2.024 1.551
 RFR 0.956 0.954 1.248 0.922 0.891 0.891 1.914 1.399
 RVFL 0.717 0.715 3.112 2.469 0.724 0.722 3.061 2.410

Models based on empirical wavelet transform (EWT)
 MLPNN_EWT 0.998 0.998 0.271 0.202 0.994 0.994 0.437 0.341
 AdaBoost_EWT 0.982 0.982 0.785 0.607 0.939 0.937 1.455 1.036
 Bagg_EWT 0.998 0.998 0.246 0.160 0.976 0.976 0.902 0.526
 GPR_EWT 0.998 0.999 0.220 0.156 0.996 0.995 0.405 0.303
 RFR_EWT 0.998 0.998 0.245 0.160 0.974 0.973 0.952 0.530
 RVFL_EWT 0.792 0.792 2.659 2.114 0.789 0.788 2.672 2.114

Models based on variational mode decomposition (VMD)
 MLPNN_VMD 0.994 0.993 0.479 0.369 0.974 0.971 0.984 0.723
 AdaBoost_VMD 0.972 0.973 0.959 0.739 0.925 0.921 1.634 1.154
 Bagg_VMD 0.998 0.998 0.266 0.184 0.978 0.977 0.878 0.573
 GPR_VMD 0.916 0.915 1.701 1.296 0.859 0.858 2.189 1.688
 RFR_VMD 0.998 0.998 0.264 0.183 0.978 0.978 0.865 0.568
 RVFL_VMD 0.691 0.690 3.248 2.625 0.694 0.693 3.216 2.580

Models based on empirical mode decomposition (EMD)
 MLPNN_EMD 0.998 0.998 0.284 0.216 0.992 0.990 0.570 0.429
 AdaBoost_EMD 0.986 0.986 0.687 0.513 0.839 0.828 2.408 1.344
 Bagg_EMD 0.998 0.998 0.229 0.152 0.972 0.970 1.011 0.710
 GPR_EMD 0.998 0.998 0.251 0.185 0.992 0.991 0.549 0.394
 RFR_EMD 0.998 0.998 0.230 0.152 0.972 0.969 1.022 0.712
 RVFL_EMD 0.869 0.869 2.111 1.686 0.874 0.873 2.065 1.646



New formulation for predicting total dissolved gas…

1 3

Page 29 of 37 85

Fig. 11  Scatterplot of measured versus predicted TDG concentration using all models for the USGS 
13352950 station
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validated by a deeply comparison of the singles and hybrid models performances. For 
further discussion and comparison of the efficiency of the proposed modelling framework 
based on signal decomposition, previous models available in the literature were compared 
with our models and the comparison is presented hereafter.

A research study used the ELM and SVR models for predicting TDG concentration 
using several input variables namely, Tw, BP, Q and gage height (GH) (AlOmar et al. 2020). 
However, in their study, they have forecasted the TDG one hour in advance (t + 1), using 
the input variables measured at the previous lag time (t − 1). From the obtained results, 
the SVR was slightly more accurate and exhibiting an R-value of ≈ 0.992, compared to 
the values of ≈ 0.990 obtained using the ELM model. In comparison to our results, it is 
clear the SVR and ELM have provided the same performances obtained in our present 
study, however, the inclusion of the TDG measured at (t − 1) have certainly contributed 
to the improvement of the ELM and SVR models performances. A research used the SVR, 
ELM, genetic algorithm ELM (GA-ELM), and GA-SVR for modelling TDG measured at 
three dams’ reservoir stations (Wang and Sheng 2022). They used a large number of input 
variables namely, Q, BP, Tw, discharge per unit width (q), upstream and downstream water 
level difference (ΔH), bubble pressure(F) in stilling basin, and retention time (TS). Form 
the obtained results, it was found that, GA-SVR (RMSE ≈ 1.43, MAE ≈ 0.95) was more 
accurate compared to GA-ELM (RMSE ≈ 1.48, MAE ≈ 1.31). However, the two models, 
i.e., the GA-ELM and GA-SVR were significantly less accurate compared to the models 
proposed in the present study, for which an RMSE and MAE of ≈ 0.394 and ≈ 0.297 were 
obtained using the GPR combined with the EWT, EMD and VMD algorithms. Another 
study used the MLPNN model for modelling TDG using sensor depth (SD), Q, BP, Tw, 
spill from dam (SFD), and water elevation (WL) (Han et al. 2019). It was found that; the 
MLPNN was more accurate compared to the MLR model exhibiting R, NSE, RMSE, 
and MAE values of ≈ 0.970, ≈ 0.930, ≈ 2.05 and ≈ 1.22, respectively, which were less 
accurate compared to models developed in the present study (R ≈ 0.996, NSE ≈ 0.992, 
RMSE ≈ 0.394 and MAE ≈ 0.297).

Recently, a scientific research introduced a new modelling strategy using the parallel 
chaos search based incremental extreme learning machine (PC-ELM) for predicting 
hourly TDG using only water temperature (Tw) as predictor (Heddam 2023). The PC-ELM 
model was tested using data from four station located at Snake River, USA, and operated 

Fig. 12  Taylor diagram for mod-
els comparison using the valida-
tion dataset: USGS 13352950 
station
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by the USGS. For improving the performance of the PC-ELM, the Tw was combined 
with the periodicity, i.e., the year, month, day, and hour number. It was found that; the 
PC-ELM was slightly more accurate compared to the standalone ELM, exhibiting an 
 R2 value of approximately ≈  0.965, however, the PC-ELM is less accurate compared 
to the hybrid models reported in our present study  (R2  ≈  0.990). In an investigation a 
research article compared between adaptive neuro-fuzzy inference systems (ANFIS) and 
dynamic evolving neural-fuzzy inference system (DENFIS) for modelling hourly TDG 
measured in two USGS stations (Heddam and Kisi 2021). The two ANFIS and DENFIS 
models were developed using Q, BP, Tw, and SFD. The ANFIS model was found to be 
more accurate with R, NSE, RMSE and MAE values of ≈ 0.977, ≈ 0.954, ≈ 1.084 and 
≈ 0.773, compared to the values of ≈ 0.968, ≈ 0.936, ≈ 1.271 and ≈ 0.868, obtained using 
the DENFIS model. By comparison with the present research, the DENFIS and ANFIS 
models were less accurate compared to the hybrid models proposed in our study. Another 
study used the generalized regression neural network (GRNN) with the MLR model for 
predicting TDG using a large number of predictors namely, Q, BP, Tw, SFD, SD (Heddam 
2017). Good performances were obtained using the GRNN model with R, NSE, RMSE 
and MAE values of ≈ 0.946, ≈ 0.895, ≈ 0.995 and ≈ 0.593, respectively, however, they 
are significantly lower than the values obtained in this study. In another study, the authors 
compared between kriging interpolation method (KIM), response surface method (RSM), 
and the MLPNN models for predicting TDG using Q, BP, Tw, and SFD (Heddam and Kisi 
2020). It was found that he proposed KIM was more accurate compared to the MLPNN 
and RSM, and excellent performances were obtained with R, NSE, RMSE and MAE 
values of ≈ 0.973, ≈ 0.941, ≈ 1.462 and ≈ 1.122, respectively, always less than the values 
obtained using the hybrid models proposed in the present study. Finally, in a research the 
authors applied the high-order response surface method (H-RSM), M5Tree, least squares 
support vector machine (LSSVM), and multivariate adaptive regression spline (MARS) for 
modelling TDG, showing the superiority of the H-RSM model with R, NSE, RMSE and 
MAE values of ≈ 0.965, ≈ 0.931, ≈ 1.456 and ≈ 1.022, respectively [31].

5  Conclusion

Total dissolved gas (TDG) produced at high dam reservoir was regressed against water 
temperature, barometric pressure and discharge measurements from four USG stations to 
explore whether ML algorithms were able to accurately predict TDG. In addition to this, 
the objective was to determine how signal decomposition approaches and conventional ML 
could be combined to improve the predictive accuracy. The results showed that the model-
ling using single models without signal decomposition results in TDG estimates with a 
good predictive accuracy for all models. However, the RVFL and AdaBoost have provided 
moderate results. In addition, the performances of the models varied from one station to 
another and from one model to another and no general conclusion could be drawn. The 
second part of the study was mainly motivated by the requirement of high-quality TDG 
estimations, which is crucial to efficiently control water resources and aquatic life. We 
looked at where could make the greatest gains on reducing the predictive errors between 
measured and predicted TDG. For answering this query, we have deeply analyzed the 
potential that can be gained from the signal decomposition algorithms. Three algorithms 
were then tested, i.e., the VMD, EMD, and EWT. Thus, hybrid models were used and com-
pared to the single models, providing consistent estimations for the major’s cases and for 
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all stations. We argued that it was essential to introduce new robust tools for better predict-
ing of TDG, which is successfully done in the present study, the combined ML and signal 
decomposition reveals reliability and relevance of the TDG estimations. Future research 
may be focused on the application of the proposed models for large dataset and by testing 
other ML models; in addition, testing the models with other input variables could be an 
innovative idea.

Author contributions Salim Heddam: conceptualization, modelling, methodology, writing up, revision 
and edits, software, analysis, supervision. Ahmed M. Al-Areeq: Writing up, review and edit, analysis, 
investigation, visualization, validation. Mou Leong Tan: writing up, review and edit, analysis, investigation, 
visualization, validation. Iman Ahmadianfar: writing up, review and edit, analysis, investigation, 
visualization, validation. Bijay Halder: writing up, review and edit, analysis, investigation, visualization, 
validation. Vahdettin Demir: writing up, review and edit, analysis, investigation, visualization, validation. 
Huseyin Cagan Kilinc: writing up, review and edit, analysis, investigation, visualization, validation. Sani 
I. Abba: writing up, review and edit, analysis, investigation, visualization, validation. Atheer Y Oudah: 
writing up, review and edit, analysis, investigation, visualization, validation. Zaher Mundher Yaseen: 
conceptualization, modelling, methodology, writing up, revision and edits, software, analysis, supervision, 
project leader. All authors have read and agreed to the published version of the manuscript.

Funding Not applicable.

Data availability The data presented in this study will be available on interested request from the 
corresponding author.

Declarations 

Conflict of interest The authors declare no competing interests.

Ethical approval Not applicable.

Informed consent Not applicable.

Consent to participate Not applicable.

Consent for publication All the authors have declared their consent to publish the manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

AlOmar MK, Hameed MM, Al-Ansari N, AlSaadi MA (2020) Data-driven model for the prediction of total 
dissolved gas: robust artificial intelligence approach. Adv Civ Eng 2020:6618842. https:// doi. org/ 10. 
1155/ 2020/ 66188 42

Bokde N, Feijóo A, Al-Ansari N et al (2020) The hybridization of ensemble empirical mode decomposition 
with forecasting models: application of short-term wind speed and power modeling. Energies 13:1666

Breiman L (2001) No title. Mach Learn 45:5–32. https:// doi. org/ 10. 1023/a: 10109 33404 324

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6618842
https://doi.org/10.1155/2020/6618842
https://doi.org/10.1023/a:1010933404324


New formulation for predicting total dissolved gas…

1 3

Page 33 of 37 85

Chen Y, Wu X, Liu X et  al (2023) Biochemical, transcriptomic and metabolomic responses to total dis-
solved gas supersaturation and their underlying molecular mechanisms in Yangtze sturgeon (Acipenser 
dabryanus). Environ Res. https:// doi. org/ 10. 1016/j. envres. 2022. 114457

Cheng X, Lu J, Li R et al (2021) Experimental study of the degasification efficiency of supersaturated dis-
solved oxygen on stepped cascades and correlation prediction model. J Clean Prod. https:// doi. org/ 10. 
1016/j. jclep ro. 2021. 129611

Chong D, Zhu N, Luo W, Pan X (2019) Human thermal risk prediction in indoor hyperthermal environ-
ments based on random forest. Sustain Cities Soc 49:101595. https:// doi. org/ 10. 1016/j. scs. 2019. 
101595

Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62:531–
544. https:// doi. org/ 10. 1109/ tsp. 2013. 22886 75

Feng J, Li R, Yang H, Li J (2013) A laterally averaged two-dimensional simulation of unsteady supersat-
urated total dissolved gas in deep reservoir. J Hydrodyn 25:396–403. https:// doi. org/ 10. 1016/ s1001- 
6058(11) 60378-9

Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to 
boosting. J Comput Syst Sci 55:119–139

Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61:3999–4010. https:// doi. org/ 10. 
1109/ tsp. 2013. 22652 22

Giri S, Kang Y, MacDonald K et al (2023) Revealing the sources of arsenic in private well water using ran-
dom forest classification and regression. Sci Total Environ 857:159360. https:// doi. org/ 10. 1016/j. scito 
tenv. 2022. 159360

Han L, Cai S, Gao M et al (2019) Selective catalytic reduction of NOx with  NH3 by using novel catalysts: 
State of the art and future prospects. Chem Rev 119:10916–10976

He Z, Zhou W (2022) Improvement of burst capacity model for pipelines containing dent-gouges using 
Gaussian process regression. Eng Struct 272:115028. https:// doi. org/ 10. 1016/j. engst ruct. 2022. 115028

Heddam S (2017) Generalized regression neural network based approach as a new tool for predicting total 
dissolved gas (TDG) downstream of spillways of dams: a case study of Columbia river basin dams, 
USA. Environ Process 4:235–253

Heddam S (2023) Parallel chaos search-based incremental extreme learning machine. Handbook of hydroin-
formatics. Elsevier, Amsterdam

Heddam S, Kisi O (2020) Evolving connectionist systems versus neuro-fuzzy system for estimating total 
dissolved gas at forebay and tailwater of dams reservoirs. Springer, Berlin, pp 109–126

Heddam S, Kisi O (2021) Evolving connectionist systems versus neuro-fuzzy system for estimating total 
dissolved gas at forebay and tailwater of dams reservoirs. Intell Data Anal Decis Syst Hazard Mitig 
Theory Pract Hazard Mitig. https:// doi. org/ 10. 1007/ 978- 981- 15- 5772-9_6

Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hubert spectrum for 
nonlinear and non-stationary time series analysis. Proc R Soc A Math Phys Eng Sci. https:// doi. org/ 10. 
1098/ rspa. 1998. 0193

Huang J, Li R, Feng J et al (2021) The application of baffle block in mitigating TDGS of dams with different 
discharge patterns. Ecol Indic. https:// doi. org/ 10. 1016/j. ecoli nd. 2021. 108418

Jiao W, Song S, Han H et al (2023) Artificially intelligent differential diagnosis of enlarged lymph nodes 
with random vector functional link network plus. Med Eng Phys 111:103939. https:// doi. org/ 10. 1016/j. 
meden gphy. 2022. 103939

Karbasi M, Jamei M, Ali M et al (2022) Developing a novel hybrid auto encoder decoder bidirectional gated 
recurrent unit model enhanced with empirical wavelet transform and Boruta-Catboost to forecast sig-
nificant wave height. J Clean Prod 379:134820. https:// doi. org/ 10. 1016/j. jclep ro. 2022. 134820

Keshtegar B, Heddam S, Kisi O, Zhu SP (2019) Modeling total dissolved gas (TDG) concentration at 
Columbia river basin dams: high-order response surface method (H-RSM) vs. M5Tree, LSSVM, and 
MARS. Arab J Geosci. https:// doi. org/ 10. 1007/ s12517- 019- 4687-3

Khozani ZS, Khosravi K, Pham BT et al (2019) Determination of compound channel apparent shear stress: 
application of novel data mining models. J Hydroinformatics. https:// doi. org/ 10. 2166/ hydro. 2019. 037

Li R, Li J, Li KF et al (2009) Prediction for supersaturated total dissolved gas in high-dam hydropower pro-
jects. Sci China, Ser E Technol Sci. https:// doi. org/ 10. 1007/ s11431- 009- 0337-4

Li P, Zhu DZ, Li R et al (2022) Production of total dissolved gas supersaturation at hydropower facilities 
and its transport: a review. Water Res 223:119012. https:// doi. org/ 10. 1016/j. watres. 2022. 119012

Li Y, Alameri AA, Farhan ZA et al (2023a) Theoretical modeling study on preparation of nanosized drugs 
using supercritical-based processing: Determination of solubility of Chlorothiazide in supercritical 
carbon dioxide. J Mol Liq 370:120984. https:// doi. org/ 10. 1016/j. molliq. 2022. 120984

https://doi.org/10.1016/j.envres.2022.114457
https://doi.org/10.1016/j.jclepro.2021.129611
https://doi.org/10.1016/j.jclepro.2021.129611
https://doi.org/10.1016/j.scs.2019.101595
https://doi.org/10.1016/j.scs.2019.101595
https://doi.org/10.1109/tsp.2013.2288675
https://doi.org/10.1016/s1001-6058(11)60378-9
https://doi.org/10.1016/s1001-6058(11)60378-9
https://doi.org/10.1109/tsp.2013.2265222
https://doi.org/10.1109/tsp.2013.2265222
https://doi.org/10.1016/j.scitotenv.2022.159360
https://doi.org/10.1016/j.scitotenv.2022.159360
https://doi.org/10.1016/j.engstruct.2022.115028
https://doi.org/10.1007/978-981-15-5772-9_6
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1016/j.ecolind.2021.108418
https://doi.org/10.1016/j.medengphy.2022.103939
https://doi.org/10.1016/j.medengphy.2022.103939
https://doi.org/10.1016/j.jclepro.2022.134820
https://doi.org/10.1007/s12517-019-4687-3
https://doi.org/10.2166/hydro.2019.037
https://doi.org/10.1007/s11431-009-0337-4
https://doi.org/10.1016/j.watres.2022.119012
https://doi.org/10.1016/j.molliq.2022.120984


 S. Heddam et al.

1 3

85 Page 34 of 37

Li Y, Luo J, Dai Q et al (2023b) A deep learning approach to cardiovascular disease classification using 
empirical mode decomposition for ECG feature extraction. Biomed Signal Process Control 79:104188. 
https:// doi. org/ 10. 1016/j. bspc. 2022. 104188

Lin L, Li R, Feng J et al (2022) Experimental study of the growth period of wall-attached bubbles. Water 
Supply 22:4769–4780. https:// doi. org/ 10. 2166/ ws. 2022. 168

Lu J, Li R, Ma Q et al (2019) Model for total dissolved gas supersaturation from plunging jets in high dams. 
J Hydraul Eng 145:4018082

Ma Q, Liang R, Li R et al (2016) Operational regulation of water replenishment to reduce supersaturated 
total dissolved gas in riverine wetlands. Ecol Eng 96:162–169. https:// doi. org/ 10. 1016/j. ecole ng. 2016. 
03. 019

Ma Q, Li R, Feng J et al (2019) Ecological regulation of cascade hydropower stations to reduce the risk of 
supersaturated total dissolved gas to fish. J Hydro-Environment Res 27:102–115. https:// doi. org/ 10. 
1016/j. jher. 2019. 10. 002

Nabih M, Ghoneimi A, Bakry A et  al (2023) Rock physics analysis from predicted Poisson’s ratio using 
RVFL based on wild geese algorithm in scarab gas field in WDDM concession. Egypt Mar Pet Geol 
147:105949. https:// doi. org/ 10. 1016/j. marpe tgeo. 2022. 105949

Nancy Jane Y, Charanya SK, Amsaprabhaa M et  al (2023) 2-HDCNN: a two-tier hybrid dual convolu-
tion neural network feature fusion approach for diagnosing malignant melanoma. Comput Biol Med 
152:106333. https:// doi. org/ 10. 1016/j. compb iomed. 2022. 106333

Netsanet S, Zheng D, Zhang W, Teshager G (2022) Short-term PV power forecasting using variational mode 
decomposition integrated with Ant colony optimization and neural network. Energy Rep 8:2022–2035. 
https:// doi. org/ 10. 1016/j. egyr. 2022. 01. 120

Ouyang Z-L, Liu S-Y, Zou Z-J (2022) Nonparametric modeling of ship maneuvering motion in waves based 
on Gaussian process regression. Ocean Eng 264:112100. https:// doi. org/ 10. 1016/j. ocean eng. 2022. 
112100

Pao Y-H, Phillips SM, Sobajic DJ (1992) Neural-net computing and the intelligent control of systems. Int J 
Control 56:263–289. https:// doi. org/ 10. 1080/ 00207 17920 89343 15

Pao Y-H, Park G-H, Sobajic DJ (1994) Learning and generalization characteristics of the random vector 
functional-link net. Neurocomputing 6:163–180. https:// doi. org/ 10. 1016/ 0925- 2312(94) 90053-1

Peng L, Wang L, Xia D, Gao Q (2022a) Effective energy consumption forecasting using empirical wave-
let transform and long short-term memory. Energy 238:121756. https:// doi. org/ 10. 1016/j. energy. 2021. 
121756

Peng Y, Lin Y, Zeng C et al (2022) Improved model for predicting total dissolved gas generation with the 
residence time of the water in the stilling phase. Front Environ Sci. https:// doi. org/ 10. 3389/ fenvs. 2021. 
770187

Politano MS, Carrica PM, Turan C, Weber L (2007) A multidimensional two-phase flow model for the total 
dissolved gas downstream of spillways. J Hydraul Res 45:165–177. https:// doi. org/ 10. 1080/ 00221 686. 
2007. 95217 57

Politano M, Carrica P, Weber L (2009) A multiphase model for the hydrodynamics and total dissolved gas 
in tailraces. Int J Multiph Flow 35:1036–1050. https:// doi. org/ 10. 1016/j. ijmul tipha seflow. 2009. 06. 009

Politano M, Arenas Amado A, Bickford S et  al (2012) Evaluation of operational strategies to minimize 
gas supersaturation downstream of a dam. Comput Fluids 68:168–185. https:// doi. org/ 10. 1016/j. compf 
luid. 2012. 08. 003

Politano M, Castro A, Hadjerioua B (2017) Modeling total dissolved gas for optimal operation of multires-
ervoir systems. J Hydraul Eng. https:// doi. org/ 10. 1061/ (asce) hy. 1943- 7900. 00012 87

Qiao Z-K, Yuan P, Hu R et al (2022) Research on aeromagnetic data error analysis and processing of multi-
rotor UAV based on variational mode decomposition algorithm. Heliyon 8:e11808–e11808. https:// doi. 
org/ 10. 1016/j. heliy on. 2022. e11808

Qin Y, Wei Q, Ji Q et  al (2022) Determining the position of a fish passage facility entrance based on 
endemic fish swimming abilities and flow field. Environ Sci Pollut Res 30:6104–6116. https:// doi. org/ 
10. 1007/ s11356- 022- 22581-0

Ren X, Zhang X, Yan C, Gozgor G (2022) Climate policy uncertainty and firm-level total factor productiv-
ity: evidence from China. Energy Econ 113:106209

Rezaie-Balf M, Attar NF, Mohammadzadeh A et al (2020) Physicochemical parameters data assimilation 
for efficient improvement of water quality index prediction: Comparative assessment of a noise sup-
pression hybridization approach. J Clean Prod 271:122576

Rout SK, Sahani M, Dora C et al (2022) An efficient epileptic seizure classification system using empirical 
wavelet transform and multi-fuse reduced deep convolutional neural network with digital implementa-
tion. Biomed Signal Process Control 72:103281. https:// doi. org/ 10. 1016/j. bspc. 2021. 103281

https://doi.org/10.1016/j.bspc.2022.104188
https://doi.org/10.2166/ws.2022.168
https://doi.org/10.1016/j.ecoleng.2016.03.019
https://doi.org/10.1016/j.ecoleng.2016.03.019
https://doi.org/10.1016/j.jher.2019.10.002
https://doi.org/10.1016/j.jher.2019.10.002
https://doi.org/10.1016/j.marpetgeo.2022.105949
https://doi.org/10.1016/j.compbiomed.2022.106333
https://doi.org/10.1016/j.egyr.2022.01.120
https://doi.org/10.1016/j.oceaneng.2022.112100
https://doi.org/10.1016/j.oceaneng.2022.112100
https://doi.org/10.1080/00207179208934315
https://doi.org/10.1016/0925-2312(94)90053-1
https://doi.org/10.1016/j.energy.2021.121756
https://doi.org/10.1016/j.energy.2021.121756
https://doi.org/10.3389/fenvs.2021.770187
https://doi.org/10.3389/fenvs.2021.770187
https://doi.org/10.1080/00221686.2007.9521757
https://doi.org/10.1080/00221686.2007.9521757
https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.009
https://doi.org/10.1016/j.compfluid.2012.08.003
https://doi.org/10.1016/j.compfluid.2012.08.003
https://doi.org/10.1061/(asce)hy.1943-7900.0001287
https://doi.org/10.1016/j.heliyon.2022.e11808
https://doi.org/10.1016/j.heliyon.2022.e11808
https://doi.org/10.1007/s11356-022-22581-0
https://doi.org/10.1007/s11356-022-22581-0
https://doi.org/10.1016/j.bspc.2021.103281


New formulation for predicting total dissolved gas…

1 3

Page 35 of 37 85

Saha S, Bera B, Shit PK et al (2023) Modelling and predicting of landslide in Western Arunachal Himalaya. 
India Geosyst Geoenviron 2:100158. https:// doi. org/ 10. 1016/j. geogeo. 2022. 100158

Salman B, Kadhum MM (2022) Predicting of load carrying capacity of reactive powder concrete and nor-
mal strength concrete column specimens using artificial neural network. Knowledge-Based Eng Sci 
3:45–53

Shamaee Z, Mivehchy M (2023) Dominant noise-aided EMD (DEMD): Extending empirical mode decom-
position for noise reduction by incorporating dominant noise and deep classification. Biomed Signal 
Process Control 80:104218. https:// doi. org/ 10. 1016/j. bspc. 2022. 104218

Shen X, Li R, Huang J et al (2016) Shelter construction for fish at the confluence of a river to avoid the 
effects of total dissolved gas supersaturation. Ecol Eng 97:642–648. https:// doi. org/ 10. 1016/j. ecole ng. 
2016. 10. 055

Sun H (2023) Construction of integration path of management accounting and financial accounting based on 
big data analysis. Optik (Stuttg) 272:170321. https:// doi. org/ 10. 1016/j. ijleo. 2022. 170321

Takoutsing B, Heuvelink GBM (2022) Comparing the prediction performance, uncertainty quantification 
and extrapolation potential of regression kriging and random forest while accounting for soil measure-
ment errors. Geoderma 428:116192. https:// doi. org/ 10. 1016/j. geode rma. 2022. 116192

Truong GT, Choi K-K, Kim C-S (2022) Implementation of boosting algorithms for prediction of punching 
shear strength of RC column footings. Structures 46:521–538. https:// doi. org/ 10. 1016/j. istruc. 2022. 10. 
085

Wang M, Sheng X (2022) Combining empirical wavelet transform and transfer matrix or modal superpo-
sition to reconstruct responses of structures subject to typical excitations. Mech Syst Signal Process 
163:108162

Wang Y, Politano M, Weber L (2019a) Spillway jet regime and total dissolved gas prediction with a mul-
tiphase flow model. J Hydraul Res 57:26–38

Wang Z, Lu J, Yuan Y et al (2019b) Experimental study on the effects of vegetation on the dissipation of 
supersaturated total dissolved gas in flowing water. Int J Environ Res Public Health 16:2256. https:// 
doi. org/ 10. 3390/ ijerp h1613 2256

Wang Z, Feng J, Liang M et al (2022) Prediction model and application of machine learning for supersatu-
rated total dissolved gas generation in high dam discharge. Water Res. https:// doi. org/ 10. 1016/j. watres. 
2022. 118682

Weiqi K, Weisong W, Maoxing Z (2022) Integrated learning algorithms with Bayesian optimization for 
mild steel mechanical properties prediction. Knowledge-Based Eng Sci 3:101–112

Williams CK, Rasmussen CE (2006) Gaussian processes for machine learning Vol. 2, No. 3: p. 4. Cam-
bridge MA: MIT press

Xiong B, Meng X, Xiong G et al (2022) Multi-branch wind power prediction based on optimized variational 
mode decomposition. Energy Rep 8:11181–11191. https:// doi. org/ 10. 1016/j. egyr. 2022. 08. 271

Yaseen ZM (2021) An insight into machine learning models era in simulating soil, water bodies and adsorp-
tion heavy metals: Review, challenges and solutions. Chemosphere 277:130126. https:// doi. org/ 10. 
1016/j. chemo sphere. 2021. 130126

Yuan Y, Feng J, Li R et al (2018) Modelling the promotion effect of vegetation on the dissipation of super-
saturated total dissolved gas. Ecol Modell 386:89–97. https:// doi. org/ 10. 1016/j. ecolm odel. 2018. 08. 016

Yuan Y, Wang C, Feng J et al (2022) Mortality risk evaluation methods for total dissolved gas supersatura-
tion to fish based on a mitigation measure of utilizing activated carbon. Water Res 225:119157. https:// 
doi. org/ 10. 1016/j. watres. 2022. 119157

Yuan Y, Chen Z, Feng J et al (2023) Research on the dissipation framework and dissipation coefficient pre-
diction model of the supersaturated dissolved gas in solid media containing water. Process Saf Environ 
Prot 170:921–934. https:// doi. org/ 10. 1016/j. psep. 2022. 12. 065

Zeng C, Mo K, Chen Q (2020) Improvement on numerical modeling of total dissolved gas dissipation after 
dam. Ecol Eng 156:105965. https:// doi. org/ 10. 1016/j. ecole ng. 2020. 105965

Zhang P, Liu Q, Wang Y et al (2022) River habitat assessment and restoration in high dam flood discharge 
systems with total dissolved gas supersaturation. Water Res. https:// doi. org/ 10. 1016/j. watres. 2022. 
118833

Zhang D, Yang H, Ou Y et al (2023) Experimental and simulation investigation of total dissolved gas pre-
diction in supersaturated water treatment: focusing on source calibration and combining with bubble 
coalescence. Environ Eng Sci. https:// doi. org/ 10. 1089/ ees. 2022. 0345

https://doi.org/10.1016/j.geogeo.2022.100158
https://doi.org/10.1016/j.bspc.2022.104218
https://doi.org/10.1016/j.ecoleng.2016.10.055
https://doi.org/10.1016/j.ecoleng.2016.10.055
https://doi.org/10.1016/j.ijleo.2022.170321
https://doi.org/10.1016/j.geoderma.2022.116192
https://doi.org/10.1016/j.istruc.2022.10.085
https://doi.org/10.1016/j.istruc.2022.10.085
https://doi.org/10.3390/ijerph16132256
https://doi.org/10.3390/ijerph16132256
https://doi.org/10.1016/j.watres.2022.118682
https://doi.org/10.1016/j.watres.2022.118682
https://doi.org/10.1016/j.egyr.2022.08.271
https://doi.org/10.1016/j.chemosphere.2021.130126
https://doi.org/10.1016/j.chemosphere.2021.130126
https://doi.org/10.1016/j.ecolmodel.2018.08.016
https://doi.org/10.1016/j.watres.2022.119157
https://doi.org/10.1016/j.watres.2022.119157
https://doi.org/10.1016/j.psep.2022.12.065
https://doi.org/10.1016/j.ecoleng.2020.105965
https://doi.org/10.1016/j.watres.2022.118833
https://doi.org/10.1016/j.watres.2022.118833
https://doi.org/10.1089/ees.2022.0345


 S. Heddam et al.

1 3

85 Page 36 of 37

Zhao J, Xuebin L, Daiwei Y et al (2023) Lithium-ion battery state of health estimation using meta-heuristic 
optimization and Gaussian process regression. J Energy Storage 58:106319. https:// doi. org/ 10. 1016/j. 
est. 2022. 106319

Zhu Z, Zhou M, Hu F et al (2023) A day-ahead industrial load forecasting model using load change rate 
features and combining FA-ELM and the AdaBoost algorithm. Energy Rep 9:971–981. https:// doi. org/ 
10. 1016/j. egyr. 2022. 12. 044

Zong W, Zhang J (2019) Use of smartphone applications and its impacts on urban life: a survey and random 
forest analysis in Japan. Sustain Cities Soc 49:101589. https:// doi. org/ 10. 1016/j. scs. 2019. 101589

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Salim Heddam1  · Ahmed M. Al‑Areeq2,10  · Mou Leong Tan3  · 
Iman Ahmadianfar4  · Bijay Halder5  · Vahdettin Demir6  · 
Huseyin Cagan Kilinc7  · Sani I. Abba2  · Atheer Y. Oudah8,9  · 
Zaher Mundher Yaseen10,2 

 * Salim Heddam 
 heddamsalim@yahoo.fr

 * Zaher Mundher Yaseen 
 z.yaseen@kfupm.edu.sa

 Ahmed M. Al-Areeq 
 ahmed.areeq@kfupm.edu.sa

 Mou Leong Tan 
 mouleong@gmail.com

 Iman Ahmadianfar 
 Im.ahmadian@gmail.com

 Bijay Halder 
 halder06bijay@gmail.com

 Vahdettin Demir 
 vahdettin.demir@karatay.edu.tr

 Huseyin Cagan Kilinc 
 huseyincagankilinc@aydin.edu.tr

 Sani I. Abba 
 saniisaabba86@gmail.com

 Atheer Y. Oudah 
 atheer@alayen.edu.iq

1 Agronomy Department, Faculty of Science, University 20 Août 1955, Skikda, Algeria
2 Interdisciplinary Research Center for Membranes and Water Security, King Fahd University 

of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia

https://doi.org/10.1016/j.est.2022.106319
https://doi.org/10.1016/j.est.2022.106319
https://doi.org/10.1016/j.egyr.2022.12.044
https://doi.org/10.1016/j.egyr.2022.12.044
https://doi.org/10.1016/j.scs.2019.101589
https://orcid.org/0000-0002-8055-8463
https://orcid.org/0000-0003-0618-8190
https://orcid.org/0000-0003-3939-0336
https://orcid.org/0000-0002-9960-1222
https://orcid.org/0000-0002-4279-5214
https://orcid.org/0000-0002-6590-5658
https://orcid.org/0000-0003-1848-2856
https://orcid.org/0000-0001-9356-2798
https://orcid.org/0000-0003-0867-7203
https://orcid.org/0000-0003-3647-7137


New formulation for predicting total dissolved gas…

1 3

Page 37 of 37 85

3 GeoInformatic Unit, Geography Section, School of Humanities, University Sains Malaysia, 
11800 Minden, Penang, Malaysia

4 Department of Civil Engineering, Behbahan Khatam Alanbia University of Technology, 
Behbahan, Iran

5 Department of Earth Sciences and Environment, Faculty of Sciences and Technology, Universiti 
Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

6 Department of Civil Engineering, KTO Karatay University, Konya 42020, Turkey
7 Department of Civil Engineering, İstanbul Aydın University, Istanbul, Turkey
8 Department of Computer Sciences, College of Education for Pure Science, University of Thi-Qar, 

Nasiriyah 64001, Iraq
9 Information and Communication Technology Research Group, Scientific Research Centre, Al-

Ayen University, Thi-Qar, Iraq
10 Civil and Environmental Engineering Department, King Fahd University of Petroleum & Minerals, 

31261 Dhahran, Saudi Arabia


	New formulation for predicting total dissolved gas supersaturation in dam reservoir: application of hybrid artificial intelligence models based on multiple signal decomposition
	Abstract
	Graphical abstract

	1 Introduction
	2 Materials and methods
	2.1 Study area and data
	2.2 Machine learning methods
	2.2.1 Multilayer perceptron neural network (MLPNN)
	2.2.2 Gaussian process regression (GPR)
	2.2.3 Random forest regression (RFR)
	2.2.4 Random vector functional link (RVFL)
	2.2.5 Adaptive boosting (AdaBoost)
	2.2.6 Bootstrap aggregating (Bagg)

	2.3 Signal decomposition methods
	2.3.1 Variational mode decomposition (VMD)
	2.3.2 Empirical mode decomposition (EMD)
	2.3.3 Empirical wavelet transform (EWT)

	2.4 Performance assessment of the models
	2.5 Models development

	3 Experimental results
	3.1 USGS 14019240 station modeling results
	3.2 USGS 13341000 station modeling results
	3.3 USGS 14019220 station modeling results
	3.4 USGS 13352950 station modeling results

	4 Summary and remarks
	5 Conclusion
	References




