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Abstract
Roboticists and neuroscientists are interested in understanding and reproducing the neural 
and cognitive mechanisms behind the human ability to interact with unknown and chang-
ing environments as well as to learn and execute fine movements. In this paper, we review 
the system-level neurocomputational models of the human motor system, and we focus on 
biomimetic models simulating the functional activity of the cerebellum, the basal ganglia, 
the motor cortex, and the spinal cord, which are the main central nervous system areas 
involved in the learning, execution, and control of movements. We review the models that 
have been proposed from the early of 1970s, when the first cerebellar model was realized, 
up to nowadays, when the embodiment of these models into robots acting in the real world 
and into software agents acting in a virtual environment has become of paramount impor-
tance to close the perception-cognition-action cycle. This review shows that neurocompu-
tational models have contributed to the comprehension and reproduction of neural mech-
anisms underlying reaching movements, but much remains to be done because a whole 
model of the central nervous system controlling musculoskeletal robots is still missing.
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1 Introduction

The desire to unveil and reproduce the brain’s functions is the point of connection of many 
research fields and it has facilitated interdisciplinary studies, as in the case of neuroscience 
and robotics (Floreano et al. 2014).

In the early period of computational motor control, neuroscientists exploited control 
theory and closed-loop systems to model and understand how the brain generates and con-
trols movements (Loeb et al. 1990; Campos and Calado 2009). In recent years, neuroscien-
tists have made use of robots together with models of biological nervous systems to imple-
ment the perception-action loop and then validate and refine their hypotheses.

Roboticists draw inspiration from neuroscience findings on perception and control to 
design and build robots interacting with unknown and changing environments like humans. 
The state-of-the-art robots realize manipulations with high precision only for well-defined 
tasks. The existing bottlenecks, which limit the use of robots in many areas, can be bro-
ken by developing an artificial brain that senses the environment and learns how to control 
robots without using predefined procedures for each sensory-motor pattern that could be 
encountered (Qiao et al. 2021; Li et al. 2019; Cutsuridis and Taylor 2013).

Over the years, it has become clear that the brain, the body, and the environment have 
to be kept together to advance our understanding of the brain’s functions. The physical 
properties of the body and environment alter the behavior commanded by the brain through 
neural signals, simplifying or complicating the control (Nishikawa et al. 2007). It is in this 
context that musculoskeletal robots and neurorobotic devices were born (Li et al. 2019), 
representing two lines of research destined to meet.

Musculoskeletal robots mimic the mechanical properties of the human body by imitat-
ing the skeleton, joints, muscles, and the way muscles drive joints (Richter et  al. 2016). 
Musculoskeletal robots show many control challenges due to their many degrees of free-
dom (DoF) and the strong redundancy and nonlinearity (Asano et  al. 2017). Controllers 
that explicitly define a mapping between the joint angles and the force, length, or excitation 
of the muscles are not able to dominate the complex nonlinear dynamics of musculoskel-
etal robots. The movements generated by musculoskeletal robots are limited in terms of 
generalization, precision, and speed, despite the many model-free and model-based control 
methods proposed in the literature and reviewed in Qiao et al. (2021).

Neurorobots are devices engaged in a behavioral task, situated in a structured environ-
ment and whose controller mimics the brain’s architecture and dynamics (Krichmar 2018; 
van der Smagt et al. 2016). They can be subdivided into bio-inspired controllers and biomi-
metic controllers. Bio-inspired controllers drew inspiration from biology without faithfully 
reproducing the neural structures or incorporating biological constraints; they include, for 
example, iterative learning controllers (Wang et al. 2009), adaptive controllers (Wang and 
Chellai 2018), active inference-based controllers (Pezzato et al. 2020) and muscle-synergy-
based controllers (Chen and Qiao 2020). Biomimetic controllers, which include neurocom-
putational models, are realized by modeling biological structures and processes. They have 
been developed for controlling locomotion, for better understanding functional and compu-
tational models of different brain regions, and even to facilitate movements of living organ-
isms (Tolu et al. 2022).

Models of the brain are realized at different levels of detail, depending on the scientific 
question one wants to answer. The brain itself is organized in distinct anatomo-functional 
levels, which could be grouped into three spatial scales ranging from nanometers to meters: 
microscale, mesoscale, and macroscale (D’Angelo and Wheeler-Kingshott 2017). These 
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spatial scales range from molecules to large-scale networks, through neurons and neuronal 
networks. The microscale level investigates single neurons and synaptic connections that 
underlie the cerebral microcircuits, the mesoscale level studies columns and mini-columns 
of neurons, while the macroscale level is focused on the connection of distinct neuronal 
populations (Milardi et al. 2019). In the last years, it has been remarked the importance of 
realizing a multiscale model of the brain both to investigate diseases of the nervous sys-
tem (Lytton et al. 2017), as well as to improve our knowledge about the correspondence 
between model parameters at one level and physical variables (D’Angelo and Wheeler-
Kingshott 2017). Models of the human nervous system are embodied in robots that act in 
the real world as well as in software agents acting in a virtual environment. Software simu-
lations allow repeatable and systematic evaluations of models because the environmental 
conditions are kept under control. Robots allow us to evaluate the robustness of models 
by testing them in an environment where perturbations are not under control (Casellato 
et  al. 2014). Software simulations are particularly useful for incremental design and the 
evaluation of complex models of the brain devoted to controlling complex musculoskeletal 
systems.

This paper reviews the system-level neurocomputational models of human sensorimo-
tor control, with particular reference to the learning, execution, and control of upper-limb 
movements. These models belong to the class of biomimetic models because they repro-
duce the biological systems in terms of the architecture, the learning process, the way 
movements are controlled and executed, and the adaptability to changes in the environment 
(Conforto et  al. 2009). System-level neurocomputational models reproduce the human 
neuronal structures by means of artificial neural networks interconnected according to the 
anatomy of the brain. Differently from biophysical models, system-level models focus on 
the computational properties of real neurons and ignore aspects related to their anatomy 
(Wiecki and Frank 2010).

This paper represents a perspective on how neurocomputational models of the mam-
malian sensorimotor system and neurorobotics have been used as tools for understanding 
the learning and execution of arm movements. Therefore, this overview includes only the 
articles in the state of the art that exploit a simulated or real embodiment of neurocompu-
tational models to reproduce and analyze the execution of upper-limb movements. Instead, 
other surveys in the literature aimed to review the state of the art of brain subsystems that 
are poorly modeled (Loeb and Tsianos 2015), describe the connectionist models of the 
nervous system (Smirnitskaya 2022), analyze the advances in reproducing the neural con-
trol of movements on robot models (Migalev et al. 2022), and focus on the integration of 
computational models of the motor cortex, spinal cord circuitry, and skeletal muscle in 
order to create a model of the corticomuscular pathway (Haggie et al. 2023).

The remainder of the paper continues as follows: Sect. 2 is an introduction to the field 
of brain simulation via system-level models, Sect.  3 briefly describes the human motor 
system and the main areas that make it up, Sect. 4 describes the neurocomputational mod-
els of the different areas of the motor system highlighting their distinctive features, Sect. 5 
describes the applications of these models to neurorobotics, and Sect. 6 summarizes the 
open challenges of the field. Eventually, Sect. 7 concludes the work by summing up the 
current status in modeling the brain and controlling musculoskeletal robots.
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2  Biological plausibility of computational models

Three disciplines complementarily contribute to the understanding of brain information 
processing, and how cognition is implemented in the brain: cognitive science, computa-
tional neuroscience, and artificial intelligence. Cognitive science aims to explain human 
behavior by means of computational models that execute cognitive tasks, while computa-
tional neuroscience studies the principles and mechanisms that guide the development and 
the information processing of the nervous system by exploiting neurobiologically plausible 
artificial intelligence models. Cognitive computational neuroscience has been proposed in 
Kriegeskorte and Douglas (2018) as the discipline that arises at the intersection of cog-
nitive science, computational neuroscience, and artificial intelligence, whose goal is to 
explain neuronal activity and behavior observed or measured in animals and humans by 
means of biologically plausible computational models that perform real-world cognitive 
tasks.

In the literature, brain activity and motor behavior are investigated via different kinds of 
computational models, which approach the problem either from an engineering perspec-
tive or a biological one (Reeke and Sporns 1993). In this survey, we review computational 
models that can be ascribed to the field of cognitive computational neuroscience, i.e. mod-
els that incorporate, to some extent, realistic architectural and physiological characteristics. 
In Kriegeskorte and Douglas (2018) these models are called brain-computational models, 
which mimic the brain information processing by abstracting from biological detail to an 
arbitrary degree but predicting some aspects of brain activity or behavior.

System-level models are brain-computational models that reproduce the interconnec-
tions and the dynamic interactions of different brain areas underlying a target behavior, 
and the interaction of the brain with the environment (Trappenberg 2009; Mannella et al. 
2016). They are adopted for verifying hypotheses related to high-order brain functions and 
usually reproduce in detail only the areas of the brain whose functions are of interest in 
the study. Each subsystem is modeled by a neural network whose level of biological detail 
can be refined by a step-by-step procedure that leads to a multiscale model of the system 
(D’Angelo and Jirsa 2022). Although different neural models (localist, auto-associative 
and hetero-associative, deep, and whole-brain networks) exhibit human-like performance, 
their similarity to biological neural networks needs to be improved by focusing on model-
ling synaptic plasticity, connectivity within and between areas, neuronal mechanisms from 
micro to macro scale (Senk et al. 2022; Pulvermüller et al. 2021).

The system-level approach is grounded on the idea that behavioral and cognitive skills 
arise from a closed-loop interaction between the agents’ nervous system, body, and envi-
ronment, and aims at investigating the functions of the different areas of the brain. There-
fore, system-level models are particularly suitable for neurorobotics applications, when 
brain models are embedded in physical robots or simulated agents that interact with real 
or simulated environments. In this regard, two approaches of embodiment have been high-
lighted in Caligiore and Fischer (2013): the brain-based devices approach (Fleischer and 
Edelman 2009) and the computational embodied neuroscience approach (Caligiore et al. 
2010). Both these approaches embody system-level models of the brain in an agent that 
interacts with the environment and validate hypotheses about functional mechanisms of the 
brain by comparing data from behavioral experiments and from the simulated system, but 
the computational embodied neuroscience approach aims at realizing general models that 
are able to explain the data from different experiments (Caligiore and Fischer 2013).
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3  The motor system

The motor system is the part of the nervous system whose neural activity causes the con-
traction of muscles and the generation of movements. It is organized in a functional hier-
archy and includes regions of the cerebral cortex, the basal ganglia, the cerebellum, the 
brainstem, and the spinal cord networks. The motor system generates voluntary, rhythmic, 
and reflexive movements. Voluntary movements are under conscious control and are gener-
ated by networks that span different levels of the functional hierarchy; rhythmic and reflex-
ive movements are predominantly controlled autonomously by spinal or brainstem circuitry 
(Kandel et al. 2000). In this paper, we focus on reaching movements, which are fast vol-
untary movements towards a given target whose main characteristics are a straight trajec-
tory and a bell-shaped speed profile. Figure 1 shows the general architecture of the motor 
system.

The motor area of the cerebral cortex is organized in the primary motor cortex, the 
premotor, and supplementary motor areas. The primary motor cortex is the most directly 
involved in the initiation and control of movement and its neural activity encodes kinematic 
and kinetic features of the movement, from the forces generated by muscles to the direction 
of arms (Ashe 2005). The corticospinal tract is the major descending pathway that carries 
movement-related information from the motor cortex to the brainstem and spinal cord. The 
premotor cortex is mainly involved in the preparation of movements by integrating sensory 

Fig. 1  Overview of the motor system. The cerebral cortex block includes motor and sensory cortices. The 
spinal cord receives proprioceptive signals from receptors in the muscles that climb up to the sensory-motor 
cortex via the brainstem. The efferent copies of the commands generated by the spinal cord networks are 
sent to the cerebellum



 A. Parziale, A. Marcelli 

1 3

73 Page 6 of 35

and motor information while the supplementary motor area plays a role in planning com-
plex sequences of movements. The somatosensory cortex receives and processes sensory 
information from the body and it is organized in two parts: the primary and the secondary 
somatosensory cortices. The primary somatosensory cortex processes somatic sensations 
and includes an area that receives proprioceptive afferents providing information about the 
position of the body in space. The secondary somatosensory cortex serves as an associa-
tion area for sensory input.

The basal ganglia are a group of subcortical nuclei that receive projections from many 
areas, including the cortex and the thalamus, and their major output returns to the cortex 
via the thalamus. They are important for the selection and initiation of motor actions.

The cerebellum consists of regular and repeating units that contain the same basic 
microcircuit. It has bidirectional connectivity with the cerebral cortex via the thalamus and 
with the spinal cord. Several are the fundamental functions ascribed to the cerebellum. 
First, it implements the feedforward control of muscular contractions by acting before the 
sensory feedback arises from movement. In fact, the cerebellum builds and runs an inter-
nal representation of the body that allows the prediction of the sensory consequences of 
movement and the update of motor commands if movement errors are detected. Second, 
it is responsible for the processes of learning and adaptation of motor skills and for motor 
timing.

The brainstem is involved in the regulation of movement and other physiological func-
tions (Ruder and Arber 2019). It receives inputs from the cerebral cortex and the cerebel-
lum and projects to the spinal cord. The projections toward the spinal cord are divided into 
two systems: the medial and the lateral brainstem pathways. The posture is controlled by 
the medial descending system that integrates visual, vestibular, and somatosensory infor-
mation. Instead, the lateral descending system controls distal limb muscles involved in 
reaching movements.

The spinal cord is the lowest level of the hierarchical organization and it plays an essen-
tial role in motor control. Its neuronal circuits mediate a variety of reflexes, which are 
direct motor responses to peripheral sensory information. The spinal cord hosts interneu-
rons and motor neurons that integrate descending inputs from upper motor neurons and 
sensory inputs and then activate the muscles.

4  Neurocomputational models

Neurocomputational models at the system level are a class of models in which neural net-
works represent different areas of the nervous system. These neural networks capture core 
neurobiological aspects, skip morphological aspects of neurons, and allow us to globally 
analyze information processing and behavior.

There are two approaches to building neural models: the top-down and the bottom-
up approaches (Eliasmith and Trujillo 2014; Lytton et al. 2017). The top-down approach 
exploits the knowledge gained through the observation of the behavior of the living system 
in order to make hypotheses about the network architecture and the behavioral function of 
each subsystem. The models presented in this manuscript have been built following this 
approach. The bottom-up approach seeks to simulate each element in the brain with high 
accuracy, then combine them in a larger model and wait for the emergence of the biological 
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behavior, i.e. without explicitly defining the objective function to link the model to the 
desired behavior.

In the next subsections, neurocomputational models of the main subsystems belonging 
to the motor system are presented. These models show a different level of detail because 
they have been defined in different periods of time, with different computational resources 
and neurobiological knowledge, and with the purpose of answering different questions 
(Eliasmith and Trujillo 2014; Loeb and Tsianos 2015). Notwithstanding, the analysis of the 
literature shows that there are a few ”basic” models that somehow represent major para-
digm shifts, so we adopted them in a model-by-model fashion to organize the material of 
the following subsections.

4.1  Models of the cerebellum

The cerebellum consists of two major parts: the deep cerebellar nuclei, from which origi-
nate the output of the cerebellum, and the cerebellar cortex. The cerebellar cortex is organ-
ized into three layers: the molecular layer, the Purkinje cell layer, which is the output layer, 
and the granule cell layer, which is the input layer. The cerebellar cortex receives inputs 
from the mossy fibers (MFs) and the climbing fibers (CFs). The granule cells (GCs) receive 
input from MFs and their axons reach the molecular layer bifurcating into two branches 
called parallel fibers (PFs). Purkinje cells (PCs) integrate information from PFs and CFs 
and project to the deep nuclei. Figure 2 shows the connections between the different layers 
of the cerebellar cortex.

The first theoretical model of the cerebellum as a neuronal machine was proposed by 
David Marr in 1969 (Marr 1969). He suggested that the cerebellar cortex is an associa-
tive memory that, thanks to learning, maps proprioceptive information about the state of 
the body (the context) into the motor commands required for executing the desired action. 
This associative learning takes place at the synapses between PFs and PCs. In particular, 
PCs integrate information about both the movement to be executed coming from the CFs, 
and the context, i.e. the body state, from the MFs. During the learning phase, PCs learn the 
association between the context and the action and, at the end of learning, the information 
about the context is enough to fire PCs. A comprehensive simulation of Marr’s theory with 
a full-scale model was proposed by Tyrrell and Willshaw (1992).

James Albus revised this model in 1971 suggesting that the nearly simultaneous arrivals 
of action potentials from some PFs and a CF to a PC leads to a long-term depression of the 
transmission from the PFs to the PC, therefore the strength of PF-PC synapses is depressed 
rather than potentiated during the association between context and motor action (Albus 
1971). This hypothesis about the synaptic plasticity of PF-PC was experimentally verified 
ten years later by Ito et al. (1982), who also proposed that CF inputs represent error signal 
(Ito 1970).

The Marr-Albus theoretical model was implemented as an adaptive filter by Fujita in 
1982 (Fujita 1982). Adaptive filters have been widely used for modeling how the cerebel-
lum learns the execution of reaching movements (Haith and Vijayakumar 2009) and other 
kinds of motor actions, such as vestibulo-ocular reflex and eyeblink conditioning (for a 
complete review see (Dean et al. 2010)).

Albus modeled the cerebellum as a look-up table that stores the motor response to a 
given input. In particular, he proposed an artificial neural network architecture known as 
the Cerebellar Model Arithmetic Computer (CMAC) based on the idea that the cerebellum 
is a pattern classifier (Albus 1975). Although CMAC is no longer used for simulating the 
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function of the cerebellum in behavior, it is still applied for solving adaptive control prob-
lems in artificial systems (Tan et al. 2022).

The computational models proposed by Marr, Albus and Ito have been the most 
influential in neuroscience even if they were insufficient to explain several cerebellar 

Box and arrow model of the cerebellum. Mossy fibers originate from many locations in the brain and spi-
nal cord. The mossy fibers from the pontine nuclei bring in a copy of the motor program generated by the 
motor cortex, while those originating from the spinal cord bring in a copy of the commands integrated by 
the spinal interneurons. Sensory information about the executed movement enters the cerebellum through 
the climbing fibers. The cerebellum predicts the sensory consequences of the motor commands and, during 
the execution of the movement, compares them with the actual incoming sensations; when there is a mis-
match it can make corrections to the motor program so that the body will execute what the brain wants. The 
balance of the two parallel pathways that synapse on the Purkinje cells determines the DCN activity, which 
can be suppressed or enhanced via disinhibition. The molecular layer interneurons include stellate cells and 
basket cells. Connections ending with a bubble are inhibitory. Boxes with dashed orange borders are struc-
tures belonging to the Brainstem. DCN: Deep Cerebellar Nuclei



Understanding upper‑limb movements via neurocomputational…

1 3

Page 9 of 35 73

functions such as whole body movements and cognitive functions (Kawato et al. 2020). 
Marr’s and Albus’ models didn’t consider the role played by other parts of the central 
nervous system in motor control; they hypothesized that the cerebellum was the only 
brain area devoted to control movements. These models, moreover, considered pattern 
recognition the objective of cerebellar learning. On the contrary, Ito’s model indicated 
control tasks as the objective of learning. A detailed comparison of the three models 
and an evaluation of their validity in the light of recent neuro-physiological findings are 
provided in two recent reviews (Kawato et al. 2020; Sanger et al. 2020).

In the 1980s, the increasing interest in controlling multijoint robotic arms promoted the 
development of new models of the cerebellum that took into account its interaction with 
other brain areas belonging to the sensory-motor system.

In 1984, Ito made the start for new models by introducing the concepts of microcom-
plexes, which are structural and functional unit modules of neuronal circuits in the cerebel-
lum, and internal models (Ito 1984).

Internal models are neural representations learned by the cerebellum through the cer-
ebrocerebellar loop that links the primary motor cortex and the cerebellar cortex. Inter-
nal models help the brain to perform movements without feedback from the body and are 
divided into two groups: forward models and inverse models. Forward models predict the 
sensory consequences of delivering a motor command to the biomechanical system and 
therefore are a neural representation of the future state of the system. Instead, inverse mod-
els compute the motor command to be sent to the biomechanical system given the desired 
behavior and the current state of the system. The acquisition of an inverse model is an ill-
posed problem because the same behavior can be executed by different motor commands 
(Bizzi and Mussa-Ivaldi 1998; Uno , Kawato 1994). Kawato proposed a biologically plau-
sible solution to this problem, named feedback error learning (Kawato et al. 1987), which 
hypothesizes that CFs input to PCs the motor-command errors generated by feedback con-
trollers at the spinal and cerebral levels.

Schweighofer presented a cerebellar model based on the microcomplex hypothesis and 
on feedback error learning to examine the role of the cerebellum in the coordination of 
visually guided arm movements (Schweighofer et  al. 1998). The cerebellum model was 
embedded in a functional anatomical model of the motor system addressing the issue 
of controlling dynamics of an arm model made up of a redundant set of muscles (Sch-
weighofer et al. 1998). The study showed that the cerebellar model gradually learned the 
part of the inverse dynamics that was not compensated by the feedforward and feedback 
controllers, which were implemented by the motor cortex and the spinal cord, and reduced 
the error between intended and planned movements.

In the same period, starting from neurophysiological and neuroanatomical studies of 
the cerebellar-rubrospinal pathway, James Houk modeled the cerebellum as an array of 
adjustable motor pattern generators (APGs), each of which is an abstract representation of 
the corticorubral-cerebellar loops between a cerebellar cell and a motor cortical cell (Houk 
1987). He proposed that an array of APGs transmits motor commands to the spinal cord 
that, in turn, translates the commands into muscle activations. APGs were implemented as 
neural networks and they were able to control a nonlinear dynamical model of the neuro-
muscular system (Sinkjær et al. 1990), as well as to regulate movement by learning how to 
anticipate the sensory feedback (Barto et al. 1999). Later, an array of APGs was supposed 
to activate a muscle synergy, i.e. a group of muscles, rather than a single muscle (Fagg 
et al. 1997), and then it was proposed that groups of APGs are responsible for generating 
motor commands driving primitives in the spinal cord (Vahdat et al. 2006).
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van  der Smagt  et  al. (2016) have suggested categorizing the models of cerebellum 
according to their understanding of the cerebellar operation: Functional models, which 
are based on functional understanding of the cells, State-Encoder-Driven models, which 
assume that the granule cells are on-off units, and Cellular-Level models, which adopt dif-
ferential equations for modeling neurons. CMAC and APG models are examples of State-
Encoder-Driven models (Albus 1975; Houk 1987) while the Schweighofer-Arbib model is 
an example of Cellular-Level models (Schweighofer et al. 1998a, 1998b).

In the last years, the cerebellar circuit has been modeled using a bottom-up strategy and 
incorporating realistic details at neuronal and synaptic level (Solinas et al. 2010; Casellato 
et  al. 2014). D’Angelo and colleagues have proposed a detailed review of the new strat-
egies for modeling the cerebellar circuit and their embodiment in neurorobotic models 
(D’Angelo et al. 2016).

4.2  Models of the basal ganglia

Computational models of the Basal Ganglia (BG) focus on how these groups of nuclei at 
the base of the forebrain implement cognitive and motor functions. The cognitive func-
tions simulated with models of BG include categorization, conditioning, learning, work-
ing memory, sequence learning, and automaticity, while the simulated motor functions are 
reaching, handwriting and eye saccades (Helie et al. 2013). It has been proposed in Gil-
lies and Arbuthnott (2000) to group these models into three classes that highlight differ-
ent aspects of basal ganglia function: models of reinforcement learning, models of action 
selection, and models of serial processing. The common basis of most of these models is 
reproducing the ability of the basal ganglia to detect cortical contexts and select motor or 
cognitive actions.

The functional role of BG in behavior has been studied, as with other brain areas, with 
neural network models and abstract mathematical models (Cohen and Frank 2009). Neural 
network models allow investigations of how behavioral phenomena such as action selec-
tion and learning depend on the interactions among the different parts of the circuit and on 
the modulatory effect created by dopamine and other neurotransmitters. Abstract models 
describe how the system works with mathematical equations, which usually have no rela-
tion with the biological architecture, and are less suited to studying the neurophysiological 
processes.

Basal ganglia are defined as a system that gates information flow in the frontal cortex 
and from the frontal cortex to the motor system. BG models usually include the striatum 
(caudate, putamen, nucleus accumbens), the globus pallidus (GP), which is often divided 
into an internal (GPi) and an external (GPe) segment, the subthalamic nucleus (STN), the 
substantia nigra (SN), the ventral tegmental area (VTA).

Models of this system include distinct pathways that fulfill different functions: the direct 
pathway, which facilitates the active action representation in the frontal cortex (and there-
fore it is also known as the Go pathway), the indirect pathway, which suppresses action 
representations in the frontal cortex (and therefore it is also known as NoGo pathway), 
and the hyperdirect pathway, which is crucial for suppressing erroneous movements. The 
direct pathway proceeds from cortex to GPi via striatonigral neurons: cortical input excites 
the striatonigral neurons that inhibit GPi, which in turn disinhibits the thalamus and cor-
tex. The indirect pathway proceeds from cortex via striatum and GPe to GPi: the cortex 
excites striatopallidal cells that stop the GPe from tonically inhibiting the GPi allowing 
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it to further inhibit the thalamus and avoiding the selection of particular cortical actions. 
Both the pathways were originally proposed by Albin and colleagues in 1989 (Albin et al. 
1989) and they represent the core of any BG model. The hyperdirect pathway was identi-
fied in 2000 and it connects the cortex directly to the subthalamic nucleus, bypassing the 
striatum and the indirect pathway, to excite the GPi (Nambu et al. 2000). The activity of the 
direct and indirect pathways is modulated by the dopamine released by the substantia nigra 
pars compacta, while the activity of the hyperdirect pathway is not because it bypasses the 
striatum. Figure 3 shows the three pathways and the main BG areas that are involved. In the 
last years, other pathways have been identified, including a direct connection between basal 
ganglia and cerebellum, but their functions are not entirely clear and require more investi-
gations (Milardi et al. 2019).

Contreras-Vidal and Stelmach in 1995 proposed a population-based model of basal gan-
glia-thalamocortical interactions during normal and Parkinsonian movements (Contreras-
Vidal and Stelmach 1995). The model combines the VITE-WRITE model (Bullock et al. 
1993) with a BG model including the direct, indirect, and hyperdirect pathways, even if 
the term hyperdirect was not used. The model showed that dopamine reduction caused by 
nigrostriatal pathway damage, as in the case of Parkinson’s disease, has the effect of an 
imbalance in the outputs of direct and indirect pathways. The simulations suggested that 
basal ganglia play a role in the sequencing of motor programs and modulating the dynam-
ics of the trajectory generated by the other networks.

Moroney et al. in 2008 extended the previous model to investigate the possible causes 
of slower movements in Parkinson’s disease patients when they perform voluntary move-
ments (Moroney et  al. 2008). In particular, they examined the interaction between two 
separate and competing BG-thalamocortical circuits, each of which controlled one of the 
muscles of a single-joint elbow performing flexion/extension movements. The model simu-
lations showed that the hyperdirect pathway has the role of suppressing unwanted move-
ments that could affect the planned action. Moreover, the simulation revealed that loss of 
segregation between the two BG-thalamocortical circuits, which could occur to impede the 

Fig. 3  Overview of pathways in the Basal Ganglia subsystem. Blue connections represent the direct path-
way, red connections represent the indirect pathway and green connections represent the hyperdirect path-
way. Connections that end with an arrow represent excitatory glutamatergic inputs, while those that end 
with a bubble are inhibitory gabaergic inputs. The connection in violet is a modulatory dopaminergic input. 
GPi: internal globus pallidus. GPe: external globus pallidus. STN: subthalamic nucleus. SN: substantia 
nigra
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dopamine deficiency, contributes to bradykinesia (slowness of movement) because the cor-
tical inputs activate not only the desired striatal neurons, but also other neurons in other 
motor pathways and, as a consequence, the ability to suppress the unwanted movement 
among competing motor programs is reduced. Eventually, the model confirmed that deple-
tion of dopamine produces smaller and slower movements because it causes an insufficient 
reinforcement of cortical input.

In Cutsuridis and Perantonis (2006), and Cutsuridis (2011) the authors proposed a basal 
ganglia-corticospinal model that was an extension and revision of the VITE-FLETE model 
presented in Bullock and Grossberg (1989). The population-based model was made up of 
three modules: the basal ganglia-thalamic module, the cortical module, and the spinal-
muscular module. The model was adopted for studying the effects of dopamine depletion 
on the output of the three modules and it suggested that the observed slowness in Parkin-
son’s disease bradykinesia is due to dopamine reduction in all three modules and not only 
in the basal ganglia.

In 1998, Bischoff implemented a neural network model of the basal ganglia and cortical 
regions involved in arm movements (prefrontal cortex, supplementary motor area, prefron-
tal cortex, motor cortex, thalamus) (Bischoff 1998). The BG model was realized by hypoth-
esizing that the role of the direct pathway is to represent the next sensory state and provide 
it to the cortex, while the indirect pathway inhibits competing movements. The activation 
of these two pathways is balanced by dopamine, whose loss reduces cortical activity by 
increasing the inhibition of basal ganglia projections to the thalamus. The model was used 
for simulating elbow flexion and extension, the reciprocal aiming task, and the execution of 
sequential movements task. Under Parkinsonian conditions, the model was able to simulate 
bradykinesia and abnormal pauses in sequential movements.

Magdoom et  al. proposed a simplified model of the motor cortex and basal ganglia 
to investigate how these two brain areas interact during the execution of reaching move-
ments of a 2-link arm (Magdoom et al. 2011). The motor cortex was modeled with a per-
ceptron and striatum and corticostriatal connections were not explicitly represented. This 
model belongs to the class of reinforcement learning BG models with the dopamine level 
related to the error between the actual and the desired arm position. BG had two roles in 
this model: one was the real-time correction of the output of the motor cortex on the base 
of the dopamine level, and the other was to train the cortex using this corrective signal. 
In this model, as with other models, high values of dopamine (Go regime) activate the 
direct pathway with the effect that the arm doesn’t change the movement direction, and low 
dopamine values (NoGo regime) activate the indirect pathway with the effect that the arm 
has a tendency to move in the direction opposite to the current one. This model, differently 
from other models, included the explore regime that corresponds to an intermediate range 
of dopamine that causes the activation of the indirect pathway in such a way that the move-
ment direction of the arm is updated randomly. The simulations showed that the motor 
cortex became gradually independent of the corrective action of BG as the learning process 
proceeded, with a reduction in the variability of reaching trajectories. Moreover, the simu-
lations confirmed that Parkinson’s motor symptoms increased with a reduction of the time 
spent in the Go regime.

Muralidharan et al. (2018) presented an extended version of the simple lumped model 
proposed in Magdoom et al. (2011). Their model was made up of a sensory-motor loop 
and a cortico-basal ganglia loop and it was used for investigating the neural mechanisms 
responsible for reaching movements in normal and in Parkinson’s disease conditions. The 
model includes the spinal cord, which was modeled with one layer of neurons, the proprio-
ceptive cortex and the prefrontal cortex, which were both modeled as self-organizing maps 
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(SOM), the motor cortex, which was modeled by combining a continuous attractor neural 
network and SOM, and the basal ganglia. The BG module includes the striatum, the GPi 
and GPe, the STN, and the thalamus. The striatum was not modeled as a network per se but 
as an activation function that modulates the cortical input. The simulations confirmed that 
BG and motor cortex contribute differently as the learning progresses and, moreover, it was 
shown that the dynamics of the STN-GPe loop conditioned the BG output. In particular, 
synchronized oscillations in STN-GPe resulted in tremors and rigidity.

Narayanamurthy et al. (2019) used the model described in Muralidharan et al. (2018) to 
perform both unimanual and bimanual reaching. Two copies of the Muralidharan’s model, 
each of which controlled one of the two arm models,  were  coupled at the level of the 
respective motor cortices to simulate bimanual reaching. The final  model was used to 
develop and test rehabilitation strategies for stroke.

Mannella and Baldassarre (2015) evaluated if cortico-striato-nigro-thalamo-cortical 
loops, which are re-entrant loops between the basal ganglia and cortex, determine the 
selection of motor repertoires for action execution. Their model included a dynamical 
reservoir, which was implemented with an echo state network (Lukoševičius and Jaeger 
2009), reproducing the dynamics of a cortical module while the basal ganglia module was 
implemented similarly to the model proposed in Gurney et al. (2001), which reinterpreted 
the functional anatomy of the basal ganglia into a "selection" and a "control" pathway: the 
former is devoted to selecting actions that are then modulated by the latter. The model was 
able to explain how, given the same sensory contextual information and different informa-
tion about the task to be executed, a neural population in the motor cortex can be recruited 
to generate different movements. The model was evaluated as the controller of a 3-DoF 
arm and a 20-DoF hand, in three different periodic behaviors (writing a square, a sideways 
“8” shape, and a moon-like shape).

Motor adaptation is a trial-by-trial process during which the sensorimotor system learns 
how to counterweight the perturbations caused by the environment in order to actuate 
the planned movement. This learning process is based on the visual sensing of the error 
between the planned and the actual movement. It has been suggested that the cerebellum 
implements this error-based process by updating the internal model of the body (Izawa and 
Shadmehr 2011). When visual feedback is absent, it has been shown that motor adaptation 
is still possible if reward feedback is available. It has been suggested that reward-based 
motor adaptation is implemented by basal ganglia (Shmuelof et al. 2012).

Kim et al. (2017) evaluated the role of BG in motor adaptation as well as in action selec-
tion. Their model included the cortex, the basal ganglia, the spinal cord, and a 2-DoF vir-
tual arm with six muscles. The cortex model included the prefrontal cortex, whose neurons 
represent the sensory stimuli, the primary motor cortex, whose firing activity commands 
the basic reaching actions by properly activating the spinal cord, and the premotor cor-
tex, whose neurons modulate the activity of primary motor cortex. Both the prefrontal and 
the premotor cortices projected to the BG, which in turn projected to the premotor cortex. 
BG created associations between stimuli and actions by means of a reward-based learn-
ing mechanism. Differently from classical models of action selection, which result in the 
activation of the single neuron in the premotor cortex corresponding to the selected action 
(Frank 2005), the authors hypothesized that the firing of premotor cortex neurons defines 
the relative contribution of different basic actions to the final motor response. Moreover, 
the authors hypothesized a lateral inhibition mechanism in the premotor cortex in order to 
guarantee the suppression of undesired competing actions. The simulations showed that 
BG potentiated the direct connections between prefrontal and premotor neurons, and at the 
end of learning the sensory stimulus triggered the corresponding action without the BG 
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intervention. Moreover, model simulations highlighted two important aspects: the integrity 
of BG is not critical at the end of learning but the indirect pathway is important for reversal 
learning because it provides the mechanism for forgetting an association between a stimu-
lus and an action.

Todorov et al. (2019) investigated the role of BG and CB in motor adaptation by extend-
ing the BG model proposed in Kim et al. (2017) with a neural network representing the 
cerebellum, which received input from the cortex and projected to the spinal cord. The 
study shows that the learning mechanisms operating in the cerebellum and in the basal gan-
glia cannot operate simultaneously during motor adaptation and the authors hypothesize 
the existence of a circuit that controls learning rates in both BG and CB and guarantees the 
switching between the two learning mechanisms.

Fig. 4  Block diagram of the cerebral cortex’s areas involved in the processing of motor programs and their 
main connections with other brain structures (Feher 2012). The prefrontal cortex forms a working memory 
that maintains information necessary to guide the execution of goal-directed tasks. The somatosensory cor-
tex receives proprioceptive information from the spinal cord via the brainstem and the thalamus. The sen-
sory association cortex integrates sensory information from different senses and extracts the information 
relevant to the motor task. The premotor cortex and the supplementary motor cortex are involved in the 
formation of a coordinated motor plan, i.e., the sequence of motor commands that need to be executed to 
perform the desired behavior. The primary motor cortex triggers the movement by exciting the motor neu-
rons through tracts that descend the spinal cord
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4.3  Models of the motor cortex

The cerebral cortex is organized into six horizontal layers and into radial cortical col-
umns and minicolumns. Each layer is characterized by neuron types, input sources, 
and output destinations. There is little knowledge about the local connections among 
neurons from different layers and, as a consequence, models of motor cortex are less 
detailed than models of BG and CB from a physiological and anatomical point of view 
(Loeb and Tsianos 2015). In general, the cerebral cortex is described as made up of 
sensory, motor, and association areas, each of which includes different regions. Figure 4 
shows the cerebral cortex’s areas involved in the processing of motor programs and their 
main connections with other brain structures.

Two are the main theories that explain how the motor cortex neural activity relates 
to movement: the representational perspective and the dynamical systems perspective 
(Wang et  al. 2022; Shenoy et  al. 2013). The representational perspective has concen-
trated on relating the firing of motor cortex neurons with the movement parameters, 
while the dynamical system view has focused on how the activity of populations of neu-
rons determines the output of the motor cortex.

Most of the neurocomputational models linking motor cortex models to spinal cord 
and muscle models adhered to the representational perspective and didn’t include any 
recurrent connections, which are the basis of a dynamical system (Haggie et al. 2023; 
Shenoy et al. 2013).

Burnod et al. (1992) proposed a neural network model that reproduced the modular 
organization of the cerebral cortex in cortical columns. The network learned how to 
transform the visual information about a target point into the motor commands required 
to move the arm toward it. The network was made up of two maps, one representing 
the neurons in premotor and motor areas, the other representing the neurons in parietal 
areas. Premotor and motor areas received inputs from the cortical columns in the pari-
etal areas, which combined three sources of information: visual input of the target posi-
tion, somatic input of the arm position, and efferent copy of the motor command issued 
by motor areas toward the spinal cord. The model explained neuronal tuning properties 
which are observed in the premotor and motor cortex, both at the individual cell level 
and at the population level.

Bullock and Grossberg (1988) proposed the VITE model, a neural network that models 
motor cortical operations performed during reaching arm movements. The model computes 
a difference vector between the current and the desired positions that codes information 
about the direction and the magnitude of the desired movement. In Bullock et al. (1998) 
VITE model was extended to generate movements with variable speeds and forces. Simu-
lated neurons showed similar delay period activation, kinematic and kinetic sensitivities, 
and latency of activity onset to real neurons in the primary motor cortex and the parietal 
cortex. Moreover, the simulation showed that psychophysical properties of goal-directed 
movements, such as bell-shaped velocity profiles and the speed-accuracy trade-off, were 
reproduced by the model.

Lukashin et al. (1996) simulated the neural mechanisms behind the integration of motor 
cortex commands by the spinal cord and their translation in muscle force. The neural net-
work was made up of three layers: supraspinal populations, spinal cord interneurons, and 
motoneuronal pools. The network controlled the model of the arm consisting of six mus-
cles and two joints. The motor cortex was organized into two populations, one encoding 
the direction and magnitude of dynamic force and the other encoding postural force. Each 
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cortical population consisted of eight pools of neurons, each one encoding one of the eight 
preferred directions defined with a cosine-like tuning function. Moreover, the magnitude of 
the encoded force was proportional to the level of the output signal of cortical pools. The 
spinal cord was modeled with four pools of interneurons and six pools of motorneurons, 
each one controlling a different muscle. The model simulation suggested that supraspinal 
signals are correctly transformed into the desired force if the strength of synaptic connec-
tions between supraspinal populations and spinal interneurons is correlated to the direc-
tional preference of connected neurons. Eventually, simulations proved that the force 
generated by the activity of both cortical populations is nearly equal to the vectorial sum-
mation of the forces generated by each population activated independently.

Chen and Reggia (1996) proposed a self-organizing model that simulated map forma-
tion both in the primary proprioceptive cortex and in the primary motor cortex when a 
2-link arm is controlled. The model includes four layers of neurons organized in a closed 
loop: motor cortex, proprioceptive cortex, lower motor neurons, and neurons sensing the 
length and tension of the muscles. Each neuron of the cortical layers represents a cortical 
column. The model showed that multiple feature maps spontaneously emerge from initially 
random connections during unsupervised learning. The spontaneous formation of cortical 
maps with clusters of neurons driving different muscles is the result of the adoption of 
the Hebbian learning rule for updating the synaptic strength and the implementation of 
a ”Mexican hat”-type lateral peristimulus inhibition. The same model was used in Varier 
et al. (2011) to examine the effects of focal and distributed injuries (lesions of the model) 
at various stages of development (cortical map formation). Both studies show that cortical 
maps are not hard-wired but are the result of learning.

Cisek (2006) proposed a computational model of some regions of the cerebral cortex for 
addressing the questions of how different potential actions are planned and how the brain 
decides among them. In the model, populations of cells in the frontoparietal cortex repre-
sent the multiple potential actions while populations of cells in the prefrontal cortex bias 
the selection of one of the actions. Each population was organized as a layer of 90 mean-
rate leaky-integrator neurons tuned to different spatial directions representing the potential 
actions. The model included also cells of the posterior parietal cortex, which receive the 
external inputs representing the potential target directions, and cells of the primary motor 
cortex, which activate the selected action. A second external input modulated the strength 
of the premotor cortex projection into the primary motor cortex. The model simulations 
suggested that planning and decision-making can be performed in parallel by a unified 
mechanism, which is the lateral interactions between cells. In particular, there is a mutual 
excitation between cells with a similar preferred direction and inhibition from cells with 
different preferred directions.

Neymotin et al. (2013) proposed an actor-critic model to investigate how the mapping 
between proprioceptive state and motor commands is learned. The actor was made up of a 
spiking neural network modeling the proprioceptive, sensory, and motor areas of the sen-
sorimotor cortex. The proprioceptive area encoded the lengths of four muscles and, in par-
ticular, each neuron fired for a narrow range of muscle stretches of one of the muscles. 
The sensory area encoded the state of the whole arm by integrating spikes delivered by 
the proprioceptive area. Eventually, the sensory area was projected to the motor area made 
up of distinct populations of neurons, each stimulating one of the muscles. The critic pro-
vided rewards and punishments to the actor by evaluating the variation of hand-to-target 
visual error. Therefore, the critic modulated the weights of synaptic connections among 
neurons by means of reinforcement learning. The authors observed that the learning modi-
fied the network dynamics by enhancing neuronal synchrony and information flow between 
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neuronal populations. They noticed that, at the end of the learning phase, proprioceptive 
information led to point-to-point movements allowing the virtual arm to successfully reach 
a target from any starting point.

Verduzco-Flores and De Schutter (2022) adopted a planar arm with six muscles con-
trolled by a neural model including the spinal cord, sensory, and motor cortex to inves-
tigate how, during childhood, primates gain the skill of using these neuronal networks to 
execute movements. Their hypothesis was that movements are executed to pursue the inter-
nal control of homeostatic variables, such as regulating nutrient concentration by finding 
food, and therefore the feedback corticospinal loop is a negative control system where the 
motor cortex and the spinal cord cooperate to activate the muscles and to reduce an error in 
higher-level variables. The authors showed that the existence of the long-loop reflex, which 
starts when proprioceptive signals are sensed and forwarded to the cortex and ends at the 
spinal cord when alpha motoneurons are activated, explains the emergence of some phe-
nomena in motor control as the directional tuning of neural populations in the motor cortex 
and linear combination of convergent force fields in the spinal cord to generate movement. 
Moreover, the authors showed that this control loop arises if learning happens in the con-
nections from sensory to motor cortex according to differential Hebbian plasticity rules 
introduced in Verduzco-Flores et al. (2022).

Neurocomputational models that adhere to the dynamical system perspective use recur-
rent neural networks (RNNs) to model the complex dynamics of the motor cortex and gen-
erate muscular activity.

Sussillo et  al. (2015) showed that muscle activities recorded from a primate during a 
reaching task can be reproduced by RNNs. In particular, the natural dynamics of the model 
resemble the ones observed in the primates’ primary motor cortex when the RNN is trained 
with heavy regularization.

Michaels et al. (2020) input a modular RNN with the visual features extracted by a con-
volutional neural network to control a musculoskeletal human arm. The model was able to 
explain the brain neural activity when the authors introduced sparse connectivity among 
the three modules of the RNN.

Chen and Qiao (2020) used an RNN to transform the x and y coordinates of a target 
into muscle excitations and trained the network with a reward-modulated multitask learn-
ing method. In the experimentation, the RNN controlled the movement of a 2-DoF muscu-
loskeletal system with nine muscles involved in the execution of a center-out reaching task. 
The model had a consistent population response of hidden neurons in the RNN and gener-
ated muscle excitations compatible with human-like muscle synergies activation.

4.4  Models of the brainstem

Brainstem computational simulation still seems understudied (Mikolajewski and Duch 
2018) as a consequence of its complex and irregular structures, and experimental diffi-
culties in acquiring electrophysiological data on this brain area (Duch and Mikołajewski 
2020).

Computational models of the brainstem have been proposed for investigating its role in 
controlling locomotor frequency and gait (Ausborn et al. 2019), saccadic and smooth pur-
suit eye movements (Rahafrooz et al. 2008).

To the best of our knowledge, a model of the brainstem involved in the control of reach-
ing movements has not yet been proposed.
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4.5  Models of the spinal cord

The spinal cord is formed by complex networks of motoneurons and interneurons that 
receive inputs from sensory afferents and descending tracts. Alpha motoneurons ( �-MN) 
integrate central and peripheral inputs in order to activate muscle fibers, while Gamma 
motoneurons ( �-MN) regulate spindles’ sensitivity to muscle stretch. The spinal cord hosts 
different types of interneurons with different functions in the regulation of muscle activa-
tion. Ia inhibitory interneurons (Ia-IN) control the reciprocal inhibition between antagonist 
muscles, Ib inhibitory interneurons (Ib-IN) receive afferents from Golgi tendon organs of 
the homonymous muscle and inhibit both synergistic and antagonistic muscles, Renshaw 
cells (Ren) modulate the activation of antagonist muscles, Propriospinal interneurons (PN) 
connect multiple spinal cord segments and are involved in the execution of complex motor 
reflexes (Pierrot-Deseilligny and Burke 2012). Figure 5 shows the main connection of the 
spinal cord with the other brain’s areas.

Spinal cord models differ by the type of interneurons they include, and the adopted neu-
ronal model. Moreover, these models have always been simulated in a closed loop with 
models of the musculoskeletal system for investigating different behaviors. The musculo-
skeletal system is also modeled in many ways, with different degrees of freedom, different 
muscles, and muscle models.

At the beginning of the nineties, Bullock and colleagues proposed FLETE, one of the 
first models of spinal circuitry (Bullock and Contreras-Vidal 1991; Bullock et  al. 1993). 
The model was developed to verify the hypothesis that muscle length, which determines 
joint angle, and muscle co-contractive tension must be controlled independently of one 
another. FLETE included �-MN, �-MN, Ia-IN, and Ren cells and was evaluated in the 
control of antagonistic muscle pairs. Simulated neural activity was analyzed to clarify the 
behavioral function of the different types of neurons in the spinal cord. Later, van Heijst 
et  al. (1998) showed that the independent control of the length and tension of muscles, 
which allows higher centers to separately control joint angle and stiffness, is the result of 
self-organization of spinal circuitry facilitated by Hebbian learning operating during spon-
taneous activity in the spinal cord.

Stienen et  al. (2007) investigated the mechanisms behind the modulation of reflexive 
feedback strength that was observed in human postural control of healthy subjects and 
complex regional pain syndrome patients. The spinal cord model consisted of a large popu-
lation of 2,298 neurons grouped in six antagonistic population pairs ( �-MN, Ia-IN, Ib-IN, 
inhibitory and excitatory interneurons, and Renshaw cells) and it was an improvement of 
the model presented in Bashor (1998). The musculoskeletal model was basic and included 
a pair of antagonistic muscles moving a 1-DoF joint and it has been indicated as the limit 
of the study (Allegra et  al. 2020). Later, Schuurmans et  al. (2011) exploited the model 
proposed by Stienen to investigate the effects of neural and sensory mechanisms on the 
modulation of reflex gains.

In the last ten years, researchers have made use of more detailed spinal cord models for 
driving musculoskeletal models that are more complex and realistic than an antagonistic 
muscle pair. One of the main findings of simulation studies is that the learning of new 
motor tasks is facilitated and sped up by the activity of the mammalian spinal cord.

Loeb et al. proposed a fairly complete spinal cord model that drove a four-muscle wrist 
joint in Raphael et al. (2010) and a 2-DoF elbow-shoulder system with six muscles in Tsi-
anos et  al. (2011, 2014). In Raphael et  al. (2010), the authors investigated how the exe-
cution of rapid reaching movements, the adaptation to viscous curl force fields, and the 
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stabilization of the joint’s responses to force perturbations are controlled by the supraspi-
nal centres through the spinal networks. The study showed that the spinal cord, despite its 
complexity, considerably simplifies the learning and the execution of complex movements. 

Fig. 5  Motor commands travel down the corticospinal tract to synapse on interneurons and motor neurons 
in the spinal cord. The neurons located in the rostral region of the primary motor cortex make monosyn-
aptic connections with interneurons in the intermediate zone of the spinal cord, while the neurons in the 
caudal part have direct connections with alpha motor neurons (Rathelot and Strick 2009). The firing activity 
of alpha motor neurons makes muscles contract. Gamma motor neurons regulate spindles’ sensitivity to 
muscle stretch. The ascending projections from the PN interneurons  to the Lateral reticular nucleus may 
provide the cerebellum with an efferent copy of the descending command for reaching (Alstermark and Isa 
2012). The axons of the dorsal root ganglion are the afferent sensory nerve fibers carrying information from 
the body to the brainstem and the cerebellum. The spindles provide information about the muscle length 
and the rate of muscle length change. Golgi tendon organs (GTOs) are sensory receptors located at muscle-
tendon junctions that convey information about the force produced by the muscle during its contraction. BS: 
Bulbospinal tract, CST: Corticospinal tract
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In Tsianos et al. (2011), it was shown that a starting co-contraction of muscles guarantees 
that the spinal cord model stabilizes the arm when an external force is applied. Eventually, 
in Tsianos et al. (2014) the authors showed that muscle dynamics of reaching movements 
were not specified by the cortical motor commands, whose role is recruiting the appropri-
ate spinal circuits, but were driven by the proprioceptive feedback generated during the 
movement. Moreover, model simulations revealed that the interpolation of descending 
commands corresponding to reaching movements toward two different targets allowed the 
generation of a movement toward an intermediate target. Li et al. (2014, 2015) investigated 
how activities of �-MN and �-MN are coordinated by the central nervous system, a ques-
tion that has not yet been clarified by in-vivo experiments (Prochazka and Ellaway 2012). 
The authors hypothesized that �-MN and �-MN receive two sets of commands from the 
supraspinal centres: static commands, which control posture maintenance, and dynamic 
commands, which control movement dynamics. Simulation results validated the hypoth-
esis that � and � motoneurons are controlled in parallel (Li et al. 2014). The same authors 
evaluated the role of PN interneurons in the transmission of cortical oscillatory signals to 
peripheral muscles. Simulations revealed that Parkinsonian tremor is caused by oscillatory 
signals originating in the motor cortex and delivered to neuromuscular junctions through 
propriospinal neurons (Hao et al. 2013). Eventually, in Qu et al. (2017) the authors showed 
that the same propriospinal neuronal network plays a role in the gating of the central oscil-
lation signal and the generation of essential tremor.

Parziale et al. (2020) exploited a model of the spinal cord to understand what are the 
neural basis of the trade-off between speed and accuracy, also known as Fitts’ law. The 
spinal cord model used in the experimentation was inspired by the ones proposed in Tsi-
anos et al. (2014); Raphael et al. (2010), but it included some significant differences. First, 
each �-MN received a monosynaptic input from corticospinal neurons, consistent with the 
findings that the primary motor cortex makes monosynaptic connections with motoneu-
rons innervating shoulder, elbow, and finger muscles (Rathelot and Strick 2009). Second, 
the stretch reflex latency and the Golgi tendon reflex latency were set to realistic values. 
The spinal model was simulated with a 1-DoF arm driven by two synergistic muscles and 
one antagonist muscle. Model simulations revealed that the speed-accuracy trade-off is a 
behavioral trait and not an intrinsic property of the neuromuscular system. Such a trade-off 
is a consequence of the strategy adopted by the supra-spinal centres for commanding move-
ments faster than previously learned movements. In particular, the regulation of the firing 
activity along the monosynaptic connection between cortical cells and �-MN changed the 
velocity of a previously learned movement.

Human movements are characterized by some invariants, such as the bell-shaped veloc-
ity profile of the end-effector, which are not affected by the interaction torques that arise at 
one joint due to the motion of other joints. It means that the intersegmental dynamics are 
compensated during the movement planning at the central level or during the execution by 
the spinal cord circuitry. Buhrmann et al. exploited a model of spinal circuits to show that 
the coordination of dynamic muscle forces is managed by the spinal feedback mechanisms 
and therefore multijoint movements can be controlled without internal models of interseg-
mental dynamics (Buhrmann and Di Paolo 2014).

Teka et  al. (2017) investigated how the activity of cortical neurons correlates with 
movement parameters by exploiting a model that included six cortical neuronal popula-
tions that project to spinal neural circuits. The spinal circuits modulated the contraction 
of six muscles actuating the reaching movements of a 2-DoF arm. The activity of the six 
supraspinal neuronal pools was calculated by solving an inverse problem. In particular, the 
model computed the muscle forces and then the corresponding supra-spinal inputs required 
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for performing each desired trajectory with a defined velocity profile. The experimental 
results revealed that the activities of the motor cortex and spinal neural, the Ia afferent 
feedback, the force-length, and force-velocity components of muscle force depend on the 
movement direction and that directional tuning increases moving from the muscles to the 
cortex. The author hypothesized that the directional modulation of the primary motor cor-
tex firing rate is a consequence of direction-specific dynamics of muscle lengths.

Sreenivasa et al. (2015) developed a neuromuscular model consisting of a spiking neu-
ral network controlling the contraction of two antagonist muscles that flex and extend the 
elbow. The neural network consisted of pools of motor neurons, sensory neurons, and 
interneurons whose sizes and relative distances were chosen to approximate their topologi-
cal organization in the human spine. The model parameters were subject-specific and were 
identified from human experiments. The model mimicked the biceps stretch reflex and it 
allowed a quantitative evaluation of reflex behavior, muscle forces, and movement kine-
matics under varying conditions of external forces and co-contraction levels.

5  Neurorobotic applications

To understand and replicate how the brain perceives and interacts with the environment 
it is required to identify what are the causal mechanisms between neural activity, percep-
tion, and action. Ethical and technical reasons don’t allow in-vivo experiments where the 
responses to stimuli are measured after manipulations of living brains in humans and ani-
mals. Computational models of the brain allow investigating causal mechanisms with in-
silico experiments where manipulations and recordings are limited only by the level of 
detail and complexity used for representing the real system (Markram 2013).

Neurorobotics introduces a new experimental paradigm where the perception-cognition-
action cycle is closed by embedding brain models in physical robots or simulated agents 

Fig. 6  Neurorobotics is based on 
the interaction between an agent 
and the environment. An agent 
is made up of a neurocomputa-
tional model of the brain, which 
works as a controller, and a body. 
The body can be a physical or 
simulated robot, which could 
be an industrial, humanoid, or 
musculoskeletal robot. Likewise, 
the environment can be physical 
or simulated. The interaction 
between an agent and the envi-
ronment happens according to 
the perception-cognition-action 
cycle. The agent perceives the 
environmental stimuli, which are 
captured by the body’s sensors 
and sent to the brain model, pro-
cesses them, and then commands 
actions on the environment. The 
action changes the environment, 
which produces new stimuli and 
the cycle continues
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that interact with real or simulated environments, as shown in Fig. 6. The key idea of this 
approach is that the interaction with the environment cannot be ignored to reliably sim-
ulate the brain and to study how behavior arises from neural activity. This experimental 
paradigm allows testing and refining brain models iteratively, removing the approxima-
tion of simulating the brain without the body (Amunts et al. 2019). Neurorobotics benefits 
the understanding of the brain because robots’ states are fully observable, simulations are 
repeatable and the complexity of the neural model can be modulated as desired (Stratton 
et al. 2016).

The real brain is organized in many interconnected subsystems that interact with each 
other to elicit the behavior. The researcher who aims to mimic such a complex system has 
to deal with the trade-off between the accuracy of the model and the time required for sim-
ulating it. The involvement of the brain model in a real-world task requires the simulation 
of the model in real-time, but the current technology doesn’t allow it when the model is too 
complex. If embedding the brain model on a physical robot is a desideratum, the model 
needs to be simplified until it can be simulated in real-time. Instead, the embodiment has 
to be simulated when the accuracy of the model has to be preserved (Falotico et al. 2017).

The simulation of both the embodiment and the environment guarantees the replicabil-
ity and reproducibility of the experimental results and therefore their credibility (Mulugeta 
et  al. 2018). In fact, simulation offers a controllable and measurable experimental setup 
while the complexity of real environments is difficult to control or cannot be controlled at 
all. In the case of musculoskeletal robots, simulations simplify the measurement of some 
quantities, such as muscle forces, and therefore foster a quantitative explanation of how 
movement arises from the interaction of neural and musculoskeletal systems (Pandy 2001). 
Moreover, if one wants to investigate the influence of growth or aging on the development 
of cognitive skills, a simulated agent is a forced choice because a real robot cannot grow or 
age over time (Knoll and Walter 2019).

The Neurorobotics Platform (NRP) is a simulation platform (Falotico et al. 2017) devel-
oped in the context of the Human Brain Project (Amunts et al. 2019). NRP allows the sim-
ulation of a complete neurorobotic system that acts within a simulated world. In particular, 
it includes NEST (Gewaltig and Diesmann 2007) to realize models of the brain with spik-
ing neural networks, Gazebo (Koenig and Howard 2004) to define models of robots, and 
Opensim (Delp et al. 2007) to design models of musculoskeletal systems.

Even though simulating a neurorobot offers all the advantages previously described, 
we have to remember that the ultimate purpose is to realize an artificial agent that shows 
human-like behavior, which cooperates with humans, and that could replace living systems 
in the experimental setup to verify or falsify new scientific hypotheses. Hence, computa-
tional models have to be exposed to a dynamic and rich sensory environment in order to be 
properly validated. Modeling the interactions between body and environment is complex 
(Pandy 2001) but embodying a brain model on a physical robot acting in a real environ-
ment can reveal how the agent manages the effects of unmodeled dynamics and how it 
works in a scenario that is not under full control of the experimenter. Eventually, as sug-
gested in Stratton et al. (2016), observing the complex and unpredictable closed-loop inter-
actions between a neurorobot and the real world facilitates a deeper understanding of how 
the brain processes information and controls behavior.

Given its crucial role in motor learning and adaptation, the cerebellum is the brain area 
that has been most frequently mimicked by artificial controllers. In fact, the most advanced 
realistic microcircuit models, i.e. models based on a detailed biophysical description of 
neurons and synapses, are the ones representing the cerebellum (D’Angelo et  al. 2013). 
Most of the papers present robots equipped with cerebellar-like control architectures that 
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do not model the connection with other brain areas. The first cerebellar-like systems for 
controlling multijoint arms were published in the 1980s. In particular, Kawato et al. con-
trolled a robotic manipulator with a hierarchical neural network model that combined the 
feedback control by the primary motor cortex with feedforward control by the cerebellum 
(Kawato et al. 1987).

In order to investigate the neural basis of the human learning process, Casellato et al. 
(2014) analyzed the activity of a cerebellar spiking neural network embedded in a real 
robot performing three different sensorimotor tasks in the real world: Pavlovian condi-
tioning task, vestibulo-ocular task and reaching task with perturbations. The experimental 
results showed that during the three tasks, the cerebellar network learned how to predic-
tively tune its response to different input stimuli. The authors concluded that the system 
showed the main functions commonly assigned to the cerebellum, which are timing neural 
processes, sensory prediction, and motor learning.

Capolei et  al. (2019) controlled the arm of the humanoid robot iCub with a control 
system that included a classical PID regulator, which was in closed-loop with the robotic 
plant, and a feed-forward bio-inspired cerebellar-like neural network controller. The latter 
was designed by reproducing the functionality and morphology of the cerebellar micro-
circuit as proposed in D’Angelo et al. (2016), but it received sensory inputs representing 
angular position and velocity directly from the encoders in the robotic arm and generated 
the corrective action in terms of corrective torque. The system was embedded in a virtual 
implementation of the robot in the NRP platform. Simulations showed that the cerebellar 
distributed synaptic plasticity allows the model to learn corrective torque commands gener-
ating fast and precise movements independently of external perturbations.

Abadía et al. (2019) proposed a biologically plausible cerebellar-like spiking neural net-
work controller for driving a 6-DoF industrial robot via torque commands in real-time. The 
controller was equipped with the spike-timing-dependent cerebellar plasticity mechanism, 
and it was able to self-adapt and learn from scratch to drive a given robot. The cerebellar 
network was divided into six microcomplexes, each of which controls one of the robot’s 
joints. Overall, the controller was made up of 62,000 leaky integrate-and-fire neurons and 
360,000 synapses and it was able to achieve smooth movements and fast ballistic move-
ments. The authors demonstrated in Abadía et al. (2021) that their cerebellar-like controller 
was robust to variable time delays in the transmission of sensory information and motor 
commands as the biological cerebellum is robust to the sensorimotor pathway delay.

As regards musculoskeletal robots, Richter et al. (2016) presented the proof of princi-
ple of a neural control system driving the robot in real-time. Their controller was based 
on the spiking cerebellar neural network with spike-timing dependent plasticity proposed 
in Luque et  al. (2011) that was able to regulate movements when different objects were 
manipulated.

Niu et  al. (2020) proposed an artificial controller mimicking human reflex to control 
prosthetic hands. The model was made up of 768 spiking neurons organized in six moto-
neuron pools, one Hill-type muscle with one muscle spindle. It received electromyographic 
signals recorded by wrist muscles as input and it was implemented on neuromorphic 
hardware allowing the real-time control of a prosthetic hand. The prosthetic hand showed 
human-compliant grasping and it was able to move with different destinations or velocities.

Dura-Bernal et  al. (2015) made a physical robot arm reproducing in real time the 
same trajectories executed by a virtual 2-DoF musculoskeletal arm model controlled in 
a closed loop by a biomimetic cortical spiking model. The cortical model included three 
neural populations (proprioceptive, somatosensory, and motor) composed of several 
hundred spiking neurons. The experimental results revealed that increasing the realism 
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of the musculoskeletal model allowed the generation of smoother trajectories and the 
physical robot executed movements with low vibrations even with high angular veloci-
ties. In Dura-Bernal et  al. (2016) the authors simulated lesions in the spiking neural 
network by either silencing neurons or eliminating synaptic connections. The activity 
of the cells that survived the lesions was used for creating an inverse model of the neu-
ral system. The inverse model allowed the prediction of the neural stimulation pattern 
required to restore the pre-lesion neural activity and then recover the original reaching 
trajectory. Eventually, in Dura-Bernal et  al. (2017), the authors implemented a more 
complex spiking neural network that included also a spiking model of the spinal cord 
and they used the recordings from the premotor cortex of a macaque brain for modu-
lating the activity of the virtual primary motor cortex in order to select the target the 
virtual arm had to reach.

Zahra et al. (2022) integrated the spiking neural networks of the cerebellum model 
and a motor-cortex-like differential map to control the motion of a UR3 universal robot. 
The differential map acted as an inverse model generating the motor commands in the 
joint space given the desired spatial velocity and the current joint angles of the robot. 
The cerebellum model acted as a forward model predicting the spatial velocity upon 
applying the motor command. Hence, it predicted and then anticipated the error by 
modulating the input to the differential map. The model controlled the robot in a reach-
ing center-out task and it showed a fast learning process, being able to reduce the error 
in a certain direction in only a few repetitions.

Pimentel et al. (2023) proposed a first attempt to integrate the model of basal gan-
glia-thalamus-cortex circuitry with the model of the cerebellum. In particular, the cer-
ebellum, the basal ganglia, the cortex, and the thalamus models were made up of 120, 
95, 19, and 29 leaky integrate-and-fire neurons, respectively. The model controlled the 
arm of the humanoid robot iCub to execute pronation and supination movements, both 
in simulation and in a real environment. Even though the model with both the networks 
of the cerebellum and the basal ganglia was able to control the robot as desired, the 
executed movements were not as accurate as the movements executed when the robot 
was controlled only by the model of the cerebellum. The authors highlighted two criti-
cal aspects of the integrated model that could explain that result: not having trained the 
model of the cerebellum and the model of the basal ganglia at the same time because 
they were in a loop, the limited numbers of neurons, and mossy and climbing fibers.

Clearly, the greater the complexity of the brain model, i.e. the greater the number of 
interconnected brain areas, the greater the opportunities for scientists to understand the 
mechanisms inside the brain and to make new predictions, especially about brain disor-
ders. Izhikevich (Izhikevich and Edelman 2008), Human Brain Project (Markram et al. 
2011), Synapse (Preissl et al. 2012), Spaun (Eliasmith et al. 2012) are large-scale brain 
models with at least one million neurons. Differently from Spaun, the other large-scale 
models do not relate the vast simulated neural activity to behavioral tasks (Eliasmith 
and Trujillo 2014).

Spaun is a large-scale model and a cognitive architecture composed of 2.5 million 
leaky integrate-and-fire neurons and 8 billion connections corresponding to 20 anatomi-
cal brain areas and organized in five subsystems, each of which is devoted to a particular 
high-level function. Spaun’s visual system processes static images while its motor sys-
tem controls a virtual arm. The model can perform eight different tasks without changes 
in its architecture. The basal ganglia subsystem regulates the information flow between 
subsystems depending on the task to be performed. For example, Spaun is able to watch 
images of handwritten digits and reproduce their shape with its virtual arm. Despite its 
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unique features, Spaun still represents an early step toward the building of brain-scale 
functional models: it adopts neuron and synapse models with limited biological realism 
(Duggins and Eliasmith 2022), its perceptual and conceptual representations are limited 
and it is unable to learn completely new tasks (Rasmussen and Eliasmith 2013).

The simulation of a large-scale model as Spaun is really expensive in terms of time 
and energy, even though it has 40,000 times fewer neurons than the human brain. As 
reported in Stewart and Eliasmith (2014), the simulation of 1  s of behavior required 
2.5 h of computing on a high-end workstation in 2012. So, the embodiment of complex 
models has evident problems related to computational resources.

The REACH model, proposed in DeWolf et al. (2016), includes and improves only the 
Spaun’s motor system. The model is made up of 31,500 spiking neurons subdivided into 
neurons belonging to the premotor cortex, the primary motor cortex, and the cerebellum. 
The REACH model controlled the execution of reaching and handwriting movements per-
formed by a virtual nonlinear 3-link arm, also in the presence of environmental perturba-
tions. The model of the premotor cortex is based on a neural implementation of dynamical 
movement primitives, which can be thought of as elementary blocks that can be combined 
to generate a more complex trajectory. The premotor cortex generates the desired trajecto-
ries in a 2D space. The primary motor cortex compares the current state of the arm with 
the target positions received from the premotor cortex and transforms the desired action 
into joint torques. The cerebellum corrects the arm movements by elaborating the com-
manded torques and the arm state.

Iacob et al. (2020) run the REACH model to control a 3-DoF physical robot arm mov-
ing in a 3D space. The experimental results showed that the robot successfully performed 
reaching movements and the cerebellum network was able to compensate for force field 
perturbations, even though performance was slightly lower than the simulated model.

Instead, DeWolf et  al. (2023) run a simplified version of REACH on neuromorphic 
hardware (Intel’s Loihi chip) to control the position and orientation of a 7-DoF arm simu-
lated in Mujoco. The SNNs of the primary motor cortex and the cerebellum were imple-
mented on-chip and received the arm feedback and the planned trajectory from the arm 
simulated on a computer. The controller was evaluated on a center-out reaching task and 
the authors noticed a reduction in the energy cost by two orders of magnitude, a latency 
lower than the implementation on a CPU, and a slight deviation between the executed and 
the ideal trajectories.

Table 1 summarises the main features of the neurorobotic applications described in this 
section.

6  Challenges and research directions

The synergy of neuroscience, computing, and robotics has launched a new era of brain 
research, whose next challenges include among others: a multiscale integration of brain 
models, linking advanced brain models to the spinal cord and musculoskeletal system mod-
els, modeling sensorimotor integration and coordination during task execution, developing 
personalized models for the diagnosis and treatment of brain disorders, and the simulation 
of complex behavior using robots interacting with the environment (Amunts et al. 2022).

A comprehensive understanding of the brain’s functions and processes requires a mul-
tiscale integration of all brain area models up to large-scale brain networks. Modeling 
brain-scale networks with spiking neuronal networks (SNNs) is the current approach in 
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the literature because SNNs code and transmit information by the timing of spikes, as done 
by biological neurons in the brain. In this context, an important research direction is repre-
sented by neuromorphic computing, which is focused on a hardware architecture that mim-
ics the structure of the biological brain with its energy efficiency and inherent parallelism. 
Neuromorphic computing facilitates the implementation of SNNs achieving high energy 
efficiency, low-latency processing, and robustness against noise but relaxing simulation 
accuracy. At the moment, the neuromorphic hardware SpiNNaker achieves accurate and 
real-time performance for robotic applications, whose dynamics require a simulation time 
step of 1 ms to be correctly observed. Instead, it cannot still reach real-time performance 
for neuroscience applications, where the focus on neural dynamics and neurobiological 
time scales requires a simulation time step of 0.1 ms (Van Albada et al. 2018).

Traditional computing and robotic technologies are still far from achieving human per-
formance in uncontrolled environments, where variability and unpredictability are at the 
extreme and being able to adapt to environmental changes is necessary, and in fine motor 
control tasks, which require closing the perception-cognition-action loop in a very short 
time for real-time interaction.

Hence, combining neuromorphic circuits and brain-scale networks represents the path 
to be followed for the development of neurorobots that act autonomously in uncontrolled 
environments and interact with human beings. In fact, obtaining such a result requires deal-
ing with the trade-off between the fidelity of the simulated network, the energy needs, and 
the long simulation times. In this scenario, the execution of complex motor tasks is still 
an open challenge and requires the design of neural primitives that can be mapped onto 
neuromorphic platforms, the understanding of how to integrate all sensing and computing 
components to create a stable perception useful for behavior, and the understanding on how 
to exploit the non-linear properties of biological neural systems to integrate adaptation and 
learning at different temporal scales (Bartolozzi et al. 2022).

Eventually, a key role in the definition of a comprehensive theory describing the infor-
mation processing in the brain is played by the so-called ”closed-loop neuroscience”, the 
experimental paradigm that allows the observation of brain activity and physical perfor-
mance via the embodiment of computational models in physical robots or simulated agents 
involved in behavioral tasks (Amunts et al. 2019). The advances in the biological plausi-
bility of brain and musculoskeletal models will allow closed-loop neuroscience to verify 
more and more hypotheses related to brain diseases and to understand brain mechanisms 
that lead to deficits in motor and cognitive tasks. The simulation of the neuromusculo-
skeletal system allows researchers to observe the internal state of the system that is not 
measurable in in-vivo experiments, therefore it represents an emerging application for the 
design of assistive devices and neurorehabilitation interventions. The two main challenges 
in using these models are to personalize the model to the unique characteristics of each 
subject and to simulate the effect of different treatments (Shourijeh et al. 2020). The future 
of neurorobotics in neurodegenerative research has been depicted in Tolu et  al. (2023): 
the data acquired by the embodied brain models are compared to biological data through 
machine learning with the aim of improving the computational models in an iterative pro-
cess. Once the embodied models are optimized, they can be used for testing therapies and 
to monitor their neurophysiological and behavioral effects on a neurorobot before prescrib-
ing them to patients. So, the next generation of personalized brain models, the so-called 
"digital-twins", will be generated to answer specific questions and they will continuously 
evolve by being informed with real-world data (Amunts et al. 2022).
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7  Conclusion

Neurocomputational models of the central nervous system have been the common ground 
for roboticists and neuroscientists since the 1980s, when the first cerebellum-like systems 
were used for controlling industrial robots. Roboticists are aware that understanding how 
the central nervous system learns, plans and commands movements is the approach for 
mimicking the abilities shown by humans in interacting with the environment. In fact, sys-
tems based on artificial intelligence methods outperform human beings in the tasks they are 
trained for, but their abilities are limited when they have to deal with unexpected situations. 
On the other side, neuroscientists are aware that the brain, body, and environment are one, 
and therefore behavior and neural activity should not be studied in isolation. Simulated or 
physical neurorobots are the tool for studying the perception-cognition-action loops and 
verifying/falsifying hypotheses with a replicable and reproducible experimental setup.

Both for roboticists and neuroscientists, the ideal scenario is the one that allows the 
simulation of the whole neural system in a physical musculoskeletal robot acting in the 
real and unconstrained world. Unfortunately, such a scenario is still far from being feasi-
ble due to the computational costs of the simulation together with the limited scalability 
of some models and the difficulty in acquiring full knowledge about a complex system 
as the human neuromusculoskeletal system is. Such a complexity has been coped with 
breaking the whole nervous system into subsystems that have been modeled in isola-
tion. As a consequence, the different brain areas have been modeled with different levels 
of detail and accuracy, and a complete interconnection of these subsystems has not yet 
been achieved. Large-scale models of brain circuits exist but they are not yet simulated 
together with detailed musculoskeletal models.

The embodiment of neurocomputational models on physical robots has to deal with 
the hard constraint that the model has to be simulated in real-time. Therefore, the exist-
ing physical neurorobots are equipped with a set of models that are enough for replicat-
ing a specific behavior with a sufficient level of accuracy and for replying to the scien-
tific question at the base of the experimentation.

Embodying a brain model in a simulated robot acting in a simulated environment offers 
the opportunity to run more complex models, especially in recent years with the increasing 
availability of computational resources. Nevertheless, a simulation of a detailed model of 
the central nervous system that interacts with a detailed model of the musculoskeletal sys-
tem, which includes all the degrees of freedom of the human skeleton as well as the same 
muscular connections, is still missing because the translation of the neural activity into 
specific muscle activation patterns is computationally demanding.

Large scientific projects like the Human Brain Project are pushing the research 
toward multiscale models, which connect the molecular level to behavior. In the future, 
multiscale models will enable personalized medicine allowing the comprehension of 
how a pharmacological therapy at the molecular level could affect neural dynamics and 
behavior and, at the same time, how neurorehabilitation strategies could affect synaptic 
plasticity at the neural level.
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