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Abstract
Since installing solid oxide fuel cells (SOFCs)-based systems suffers from high expenses, 
accurate and reliable modeling is heavily demanded to detect any design issue prior to the 
system establishment. However, such mathematical models comprise certain unknowns 
that should be properly estimated to effectively describe the actual operation of SOFCs. 
Accordingly, due to their recent promising achievements, a tremendous number of 
metaheuristic optimizers (MHOs) have been utilized to handle this task. Hence, this effort 
targets providing a novel thorough review of the most recent MHOs applied to define the 
ungiven parameters of SOFCs stacks. Specifically, among over 300 attempts, only 175 arti-
cles are reported, where thirty up-to-date MHOs from the last five years are comprehen-
sively illustrated. Particularly, the discussed MHOs are classified according to their behav-
ior into; evolutionary-based, physics-based, swarm-based, and nature-based algorithms. 
Each is touched with a brief of their inspiration, features, merits, and demerits, along with 
their results in SOFC parameters determination. Furthermore, an overall platform is con-
structed where the reader can easily investigate each algorithm individually in terms of its 
governing factors, besides, the simulation circumstances related to the studied SOFC test 
cases. Over and above, numerical simulations are also introduced for commercial SOFCs’ 
stacks to evaluate the proposed MHOs-based methodology. Moreover, the mathematical 
formulation of various assessment criteria is systematically presented. After all, some per-
spectives and observations are provided in the conclusion to pave the way for further analy-
ses and innovations.
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1 Introduction

Nowadays, the prompt growth of the world economy reveals the heavy need for sus-
tainable and secure energy sources (Mehran et  al. 2023). In other words, the depend-
ence on fossil fuels has become a major obstacle to continuous economic development 
due to their shortage, high price, and ecological ruinous impacts (Jolaoso et al. 2023; 
Lamagna et al. 2023). Thus, exploiting renewable energy sources (RESs), such as wind 
and solar, is compulsory for a smooth transition toward a technological global renais-
sance (Kasaeian et  al. 2023; Yatoo et  al. 2023). Besides, the expansion of installing 
RESs significantly reduces greenhouse emissions, which supports international endeav-
ors to mitigate global warming issues (Lee et al. 2023a, b). Among the various RESs, 
fuel cells (FCs) have a very incremental rate of utilization in power systems as a result 
of their environmentally friendly nature and high transformation efficiency (Jawad et al. 
2022; Lokhande et  al. 2023). However, the researchers along with the industry stake-
holders are persistently seeking to discover alternative raw substances and innovate new 
fabrication techniques for diminishing the FC’s cost (Ghavidel and Mousavi-G 2022; 
Rupiper et al. 2022).

Recently, FC systems have been involved in numerous commercial applications, begin-
ning with the power generation units, passing through the transportation facilities, and end-
ing up with the portable applications (Lee et al. 2023a, b; Yang et al. 2021a, b, c). Accord-
ing to the electrolyte material, FCs have diverse types, like proton exchange membrane 
FC (PEMFC) (Ashraf et al. 2022b), solid oxide FC (SOFC) (Fathy et al. 2020), alkaline 
FC (AFC) (Hamada et  al. 2023), molten carbonate FC (MCFC) (Cigolotti et  al. 2021), 
and many more (Inci and Türksoy 2019; Sazali et al. 2020). Particularly, the main features 
of some well-known FC’s types are captured in Table 1 (Ashraf et al. 2022a). More spe-
cifically, SOFC is distinguished by a higher conversion efficiency and more fuel resiliency 
than the other candidates. Consequently, it plays a vital role in replacing internal combus-
tion engine-propelled vehicles with electric vehicles where SOFC is employed as the prin-
cipal propulsion source (Bessekon et al. 2019; Ren 2022). On top of this, due to its high 
operating temperature that yields a large amount of unused heat, it’s considerably engaged 
in the combined cycle of power plants (Oryshchyn et al. 2018).

In fact, it’s obvious that SOFCs are generally utilized in bulky projects (Perna et  al. 
2018). So, such systems shall be brought to study, analysis, and validation to catch up with 
any design flaws prior to starting the costly installation (Ashraf et al. 2022a, b, c; Wu et al. 
2019). Hence, modeling SOFCs is imperative to accurately describe their performance, in 
terms of the electrical behavior (V-I and P-I curves), during different operating and faulty 
conditions (Ghanem et  al. 2022; Lee et  al. 2022). Additionally, SOFCs modeling ena-
bles precise simulation of the internal physical phenomena, perfect control, and efficient 
prediction of their response to unanticipated events during operation (Safari et al. 2018). 
Nevertheless, proper modeling is a challenging task due to the ingrained nonlinearity and 
nonconvexity that portray their dynamic performance (de Melo et al. 2018). Thus, several 
models have been proposed lately, which can be classified based on many aspects, like the 
derivation technique (empirical, semi-empirical, or analytical), and the discussed phenom-
ena (electrochemistry or mass and heat transport) (Prokop et al. 2018; Rossi et al. 2019; 
Zhu et al. 2021). Also, SOFC models can be categorized based on the performance scale 
(cell, stack, or system) and the operation state (steady or dynamic). Notwithstanding, most 
of these categories share a significant property which is their containment of a group of 
unknown parameters that should be optimally assigned (Karanfil 2020).
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Consequently, tremendous attempts have been executed to accurately specify such 
parameters. For example, electrochemical impedance spectroscopy (Cao et  al. 2010) 
and fractional derivative techniques have been employed for identifying the transient 
model (Caliandro et  al. 2019). On the other hand, the receding-horizon experiment has 
been applied for the online parameter estimation of real time model (Yang et  al. 2020a, 
b). Nonetheless, such traditional optimizers lack fast and stable computation over all 
scenarios due to their complicated structure and reliance on the initial conditions. In 
addition, the undefined parameters in SOFC models are strongly coupled with the 
operating circumstances resulting in a heavier burden optimization task. Therefore, finding 
novel, effective, and robust optimization methods to deal with such a tricky task becomes 
inevitable (Ohenoja and Leiviskä 2020; Priya et al. 2018; Yang et al. 2020).

Since the overwhelming evolution of the computer-based applications, metaheuristic 
optimizers (MHOs) have achieved a good reputation in tackling diverse extreme nonlinear 
optimization problems (Alsaidan et  al. 2022; Mitra et  al. 2023; Zhou et  al. 2024). They 
prove their competency and reliability to offer optimal solutions for highly sophisticated 
tasks with few requirements when compared to conventional optimizers (Kahia et al. 2023; 
Korkmaz et al. 2023; Sarmah et al. 2017). Indeed, the parameter estimation of SOFC can 
be principally regarded as an optimization task, where a vast number of MHOs have been 
adopted to optimally allocate the ungiven parameters with low computational burden and 
high efficacy (Gong et al. 2014; Jia and Taheri 2021; Xiong et al. 2021).

Again, such optimization techniques are utilized to promote the modelling accuracy of 
SOFCs. Principally, MHOs are engaged to enhance the mathematical models in a way that 
they can precisely describe the actual behavior of SOFCs when subjected to diverse operat-
ing conditions. Consequently, this not only will lead to better design and implementation of 
SOFC-based systems but also will allow optimal prediction of SOFC performance due to 
any sudden circumstances.

Generally speaking, MHOs are not only used for parameter identification of SOFCs, 
but also are dedicated for further analysis and investigation of power system problems 
(Draz et al. 2021). Many frameworks related to power systems design, operation, control, 
protection, and more have been formulated and solved using MHOs. To name just a few, 
protection coordination of overcurrent relays (Draz et  al. 2023a, b), optimal power flow 
(El-Fergany and Hasanien 2015), energy management strategies (Emad et al. 2021), and 
optimal allocation of distributed generators (El-Fergany 2015) represent some models in 
electric power systems. Moreover, the performance of MHOs is assessed for solving the 
problems of parameter estimation of PEMFCs (Ashraf et  al. 2022a), photovoltaic cells 
(El-Fergany 2021), and batteries (Hasanien et al. 2023). Even though, these models may 
be reformulated for different objectives such as integration of fast charging stations (Draz 
et  al. 2023a, b), frequency control (El‐Hameed and El‐Fergany 2016), and renewables’ 
integration in modern power systems (Elkholy et  al. 2018). In this context, Fig.  1 
summarizes most of MHO’s applications for solving the earlier mentioned problems in 
electric power systems.

Regarding SOFC’s optimization, the authors in (Yang et al. 2020a, b) present a literature 
review of the application of MHOs in the SOFC parameters estimation. However, it only 
discusses seventeen MHOs without categorizing them according to their inspiration. 
Moreover, the authors didn’t go deep into stating the simulation settings of such algorithms, 
like the iteration number, population size, and other tunable factors. Thence, this article 
introduces a comprehensive survey to summarize the outcomes of several MHOs engaged 
in the parameter identification of SOFC models. In this regard, 175 up-to-date articles are 
documented to construct this survey, where their annual distribution is revealed in Fig. 2.
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Specifically, the major contributions can be listed as follows:

(i) A detailed mathematical representation of various well-known SOFC models, along 
with a brief comparison, is offered,

(ii) An intensive discussion of thirty up-to-date MHOs utilized in SOFC parameter estima-
tion is introduced,

(iii) Besides, a comprehensive summary, comprises their simulation settings and outcomes, 
is also elaborated,

(iv) Additionally, a fair and precise statistical comparison of such optimizers is conducted 
to accurately assess their computational performance, and

(v) Finally, two well-reputed SOFC test cases are evaluated to validate the effectiveness 
of the proposed MHOs-based methodology.

The remainder of this paper is structured as follows: various mathematical mod-
elling techniques of SOFC are presented in Sect  2. Several assessment criteria that 
have been adopted in SOFC parameter identification are discussed in Sect 3. Section 4 
reveals a thorough review of thirty recent MHOs in terms of their inspiration, descrip-
tion, and results in SOFC parameter recognition. A validating discussion to assess the 

Fig. 1  Numerical statistic of 
MHOs’ applications on power 
systems

Fig. 2  Numerical statistic of 
published papers per year
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accuracy of such algorithms is introduced in Sect 5. Future insights and research direc-
tions are announced in Sect 6. Lastly, Sect. 7 provides the conclusion.

2  Mathematical formulation of solid oxide fuel cell

As mentioned earlier, precise and efficient modeling is substantial to actually emulate the 
SOFC performance over a wide range of operating instants. Therefore, a plentiful number 
of mathematical models have been proposed to accurately imitate various SOFC operation 
aspects, especially the polarization characteristics (V-I and P-I curves) (Gong et al. 2014; 
Jia and Taheri 2021; Xiong et  al. 2021; Yang et  al. 2020a, b). In this context, this sec-
tion illustrates the operation theory of SOFCs along with their construction. In addition, it 
brings up to the reader the most well-known models that effectively describe the electrical 
characteristics of SOFCs either in steady-state or dynamic operation.

2.1  Operation Theory

Basically, a practical SOFC consists of three regions, the anode, the cathode, and the 
electrolyte bounded between them, as shown in Fig. 3 (Jia and Taheri 2021). In fact, the 
electrochemical reactions that take place in anode–cathode structure are formulated in (1) 
and (2), respectively.

(1)2H2 + 2O2−
→ 2H2O + 4e−

(2)O2 + 4e− → 2O2−

Fig. 3  Basic construction of SOFC
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2.2  Electrochemical Model

Mainly, the output voltage of SOFC is experienced by three polarization losses, activation 
overpotential Vac in ( V  ), ohmic voltage drop Voh in ( V  ), and concentration loss Vcn in ( V  ), 
as indicated in Fig. 4 (Xiong et al. 2021). In fact, the activation overpotential refers to the 
initial slowness of the chemical reactions. Whereas the voltage decay due to the electrolyte 
and external connections resistance is defined by the ohmic voltage drop. Lastly, the mass 
transport phenomenon yields concentration losses. So, the best harmony between the 
experimental polarization curve and the model-generated one heavily relies on the optimal 
allocation of the model’s unknown parameters (Zhu et al. 2015).

Generally, a group of series connected SOFCs is called a stack. In this context, all the 
subsequent models assume the same mathematical formulation of the stack output voltage 
Vsk in ( V  ), as given by (3) (Noren and Hoffman 2005).

where, Ncl is the number of connected SOFCs. Vnr symbolizes the Nernst open-circuit volt-
age in ( V  ) and is given by (4).

where, Vo is the reversable reference voltage in ( V  ), R = 8.314J∕(mol.K) is the universal 
gas constant, F = 96485C∕mol is the Faraday constant, and Top denotes the stack operating 
temperature in ( K ). PH , PO , and PW refer to the hydrogen, oxygen, and water partial pres-
sures in ( atm).

Additionally, Using Bulter-Volmer equation, the activation voltage drop can be 
described by (5).

(3)Vsk = Ncl.
(
Vnr − Vac − Voh − Vcn

)

(4)Vnr = Vo +
RTop

2F
ln

[
(PH)

2PO

(PW )
2

]

Fig. 4  Typical V-I curve of SOFC
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where, the load current density is represented by Jld in ( A.cm−2 ). The exchange current 
densities of the anode and cathode are symbolized by Jex,a and Jex,c in ( A.cm−2 ), respec-
tively. A is Tafel line slope in ( V).

Moreover, the ohmic loss Voh can be expressed by (6).

where, ℜn indicates the ionic resistance in ( kΩ.cm2).
Finally, the concentration overpotential Vcn can be computed by (7).

where, B is a constant in ( V  ) and Jm represents the maximum current density in ( A.cm−2).
Now, it’s clear that there are seven unknowns should be optimally tuned, which are Vnr , 

A , Jm , Jex,a , Jex,c , ℜn , and B.

2.3  Steady‑State Model (1)

With a slight difference to the electrochemical model, this model defines the open circuit 
voltage Vnr as in (8) (Gebregergis et al. 2008).

However, Vo refers here to the voltage dependence on temperature and is formulated by 
(9).

where, Vo
o
 denotes the voltage standard under nominal conditions ( Top = 298K , P = 1atm ) 

and Ce is an empirical coefficient.
Herein, the activation voltage drop Vac can be simplified and written as in (10) (Chan 

et al. 2002).

where, ‡ represents the number of travelling electrons per mole of suppliants ( ‡ = 2 ). The 
overall exchange current density is symbolized by Jex in ( A.cm−2 ) and given by (11)

where, C1 and  C2 are empirical coefficients.
Actually, the ohmic losses Voh is much detailed in this model, as indicated in (12).

(5)Vac = A.

{

sinh
−1

[
Jld

2Jex,a

]

+ sinh
−1

[
Jld

2Jex,c

]}

(6)Voh = Jld ×ℜn

(7)Vcn = −Bln

[

1 −
Jld

Jm

]

(8)Vnr = Vo +
RTop

4F
ln

[
(PH)

2PO

(PW )
2

]

(9)Vo = Vo
o
− Ce

(
Top − 298

)

(10)Vac =
RT��

‡F
sinh

−1[
Jld

2Jex

]

(11)Jex = C1.Top.e
(−C2∕Top)

29Page 9 of 50
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where, C3 , C4 , To are material constants. Specifically, C3 and C4 calculate the inherent resist-
ance of SOFC.

Lastly, the activation overpotential Vac can be derived from (13).

where, the maximum current density Jm is computed here by (14).

where, C5 is a constant and Cns represents the concentration of the suppliant.
Accordingly, there are six ungiven parameters, which are Ce , C1 , C2 , C3 , C4 , and C5 , have 

to be precisely determined in this model.

2.4  Steady‑State Model (2)

Principally, this approach defines the no-load output voltage of SOFC Vnr as in (15) (Bavar-
ian et al. 2010).

where, ΔG◦(Top) refers to the change in Gibbs free energy in ( Joule).
Moreover, the activation voltage drop is described by Tafel equation and given by (16) 

(Yang et al. 2020a, b).

It’s worth noting that above formula is only applicable for Jld > Jex.
Fortunately, the ohmic and concentration losses in this model are the same as those 

defined in the electrochemical model and determined by (6) and (7), respectively.
Now, it’s noticeable that only Vnr , A , ℜn , B , Jex , and Jm are the targeted parameters to be 

optimized.

2.5  Dynamic Model

Basically, this mathematical approach provides a more realistic simulation of SOFC per-
formance than the others. In fact, it takes into account the time constants of the fuel pro-
cessors due to the alternation rate of the fuel pressures (Chakraborty 2009). Furthermore, 
it emulates the reliance of hydrogen, oxygen, and vapor pressures on the molar flowrate. 
Considering the same output voltage expressed in (15), the hydrogen pressure rate of 
change dPH

dt
 is formulated by (17) (Xu et al. 2016).

(12)Voh = Jld.C3.e

[

C4(
1

To
−

1

Top
)

]

(13)Vcn =
RT��

‡F
��

[

1 −
Jld

2Jm

]

(14)Jm =
C5

T��
��
[
1 − Cns

]

(15)Vnr =
1

‡F

�

−ΔG◦(Top) + RTopln

�
PH

√
PO

PW

��

(16)Vac = A.sinh−1
[
Jld

2Jex

]
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where, Van is the anode volume in ( m3 ), qin
H

 represents the input hydrogen flowrate in 
( kmol∕sec ), CHPH refers to the output hydrogen molar flowrate in ( kmol∕sec ), and the 
molar flowrate of the anode-reacted hydrogen is symbolized by 2CrJld in ( kmol∕sec ). More 
specifically, CH denotes the constant of the hydrogen valve gain in ( kmol∕atm.sec ) and 
Cr =

Ncl

F
 in ( kmol∕A.sec).

When taking Laplace transformation, the aforementioned formula can be determined by 
(18).

Adding to that, the Laplace domain for the oxygen and water vapor partial pressures is 
formulated by (19), (20), respectively. �H is the time constant of the hydrogen flow in ( sec).

where, CO and CW are the constants of the oxygen and water vapor valve gains in 
( kmol∕atm.sec ). �O and �W represent the time constants of the oxygen and water vapor 
flows in ( sec).

Lastly, the time delay of input hydrogen flowrate is structured as a 1st order in (21).

(17)
dPH

dt
=

RTop

Van

(
qin
H
− CHPH − 2CrJld

)

(18)PH(s) =

1

CH

1 + �Hs

(
qin
H
− 2CrJld

)

(19)PO(s) =

1

CO

1 + �Os

(
qin
O
− C

r
Jld

)

(20)PW (s) =

1

CW

1 + �Ws

(
2CrJld

)

(21)qin
H
(s) =

1

1 + �f s

(
qf
)

Fig. 5  Schematic diagram of SOFC transient model
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where, qf  refers to the fuel flowrate in ( kmol∕s ) and �f  is the time constant of the fuel 
processor in ( sec).

For ease of illustration, the reader can refer to Fig. 5, where the schematic block diagram 
of the dynamic model is constructed. It’s worth mentioning that the model demonstrates 
the transient responses due to load variations, while the variations of thermodynamics are 
neglected. Nevertheless, it contains the same sex unspecified parameters as steady-state 
model (2), which are Vnr , A , ℜn , B , Jex , and Jm.

To sum up, Fig. 6. offers a brief comparison of the basic features of the aforementioned 
SOFC models (Yang et al. 2020a, b).

3  Assessment Formulas

Since the unknown parameters are now located, it’s time to formulate the evaluation cri-
teria the optimizer will seek to minimize. Indeed, an assessment formula (AF) is a crucial 
factor in determining how efficiently the algorithm reaches the unknown’s optimal values 
(Jia and Taheri 2021; Xiong et al. 2021). In this regard, Table 2 introduces a well-organ-
ized brief about the various objective functions captured in the literature in terms of their 
mathematical expressions, whether they use quadratic or absolute values, and variables’ 
type. It can be concluded from Table 2 that some researchers employ absolute values to 
avoid the negative sign, while others apply the quadratic ones to more precisely announce 
the outcomes. Besides, almost all AFs are function in either the experimental voltage Vexp , 
the corresponding computed one Vcom , the number of measures datasets N , or combination 
of them.

Fig. 6  Basic Comparison of SOFC models
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4  Meta‑Heuristic Optimizers for Parameters Estimation

Over the last two decades, the attention of researchers has been dedicated to MHOs for 
solving the highly constrained optimization problems (Pan et al. 2023). Most MHOs are 
population-based algorithms which depend on random initialization of population inside 
predefined boundaries (Talaat et  al. 2023). Moreover, they are considered as iterative 
approaches in which the solutions get more optimum over the course of iterations (Wang 
et  al. 2020). Based upon the no free launch theorem, there is not a certain optimizer 
that can solve all the optimization frameworks efficiently. Therefore, electric power sys-
tems optimization is still under development to attain the best optimizer for each specific 
dilemma (Askarzadeh 2017; Kalavani et al. 2019).

MHOs can be mathematically modelled using a set of equations with various forms 
such as differential, integral, or even algebraic. Furthermore, they can be classified into 
different techniques based on their operating principles as shown in Fig. 7. In this context, 
the main classification of MHOs includes evolutionary based, swarm based, physics 
based, and nature inspired optimizers. However, some reinforcements may be involved in 
the optimizer structure for better performance. These include but are not limited to better 
convergence characteristics and obtaining global optimal solution. Eventually, 30 up-to-
date MHOs used for SOFC parameters identification will be discussed and investigated 
regarding basic principles, merits and demerits, limitations, operators, and improvements.

Fig. 7  Main classifications of MHOs
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4.1  Evolutionary‑Based Optimizers

Such category refers to MHOs that emulate the attitudes of organisms during their liv-
ing phase. Specifically, they employ biological concepts, like recombination, mutation, and 
reproduction, related to biological upgrowth.

4.1.1  Cooperation Search Optimization Algorithm

The operation of cooperation search optimization algorithm (CSOA) is inspired from the 
teamwork cooperation inside a company (Feng et  al. 2021). Any company may be clas-
sified into four categories: members, directors, commanders, and the president. Since 
the president has the highest authority inside the company, its effect is efficacious while 
directors and commanders support other members with plentiful advice. Therefore, each 
solution is represented as a group which can exchange the information with other mem-
bers such as directors and the president. After the initialization stage, the communication 
between groups aids in global exploitation phase by exploiting the gained knowledge by 
group members.

4.1.2  Coyote Optimization Algorithm

The coyote optimization algorithm (COA), naturally inspired from coyote’s behavior, can 
be considered as evolutionary-based or swarm-based optimizer implemented for minimiza-
tion or maximization problems (Zhang et al. 2023). The COA population is divided into 
packs which in turn consist of a number of coyotes with a maximum value of 14. The 
social conditions of coyotes are updated through (22) with the aid of their organized inter-
action and intelligence (Abou El-Ela et al. 2021).

where SOCP,itupd
, SOCP,it are the updated and present social condition of the coyote respec-

tively at  itth iteration of  pth pack. rand1 , rand2 are randomly generated numbers between 0 
and 1, while �cP,it denotes the optimal social condition of the coyote.

�1 defines the impact difference of a random coyote cr1 to the optimal coyote �cP,it at the 
same pack that is computed from (23). On the other side, �2 which is computed from (24) 
represents the variance of another random coyote cr2 to the cultural tendency at the same 
pack 

(
CultP,it

)
.

4.1.3  Levenberg Marquardt Backpropagation Optimizer

Levenberg marquardt backpropagation optimizer (LMBO) can be deemed as a variant of 
Newton’s technique that is appropriate for small size and medium size multilayer networks 

(22)SOCP,itupd
= SOCP,it + rand1 × �1 + rand2 × �2

(23)�1 = �cP,it − SOCcr1,P,it

(24)�2 = CultP,it − SOCcr2,P,it
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(Yang et  al. 2021a, b, c). Therefore, the main approach of LMBO can be described as 
indicated in (25), where in (26) the solution is updated at each iteration (Singla et al. 2019).

where xit, xit+1 denotes the vector of network parameters in the  itth and (it + 1)th iteration 
respectively, Δxit represents the variation in network parameters in the  itth iteration. In addi-
tion, J

(
xit
)
 is the Jacobian matrix for the vector xit , while er

(
xit
)
 defines the vector of errors 

between the desired output and real output of the network parameters. U designates a unit 
matrix, while �it is a supportive factor for ensuring the efficacy of the inverse matrices.

4.1.4  Teaching Learning‑Based Optimizer

Teaching learning-based optimizer (TLBO) is a powerful Meta-Heuristic Optimizer 
(MHO) imitates the classical teaching–learning strategy which forms of two stages: teach-
ing and learning stages (Nama et  al. 2020). In the teaching phase, the winning individ-
ual is supposed to be the teacher who shares the knowledge to the learners or students as 
explained in (27) (Pandya and Jariwala 2022).

where Xnew,it,Xold,it define the new and old positions of the  itth learner respectively, Xteacher 
denotes the learners taught from the teacher while Xmean is the average position value of all 
learners. TF ∈ {1, 2} is the teaching factor that is used to determine the average value to be 
modified.

In the learning phase, the learning process is still improved where the learners boost 
their knowledge from the peer-learners. Accordingly, the learning update process can be 
formulated as mentioned in (28) and (29) where Xold,r symbolizes a random learner (r ≠ it).

However, the classical TLBO suffers from tardy convergence rate which brings out the 
claim of implementing the ranking based TLBO. In this way, an appropriate equilibrium 
between exploration and exploitation phases will be fulfilled which in turns accelerates the 
convergence trend. In this regard, a ranking-based technique is applied for both teachers 
and learners followed by the pickup probability for each learner. In other words, the higher 
ranked learner, the larger the selection probability (Ashraf and Malik 2020).

4.1.5  Artificial Ecosystem Optimizer

Artificial ecosystem optimizer (AEO) comprises three performance operators starting with 
the production phase which enhances the exploration and exploitation capabilities. In this 
stage, AEO producer is considered as the worst agent that shall be updated within defined 

(25)Δxit = −
[
JT
(
xit
)
J
(
xit
)
+ �itU

]−1
JT
(
xit
)
er
(
xit
)

(26)xit+1 = xit + Δxit

(27)Xnew,it = Xold,it + rand(0, 1) ×
(
Xteacher − TF .Xmean

)

(28)Xnew,it = Xold,it + rand(0, 1) ×
(
Xold,it − Xold,r

)
,Xold,it < f

(
Xold,r

)

(29)Xnew,it = Xold,it + rand(0, 1) ×
(
Xold,r − Xold,it

)
,Xold,r ≤ f

(
Xold,it

)
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lower and upper boundaries. Then, AEO performs its consumption phase where the explo-
ration capability is enhanced. AEO consumer agent obtains the food energy via eating a 
random low level energy consumer or the producer or both. Accordingly, AEO is termi-
nated with the decomposition phase to promote the exploitation mechanism (Shaheen et al. 
2022). However, the conventional AEO may stuck into local minima which brings out the 
need for enhanced form of AEO by introducing a novel mutation strategy. Consequently, 
the searching agents will move towards the enriched regions which can be done through 
implementing gaussian mutation technique as revealed in (30) (El-Dabah et al. 2021).

where � denotes the linear weight function, �2 is the variance between individuals inside 
the population.

4.1.6  Bernstain Search Differential Evolution Optimizer

Bernstain search differential evolution optimizer (BSDEO) is counted as the developed 
approach of differential evolution optimizers where each sample vector is evolved sepa-
rately (Nama and Saha 2020). Therefore, BSDEO is considered as a parallel search opti-
mizer where Bernstain polynomials control the crossover approach. Accordingly, some 
innovations of BSDEO can be summarized as follows (Civicioglu and Besdok 2019):

• It uses a crossover agent more efficiently than conventional DE optimizers.
• It uses parallel computing techniques.
• It has a flexible rate value of mutation and crossover.
• It is deemed as a partially elitist methodology.

4.1.7  Political Optimizer

Political optimizer (PO) is a MHO inspired from the political struggle between two can-
didates in which each nominee seeks to convince the electors. In PO mechanism, each 
squad tries to gather the maximum possible number of seats to optimize their goodwill. 
Therefore, squad members are considered as the candidate solutions while their good-
will is the decision variables to be optimized. PO composes of five consequent stages 
begin with squad formation, constituencies distribution, electioneering, squad switch-
ing, and end with the parliamentary affair stage (Suresh et al. 2021).

The first phase of the PO is executed only once as it expounds the initialization stage 
of the PO mechanism. On the other side, nominees seek to promote their performance, 
learn from the former election, and match with the winner in the electioneering phase. 
Finally, in the last stage, the parliamentarians update their positions based on their cal-
culated fitness value (Mahmoud et al. 2023).

4.1.8  Fractional‑Order Social Network Optimizer

Naturally, people are social beings who like interacting with others. As a result of 
the global technological development, social networks have become the trend of 

(30)fGaussian =
e

−�2

2�2

√
2��2
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communication means. Thus, fractional-order social network optimizer (FOSN) 
emulates the actions of individuals to achieve wider popularity in the social network. 
Basically, the interconnection and sharing of ideas among individuals can significantly 
change one’s perspective. So, the individuals’ passion to augment their publicity in 
the social network can be formulated as an optimization problem. Similar to the actual 
social attitude, the attitude and point of views of individuals in virtual communities 
also have different phases such as emulation, argument, debate, and innovation (Bayzidi 
et al. 2021).

Accordingly, each of these phases generates a new solution in FOSN. Specifically, in 
emulation phase, an individual’s perspective attracts the others, where they emulate it 
in delivering their opinion. Additionally, in the argument stage, individuals talk about 
diverse ideas and exchange guidance in various cases. Besides, in the debate process, 
the populations announce their opinions and support their perspectives to persuade oth-
ers. Finally, the innovation phase happens when individuals share a novel idea or expe-
rience in the community (Gnetchejo et al. 2023).

Finally, the numerical results of engaging such optimizers in enhancing the electrical 
characteristics of SOFCs are captured in Table 3.

4.2  Physics‑Based Optimizers

The optimization process of such algorithms mainly mimics the physical rules and laws 
that govern objects’ motion, particles’ behavior, and gravitational and electromagnetic 
forces.

4.2.1  Dragon Fly Optimizer

Three basic principles have to be fulfilled in dragon fly optimizer (DFO) which are named 
as separation, alignment, and cohesion (Rahmati and Taherinasab 2023). Separation is per-
formed to avoid the individuals colliding particularly for individuals which are close to 
each other. Afterwards, alignment is the speed coordination between the individuals and 
their surroundings while cohesion is the tendency to be located at the bulky center. Never-
theless, DFO requires more adjustments to boost its performance such as utilizing the frac-
tional order DFO. In this way, trapping into local minima is avoided as much as possible 
(Zhao et al. 2023).

4.2.2  Grasshopper Optimizer

In the procedure of Grasshopper optimizer (GHO), the foraging and migration demeanor of 
grasshopper is arranged for global optimization processes. Accordingly, the general math-
ematical formula of GHO is presented in (31) mimicking both exploration and exploitation 
phases (Badr et al. 2023).

where Xgi defines the position of  gith grasshopper, while Sgi denotes the social impact 
among grasshopper, Ggi is the gravity operator of  gith grasshopper, and Agi represents the 
wind stream flow on the positions of grasshoppers.

(31)Xgi = Sgi + Ggi + Agi
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As previously mentioned, the position of grasshopper depends on three main factors, 
although Sgi has the major influence among them. It can be described as declared in (32) 
based on the degree of social influence that occurred (Mirjalili et al. 2018).

where |||xgj − xgi
|||
 specifies the distance between the  gith grasshopper and  gjth grasshopper 

where gi ≠ gj , and Ngrass is the total number of grasshoppers. In this context, the general 
flow chart describing the basic procedure of GHO is illustrated in Fig. 8.

4.2.3  Satin Bowerbird Optimizer

Satin bowerbird optimizer (SBO) begins with the generation of uniform random agents 
containing a group of elected bowers positions. Outspokenly, the generated population 
shall be bounded between the predefined lower and upper boundaries of the SBO. As in 
the situation of the most metaheuristic-based optimizers, superior solutions are stored 

(32)Sgi =

Ngrass∑

gj=1

s
(
|||
xgj − xgi

|||

) xgj − xgi

|||
xgj − xgi

|||

,

Fig. 8  Generic flow chart of GHO

29 Page 20 of 50



A comprehensive survey of artificial intelligence‑based…

1 3

 

at each iteration during the optimization procedure. In other words, more experienced 
males take the attention of others to their bowers. As previously mentioned, the posi-
tions of bowers are updated iteratively to converge quickly attaining the best fitness 
value as declared in (33) (Chintam and Daniel 2018).

where xnew
jb,it

, xold
jb,it

 are the new and old position of  jbth bower at  itth iteration respectively, 
xelite,it is the bower which has the best fitness value that should affect others. xk,it denotes 
the bower with the large probability, while �it is a parameter used to define the step size to 
pick the target bower that is evaluated from (34) (Duan et al. 2019).

where �it defines the charge transfer coefficient, while propjb is the probability for each  jbth 
bower.

4.2.4  Black Hole Optimizer

Black hole optimizer (BHO) is a physics-based algorithm in which a random popula-
tion is generated and distributed uniformly over the search space. It is worth mentioning 
that the population evolve in BHO is made by transferring all the candidate individu-
als towards the best candidate in each iteration (Arenas-Acuña et  al. 2021). The best 
candidate is called the black hole while other candidates are replaced by a new batch 
of candidates. In other words, BHO can be classified as an updated version of the clas-
sical particle optimizer except that the generated particle is usually produced next to 
the best particle that results in improving the convergence characteristics (Azizipanah-
Abarghooee et al. 2014).

4.2.5  Multi Verse Optimizer

Multi verse is the opposite term of universe due to the referring of presence more uni-
verses rather than the universe we live in. Therefore, the multi verse theory represents 
the inspiration of multi verse optimizer (MVO) contemplating black holes, white holes, 
and wormholes. In this context, white and black holes are utilized in the exploration 
phase of MVO while wormholes are exploited in the exploitation phase. Conversely, 
the iteration term in MVO is replaced by time to imitate the processes in the multi verse 
theory (Lakhina et al. 2023).

Furthermore, each individual solution is assigned with an inflation rate to quantify 
the corresponding fitness value of this solution. The higher the inflation rate, the lower 
probability of black holes but higher probability of white holes. There are two govern-
ing operators in MVO structure: wormhole existence probability (WEP) and traveling 
distance rate (TDR) that are computed from (35) and (36) respectively (Amezquita et al. 
2023). WEP defines the existence probability of wormholes in universes while TDR clar-
ifies the distance or variation rate at which the object can be teleported.

(33)xnew
jb,it

= xold
jb,it

+ �it

[(
xk,it + xelite,it

2

)

− xold
jb,it

]

(34)�it =
�it

1 + propjb
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where BOmin,BOmax are the minimum and maximum boundaries respectively, � denotes the 
exploitation precision over the iterations.

To sum up, Table 4 elucidates the optimal values of the SOFC unknown parameters 
based on the above-mentioned physics-based algorithms.

4.3  Swarm‑Based Optimizers

Principally, these algorithms employ the collective mechanism of living things for for-
aging and hunting their prey. Each agent in the swarm has a specific role that serves the 
group’s common goal.

4.3.1  Battle Royal Optimizer

Battle royal optimizer (BRO) is a population-based algorithm where the initial population 
is scattered over the search space. Its operation is inspired from the behavior of the players 
in a competitive and enduring game such as Call of Duty, and Counter Strike. Initially, all 
the game competitors are distributed randomly over the game search space that is gradually 
reduced. Therefore, players should scout for new tools to stay safe in the game that results 
in one winning player or team. To create a perfect exploration, the location of an injured 
or killed soldier (Zinj,d) with a dimension d is determined through (37) in which its value 
becomes zero if the soldier can shoot the rival (Samir et al. 2022).

where LBd,UBd are lower and upper boundaries of the search space in a dimension d 
respectively, and rand1 is a random generated number between 0 and 1.

In order to improve the convergence rate and avoid trapping into local minima, two mod-
ifications may be applied to the traditional BRO represented in Opposition-Based Learning 
(OBL) technique or the chaos theory. In the first amendment, each candidate solution can 
be deemed as a duo of candidates where the location of the duo is supplement of the major 
candidate. On the other side, chaos theory generates pseudo randomness instead of com-
pletely randomness such as a sinusoidal map as explained in (38) (Akan et al. 2022).

where rand(it + 1)c1, rand(it)c1 are the random generated chaotic number of the current and 
previous iteration respectively, and Mc denotes a chaotic controlling parameter.

(35)WEP = BOmin + it ×

(
BOmax − BOmin

IT

)

(36)TDR = 1 −
it

1

�

IT
1

�

(37)Zinj,d = rand1 ×
(
UBd − LBd

)
+ LBd

(38)rand(it + 1)c1 = Mc × rand(it)2c1 × sin
(
� × rand(it)c1

)
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4.3.2  Chameleon Swarm Algorithm

Chameleon swarm algorithm (CSA) imitates the behavior of chameleon in prey hunting in 
three sequential stages: tracking, searching, and hunting (Ren et al. 2023). As in the case 
of most metaheuristic optimizers, CSA starts with population initialization followed by the 
evaluation criterion in which the position’s quality is assessed. Afterwards, the peregrina-
tion attitude of chameleons through desert and trees tracking for prey is modeled. In the 
hunting stage, chameleon uses its tongue to catch its prey as fast as possible. Therefore, the 
speed of chameleon’s tongue is mathematically modelled considering the effect of inertia 
weight (w1) which is linearly reduced with the progression of generations as indicated in 
(39).

where IT  defines the maximum number of iterations, and �1 denotes a controlling parame-
ter for the exploitation capability. Furthermore, the acceleration rate of chameleon’s tongue 
(�1) can be exponentially modelled as revealed in (40) which 2590m∕s2 represents its max-
imum value.

It is worth referring that some improvements may be applied to the traditional CSA 
to prohibit trapping into local minima especially in multi-dimensional problems. This can 
be achieved by an enhanced searching equation in addition to a novel learning strategy to 
maintain the track of optimal solutions using the information exchange principle (Zhou and 
Xu 2023).

4.3.3  Competitive Swarm Optimizer

Unlike the traditional   particle swarm optimizer (PSO), competitive swarm optimizer 
(CSO) espouses a pairwise competition as in each iteration the population with n individu-
als is assigned to n

2
 pairs alternatively (Xiong and Shi 2018). In this regard, the individual 

with the minimum fitness function refers to the winner and vice versa. To enhance the 
effectiveness of the solution, the loser individual learns from the winner one while the win-
ner picks up its progression path towards the upcoming iteration (Cheng and Jin 2014).

4.3.4  Interior Search Optimizer

Interior search optimizer (ISO) imitates the design and arrangements of interior places 
that is inherently supposed as decoration-based simulated optimizer. The only controlling 
parameter in ISO is �i which is calculated from (41) implements the detachment between 
mirror and composition groups (Rizk-Allah et al. 2023). As it is declared in (41), the value 
of �i is updated in each iteration without any involvement from the user.

(39)w1 =
�
1 −

it

IT

�
�

�1

√
it

IT

�

(40)�1 = 2590 ×
(
1 − e−log(it)

)

(41)�i =
it

IT
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Fig. 9  Generic procedure of ISO
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Fig. 10  Adaptive Chaotic GWO flowchart
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where it denotes the current iteration of ISO, and IT  defines the maximum value of 
executed iterations. It is worth mentioning that the value of �i is bounded between 0 and 1 
while Fig. 9 depicts the general procedure of ISO (Fathy and Rezk 2020).

4.3.5  Grey Wolf Optimizer

Grey wolf optimizer (GWO) is a benchmark MHO for solving complicated optimization 
problems which imitates the hunting approach of wolves to small animals. Basically, the 
GWO mechanism comprises four layers where the first three layers manage the search and 
hunting processes while the last one ensures safety in completing the predation. Hereinaf-
ter, adaptive chaotic version of GWO outperforms the traditional technique for attaining 
fast conversion while preserving the diversity of population. Moreover, chaos randomness 
in the exploration phase helps to dodge trapping into local minima (Hatta et al. 2019).

For the sake of proper coordination between exploration and exploitation capabilities, 
an improved convergence factor is introduced in GWO structure. This balance can 
accomplish the trade-off mechanism when non-linear convergence factor is exploited (aGW ) 
as presented in (42). For simplicity, Fig.  10 depicts the flow chart of the principles for 
adaptive chaotic GWO (Elsisi 2022).

4.3.6  Equilibrium Optimizer

The mass balance equation is a revelation of developing the equilibrium optimizer (EO) in 
which three determinants are used for the updating processes of particles (Zhang and Lin 
2022). The first one is the equilibrium concentration which is implemented to be the selec-
tion strategy. The concentration variance between the balance state and each particle is the 
second term which acts as the dynamic search technique. The third operator deals with the 
random generation mechanism at which the solution is redefined. In addition, EO has the 
advantage of employing a memory-based mechanism that supports each particle to track its 
best coordinates in the space at each iteration. This approach assists to enhances the exploi-
tation abilities by overwriting the later fitness value with an updated better one.

(42)aGW = 2 − 2 ∗
[(

1

e − 1

)
×
(
exp

(
it

IT

)
− 1

)]

Fig. 11  Honey badger tactics
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4.3.7  Gradient‑Based Optimizer

Gradient-based optimizer (GBO) is a mixed optimizer between gradient and non-gradient 
based techniques. Gradient-based methods such as Newton’s methos while the other form 
belongs to most MHOs. It combines the principles of both types to attain a feasible balance 
between exploration and exploitation phases. Furthermore, GBO has two main controllers: 
gradient search operator and local escape operator. The first controller promotes the con-
vergence rate by enhancing the exploration mechanism while the second one prevents GBO 
from being trapped into local minima. GBO proves its superiority in finding the global 
optimal solutions even in the high dimensional optimization problems (Daoud et al. 2023).

4.3.8  Honey Badger Optimizer

Mainly, honey badger optimizer (HBO) imitates the smart behavior of honey badgers while 
looking for their prey. To locate their food, honey badgers apply two approaches. Firstly, 
they rely on their smell sense to detect the food location and then begin digging to grab the 
bee honey. Secondly, they walk through the instructions of the honeyguide bird to locate 
the beehive. Particularly, HBO involves the two phases (digging and honey) that denote its 
exploration and exploitation stages (Fathy et al. 2023).

After initializing the population, the smell intensity of honey badgers Is(i) to the food is 
defined according to Inverse Square Law, as graphed in Fig. 11a. During the digging phase, 
the badgers move in a cardioid shape, as revealed in Fig. 11b (Chang et al. 2023).

Lastly, the reader is encouraged to browse Table 5 for further information about the out-
comes of the swarm-based optimizers in SOFC parameters determination.

4.4  Natural‑Based Optimizers

Mainly, these approaches emulate the natural phenomena occurring whether environmen-
tally, animally, or spatially.

Fig. 12  BESO hunting stages
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4.4.1  Bald Eagle Search Optimizer

Bald eagle search optimizer (BESO) is a new metaheuristic nature inspired algorithm with 
an inspired imitation from the hunting behavior of eagles to the fishes as shown in Fig. 12. 
It passes through three consecutive hunting stages initialized by the select stage then the 
search stage and ended by the swooping stage (Rezk et al. 2023).

(a) Select Stage

In this phase, eagles select the best hunting search area that contains the majority of 
fishes in the whole search space. This stage is explained in (43) by defining the updated 
hunting position 

(
Oit,upd

)
 by knowing the best hunting position from the last iteration (

Obest

)
.

where �2 is a controlling parameter with a value confined between 1.5 and 2, while rand2 
is a randomness factor between 0 and 1. Oit denotes the  itth iteration position, while Oavg 
denotes the average position of the previous information in search areas.

(b) Search Stage

In this stage, eagles, with the aid of helix movements, start to recognize the superior posi-
tion for prey hunting as illustrated in (44).

where Oit+1 is the updated position from the next iteration, while x1(it) and y1(it) have pre-
defined formulas which can be found in (Fathy 2023).

(c) Swooping Stage

In the swooping stage, eagles rapidly start the hunting action from the best predeter-
mined point by updating the position of all points as illustrated in (45).

where rand3 is a randomness factor between 0 and 1, f1 and f2 are controlling parameters 
aid in the speedy movement of eagles, while x2(it) and y2(it) have predefined formulas 
which can be found in (Fathy 2023).

4.4.2  Cat Hunting Algorithm

The optimization methodology is mathematically modelled using cat hunting algorithm 
(CHA) inspired from the fascinating attitude of cats in hunting (Ghaedi et al. 2023). CHA 
is split into two stages: searching and tracking for prey and revealing or moving towards 
the target. In this context, each cat has specified abilities in which the more experience the 
cat has the more it contains the optimal solution. Furthermore, the conventional CHA can 

(43)Oit,upd = Obest + �2 × rand2
(
Oavg − Oit

)

(44)Oit,upd = Oit + y1(it) ×
(
Oit − Oit+1

)
+ x1(it) ×

(
Oavg − Oit

)

(45)Oit,upd = rand3 × Obest + x2(it) ×
(
Oit − f1 × Oavg

)
+ y2(it) ×

(
Oit − f2 × Obest

)
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be boosted using OBL technique to enhance the exploration phase of the metaheuristics as 
revealed in (46).

where X−CH, new symbolizes the reverse position of the cat’s position XCH,new , while 
XCH,min,XCH,max represent the lower and upper limits of the solution respectively.

4.4.3  African Vulture Optimizer

African vulture optimizer (AVO) is a metaheuristic algorithm inspired form the natural 
hunting behavior of vultures which are considered as type of bird originated in most of the 
world’s regions. Vultures feed on the carcasses of living things which may be filled with 
infections such as anthrax that can kill any creature. However, these maladies cannot harm 
vultures which aid to immaculate the earth from such harmful diseases. In this regard, a 
tough fight has broken out between vultures seeking food when they find the food’s origin. 
For this reason, weak vultures follow strong ones and surround them until they get tired in 
which this process is mathematically modelled. First, the initialization stage of AVO is car-
ried out setting up the values of population and maximum iterations. Then, the starvation 
rate of vultures is computed from (47) and (48) where vultures fly at high altitudes catch-
ing their food when the energy is expired (Mohammed et al. 2023).

where kAV is a random number with a domain of [−2, 2], � defines a set fixed number which 
recognizes the operational phases, � , yav, and pav symbolize random numbers between 0 
and 1.

However, an enhanced version of AVO relies on the collective guidance factor technique 
may be exploited. In this way, the convergence rate of the optimizer will be boosted defin-
ing location and direction for each candidate solution (Fahmy et al. 2023).

4.4.4  Marine Predator Optimizer

Marine predator optimizer (MPO) stimulus is motivated from the behavior of predators in 
attacking their prey and searching for food source (Abdel-Basset et al. 2022). MPO kicks 
off with the traditional initialization stage between the defined lower and upper bounda-
ries for each predator and prey. MPO agents are defined using two metrices: elite and best 
metrices which involve the best predators and prey positions. MPO-based methodology is 
organized form three phases which can be summarized as follows (Al-Betar et al. 2023):

(a) High Speed Motion

It is also named as the exploration phase where the optimizer discloses the search space 
and assigned the initial third of iterations for this stage. In this phase, predators pause 
movements while prey proceed quicky towards the food origin.

(46)X−CH, new = XCH,max + XCH,min − XCH,new

(47)qsub = kAV ×
(
sin�

(
�

2
×

it

IT

)
+ cos

(
�

2
×

it

IT

)
− 1

)

(48)HAV =
(
2 × � + pav

)
× yav ×

(
1 −

it

IT

)
+ qsub
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(b) Unit Speed Ratio

It is also named as the transition phase in which the smooth transformation between explo-
ration and exploitation phases occurs. Moreover, both predators and prey move with the same 
velocity searching for the food source. Meanwhile, a dominant parameter in MPO methodol-
ogy (CF) which is calculated from (49) controls the step size of predator’s transmission.

(c) Low Speed Ratio

It is also named as the exploitation phase where agents utilize the optimal solution for 
smooth convergence rate. Simplicity, the last third of MPO iterations is assigned to the 
intensification stage where the predator moves quickly towards the prey.

4.4.5  Red Fox Optimizer

Red fox optimizer (RFO) principles are inspired from the behavior of red foxes which are 
characterized by intelligence, adaptability, and high speed (Połap and Woźniak 2021). 
The hunting mechanism is assisted by the approach of slowly attacking the bait while hid-
ing in the trees. Consequently, the first stage of RFO is the exploration where foxes select 
their baits from long distances and then the exploitation phase in which foxes’ approach to 
the bait is simulated. At the end of the algorithm, the worst candidates are eliminated and 
replaced by others causing regeneration of the alpha couple.

Nevertheless, of the RFO merits, it may suffer from trapping into local minimal or pre-
cocious convergence. For that reason, some amendments can be introduced such as using 
Quasi oppositional or chaotic concept techniques.

4.4.6  Shark Smell Optimizer

Shark smell optimizer (SSO) simulates the smelling sense of sharks in hunting their prey 
when there is a notable rise in blood odor concentration (Han et al. 2023). SSO starts with 
initializing the population expressed in sharks’ positions and then attacking the prey is 
mathematically modelled. The movement of sharks towards baits takes the form of forward 
and rotational motion although the speed has limitations in the optimizer structure. How-
ever, the traditional SSO can be promoted using the chaotic approach depending on the 
logistic map that will boost its exploration abilities. Moreover, another developed version 
of SSO is the binary SSO by integrating binary integer individuals. Consequently, suitable 
transformation format of these binary variables in the search agents can be fulfilled in rota-
tional and forward motion directions (Rao et al. 2019).

4.4.7  Ant Lion Optimizer

Ant lion optimizer (ALO) imitates the hunting manner of ant lions such that their lifestyle 
is modelled in ALO structure like random walk, snaring ants in the pits, and constructing 
new pits. Because of random walk of ants in every simulated time step, their positions are 

(49)CF =
(
1 −

it

IT

)2
it

IT
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updated iteratively in the search space. Consequently, the position of each ant lion (Xit

j
) can 

be normalized as expressed in (50) (Azizi et al. 2020).

where aj, bj are lower and upper limits of the random walk feature for  jth ant respectively, 
while cit

j
, dit

j
 define minimum and maximum limits of the  jth decision variables in  itth itera-

tion respectively.
ALO performance can be enhanced using the elitism phenomenon where the conver-

gence trend becomes faster. The new position of  jth ant (antit
j
) can be evaluated using the 

average value of two walks as described in (51) (Zeghdi et al. 2022).

where Rit
a
 defines the ant’s movement in roulette wheel, while Rit

e
 defines the elite ant lion 

in the  itth iteration.

4.4.8  Emperor Penguin Optimizer

Emperor penguin optimizer (EPO) is a bio-inspired MHO that imitates the living behavior 
of emperor penguins in which the huddling attitude is mathematically modelled. As it is 
declared in Fig. 13, the huddle behavior is assumed to be on a polygon plane of L-shape 
where the objective is to find the best mover. EPO starts with the random initialization 
of the huddle boundaries followed by temperature profile assessment near the huddle. 
Afterwards, the space between emperor penguins is evaluated to complete exploration and 
exploitation portfolios. Finally, the optimal solution is selected as the best mover among 
all emperor penguins which is used to recalculate the boundaries for the updating process 
(Khalid et al. 2023).

(50)Xit
j
=

(
Xit
j
− aj

)
×
(
dit
j
− cit

j

)

(
bj − aj

) + cj

(51)antit
j
=

Rit
a
+ Rit

e

2

Fig. 13  Huddling attitude of 
emperor penguins
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4.4.9  Gorilla Troop Optimizer

Gorilla troop optimizer (GTO) is a new nature-inspired optimizer imitates the attitude of 
gorillas for hunting exploring for the food (Shaheen et al. 2023a, b). The silverback gorilla 
is considered as the alpha male of the group which heads their hunting process. Contrarily, 
the weakest gorilla among the group is deemed as the worst solution that will be ignored 
in next iterations. Consequently, other gorillas seek to move away from the worst gorilla 
and approach more to the silverback candidate. In GTO exploration phase, three diverse 
techniques are represented by the migration of gorillas either in unknown or known loca-
tion and movement of other gorillas. In the exploitation phase, two techniques are imple-
mented: following for the alpha male gorilla and the other is a competition for the alpha 
female (Shaheen et al. 2023a, b).

It’s time now to check how efficient nature-based algorithms are in allocating the 
undefined parameters of SOFCs, as revealed in Table 6.

5  Illustrative Discussions

In this section, a comprehensive discussion is implemented regarding the computational 
setting of MHOs and their corresponding studied SOFC’s test cases along with their oper-
ating conditions. Moreover, a fair and accurate statistical assessment of MHOs’ outcomes 
in SOFC parameter specification is also included.

5.1  Numerical and Statistical Evaluation

For a better understanding of the numerous earlier-discussed MHOs, the reader is 
invited to check the extensive summary presented in Table  7. Particularly, it offers a 
comprehensive overview of the MHOs in terms of their settings and details of their cor-
responding SOFC test cases. In other words, regarding MHO settings, Table 7 contains 
the year of publication, tuned parameters, number of intended executions, and types of 
statistical evaluations. On the other side, regarding SOFC test cases, it includes model 
type, number of ungiven parameters, assessment criteria, type of simulated curves, sim-
ulations in different conditions, and finally, studied test cases.

Furthermore, Fig.  14a–c reveal a graphical comparison among the achievements 
of diverse MHOs, in terms of best and average fitness, and standard deviation values, 
respectively. It’s worth stating that all the optimizers, depicted in Fig. 14, are assessed 
under same test case (5 kW SOFCs stack), same operating conditions ( Top = 1173K ), 
and identical assessment formula (MQD) to ensure fair judgment. On the other side, 
Fig. 14d ranks these MHOs based on their computational effort, in terms of the elapsed 
time per single independent run and the smoothness of the convergence trend. It’s worth 
noting that only nine MHOs are captured in Fig. 14d since those are all implemented in 
identical operating system specifications (Windows version, RAM, and processor), to 
guarantee a fair comparison.

A closer look at Fig. 14, the reader can notice that CSO outperforms the other MHOs 
when considering minimum attainable objective function (MQD), while SSO takes 
the lead statistically in terms of minimum standard deviation. This is not a surprise, 
as according to “no free lunch” (NFL) theorem, each optimization method has its own 
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merits and limitations for specific tasks such that there is no unique algorithm that can 
deal with all engineering optimization problems. Additionally, there is still no solid 
answer, or it is quite difficult to decide that optimization method X is most suitable to 
optimization problem Y of certain characteristics such as degree of non-linearity, non-
convex, multi-modality, separability of the control variables, high dimensionality etc. 
Till getting such an answer, attempts shall continue in these endeavors.

Among such effective trails, radial basis function neural network (Raj and Naik 
2023b), Levenberg–Marquardt neural network (Rao et  al. 2023), and adaptive neuro-
fuzzy inference system (Raj and Naik 2023a) have proven advantageous characteristics, 
when engaged with heavy non-linear models. For instance, they don’t require 
sophisticated high-order differential equations to accurately correlate output to input, 
they can efficiently simulate and predict the behavior of SOFCs through diverse 
operating circumstances. In addition, the authors in (Nama et  al. 2023) proposed 
a new hybrid optimization methodology that integrates PSO with backtracking 
search optimizer (BSO) to mitigate the unbalance transition between exploration and 
exploitation. Furthermore, a recent version of slime mould optimizer supported by 
quadratic approximation is introduced in (Chakraborty et al. 2023) to dump stagnation 
into local solution. Another attempt, an enhanced moth-flame optimizer engaged with 

Fig. 14  Statistical evaluation of MHOs for parameter estimation of 5 kW SOFCs stack
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an upgraded dynamic opposite learning tactic is presented in (Sahoo et  al. 2023) to 
avoid premature convergence. Additionally, new variants of BSO are proposed in (Nama 
and Saha 2022; Nama et  al. 2022) to enhance its searching capability in the search 
space, especially for large dimensions problems. The reader is encouraged to browse 
(Chakraborty et al. 2022; Nama 2021, 2022; Saha et al. 2019; Sharma et al. 2022) for 
better comprehension of modern hybrid and improved optimization approaches applied 
in recent engineering problems.

5.2  Simulation Results

In addition, to provide the reader with a graphical explanation of how awesome the 
results of engaging MHOs in SOFC parameter estimation,   Fig 15 and 16 reveal the 
polarization characteristics of SOFC based on certain MHOs (Pourrahmani and Gay 
2021; Wang et  al. 2022). In deep, the steady-state V-I and P-I curves of a tubular 5 

Fig. 15  CSO-based steady-state response of SOFCs’ stack at various temperatures

Fig. 16  SBO-based dynamic response of SOFCs’ stack
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kW SOFCs stack, based on CSO’s outcomes, under various operating temperatures are 
introduced in Fig.  15a and b, respectively (Wu and Shafiee 2020; Xiong et  al. 2020). 
Moreover, depending on SBO’s methodology, Fig.16a and b offer the dynamic response 
of a 100 kW stack located in Netherlands, in terms of I and V vs simulation time curves, 
respectively (El-Hay et  al. 2018; Santarelli et  al. 2007). It’s worth concluding that 
according to Fig. 15, the steady-state performance of SOFC is enhanced by increasing 
the temperature without exceeding its technical limits (Shi et  al. 2020; Vigneysh 
and Kumarappan 2016). Besides, it’s clear from Fig.  16 that the transient model can 
efficiently describe the impacts of load dynamics on SOFC.

6  Future Perspectives

Notwithstanding MHOs have exhibited promising outcomes in various engineering prob-
lems, the majority still suffer from getting trapped into local minima during the independ-
ent runs due to their high haphazardness. This results in low statistical performance, such 
as a high standard deviation. Even if some overcome such an issue, they may encounter 
slow convergence rates of the fitness function. Thus, developing novel metaheuristic-based 
optimization techniques, either single or hybrid, are imperative to keep up with the high 
nonlinearity and high dimensionality of SOFC’s models. Moreover, attempts should be 
directed toward employing new machine learning and deep learning approaches to opti-
mize SOFCs’ performance, since they have a great ability to simulate the real physical 
attitude of SOFCs without any complicated mathematical formulations. Furthermore, such 
approaches can effectively anticipate SOFC response due to multiple disturbances and 
faults. On top of that, formulating new assessment functions can significantly contribute 
to an accurate evaluation of numerous employed optimizers. Finally, further experimental 
measurements at various operating conditions shall be recorded to magnify the precision of 
simulation and prediction.

7  Conclusion

This article undertakes a thorough review of the most recent metaheuristic optimizers 
engaged in SOFC parameter recognition, in terms of their performance, outcomes, and sta-
tistics. The contributions of this work can be represented in the following items:

• A detailed overview of several well-matured mathematical models that accurately 
describe the electrical behavior of SOFCs in either steady-state or dynamic operations.

• Deep illustration of 30 well-known recently dated MHOs that are employed for specify-
ing the undefined parameters of SOFCs.

• Classification of these MHOs according to their based family, their motivation, their 
characteristics, and finally their outcomes in SOFC parameter identification.

• A summary of the different evaluation functions that have been adopted as a measure of 
algorithm robustness.

• Moreover, an inclusive comparison among these algorithms with a summary of their 
mathematical models besides enhanced amendments included in their methodology.

• Computational settings of each optimizer accompanied by the corresponding simulated 
test cases and their technical specs.
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• Lastly, a validation check of such methodologies by utilizing two MHOs for enhancing 
both the steady-state and transient performances of actual test cases, namely the tubular 
5 kW and 100 kW SOFCs stacks.

Consequently, this article can be considered as an outlet for the researcher to dedicate 
more attempts towards engaging novel artificial intelligence-based techniques for better 
emulating the electrical performance of SOFCs. Furthermore, innovating new assessment 
criteria is crucial to keep up with testing benchmarks that can properly and precisely evalu-
ate such optimization techniques.
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