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Abstract
Following the devastating COVID pandemic, a new global strategy is required to switch 
from traditional education to blended or online learning method. Nevertheless, there is no 
adamant theoretical base available for such an important transition or similar situations in 
the future. On the other hand, educational systems encounter uncertainty as an integral part 
of multilayered teaching routes. To analyze the interactions among interconnected entities, 
soft computing methodologies can serve as an efficient tool to manage such systems with 
uncertain information through incorporating artificial intelligence (AI) techniques for 
assessing students performances. Nevertheless, the classical binary fuzzy relation and 
other existing theoretical models are not capable of explaining/configuring uncertain-
based datum for multiplex correlations. To fill these gaps, the present study establishes a 
neoteric AI-base “Global Online Learning (GOL) theory” using the newly developed n-
ary relation and n-ary fuzzy relation as the generalization of classical and binary fuzzy 
relations. Through the enhanced mathematical concepts and intelligent soft computing 
techniques, the convoluted multilayer relationships of entities can be punctiliously 
assessed for different values of n. Furthermore, a network-based perspective is proposed 
as a promising systematic model when systems are imperfect and prone to uncertainty. In 
the provided graphical context, the n-ary relation represents the hypergraph pattern, while 
the n-ary fuzzy relation refers to the generalized fuzzy hypergraph model. Fundamental 
characteristics of n-ary fuzzy relation, including reflexive, symmetric, transitive, 
composition, t-cut, support and Cartesian product, are systematically provided to extract 
mathematical interrelated expressions, as well as parametric connection between t-cut 
and Cartesian product. Based on the n-ary fuzzy relation, the n-ary fuzzy hyperoperation 
“ ◦

�
 ” is assigned to construct fuzzy hyperalgebra as the extension of classical algebra with 

illustrative examples. The relationships between fuzzy hyperalgebra and hyperalgebra 
are investigated through the notation of (◦

�
)
t
 for t ∈ (0, 1]. With the introduced t-cut 

methodology, the corresponding hypergraph is derived to simplify the analysis of 
educational information. The AI-base GOL theory provides a solid gadget for learning data 
management, e.g., the grading evaluation of online assessments, where the evaluation of 
components is accomplished on real data in terms of fuzzy n-ary relation, t-cut and support 
through a graphical attitude. The results indicate that the AI-base GOL theory is a robust 
platform to meticulously manage and control uncertain-based intercorrelated information. 
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This platform can be converted into a coding gadget for artificial intelligent educational 
online mega-systems.

Keywords  AI-base Global Online Learning · Uncertain-information management · Social 
interactions · Fuzzy relation method · Graphical module

1  Introduction

Fuzzy set theory, defined by Peng and Selvachandran (2019), was considered as a map 
of X ⟶ [0, 1] for a set of X with a degree of membership to every element of X in a unit 
interval of [0, 1]. The concept of fuzzy relation on a set (Aliev et al. 2021) is a map of 
X × X on [0,  1]. Tamura et  al. derived some features of fuzzy relation (Xu et  al. 2021). 
Rosenfeld indicated important and basic properties of fuzzy relation and utilized them 
in graph theory (Kalampakas et  al. 2014; Ali et  al. 2021). He established the notion of 
fuzzified graph theory as the generalization of ordinary graph theory. Later, Bhattacharya 
et  al. investigated the fuzzy relation and fuzzy groups (Mohammadzadeh and Borzooei 
2018).

The theory of hyperstructure is considered as the generalization of classical 
structures including hypergroup, hyperring, hypermodule, etc. This notion is based on 
a hyperoperation that appoints a pair of a set’s elements to a nonempty subset (Corsini 
and Leoreanu 2013). n-Ary hyperstructures are regarded as an extension of algebraic 
hyperstructures, which consist of n-ary hypergroups, (m, n)-ary hyperrings and (m, n)-ary 
hypermodules. n-Ary hypergroups were initially founded by authors (Yamak et al. 2008), 
after that Mirvakili et al. introduced the notion of (m, n)-ary hyperrings (Leoreanu-Fotea 
et al. 2015). Then, the concept of (m, n)-ary hypermodules was provided by Anvariyeh et al. 
over Krasner (m, n)-ary hyperrings (Ameri and Norouzi 2015). Leoreanu-Fotea presented 
a new kind of fuzzy n-ary hyperstructures as the generalization of n-ary hyperstructures, 
in particular fuzzy n-ary hypergroups and fuzzy (m,  n)-ary hyperrings (Leoreanu-Fotea 
2009). Sun et al. studied fuzzy hypergroups related to fuzzy relation according to a given 
fuzzy hyperoperation (Sun et al. 2010). With a general approach, fuzzy hyperalgebra theory 
was defined and improved by Ameri et al., that was the generalization of hyperalgebraic 
systems and ordinary algebraic systems. This theory was formed based on the n-ary fuzzy 
hyperoperation to obtain basic and important properties (Ameri and Nozari 2011).

Fuzzy set theory has many applications in various fields, including linguistics, decision-
making, cluster analysis, bioinformatic, economics, management, physics etc. The authors 
presented a novel class of fuzzy hyperalgebra and fundamental relation with applications in 
biological structures (Firouzkouhi et al. 2021). Mohammedali et al. 2021 applied fuzzy set 
notion in solar cells. Grag utilized number-based q-rung orthopair fuzzy set in a decision-
making process (Garg 2021). There is a variety of other applications with respect to 
algebraic hyperstructures in geometry, lattices, graphs and hypergraphs, fuzzy and rough 
sets, automata, computer coding, cryptography, and artificial intelligence (Corsini and 
Leoreanu 2013).

In 2019, coronavirus disease (COVID-19) emerged and significantly changed the 
precautionary lifestyle of human beings. One of the critical impacts of such global issue 
appeared in educational sectors where most of the schools and universities faced closure 
or forced to change their traditional systems. To mitigate the consequences of mutated 
COVID, a majority of colleges and universities implemented online/blended educational 
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platforms to adapt instructors and students to the existing situation (Harada et al. 2020; Fox 
et al. 2021). In fact, online training can be regarded as a feasible and cheap gadget and an 
indispensable part of future educational systems (Panigrahi et al. 2018) beyond prevailing 
lockdowns.

With the ever-developing online learning environment, AI-techniques can be embedded 
for various goals in different gadgets, e.g., chatbots, dashboard, automated assessment 
system and intelligent tutoring systems. The automated assessment systems distinguish 
and automatically calculate and analyze the answers of students (Celik 2023). This is 
very important because AI-techniques can play a key role in evaluating and advancing 
students’ performance. For example, the automated AI-systems assist instructors to assess 
learners speaking and writing in the assignments and exams (Hu 2023) or the advanced 
AI prediction model can control the data of students’ learning process and manage their 
academic performance (Jiao et al. 2022).

According to a survey on online distance learning, a total of one hundred students who 
participated in questionnaires, acknowledged some of the advantages of such platform, 
for instance convenient accessibility at anytime and anywhere (32 percent), time and cost 
efficiency (22 percent) and sustainability (56 percent). Nevertheless, there were some 
complaints against the remote systems including network instability (39 percent), unilateral 
interaction and limited communication (18 percent), reduced concentration (29 percent), 
and the rest on declining the quality and educational satisfaction (Agarwal and Kaushik 
2020; Fatonia et  al. 2020). The IT (information technology) mindfulness and techno-
eustress were theorized to facilitate the productivity and creativity of students in an online 
learning setup during COVID (Shirish et  al. 2021). Meanwhile, the online courses have 
shown their benefits for the training of staff in industry and academia (Chang 2016) as well 
as helping their perspectives for career choices (Ray et al. 2019). Even after elapsing the 
current pandemic, the transition of education systems from traditional to online/blended 
phase is required for elevating learning/teaching efficiency, minimizing the costs, and 
increasing sustainability. With all these, there is not yet a solid and comprehensive theory 
to address such a learning/teaching platform at the local or global scale.

During the COVID-19 pandemic, the impact of e-learning was investigated with a 
theoretical approach to evaluate differences between dental schools before and after 
lockdown (Chang et  al. 2021). With a fuzzy view, cluster analysis was conducted by 
applying fuzzy C-Means classifying students’ abilities in the e-learning process based on 
their learning outcomes (Sari et al. 2021). In K-S, fuzzy analytic hierarchy process (AHP) 
was utilized in constructing a blended learning measurement system. In another study, an 
advanced evaluation model was presented for online learning based on fuzzy mathematics 
to analyze the impact of virtual learning (Tao 2021).

In fact, fuzzy mathematical approach has a strong potential to evaluate/optimize 
multiple connections among entities (individuals or cores). Classical fuzzy binary relation 
has major drawbacks for effectively dealing with the uncertain behavior of entities and 
linkages. Indeed, classical fuzzy relations merely focus on binary connections of elements, 
however, complex systems possess multiple relations of elements that are disregarded in 
fuzzy analysis. Nonetheless, the conventional fuzzy relation method cannot tackle the 
systems with vagueness and imprecision among multiple elements; this approach is not 
beneficial for the analysis of complicated correlated entities. Also, the dependence values 
in classical fuzzy relation are devoted to the strength of relations (i.e., edges in fuzzy graph) 
between a pair of elements, while dependence values in the present theory comprehensively 
describe the strength of interrelated elements as it is the generalized version of the classical 
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approach. In this way, the presented theory can be applicable for multidimensional fuzzy 
relations in real large-scale problems.

Despite advances in online learning systems, there is no well-established methodology 
to theoretically and functionally evaluate multi-facet intercomponent connections among 
elements. The goal of this study is extending the classical fuzzy relation into an advanced 
fuzzy system in order to establish the Global Online Learning (GOL) theory. This 
approach provides a powerful tool with many capabilities, for instance, exploring the fuzzy 
membership degree of complex correlations of components in virtual training systems with 
uncertainty. The presented theory concurrently considers 2-ary, 3-ary, … , n-ary relations 
of variables for multi-aspects interrelated components in dynamic systems with uncertain 
information. Compared to the existing theoretical and experimental achievements in 
e-learning systems, this pattern has supremacy as it applies a multi-facet fuzzy-based 
framework with a novel methodical graphical display.

In this study, a comprehensive soft computing methodology is extended to meticulously 
assess complex interconnected components (two or multiple interconnections between 
elements) with a graphical representation. It aims at generalizing classical relation and 
binary fuzzy relation in fuzzy mathematics called n-ary relation and fuzzy n-ary relation 
by developing new definitions and notations. A systematic connection between t-cut 
and Cartesian product is discussed in a generalized fuzzy relation format to configure 
complicated correlation of components. The proposed model is systematically framed into 
an AI-base “GOL theory” to solve fuzzy problems in terms of uncertain-based information 
in blended training. With the obtained symbols, a novel n-ary fuzzy hyperoperation is 
presented to construct fuzzy hyperalgebra with a new approach. The AI-base GOL theory 
is constructed in terms of uncertain-based information to intelligently analyze the learning/
comprehension rate of taught courses for students in digital education at a local or global 
scale. Additionally, the theoretical and graphical architecture of the developed strategy 
outperforms the evaluation of components and interconnections.

After the Sect. 1, the basic and primary notions of the proposed method are briefly pro-
vided in Sect. 2. In Sect. 3, we present a new kind of relation called n-ary and n-ary fuzzy 
relations, with important results associated to reflexive, symmetric, transitive, composition, 
t-cut, support and Cartesian products. Also, the systematic relevance between Cartesian 
product and cut property is studied. In Sect. 4, through the declared n-ary fuzzy relation, 
we establish an n-ary fuzzy hyperoperation parameter “ ◦

�
 ” to achieve fuzzy hyperalgebra 

along with illustrative examples. The parametric connection between support property and 
derived hyperalgebra is investigated, along with determining the relevance between fuzzy 
hyperalgebra and hyperalgebra through the constructed notation (◦

�
)t. In Sect. 5, the AI-

base “GOL theory” is initiated using the n-ary fuzzy relation to address the online/blended 
training systems (Fig. 1).

2 � Preliminaries

Definition 2.1  A fuzzy set � of a set V is a function of V on a unit interval [0, 1],   that 
is � ∶ V ⟶ [0, 1], which appoints a membership degree to every element of V. A fuzzy 
relation � on a set V is a fuzzy set of V × V , i.e., � ∶ V × V ⟶ [0, 1], that assigns a mem-
bership degree to every pair of elements of V. In addition, � is considered as a fuzzy rela-
tion on a fuzzy set � , if �(x, y) ≤ � (x) ∧ � (y) for all (x, y) ∈ V × V . By considering � as 
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a fuzzy relation on � , we say that � is a reflexive fuzzy relation provided �(x, x) = � (x), 
and if �(x, y) = �(y, x), then we call � a symmetric fuzzy relation. Additionally, sup-
port � is defined as 𝜃∗ = {(x, y) ∈ V × V ∣ 𝜃(x, y) > 0} while t-cut is determined as 
�
t = {(x, y) ∈ V × V ∣ �(x, y) ≥ t} (Binu et al. 2021).

Definition 2.2  (G, ∗) is called a hypergroupoid if G is a nonempty set with a hyperopera-
tion ∗, which is a mapping of ∗∶ G × G → P∗(G), where P∗(G) is the category of all non-
empty subsets of G. Consider e ∗ f  as the hyperproduct of e and f for every e, f ∈ G. 
Besides, a hypergroupoid (G, ∗) is introduced as a semihypergroup supposing that G is 
associative, i.e., (e ∗ f ) ∗ g = e ∗ (f ∗ g) for all e, f , g ∈ G. A hypergroup is a semihyper-
group (G, ∗) along with reproducibility axiom, symbolically g ∗ G = G ∗ g = G for all 
g ∈ G. The hypergroup is called commutative provided e ∗ f = f ∗ e for all e, f ∈ G. Mean-
while, a nonempty set L of a hypergroup G is called a subhypergroup of G,  if ∀z ∈ L we 
have z ∗ L = L ∗ z = L. By considering R and T as two nonempty subsets of G,  we have 
R ∗ T =

⋃
r∈R, t∈T

r ∗ t. In addition, for g ∈ G, E ⊆ G, then g ∗ E =
⋃

e∈E
g ∗ e. Describe the 

hyperproduct of components x1,… , xn of G as 
∏

n

i=1
x
i
∶= x1 ∗

∏
n

i=2
x
i
 (Corsini and 

Leoreanu 2013).

Definition 2.3  An n-ary hyperoperation � on set G is a mapping of � ∶ Gn
⟶ P∗(G), 

where P∗(G) stands for the class of all nonempty subsets of G and Gn denotes the set of n 
tuples over G. A binary structure G = ⟨G, (�i ∶ i ∈ I)⟩ is a  hyperalgebra, where (�i ∶ i ∈ I) 
is a category of hyperoperations on G (Ameri and Nozari 2011).

Fig. 1   AI-base GOL theory is constructed based on x
i
 as individuals, � as learning rate of each Individual, 

and � as learning rate of conjoint individuals (n-ary) in global online networks



	 A. Amini et al.

1 3

68  Page 6 of 31

Definition 2.4  The operation �i is a fuzzy mi -ary hyperoperation of G if a nonzero fuzzy 
subset �i(b1,… , bmi

) is corresponded to every m-tuple (b1,… , bmi
) of components of G,   

i.e., a map of �i ∶ G ×… × G ⟶ F∗(G) with (b1,… , bmi
) ⟶ �i(b1,… , bmi

). The couple 
⟨G, �i⟩ is considered as a fuzzy mi -ary hypergroupoid (Ameri and Nozari 2011). Moreover, 
a fuzzy nullary hyperoperation on G is a nonzero fuzzy subset of G.

Let G ≠ ∅ and ∀i ∈ I, and �i be a fuzzy mi-ary hyperoperation on G. Then, 
G = ⟨G, (�i ∶ i ∈ I)⟩ is a fuzzy hyperalgebra, with (mi ∶ i ∈ I) as a type of fuzzy 
hyperalgebra. Assume �1,… , �mi

 are nonzero fuzzy subsets of G,   and suppose 
G = ⟨G, (�i ∶ i ∈ I)⟩ is a fuzzy hyperalgebra, and for g ∈ G, the fuzzy subset �i(�1,… , �mi

) 
is determined by

3 � Basic characteristics of n‑ary fuzzy relation

Definition 3.1  Let U be a set and A ⊆ U, and let R be an n -ary relation on U,   that is 

R ⊆

n

�������������������

U × U ×… × U (Cristea and Ştefǎnescu 2010). R is an n-ary relation on A if 

(u1, u2,… , un) ∈ R, then u1 ∈ A,… , un ∈ A. Also, R is n-ary equivalence relation if the fol-
lowing statements are held: 

	 (i)	 R has reflexive property if (u, u,… , u) ∈ R,

	 (ii)	 R has symmetric property if for every i, ui is permuted with uj for i ≠ j, i.e., 
(u1, u2,… , ui−1, ui, ui+1,… , un) ∈ R ⟺ (ui, u2,… , ui−1, u1, ui+1,… , un)
∈ R ⟺ … ⟺ (u1, u2,… , ui−1, un, ui+1,… , ui) ∈ R

	 (iii)	 R has transitive property if (u1, u2,… , un−1, z) ∈ R, (z, u2,… , un) ∈ R, then 
(u1, u2,… , un) ∈ R.

Let R1 and R2 be two n-ary relations on U. Thus, the composition R1◦R2 is defined as 
follows:

Definition 3.2  Let U be a set. An n-ary fuzzy relation on U is a fuzzy subset of 
n

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

U × U ×… × U, i.e., a map � ∶

n

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

U × U ×… × U ⟶ [0, 1] that appoints a degree of mem-
bership to each ordered n components of (u1, u2,… , un), that is 0 ≤ �(u1, u2,… , un) ≤ 1, 
for all u

i
∈ U  (Firouzkouhi et  al. 2024). Suppose � is a fuzzy subset on a set U,   i.e., 

� ∶ U ⟶ [0, 1]. Thus, a mapping �:
n

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
U × U ×… × U ⟶ [0, 1] is considered as an n-ary fuzzy rela-

tion on �, if for all ui ∈ U, i ∈ [1, n], we have �(u1, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un).

Definition 3.3  Assume � is an n-ary fuzzy relation. Thus, 

�i(�1,… , �mi
)(g) =

⋁

(x1,…,xmi
)∈Gmi

(
�1(x1) ∧ … ∧ �mi

(xmi
) ∧ �i(x1,… , xmi

)(g)
)

(u1, u2,… , un−1, y) ∈ R1, (y, u2,… , un) ∈ R2 ⟹ (u1, u2,… , un) ∈ R1◦R2
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	 (i)	 � is reflexive if for every u ∈ U, �(u, u,… , u) = �(u),

	 (ii)	 � is symmetric if for every i ∈ [1, n], any ui is permuted with all elements, 
i . e . ,  �(u1, u2,… , ui−1, ui, ui+1,… , un) = �(ui, u2,… , ui−1, u1, ui+1,… , un)
= … = �(u1, u2,… , ui−1, un, ui+1,… , ui)

	 (iii)	 � is transitive if 𝜌2 ⊆ 𝜌, i.e., for all u1, u2,… , un, z ∈ U, we have 

For two given n-ary fuzzy relations �, � on U,  the composition �◦� is described as:

For all t ∈ [0, 1], consider t-cut as the set �t = {x ∈ U ∣ �(x) ≥ t} which is the subset of U 
and the set �t is defined as:

The support � is defined in the following way:

Proposition 3.4  The following conditions are held: 

	 (i)	 If �, � are two n-ary fuzzy relations on �, then the composition �◦� is an n-ary fuzzy 
relation on �.

	 (ii)	 Assume �, �, � are n-ary fuzzy relations, hence the composition of n-ary fuzzy 
relations is associative, i.e., �◦(�◦�) = (�◦�)◦�.

	 (iii)	 For t ∈ [0, 1], we have 𝜌t ⊆ 𝜇t ×… × 𝜇t.

	 (iv)	 Suppose �, � are n-ary fuzzy relations, and for all t ∈ [0, 1], then (�◦�)t = �t◦�t.

Proof  Proof of (i): Since � and � are n-ary fuzzy relations on �, so, for all 
ui, y ∈ U, i ∈ [1, n], we have

therefore,
�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un) ∧ �(y) ≤

�(u1) ∧ �(u2) ∧ … ∧ �(un),

⋁

z∈U

(�(u1, u2,… , un−1, z) ∧ �(z, u2,… , un)) ≤ �(u1, u2,… , un)

(�◦�)(u1, u2,… , un) =
⋁

y∈U

(�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un))

�t = {(u1, u2,… , un) ∈ U × U ×… × U ∣ �(u1, u2,… , un) ≥ t}

supp(�) = {(u1, u2,… , un) ∈ U × U ×… × U ∣ �(u1, u2,… , un) ≠ 0}

�(u1, u2,… , un−1, y) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un−1) ∧ �(y),

�(y, u2,… , un) ≤ �(y) ∧ �(u2) ∧ … ∧ �(un)
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for every y ∈ U, we have
(�◦�)(u1, u2,… , un) =

⋁

y∈U
(�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un)) ≤ �(u1) ∧ �(u2)∧

…∧ �(un).
Then, the composition is an n-ary fuzzy relation on �.
Proof of (ii):

Proof of (iii): For (u1, u2,… , un) ∈ �t, we have �(u1, u2,… , un) ≥ t. As � is an n-
ary fuzzy relation on �, so �(u1, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un). Therefore, 
�(u1) ∧ �(u2) ∧ … ∧ �(un) ≥ t, which yields that for every i,   we have �(ui) ≥ t. Then, 
u1 ∈ �t,… , un ∈ �t. Thus, (u1, u2,… , un) ∈ �t ×… × �t.

Proof of (iv):

  

Proposition 3.5  Assume � is a reflexive n-ary fuzzy relation on �. The following statements 
are satisfied: 

	 (i)	 For all ui ∈ U, i ∈ [1, n], we have �(u1, u2,… , un) ≤ �(ui, ui,… , ui).

	 (ii)	 For t ∈ [0, 1], �t is reflexive n-ary relation on �t.

	 (iii)	 The powers of �i are reflexive n-ary fuzzy relations, i.e., �◦� = �
2,… , �n−1◦� = �

n.

	 (iv)	 Assume � is reflexive, then �◦� is reflexive n-ary fuzzy relation.
	 (v)	 For every �, as an n-ary fuzzy relation, we have �◦� ≥ �.

	 (vi)	 For every n ∈ N, we have � ≤ �
2 ≤ … ≤ �

n.

Proof  Proof of (i): Since � is a reflexive n-ary fuzzy relation, thus �(u, u,… , u) = �(u). 
Then, �(u1, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un) ≤ �(ui) = �(ui, ui,… , ui).

(�◦(�◦�))(u1, u2,… , un) =
⋁

y∈U

(�(u1, u2,… , un−1, y) ∧ (�◦�)(y, u2,… , un))

=
⋁

y∈U

(�(u1, u2,… , un−1, y) ∧ (
⋁

z∈U

�(y, u2,… , un−1, z) ∧ �(z, u2,… , un)))

=
⋁

z∈U

(
⋁

y∈U

�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un−1, z)) ∧ �(z, u2,… , un)

=
⋁

z∈U

(�◦�)(u1, u2,… , un−1, z) ∧ �(z, u2,… , un)

= ((�◦�)◦�)(u1, u2,… , un).

(u1, u2,… , un) ∈ (�◦�)t ⟺ (�◦�)(u1, u2,… , un) ≥ t

⟺

⋁

y∈U

(�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un)) ≥ t

⟺ �(u1, u2,… , un−1, y) ≥ t, �(y, u2,… , un) ≥ t, for some y

⟺ (u1, u2,… , un−1, y) ∈ �t, (y, u2,… , un) ∈ �t

⟺ (u1, u2,… , un) ∈ �t◦�t.
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Proof of (ii): For u ∈ �t, we have �(u) ≥ t. Since � is reflexive, so 
�(u, u,… , u) = �(u) ≥ t. Then, we have (u, u,… , u) ∈ �t, so �t is a reflexive n-ary relation 
on �t.

Proof of (iii): For all u ∈ U,

�◦�(u, u,… , u) =
⋁

y∈U
�(u, u,… , y) ∧ �(y, u,… , u) ≥ �(u, u,… , u) ∧ �(u, u,… , u) =

�(u) ∧ �(u) = �(u).
 So, �◦�(u, u,… , u) = �(u), this yields that �◦� is reflexive and so on.

Proof of (iv): Since �, � are reflexive, ∀u ∈ U, we have
�◦�(u, u,… , u) =

⋁

y∈U
�(u, u,… , y) ∧ �(y, u,… , u) ≥ �(u, u,… , u) ∧ �(u, u,… , u) =

�(u) ∧ �(u) = �(u).
 Then, �◦�(u, u,… , u) = �(u), so �◦� is reflexive.

Proof of (v): For all u ∈ U,

�◦�(u, u,… , u) =
⋁

y∈U
�(u, u,… , y) ∧ �(y, u,… , u) ≥ �(u, u,… , u) ∧ �(u, u,… , u)

= �(u) ∧ �(u, u,… , u).
 Since � is fuzzy n-ary relation, thus �(u, u,… , u) ≤ �(u) and we 

have �(u) ∧ �(u, u,… , u) = �(u, u,… , u). Then, �◦�(u, u,… , u) ≥ �(u, u,… , u). 
Therefore, �◦� ≥ �.

Proof of (vi): From the equation of proof (v) in Proposition 3.5, it is straightforward.   

Proposition 3.6  If � is a symmetric n-ary fuzzy relation. The following statements are held: 

	 (i)	 The powers of � are symmetric n-ary fuzzy relation.
	 (ii)	 Let � be symmetric n-ary fuzzy relation. Then, �◦� is symmetric if and only if 

�◦� = �◦�.

Proof  Proof of (i): It is obvious.
Proof of (ii): (⟹) Assume �, � are symmetric n-ary fuzzy relation. Thus,

Therefore, �◦� = �◦�. The proof of converse is straightforward.   

Proposition 3.7  The following statements are held: 

	 (i)	 If � is symmetric and transitive n-ary fuzzy relation, hence for all u, y ∈ U, we have 
�(u, u,… , u, y) ≤ �(u, u,… , u).

(�◦�)(u1, u2,… , un) =
⋁

y∈U

(�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un))

=
⋁

y∈U

(�(un, u2,… , un−1, y) ∧ �(y, u2,… , un−1, u1)), since σ, ρ are symmetric

= (�◦�)(un, u2,… , un−1, u1)

= (�◦�)(u1, u2,… , un−1, un), since σ◦ρ is symmetric.



	 A. Amini et al.

1 3

68  Page 10 of 31

	 (ii)	 Let � be transitive n-ary fuzzy relation on �. Then, �t is transitive n-ary relation on 
�t for t ∈ [0, 1].

	 (iii)	 If � is transitive n-ary fuzzy relation, and �, � ≤ �, hence �◦� ≤ �.

	 (iv)	 Assume � is transitive and � is reflexive, and � ≤ �. Thus, �◦� = �◦� = �.

	 (v)	 Suppose � is reflexive and transitive n-ary fuzzy relation, hence � = �
2 = … = �

n.

	 (vi)	 Let �, � be transitive n-ary fuzzy relations, and �◦� = �◦�. Then, �◦� is transitive.

Proof  Proof of (i):

Since � is transitive, thus (�◦�)(u, u,… , u) ≤ �(u, u,… , u). Therefore, 
�(u, u,… , u, y) ≤ �(u, u,… , u).

Proof of (ii): It is straightforward.
Proof of (iii):

Proof of (iv): By (iii) and Proposition 3.5 part (v), it is proved.
Proof of (v): Consider � = � in part (iv), the proof is concluded.
Proof of (vi): Applying the associativity and commutativity of �, �, and transitivity of 

�, �, we have:

Definition 3.8  Assume � and �′ are two fuzzy subsets on U,   thus the Cartesian product 
(� × �

�)(x, y) = �(x) ∧ �
�(y) is fuzzy relation on U,  for every x, y ∈ U (Mohammadzadeh 

and Borzooei 2018).

Proposition 3.9  Suppose � is n-ary fuzzy relation on �, and �′ is n-ary fuzzy relation on �′. 
Then, the Cartesian product � × �

� is determined by

which is n-ary fuzzy relation on � × �
�.

(�◦�)(u, u,… , u) =
⋁

y∈U

�(u, u,… , u, y) ∧ �(y, u,… , u)

=
⋁

y∈U

�(u, u,… , u, y), since ρ is symmetric

≥ �(u, u,… , u, y)

(�◦�)(u1, u2,… , un) =
⋁

y∈U

�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un)

≤
⋁

y∈U

�(u1, u2,… , un−1, y) ∧ �(y, u2,… , un), since σ, ν ≤ ρ

≤ �(u1, u2,… , un), since ρ is transitive.

(�◦�)◦(�◦�) = �◦(�◦�)◦� = �◦(�◦�)◦� = (�◦�)◦(�◦�) ≤ (�◦�).

(� × �
�)((u1, u2,… , un), (u

�

1
, u�

2
,… , u�

n
)) = �(u1, u2,… , un) ∧ �

�(u�
1
, u�

2
,… , u�

n
)
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Proof  Let � and �′ be n-ary fuzzy relations over universe sets of U and U′, respectively. 
Since � and �′ are n-ary fuzzy relations on � and �′, respectively, we have

for all ui ∈ U, u�
i
∈ U� and 1 ≤ i ≤ n. Then, by the definition of Cartesian product � × �

� 
and Definition 3.8, we follow

This yields that � × �
� is n-ary fuzzy relation on � × �

�. 

Proposition 3.10  Let � and �′ be n-ary fuzzy relations on � and �′, respectively. Hence,

Proof 
 

4 � Fuzzy hyperalgebra based on n‑ary fuzzy relation

Definition 4.1  Let � be n-ary fuzzy relation on A. Denote for all ui, z ∈ A,

An n-ary fuzzy hyperoperation " ◦
�
 " is defined as:

where for every z,  we have

Particularly, for all u ∈ A, we have

�(u1, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un)

�
�(u�

1
, u�

2
,… , u�

n
) ≤ �

�(u�
1
) ∧ �

�(u�
2
) ∧ … ∧ �

�(u�
n
)

(� × �
�)((u1, u2,… , un), (u

�

1
, u�

2
,… , u�

n
))

= �(u1, u2,… , un) ∧ �
�(u�

1
, u�

2
,… , u�

n
)

≤ �(u1) ∧ �(u2) ∧ … ∧ �(un) ∧ �
�(u�

1
) ∧ �

�(u�
2
) ∧ … ∧ �

�(u�
n
)

= [�(u1) ∧ �
�(u�

1
)] ∧ [�(u2) ∧ �

�(u�
2
)] ∧ … ∧ [�(un) ∧ �

�(u�
n
)]

= (� × �
�)(u1, u

�

1
) ∧ (� × �

�)(u2, u
�

2
) ∧ … ∧ (� × �

�)(un, u
�

n
)

(� × �
�)t = �t × �

�

t

((u1, u2,… , un), (u
�

1
, u�

2
,… , u�

n
)) ∈ (� × �

�)t ⟺ (� × �
�)((u1, u2,… , un), (u

�

1
, u�

2
,… , u�

n
)) ≥ t

⟺ �(u1, u2,… , un) ∧ �
�(u�

1
, u�

2
,… , u�

n
) ≥ t

⟺ �(u1, u2,… , un) ≥ t, ��(u�
1
, u�

2
,… , u�

n
) ≥ t

⟺ (u1, u2,… , un) ∈ �t, (u
�

1
, u�

2
,… , u�

n
) ∈ �

�

t

⟺ ((u1, u2,… , un), (u
�

1
, u�

2
,… , u�

n
)) ∈ �t × �

�

t
.

M�

u1,u2,…,un−1
∶ A ⟶ (0, 1]

M�

u1,u2,…,un−1
(z) = �(u1, u2,… , un−1, z)

u1◦�u2◦� … ◦
�
un = M�

u1,u2,…,un−1
∪M�

u1,u2,…,un−2,un
∪… ∪M�

u2,u3,…,un

(u1◦�u2◦� … ◦
�
un)(z) = M�

u1,u2,…,un−1
(z) ∨M�

u1,u2,…,un−2,un
(z) ∨ … ∨M�

u2,u3,…,un
(z)

= �(u1, u2,… , un−1, z) ∨ �(u1, u2,… , un−2, un, z) ∨ … ∨ �(u2,… , un, z)
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Consider �1,�2,… ,�n as nonzero fuzzy subset of A. Thus, �1◦��2◦� … ◦
�
�n is determined 

as follows:
(�1◦��2◦� … ◦��n)(z) =

⋁

ui∈supp(�i )
(�(u1, u2,… , un−1, z) ∨ �(u1, u2,… , un−2, un, z) ∨ … ∨ �(u2,… , un, z))

Example 4.2  Assume A is a nonvoid set. Let � be nonzero fuzzy subset of A,   (which is 
1-ary fuzzy relation). For all u1, u2,… , un ∈ A, define u1◦�u2◦� … ◦

�
un = �. It can be seen 

that 
⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra.

Example 4.3  Suppose A is a nonvoid set, and � is an n-ary fuzzy relation on �, and for 
all i ∈ [1, n], n ∈ N, ti ∈ (0, 1]. Introduce n-ary fuzzy hyperoperation for all ui, z ∈ A, in the 
following way:

where, �(u1, u2,… , ui−1, z, ui+1,… , un) ≤ �(u1) ∧ …�(ui−1) ∧ �(z) ∧ �(ui+1) ∧ �(un). 
Thus, 

⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra.

Proposition 4.4  Let � be a reflexive n-ary fuzzy relation on �. Thus, 
(u◦

�
u◦

�
… ◦

�
u)(u) = �(u), for all u ∈ A.

Proof  Since � is a reflexive n-ary fuzzy relation, thus �(u, u,… , u) = �. Therefore, 
�(u, u,… , u) = M�

u,u,…,u
(u) = (u◦

�
u◦

�
… ◦

�
u)(u), hence (u◦

�
u◦

�
… ◦

�
u)(u) = �(u). 	�  ◻

Theorem  4.5  Assume � is reflexive, symmetric and transitive n-ary fuzzy relation on A. 
Thus, A =

⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra.

Proof  Since (u1◦�u2◦� … ◦�un)(z) = �(u1, u2,… , un−1, z) ∨ �(u1, u2,… , un−2, un, z) ∨ … ∨ �(u2,… , un, z) 
and �(u1, u2,… , un−1, z) ∈ (0, 1] and so forth, then (u1◦�u2◦� … ◦

�
un)(z) ∈ F∗(A). It con-

cludes that A =
⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra. Note that the assumption of reflexive, sym-

metric and transitive property would strengthen the theorem for the subcategories of fuzzy 
hypergroup, fuzzy hyperring, fuzzy hypermodule, etc.

Theorem 4.6  The following statements are satisfied for all u1, u2,… , un ∈ A ∶

	 (i)	 Assume ⟨A, ◦⟩ is hyperalgebra. Hence, 
⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra provided 

u1◦�u2◦� … ◦
�
un = �u1◦u2◦…◦un

.

	 (ii)	 Suppose 
⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra. Thus, ⟨A, ◦⟩ is hyperalgebra if 

u1◦u2◦… ◦un = supp(u1◦�u2◦� … ◦
�
un).

Proof  Proof of (i): For every z, ui ∈ A, we have

u◦
�
u◦

�
… ◦

�
u = M�

u,u,…,u

(u1◦�u2◦� … ◦
�
un)(z) =

� ⋁
1≤i≤n

ti if �(u1, u2,… , ui−1, z, ui+1,… , un) = ti

0 otherwise

(u1◦�u2◦� … ◦
�
un)(z) = �u1◦u2◦…◦un

(z) =

{
1 if z ∈ u1◦u2◦… ◦un
0 otherwise
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Since ⟨A, ◦⟩ is hyperalgebra, so u1◦u2◦… ◦un ∈ P∗(A). Thus, there exists z such that 
z ∈ u1◦u2◦… ◦un, this results (u1◦�u2◦� … ◦

�
un)(z) = 1 ∈ F∗(A). This concludes that ⟨

A, ◦
�

⟩
 is fuzzy hyperalgebra.

Proof of (ii): Let 
⟨
A, ◦

�

⟩
 be fuzzy hyperalgebra. Then, (u1◦𝜌u2◦𝜌 … ◦

𝜌
un)(z) > 0 

for every z, ui ∈ A which indicates z ∈ supp(u1◦�u2◦� … ◦
�
un). Because 

supp(u1◦�u2◦� … ◦
�
un) = u1◦u2◦… ◦un, therefore, z ∈ u1◦u2◦… ◦un. This proves that 

⟨A, ◦⟩ is hyperalgebra. 	�  ◻

Let A be a nonempty set, endowed with a fuzzy hyperoperation ◦
�
, consider the t-cuts, 

(u1◦�u2◦� … ◦
�
un)t = {w ∈ A ∣ (u1◦�u2◦� … ◦

�
un)(w) ≥ t} where t ∈ [0, 1].

Denote n-ary hyperoperation as follows:

Theorem  4.7 
⟨
A, ◦

�

⟩
 is fuzzy hyperalgebra if and only if for all t ∈ (0, 1],

⟨
A, (◦

�
)t
⟩
 is 

hyperalgebra.

Proof  By considering Definitions 2.3, 2.4 and Eq. 1, it is straightforward.

(1)u1(◦�)t u2(◦�)t …(◦
�
)t un = (u1◦�u2◦� … ◦

�
un)t

Fig. 2   The diagram of AI-base GOL theory
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5 � AI‑base GOL theory derived from the generalized n‑ary fuzzy 
relation

5.1 �  AI‑base GOL theory methodology

This section inaugurates a primitive and significant introduction to a novel well-established 
framework of graph theory that is a generalized format of classical fuzzy graph. Using 
standard mathematical definitions and principles, GOL theory is constructed to configure 
a strategic pattern for AI-based learning mechanism in an uncertain environment. Our 
purpose is to deal with the imprecision and ambiguity behavior of certain correlated 
elements and linkages in complex dynamic networks, and to furnish platforms with 
extensive diversity of applications in real-life problems. As a matter of fact, business 
affairs, sport activities, social skills, scientific and engineering proficiency, and medical 
sectors can be included in GOL theory applications. In these platforms, when individuals 
are organized and coordinated as a group under common training activities, their 
performance  (i.e.,  content learning rate during the  teaching process) evaluations are 
important and beneficial for employers, teachers and managers to assist decision-making 
procedures and promote e-learning process. Through GOL theory, learners are evaluated 
based on quantitative values. In fact, the efficiency measures of correlated and conjoint 
individuals are analyzed in an uncertain space. According to the theorized n-ary fuzzy 
relation, it is observed that group-wise performance is reduced compared to single 
performances in an online learning environment.

Here, a new automated assessment system called AI-base “GOL theory” is established 
on the basis of generalized n-ary fuzzy relation (Fig.  2) for the next generation online 
educational mega-systems. In Fig. 2, we consider the set X as participants in an electronic 
exam together with the defined fuzzy set of � on X,   that indicates the learning rate of 
each individual. The generalized n-ary fuzzy relation is introduced on � for specifying the 

Table 1   The grading scheme 
(measure) of final exam

Grade Letter grade Description

0.9–1 A Excellent
0.8−0.89 B Very good
0.7−0.79 C Good
0.6−0.69 D Satisfactory
0.5−0.59 E Sufficient
< 0.5 F Fail

Table 2   Online learning average scores of medical students under the effects of pandemic

Class Score Freshman 
(No.)

Sophomores 
(No.)

Juniors (No.) Seniors (No.) Fifth 
grades 
(No.)

1 60–69 9 192 83 10 6
2 70–79 19 272 148 44 14
3 80–89 16 272 201 188 19
4 > 90 5 47 44 23 2
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learning rate of correlated n individuals, and designating group-wise performances in an 
online learning environment. The t-cut method as the clustering technique and support 
property of unary and n-ary relations as the coverage of system are characterized. In 
addition, the corresponding graphical pattern is executed for the proposed GOL theory 
platform to optimize multiple connections among entities (individuals). For this purpose, 
the mathematical concepts of Definitions of 3.2 and 3.3 are employed as follow:

•	 Fuzzy relation � on �, that is � ∶

n

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

U × U ×… × U ⟶ [0, 1] such that 
�(u1, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un) for all ui ∈ U, i ∈ [1, n].

•	 t-cut � is defined as follows: 

•	 Support � is introduced as follows: 

In reality, fuzzy set � can be defined as the degree membership of the content learn-
ing rate (performance measure of a person) through individual online AI system, and � as 
the degree membership of the content learning  rate (performance measure of n-persons) 
remotely as a group. The evaluation of students is performed via online test in academic 
centers. For the sample size, as per the nature of the generalized parametric approach in 
the presented theory, an unlimited number of students who participate in an online educa-
tional AI system can be included. Table 1 exemplifies the varying measurement results of a 
course assigned by letters A to F.

5.2 � Dataset

The advanced AI-base GOL theory in Application 1 is tested on real dataset collected 
from (Zhang et al. 2023). As depicted in Table 2, different academic performances (scores) 
of medical students were used during COVID-19 pandemic in various levels namely, 
Freshman students, Sophomores, Juniors, Seniors and Fifth grade.

In this scheme, the individuals are categorized based on the analogous level.

•	 Individual u1 is considered with the grade of 65 as Freshman students in Class 1, which 
is equivalent to the fuzzy membership value of 0.65 in our model.

�t = {(u1, u2,… , un) ∈ U × U ×… × U ∣ �(u1, u2,… , un) ≥ t}

supp(�) = {(u1, u2,… , un) ∈ U × U ×… × U ∣ �(u1, u2,… , un) ≠ 0}

Table 3   Performance metrics of 
distance learning (e-learning) 
students during COVID-19 
pandemic in Ghana

Class Performance value

1 0.896
2 0.827
3 0.938
4 0.928
5 0.908
6 0.802
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•	 Individual u2 is selected from Class 2 of Freshman students with the grade of 76, that 
is the counterpart of membership degree 0.76 in our developed model.

•	 Individual u3 is chosen from Freshman students from Class 3 with the academic score 
of 84, the equivalent grade of 0.84 as the fuzzy membership value.

Table 4   Fuzzy set � 
u1 u2 u3 u4 

� 0.65 0.76 0.84 0.95

Table 5   Fuzzy relation � for n = 1, 2, 3, 4 

V ⧵ � �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15 

u1 0.65 0 0 0 0.6 0.5 0.65 0 0 0 0.62 0.6 0 0.64 0.55
u2 0 0.76 0 0 0.6 0 0 0.72 0.7 0 0.62 0.6 0.75 0 0.55
u3 0 0 0.84 0 0 0.5 0 0.72 0 0.82 0.62 0 0.75 0.64 0.55
u4 0 0 0 0.95 0 0 0.65 0 0.7 0.82 0 0.6 0.75 0.64 0.55

Fig. 3   Corresponding graphs for generalized fuzzy relations of n = 1, 2, 3, 4
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•	 Individual u4 is regarded as Freshman students from Class 4 with the score of 95, equal 
to the fuzzy membership degree of 0.95.

To analyze the uncertain-based performance of online learning students in single, double, 
ternary and so forth, we employ the mentioned fuzzy membership degrees (academic 
grades) in the subsequent step.

In the second case study, the available dataset from Bossman and Agyei (2022) is used 
that addresses the academic performance of e-learning students in Ghana. Table 3 shows 
different learners’ performances in which the following individuals are selected for our 
model.

•	 Individual a1 is chosen from Class 2 based on the performance value of 0.827 ≃ 0.8 as 
the fuzzy membership degree.

•	 Individual a2 belongs to Class 3 with the performance value of 0.938 ≃ 0.9 that is the 
fuzzy membership degree.

•	 Individual a3 is included in Class 6 with the performance value of 0.802 ≃ 0.8 as the 
fuzzy dependence value.

The ultimate application is executed on a large dataset, namely E-learning dataset of 
Jordan university of science and technology (E-LearningDJUST) that studied a sample 
of 9,246 students from 11 faculties during spring/summer 2020 and fall 2021 semester in 
COVID-19 pandemic (Abdullah et al. 2021).

These selected samples are used for the assessment of learners’ grades in 
multidimensional environment with uncertainty during the e-learning process. In the next 
section, we implement a theoretical basis for students who participated in online learning 
to investigate their learning rates in a multi-individual space.

5.3 � Application 1

Suppose that U is a finite quantity of individuals participating in an electronic exam under 
artificial intelligent system in a university. Assume U = {u1, u2, u3, u4}, and � is fuzzy subset 
of U that represents the performance measure of individuals in an online educational system, 
as depicted in Table 4. The dependence value of individual u4 with the level A is higher than 
others (learning the topic more than others), since �(u4) = 0.95.
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The n-ary relation � ∶

n

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

U × U ×… × U ⟶ [0, 1] in Table 5 is considered as the mem-

bership values of n-elements which represents the performance measures of a group 

via remote distance learning. It is seen that � is a fuzzy relation on � for n = 2, 3, 4, since 
�(u1, u2,… , un) ≤ �(u1) ∧ �(u2) ∧ … ∧ �(un) for all ui ∈ U, i ∈ [1, 4]. For n = 2, the fuzzy 
relation �(ui, uj) represents the learning rate in double space ui and uj for i, j = {1, 2, 3, 4}. 
Thus, the comprehension degree of u3 and u4 is stronger, because �(u3, u4) = 0.82. The cor-
responding graph is shown in Fig. 3 which is a regular graph. This graph demonstrates that the 
relation � is reflexive and symmetric. From the declared discussion, we remark some points as 
follow:

•	 t-cut for �, � is attained, which represents a partition that the 
elements u2, u3, u4 can be grouped into �0.75 at the level t = 0.75, 
and �0.75 = {(u3, u4), (u2, u3, u4), (u2, u2), (u3, u3), (u4, u4)} which 
represents a hypergraph with a set of vertices {u2, u3, u4} and hyperedges 
{E1 = {u3, u4},E2 = {u2},E3 = {u3},E4 = {u4},E5 = {u2, u3, u4}}}.

•	 supp(�) = V , and supp(�) =

n

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

V × V ×… × V  for n = 1, 2, 3, 4, that is a coverage of the 
system.

Table 6   Fuzzy set � 
a1 a2 a3 

� 0.8 0.9 0.8

Table 7   Fuzzy relation � for 
n = 1, 2, 3 

V ⧵ � �1 �2 �3 �4 �5 �6 �7 

a1 0.8 0 0 0.8 0.8 0 0.7
a2 0 0.9 0 0.8 0 0.65 0.7
a3 0 0 0.8 0 0.8 0.65 0.7

Fig. 4   Corresponding graph for 
generalized fuzzy relations of 
n = 1, 2, 3
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In relation to the performed fuzzy hyperalgebraic system, the performances of the group-wise 
individuals are corresponded to the fuzzy values of fuzzy n-ary hyperoperations on U. Indeed, 
for binary, ternary, and quaternary relations of correlated elements, we present this for some 
parameters and the rest is similar. In double space n = 2 and u1, u2 ∈ U and every z,  we have

Then,

Thus for z = u2, the highest membership degree of 0.76 is attained, while the lowest 
membership value of 0.65 is found for z = u1.

For triplet space n = 3 and u1, u2, u3 ∈ U and every z,  we follow:

It is observed that the highest membership degree (0.75) is obtained for z = u4, whereas the 
lowest membership value (0.62) belongs to z = u1 in the triplet space.

In quaternary setting n = 4 and for u1, u2, u3, u4 ∈ U and every z,  the following results 
are obtained:

According to the obtained results, the highest membership degree of 0.75 is corresponded 
to u2, u3, u4 and the lowest (0.64) is affiliated to u1, in quadric setting.

Remark 5.1  According to Proposition 3.4, for the value t = 0.75, since
�0.75 = {(u3, u4), (u2, u3, u4), (u2, u2), (u3, u3), (u4, u4)} and �0.75 = {u2, u3, u4}, the 

inclusion is satisfied for n = 2, 3 in the following way:

(u1◦�u2)(z) = �(u1, z) ∨ �(u2, z)

For z = u1 ∶ (u1◦�u2)(u1) = �(u1, u1) ∨ �(u2, u1) = 0.65 ∨ 0.6 = 0.65

For z = u2 ∶ (u1◦�u2)(u2) = �(u1, u2) ∨ �(u2, u2) = 0.6 ∨ 0.76 = 0.76

For z = u3 ∶ (u1◦�u2)(u3) = �(u1, u3) ∨ �(u2, u3) = 0.5 ∨ 0.72 = 0.72

For z = u4 ∶ (u1◦�u2)(u4) = �(u1, u4) ∨ �(u2, u4) = 0.65 ∨ 0.7 = 0.7

(u1◦�u2◦�u3)(z) = �(u1, u2, z) ∨ �(u1, z, u3) ∨ �(z, u2, u3)

For z = u1 ∶ (u1◦�u2◦�u3)(u1)

= �(u1, u2, u1) ∨ �(u1, u1, u3) ∨ �(u1, u2, u3) = 0.6 ∨ 0.5 ∨ 0.62 = 0.62

For z = u2 ∶ (u1◦�u2◦�u3)(u2)

= �(u1, u2, u2) ∨ �(u1, u2, u3) ∨ �(u2, u2, u3) = 0.6 ∨ 0.62 ∨ 0.72 = 0.72

For z = u3 ∶ (u1◦�u2◦�u3)(u3)

= �(u1, u2, u3) ∨ �(u1, u3, u3) ∨ �(u3, u2, u3) = 0.62 ∨ 0.5 ∨ 0.72 = 0.72

For z = u4 ∶ (u1◦�u2◦�u3)(u4)

= �(u1, u2, u4) ∨ �(u1, u4, u3) ∨ �(u4, u2, u3) = 0.6 ∨ 0.64 ∨ 0.75 = 0.75

(u1◦�u2◦�u3◦�u4)(z)

= �(u1, u2, u3, z) ∨ �(u1, u2, z, u4) ∨ �(u1, z, u3, u4) ∨ �(z, u2, u3, u4)

For z = u1 ∶ (u1◦�u2◦�u3◦�u4)(u1) = 0.64

For z = u2 ∶ (u1◦�u2◦�u3◦�u4)(u2) = 0.75

For z = u3 ∶ (u1◦�u2◦�u3◦�u4)(u3) = 0.75

For z = u4 ∶ (u1◦�u2◦�u3◦�u4)(u4) = 0.75
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Remark 5.2  Considering Definition 3.1  and Proposition 3.5, it is concluded that �0.75 is 
reflexive n-ary relation on �0.75.

Remark 5.3  From Propositions 3.5 and 3.6, it is concluded that the powers of � (i.e., �i ) are 
reflexive and symmetric n-ary fuzzy relation.

5.4 � Application 2

In another numeric example, assume U is the set of students and U = {a1, a2, a3}. In 
Table 6, the individual a2 with the level A has the membership value of 0.9, which is higher 
than others and thus is ranked in the first row of learners.

It is verified that � is a (symmetric and reflexive) fuzzy relation on � (Table  7). When 
�(a1, a2, a3) = 0.7, it means that the learning rate by these three persons in online training sys-
tem, has the membership value of 0.7. Also, the lowest learning rate is between a2 and a3, with 
the degree membership of �(a2, a3) = 0.65 (Fig. 4).

5.5 � Application 3

In this scheme, we choose 44 students from the eleven faculties based on the standard compul-
sory courses in semester spring 2020, where different classes of grades (performance scores) 
are designated (Table 8). Table 9 displays details of faculties, offered courses, and correspond-
ing membership values of � and � in spring 2020. � stands for student’s performance in single 

𝜌0.75 ⊆

n

�������������������

𝜇0.75 ×… × 𝜇0.75

Fig. 5   Corresponding graph of generalized fuzzy relations for eleven faculties and elective courses 
(colored)
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online learning space and � refers to the students’ performance in correlated group-wise online 
learning space. Note that each individual of each faculty may participate in online classes 
along with individuals from other schools.

Figure 5 represents the graphical pattern of extracted generalized fuzzy relation in terms 
of unary, binary, ternary, quaternary, and quinary linkages (edges) where colored links of red, 
green, black, and blue are respectively associated to General Chemistry, Biochemistry, Com-
puter skills, and General Physics. The results indicate 44 unary relations, 5 binary relations, 
10 ternary relations, 7 quaternary relations, and 2 quinary relations in eleven faculties. The 
interval boundaries of [0.3, 1], [0.3, 0.8], [0.3, 0.8], [0.2, 0.5] and [0.5, 0.5] are respectively 
obtained for unary, binary, ternary, quaternary, and quinary links.

5.6 � Performance score assessment

To analyze and identify the learners’ academic performances within e-learning systems using 
GOL theory methodology, the performance score (PS) and overall performance score (OPS) 
are formulated as follow:

(2)PS(ui) =

�(ui) +
∑
j

�j(u1,… , ui,… , un)

1+ ∣ �j ∣

Table 10   Calculated PS and OPS 
for eleven faculties

Faculty PS OPS

Engineering 0.6, 0.52, 0.5, 0.6, 0.7 0.58
Applied medical sciences 0.36, 0.4, 0.3, 0.5 0.39
Science and arts 0.53, 0.66, 0.53 0.57
Agriculture 0.4, 0.42, 0.6, 0.6, 0.27 0.45
Nursing 0.5, 0.56, 0.4 0.48
Computer and info tech 0.5, 0.45, 0.6, 0.6 0.53
Pharmacy 0.5, 0.55, 0.6 0.55
Architecture and design 0.75, 0.7, 0.55, 0.65, 0.5 0.63
Medicine 0.56, 0.46, 0.53 0.51
Veterinary medicine 0.73, 0.7, 0.46, 0.7 0.64
Dentistry 0.4, 0.26, 0.33, 0.46, 0.33 0.35

Table 11   GOL theory parameters 
for AI e-learning systems

GOL theory parameters AI design for e-learning systems

Memebership degree of � Automated AI tools
Membership degree of � Machine learning algorithm and GNN
PS and OPS metrics AI-generated learning assessment 

(machine learning)
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PS(ui) is referred to the performance score of individual ui, and the membership degrees of 
� and � are allocated to the learning rate (final score) of individuals in unary and n-tuple 
spaces, respectively. ∣ �j ∣ stands for the cardinality of n-ary fuzzy relation, and ∣ U ∣ is the 
cardinality of universe set of U. Note that �j(u1,… , ui,… , un) is the membership value of 
generalized fuzzy relation including element ui. Indeed, PS(ui) is the aggregation of all val-
ues in the row column of element ui corresponded to the incidence matrix of fuzzy relation 
�.

In application 1, PS and OPS are calculated for every ui ∈ U, i ∈ [1, 4], ∣ U ∣= 4, as follow:

The resultant PS and OPS of the performed application 2 for every 
ai ∈ U, i ∈ [1, 3], ∣ U ∣= 3, are listed:

Table 10 shows the resultant PS and OPS for ∣ U ∣= 44 in Sect. 5.5.

5.7 � GOL theory approach assisting artificial intelligent e‑learning systems

The following bullet points briefly discuss how the present approach can assist AI 
e-learning systems:

•	 The performance knowledge of conjoint learners ( � ) can be carried out in a trained 
sequential machine learning algorithm on learners’ performance data.

•	 Two PS and OPS metrics can be used for AI system through machine learning 
algorithms to analyze and identify students’ performances on any collected data. 
This model would provide paradigmatic implications for upcoming advancement of 
AI-generated learning assessment.

(3)OPS =

∑
n

i=1
PS(u

i
)

∣ U ∣

PS(u1) =
0.65 + 0.6 + 0.5 + 0.65 + 0.62 + 0.6 + 0.64 + 0.55

1 + 7
= 0.6

PS(u2) =
0.76 + 0.6 + 0.72 + 0.7 + 0.62 + 0.55 + 0.6 + 0.75

1 + 7
= 0.66

PS(u3) =
0.84 + 0.5 + 0.72 + 0.82 + 0.62 + 0.75 + 0.64 + 0.55

1 + 7
= 0.68

PS(u4) =
0.95 + 0.65 + 0.7 + 0.82 + 0.6 + 0.75 + 0.64 + 0.55

1 + 7
= 0.7

OPS =
0.6 + 0.66 + 0.68 + 0.7

4
= 0.66

PS(a1) =
0.8 + 0.8 + 0.8 + 0.7

1 + 3
= 0.77

PS(a2) =
0.9 + 0.65 + 0.7 + 0.8

1 + 3
= 0.76

PS(a3) =
0.8 + 0.65 + 0.7 + 0.8

1 + 3
= 0.73

OPS =
0.77 + 0.76 + 0.73

3
= 0.75
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•	 Learning rate of each student (membership degree � ) can be evaluated via automated 
AI tools with detailed analytics.

•	 Through developed n-ary fuzzy relation, a dynamic strategy can be accomplished to 
map out the learners’ interactions in group-based e-learning systems via graph neural 
network (GNN)-based classification system.

Table 11 depicts the parameters of GOL theory which can serve Artificial Intelligence 
for e-learning environments.

5.8 � Comparison of methods

To address the superiority of the present method, we briefly compare the results with other 
existing methodologies. To predict and analyze the students’ performances, a methodical 
Machine Learning (ML) attitude was proposed to enhance the modality assurance of 
the online education programs with the accuracy of 93.2% better than the methods of 
k-Nearest Neighbor, Naive Bayes, and Decision Tree. A descriptive-analytical approach, 
inferential statistical methods and Statistical Package for the Social Sciences (SPSS), 
was used for data analysis in Maharat platform (Alsubaie 2023). The assessment of 
determinants of students’ performances was conducted in terms of empirical set-up data 
using structural equation (multivariate regression) model (Castillo-Merino and Serradell-
Lopez 2014). A fuzzy model was used with standard test statistics and fuzzy membership 
functions which was constituted on the basis of confidence interval in order to eliminate 

Table 13   Superiority of the generalized fuzzy relation (GOL theory) to the classical binary relation on 
three different sets of experimental data

Application Method Entities Linkages 
(edges)

Clusters References

1 Classical binary fuzzy relation 4 6 n = 2 Mathew et al. (2018)
Generalized fuzzy relation 4 15 n = 1, 2, 3, 4 This study

2 Classical binary fuzzy relation 3 3 n = 2 Mathew et al. (2018)
Generalized fuzzy relation 3 7 n = 1, 2, 3 This study

3 Classical binary fuzzy relation 44 5 n = 2 Mathew et al. (2018)
Generalized fuzzy relation 44 68 n = 1, 2, 3, 4, 5 This study

Table 14   Supremacy of PS in GOL theory methodology to the proposed method over three different cat-
egories of experimental data

Application Learning performance score (PS) References

1 0.65, 0.76, 0.84, 0.95 Chen et al. (2007)
0.6, 0.66, 0.68, 0.7 This study

2 0.8, 0.9, 0.8 Chen et al. (2007)
0.77, 0.76, 0.73 This study

3 Only covers individual setups Chen et al. 2007)
Covers both individual and group setups This study
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the problems of sampling error and the convolution of accumulating fuzzy linguistic 
information. The model characterized performance indices and performance evaluation 
matrix with the validity and reliability of sample data, based on SPSS analysis (Lee et al. 
2019). Also, a theoretical formative assessment technique was presented by merging 
the computational intelligent approaches namely, fuzzy association rule mining, fuzzy 
inference, grey relational assessment, and K-means on the basis of learning portfolio of 
learners in an online environment (Chen et al. 2007). Through fuzzy miner algorithm, the 
behavior analytics, process modeling and group performance analysis were carried out 
for the e-learning logs (Premchaiswadi et al. 2018). In another study, a systematic fuzzy 
graph approach was characterized by conventional binary fuzzy relation which considered 
the fuzziness strength of two related entities. This was useful in modeling and analyzing 
diverse real-life problems (Mathew et  al. 2018). Our theory simultaneously copes with 
uncertainty of multi-facet interconnected learners to evaluate their academic performances 
in local and global e-learning systems regarding fuzzy membership degrees. Table  12 
shows the advantages of the developed methodology against other approaches. This has 
confirmed the comprehensiveness of our theoretical and, at the same time, applicable 
framework using the generalized fuzzy relation that structures the GOL theory.

The comparison of clustering performance of the generalized fuzzy relation 
scheme with the only-available classical binary fuzzy relation is presented in 
Table  13. It is observed that our method has the best and most accurate performance 
on the used datasets in identifying unary, binary, ternary, quaternary, quinary and so 
forth relationships among entities, while the performance of fuzzy binary relation is 
inaccurate and unreliable due to the waiver of high-order relationships. In contrast to 
classical fuzzy relation, the developed n-ary fuzzy relation is the ensemble of correlated 
relations of entities to achieve better clustering performance. In the derived experimental 
results, in application 1, 6 links are identified based on the binary relations while 15 
links are recognized with generalized fuzzy relation over 4 elements. For application 2, 
there are 3 links in classical binary relation, whereas 7 links are obtained among three 
elements. In application 3, a tremendous difference is shown between classical binary 
relation and generalized fuzzy relation with 5 and 68 links, respectively.

To validate the modality of the formulated PS for the assessment of learners’ 
performance, we examine and compare our method along with the available method, 
i.e., fuzzy inference method ( GradeCOG metric) (Chen et al. 2007), on the three different 
classes of experimental data. As shown in Table 14, the group-wise performance of the 
correlated learners is neglected in GradeCOG , and thus the performance score of each 
learner is merely based on single performances. According to our results, more precise 
and reliable values are obtained when the individuals are grouped in online classes. As 
seen in application 1, individuals’ performance scores (final grades) are 0.65, 0.76, 0.84, 
0.95 by fuzzy inference method, while the individuals’ PSs of our developed method are 
0.6, 0.66, 0.68, 0.7 in the e-learning platform. In application 2, individuals’ performance 
scores (final grades) are 0.8, 0.8, 0.9 using fuzzy inference approach, but the results 
of individuals’ PSs are 0.77, 0.76, 0.73 via GOL theory methodology. In application 
3, the performance score only covers individual setups in fuzzy inference method, but 
the dependable results include both individual and group setups in the context of GOL 
theory. 
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6 � Conclusion

The main contribution of this study is to establish AI-base “Global Online Learning (GOL) 
theory” based on the generalized n-ary fuzzy relations. As per the uncertain behavior of 
educational systems, the analysis of complex correlations between entities (individuals) is 
carried out with a comprehensive approach. The mathematical concepts of n-ary relation and 
n-ary fuzzy relation are introduced as the extension of classical binary relation and binary fuzzy 
relation. Certain characteristics are obtained, i.e., reflexive, symmetric, transitive, composition, 
t-cut, support and Cartesian products, to configure parametric connections between t-cut and 
Cartesian product. Based on the n-ary fuzzy relation model, the symbol “ ◦

�
 ” is defined to 

construct fuzzy hyperalgebra using new parameters, where the systematic relevance between 
fuzzy hyperalgebra and hyperalgebra is indicated as “ ◦

�
 ”, supp and t-cut notations. Also, an 

applicable theoretical infrastructure is established to present graphical attitudes of soft fuzzy 
graph and intuitionistic fuzzy graph. As the training systems are now transforming from 
traditional to virtual methodology, AI-base “GOL theory” is initiated to declare a theoretical 
platform for such a transition as a new generation of artificial intelligent educational system. 
Based on the generalized n-ary fuzzy relation, the evaluation of entities and correlations is 
carried out to tackle the uncertainty derived from the group-wise learning rate of individuals 
in educational systems. Multiple relationships of targets are investigated in terms of fuzzy 
information with seamless graphical presentation. By the implementation of generalized fuzzy 
relation, a methodical platform is constituted to use basic notions such as t-cut and support 
within the AI-base “GOL theory” framework. As such, the corresponding hypergraph is 
derived based on the t-cut method to assess the components in a simpler way. Also, the self-
evaluation of components is carried out which is accompanied with the group-wise correlation, 
where the coverage of system is derived in terms of support property. The AI-base “GOL 
theory” and its evaluation approach can be used in other fields such as vocational businesses to 
model the virtual global, local training, social interactions among employees, students, and job 
seekers. Owing to the generality and comprehensiveness of the developed theory, it can be used 
to intelligently assess the behavioral trend of users, specifically when it is translated into coding 
for quantum computers for global online educational platforms and social media systems.
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