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Abstract
Emotion is a subjective psychophysiological reaction coming from external stimuli which 
impacts every aspect of our daily lives. Due to the continuing development of non-invasive 
and portable sensor technologies, such as brain-computer interfaces (BCI), intellectuals 
from several fields have been interested in emotion recognition techniques. Human emo-
tions can be recognised using a variety of behavioural cues, including gestures and body 
language, voice, and physiological markers. The first three, however, might be ineffective 
because people sometimes conceal their genuine emotions either intentionally or unknow-
ingly. More precise and objective emotion recognition can be accomplished using physi-
ological signals. Among other physiological signals, Electroencephalogram (EEG) is more 
responsive and sensitive to variation in affective states. Various EEG-based emotion rec-
ognition methods have recently been introduced. This study reviews EEG-based BCIs for 
emotion identification and gives an outline of the progress made in this field. A summary 
of the datasets and techniques utilised to evoke human emotions and various emotion mod-
els is also given. We discuss several EEG feature extractions, feature selection/reduction, 
machine learning, and deep learning algorithms in accordance with standard emotional 
identification process. We provide an overview of the human brain’s EEG rhythms, which 
are closely related to emotional states. We also go over a number of EEG-based emotion 
identification research and compare numerous machine learning and deep learning tech-
niques. In conclusion, this study highlights the applications, challenges and potential areas 
for future research in identification and classification of human emotional states.

Keywords  Brain–computer interface · EEG · Machine learning · Deep learning · Emotion 
recognition
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BC	� Betweenness centrality
BC	� Brain connectivity
BE1	� Normalised bispectral entropy
BE2	� Normalised bispectral squared entropy
BFN	� Brain function network
BiLSTM	� Bidirectional long short-term memory
BLS	� Broad learning system
CAT​	� Computed Axial Tomography
C-c CNN	� Cross-connected CNN
CNN	� Convolutional neural network
CPL	� Character path length
CRNN	� Convolutional recurrent neural network
CSP	� Common spatial pattern
DASM	� Differential asymmetry index
DBN	� Deep belief network
DCAU​	� Differential causality
DCoT	� Depth wise convolution and Transformer encoders
DE	� Differential entropy
DEG	� Degree
DFT	� Discrete Fourier transform
DGCNN	� Dynamic graph convolutional neural network
DL	� Deep learning
DOI	� Diffuse Optical Imaging
DWT	� Discrete Wavelet transform
DWT	� Discrete wavelet transforms
ECC	� Eccentricity
ECoG	� Electrocorticography
EFDM	� Electrode-frequency distribution map
ELM-AE	� Extreme learning machine wavelet auto encoder
EROS	� Event-related Optical Signal
FBSE-EWT	� Fourier Bessel series expansion-based empirical wavelet transform
FFT	� Fast Fourier transform
fMRI	� Functional Magnetic Resonance Imaging
FOSM	� First order spectral moment
FVMD	� Fast variational modal decomposition
GBDT	� Gradient boosting decision tree
GCN	� Graph convolutional network
GE	� Global efficiency
GGW​	� Groove gap waveguide
GRU​	� Gated recurrent unit
HOC	� Higher order crossing
INR	� Intracortical neuron reading
KDE	� Kernel density estimation
KFD	� Katz fractal dimensions
LF	� Leaf fraction
LPP	� Late positive potential
LPP	� Late positive potential
LR	� Logistic regression
LS-SVM	� Least square support vector machine
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M3GP	� Multiclass genetic programming with multidimensional populations
MAV	� Mean absolute value
MDE	� Mean differential entropy
MEG	� Magnetoencephalography
MEMD	� Multivariate empirical mode decomposition
MFCC	� Mel-frequency cepstral coefficients
ML	� Machine learning
MLP	� Multi-layer perceptron
MMOB	� Mean-Magnitude of bispectrum
MST	� Minimum spanning tree
NB	� Naïve Bayes
NIRS	� Near Infrared Spectroscopy
NLP	� Natural language processing
PET	� Positron Emission Tomography
PSD	� Power spectral density
PSR	� Power spectrum ratios
R GCB-Net	� Residual Graph Convolutional Broad Network
RASM	� Rational asymmetry index
RF	� Random forest
sampEn	� Sample Entropy
SF	� Statistical features
SOSM	� Second order spectral moment
SRU	� Simple recurrent units
STFT	� Short-time Fourier transform
STRNN	� Spatial–Temporal Recurrent Neural Network
SVM	� Support vector machine
TL	� Tree level
TQWT	� Tunable Q wavelet transform
VMD	� Variable mode decomposition
WE	� Wavelet entropy
WPT	� Wavelet packet transform
WT	� Wavelet transform
ZCR	� Zero-crossing rate

1  Introduction

People nowadays spend an increasing amount of time on social media, online shopping, 
online video games, and other online activities as a result of the accessibility of numerous 
electronic items in their daily life. Affects, which include feelings and moods, are present 
in almost every aspect of our day-to-day lives and play a crucial role in human cognition, 
communication, and decision-making. They also play a significant role in the interactions 
between humans and machines (Lerner et al. 2015). However, most of the modern human 
interaction (HCI) systems lack emotional intelligence since they are unable to understand 
or analyze emotional data. They are incapable of recognizing human emotions and utilize 
this understanding to decide what to do.

For highly intelligent HCI to succeed, the absence of chemistry between humans and 
robots must be fixed. Human affective states must be considered for any HCI system to 
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function successfully. We need to provide systems the ability to decipher and comprehend 
human emotional states in order to solve this issue in HCI. Therefore, a trustworthy, accu-
rate, flexible, and dependable emotion identification system is a must for adopting intel-
ligent HCI. Researchers working in the area of artificial intelligence (AI) are looking into 
emotion recognition and affective computing in general with the eventual objective of 
equipping machines with feelings. Among HCI technologies, BCI is crucial for recogniz-
ing emotions. Emotions are conveyed and understood by humans through nonverbal cues 
such as facial expressions (Ekman et al. 1987), speech (Ayadi et al. 2011), gesture (Kipp 
and Martin 2009), texts (Alm et al. 2005), physiological signals (Picard et al. 2001) and 
their combinations (Kessous et  al. 2010). Physiological signals are harder to manipulate 
and may more accurately reflect an individual’s true feelings than other modes of com-
munication. Emotion identification via BCI is promising because it could improve human 
cognition, communication, decision-making, and health by monitoring and regulating the 
brain’s emotional state. It also directly measures the condition of the brain, where emotions 
originate (Wu et al. 2023). The operation of BCI is elaborated upon further down.

1.1 � Brain computer interface

Brain Computer Interface is an effective interface technology of HCI Field that connects 
the human brain and the outside world by decoding thoughts and eliminating the need for 
conventional information delivery methods (Kaur and Singh 2003). It allows direct signal 
transmission from the neurons to an external device or system (Mudgal et al. 2020). BCI 
algorithms look for patterns in brainwaves and execute actions based on what they find. 
This method enables people to engage with their surroundings without using their periph-
eral nerves or muscles (Stegman et  al. 2020). BCI uses a variety of neuroimaging tech-
niques for clinical practice and research labs. These techniques are categorized to measure 
different brain activities including electrical, magnetic, and metabolic, as shown in Fig. 1.

Brain electrical activity can be measured via EEG, ECog (Electrocorticogram) and 
Intracortical neuron reading (INR) and magnetic activity can be measured via Magnetoen-
cephalogram (MEG), whereas brain metabolic activity can be measured using functional 
magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS), Positron Emis-
sion Tomography (PET), Diffuse Optical Imaging (DOI), Computed Axial Tomography 
(CAT) and Event related optical signal (EROS) techniques. When it comes to these brain 
functions, electrical measuring techniques, despite having a high level of noise, provide a 
high temporal resolution, whereas metabolic signals, while providing a high spatial resolu-
tion, demand a lot of resources (such as large, expensive scanners, machines, etc.), have a 
low temporal resolution, and require a high level of computational complexity. Therefore, 
among these approaches, EEG-based BCIs are most widely used as it’s portable, non-inva-
sive, reasonable, and having high temporal resolution.

A BCI based system consists of four components, these being, signal acquisition, pre-
processing, translation, and feedback or output as shown in Fig. 2. The signal acquisition 
step uses a variety of invasive, semi-invasive and non-invasive approaches to acquire brain 
signals. Invasive and semi-invasive procedures record brain signals by inserting devices 
directly into the human brain or into the skull, while non-invasive techniques record signals 
by placing devices on the scalp of the brain.

After acquisition, signals are sent to pre-processing stage, where noise reduction, arte-
facts correction/removal tasks are performed to enhance the raw signal. The translation 
phase detects discriminative information in the signal, after which different features  are 
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retrieved and mapped onto a vector. Because of overlapping and distortion concerns with 
the signal, extracting this important information is a difficult operation. The size of the 
feature data is decreased to allow it to be given to the translation algorithm, which reduces 
complexity without sacrificing significant information. The selection of good discrimina-
tive features is necessary to achieve efficient pattern recognition, in order to interpret user’s 
intentions (Nicolas-Alonso and Gomez-Gil 2012). The instructions provided by the transla-
tion algorithm, guide and operate the output device. It helps users reach their goals, such 
as controlling a mouse, selecting alphabets, moving a robotic arm, operating a wheelchair, 
moving a paralysed limb with a neuroprosthesis, and so on.

BCIs have contributed to a wide range of sectors, including education, psychology, 
medicine (Shih et  al. 2012) sand many others as shown in Fig.  3. They were gener-
ally used to aid those who are paralyzed or partially paralyzed but recently  BCIs are 
also being utilized by able-bodied people as well. BCI technology is being developed 

Fig. 1   Different neuroimaging techniques used in BCI

Fig. 2   Components of BCI system
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for both, medical and non-medical applications. Recent advancements in BCI technol-
ogy are aimed at developing emerging techniques in a wide range of fields.

People with medical conditions often benefit from healthcare applications. Spelling 
applications (Elsawy et al. 2017), virtual keyboards (Salih and Abdal 2020), prosthetic 
equipment (Velliste et al. 2008), and smart wheelchair (McFarland and Wolpaw 2011) 
can enable paralysed patients to control and communicate with their surroundings. BCI 
also has a restoration application for people with motor difficulties in healthcare (Tan 
et al. 2010). In the medical world, BCI plays a critical role in detection and diagnosis. 
BCI can detect many diseases more precisely than other detection techniques, including 
brain tumours (Sharanreddy and Kulkarni et  al. 2013a, b), seizures (Sharanreddy and 
Kulkarni et  al. 2013a, b), and sleep disturbances (Hansen et  al. 2013). The BCI neu-
roimaging technology can be used to diagnose diseases such as dyslexia (Fadzal et al. 
2011), ADHD (Lim et al. 2019), and the human gait cycle (Shafiul Hasan et al. 2020) 
and many others. When it comes to preventative measures, the BCI neurofeedback train-
ing technique can help maintain attention and reduce motion sickness while driving, 
which can help prevent many accidents. In addition to that, drowsiness detection using 
BCI (Zhu et al. 2021) also helps to avoid accidents in several cases. Furthermore, BCI 
can be used to monitor stress (Perur et al. 2022), fatigue (Monteiro et al. 2019), sleep-
stage (Chen et  al. 2018a, b), work-load (Roy et  al. 2013), and many  other factors in 
order to maintain a healthy environment in the surrounding as well to prevent numerous 
mishaps (Mudgal et al. 2020). Nonmedical BCI applications falls under the domain of 
consumer products which include gaming (Marshall et  al. 2013), robotics (Hochberg 
et al. 2012), safety, and security (Su et al. 2012), neuromarketing (Zgallai et al. 2019), 
smart home applications (Lin et al. 2014) etc. Self-control (Liu et al. 2020) and emo-
tion recognition (Huang et al. 2021) is also among the most significant successes in BCI 
(Kawala-Sterniuk et al. 2021).

Fig. 3   Applications of BCI
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1.2 � Emotion recognition

Emotion is a state that comprises an individual’s feelings, thoughts, and actions, which 
is also known as people’s psychophysiological reactions to internal or external influ-
ences. These emotions are essential for communication, perception, and decision-mak-
ing processes. Therefore, emotion recognition is considered an essential machine capa-
bility in human–machine communication area (Egger et al. 2019). If the computer can 
accurately identify the emotional states of operator in real time, the interaction between 
human and machine will be more enhanced and effective by making the system more 
intelligent and user-friendly. This domain of research is called affective computing, 
which is a field of artificial intelligence that concentrates on HCI through user affect 
detection. One of the main objectives of the affective Computing domain is to develop 
methods for devices to comprehend human emotion, which may enhance their capacity 
for communication. Nowadays, emotion recognition studies have concentrated on the 
following areas: (1) the relationship between various physiological signals and emo-
tions; (2) methods for choosing stimuli that will elicit the anticipated emotional states; 
(3) emotion-characteristic feature extraction techniques; (4) Models of emotion crea-
tion technique; and (5) emotion recognition methods based on multi-modal information 
fusion (Zhang et al. 2020). The following sections will give brief ideas about the areas 
required for emotion recognition application.

1.2.1 � Models for emotion representations

To develop a standard for affective computing, it is crucial to define emotion or affect. 
Ekman developed the fundamental idea of emotions for the first time in the 1970s. Emo-
tions are traditionally classified based on two models: the discrete and dimensional 
models of emotion.

Fig. 4   Ekman model of emotion
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1.2.1.1  Discrete model  The categorical emotion model, also known as the discrete emotion 
model, divides emotions into a small number of categories. The emotional wheel model by 
Plutchik and Ekman’s six fundamental emotions as shown in Figs. 4 and 5, are two often 
used discrete emotion models. The society of emotion recognition experts generally accepts 
Ekman’s fundamental emotion model and its variations. Usually, there are six fundamental 
emotions: anger, disgust, fear, happiness, sadness, and surprise (Ekman et al. 1993). These 
emotions apparently comprise other non-basic emotions including fatigue, anxiety, satisfac-
tion, confusion, shyness, guilt, contempt and frustration. Each type of emotion has its own 
internal and exterior representations as well as physiological patterns. The following crite-
ria were used to determine the six basic emotions: (1) Human instincts must be the source 
of basic emotions; (2) People can experience the same basic emotions when confronted 
with similar circumstances; (3) People convey the similar basic emotions using the same 
semantics; and (4) These fundamental emotions must have a consistent pattern of expression 
across all individuals. In various studies a mixture of these discrete emotions was used for 
various recognition models. In Peng et al. (2022a, b) five different emotional states of happy, 
sad, disgust, neutral, and fear were considered for recognition while in Fan et al. (2022) 
three emotion models, namely happy, calm and sad were recognised.

Fig. 5   Plutchik’s model of emotions
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Plutchik’s wheel model, in contrast, takes into account eight fundamental emotions—
joy, trust, fear, surprise, sadness, anticipation, anger, and disgust—as well as how these 
emotions link to each other. Depending on their respective intensity levels, stronger emo-
tions occupy the centre of the wheel model, which is also known as the componential 
model, while the weaker emotions inhabit the extremes. For purposes of sentiment analy-
sis, these separate emotions can generally be divided into three categories: positive, nega-
tive, and neutral (Wang et al. 2022a).

1.2.1.2  Dimensional model  Many studies have embraced the idea of a continuous multi-
dimensional model to address the problems with discrete emotion models. According to 
dimensional models of emotion, a variety of psychological dimensions can be combined to 
accurately reflect different emotional states.

Two-dimensional model: Most dimensional models take valence and arousal into 
account. Arousal describes the intensity of the felt emotion, whereas valence describes the 
degree of “pleasantness” that is connected with an emotion. The two-dimensional model of 
emotion is shown in Fig. 6.

Three-dimensional model: Despite having no trouble differentiating between positive 
and negative emotions, it is unable to distinguish between identical emotions in the 2D 
emotion space. The emotion model was expanded by Mehrabian (Bakker et al. 2014) from 
2 to 3D. The dominance axis in the additional dimension, which ranges from submissive 
to dominating, represents a person’s capacity for control over an emotion. For instance, the 
negative valence and high arousal of wrath and terror both fall inside this zone. The three-
dimensional model is shown in Fig. 7.

In order to improve recognition, more multiple dimension models should be made. To 
give emotion models more depth, additional criteria like liking and familiarity are also 
being employed. When introducing any stimulus to the subject, liking indicates how much 

Fig. 6   Two-dimensional model of emotions
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the participant likes the stimulus, whereas familiarity indicates how well the participants 
are acquainted with the stimulus (Aadam et  al. 2022). Due to ongoing improvements in 
emotion recognition techniques, a variety of emotion models are being developed, which 

Fig. 7   Three-dimensional model of emotions

Table 1   Different emotion models

References Emotions

Aadam et al. (2022) Valence, arousal, dominance, liking
Peng et al. (2022a, b) Happy, neutral, fear, sad, disgust
Ekman et al. (1993) Anger, disgust, fear, happy, sad, and surprise
Fan et al. (2022) Valence, arousal, happy, calm, sad
Bakker et al. (2014) Valence, arousal, dominance
Bagherzadeh et al. (2022a, b) Valence, arousal, neutral
Shu et al. (2018) Valence, arousal
Chen et al. (2021) Positive, negative, neutral
Santhiya and Chitrakala (2022) Happy, calm, sad, anger, fear
Zhou et al. (2022a, b) Happy, neutral, sad, fear
Li et al. (2022a, b, c, d) Positive, negative, neutral, valence, arousal, dominance
Zhang et al. (2019) Positive, negative and neutral, anger, contempt, dis-

gust, fear, happiness, sadness, surprise
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is assisting in recognition of more distinct emotions produced by the human brain. Many 
studies are using both discrete and dimensional models for emotion recognition (Fan et al. 
2022). Some examples of different emotional models are shown in Table 1.

1.2.2 � Emotion elicitation

A critical stage in emotion detection based on physiological data is the ability to appro-
priately produce or evoke the emotional state of the subject, often known as emotional 
arousal. Emotions can be evoked using one of three main techniques. Initially, develop-
ing artificial environments to elicit feelings. People have a propensity to produce certain 
enduring feelings in the past. You can also get people to remember bits of their former 
experiences that have different emotional overtones in order to generate feelings. The issue 
with this method is that it cannot guarantee that the individual will produce the appropriate 
emotion and that the linked emotion’s duration is determinable. Secondly, evoking feel-
ings by showing videos, music, pictures, and other enticing content. This method of get-
ting people to produce emotional states and objectively identify them is frequently used to 
elicit emotions. The individual must then engage in computer or video game play. Com-
puter games have psychological benefits in addition to their physical ones. While employ-
ing brief films or clips, subjects simply observe and listen to the sounds of the area. On the 
other hand, participants in computer games really interact with the scenario rather than 
merely watching or observing the inputs. They embrace the game characters as role mod-
els, which similarly affects people’s emotions.

The International Affective Picture System (IAPS) and the International Affective Digi-
tized Sound System (IADS) are the most often used tools for evoking emotions (IAPS). 
Standard emotional stimuli are included in these datasets. It is useful in experiments 
because of this. 1200 photos total, divided into 20 groups of 60 photos each, make up 
the IAPS. Each image has a valence and an arousal value ascribed to it. The most recent 
version of IADS has 167 digitally recorded ordinary natural sounds that are divided into 
valence, dominance, and arousal categories. Participants annotated the dataset using the 
Self-Assessment Manikin system. On the other hand, the outcomes of emotive labelling of 
multimedia could not be transferable to more real-world or interactive contexts. In order 
to ensure the generalizability of BCI results, additional studies involving interactive emo-
tional stimuli are required. To our knowledge, very few research have used interactive sce-
narios to elicit emotions, such as people playing games or utilising flight simulators.

1.2.3 � Multimodal analysis of emotion

As can be seen in Fig. 8, there is a wide range of possible physical and physiological 
modalities for human emotion identification. Physical modalities comprise audio emo-
tion recognition, text segment analysis, and visual emotion recognition. Again, we can 
break down visual emotion recognition into two distinct subfields: facial expression 
recognition and body gesture emotion recognition etc. The physiological modalities 
include EEG, fMRI, functional near-infrared spectroscopy (fNIRS), electrocardiography 
(ECG), photoplethysmography (PPG), Electromyography (EMG), Electrodermal activ-
ity (EDA), skin temperature and other signals such as eye movement, blood pressure, 
respiration, etc. These modalities can also be categorized by the measurement of emo-
tion responses by different activities (Can et al. 2023) as shown in the Fig. 8. In order 
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to get an improved understanding of an individual’s emotional state, researchers in the 
field of emotion identification frequently mix multimodal physiological information. 
By combining data from multiple sources, we can build systems that are more reliable 
than any one source alone. There are three stages to the multimodal fusion process: the 
early, intermediate, and late stages. In order to combine the signals, early fusion and late 
fusion are frequently utilized (Kamble and Sengupta 2023).

(1)	 Early fusion: This type of fusion occurs at the feature level by selecting the features 
from multiple signals and combining them to form a single input for feature extraction 
or classification. It is also known as feature level fusion. Some examples for feature 
level fusion are fusion of visual and audio modalities (Chen et al. 2018a, b), text and 
audio modalities (Priyasad et al. 2020), visual and audio and text modalities etc. (Mittal 
et al. 2020; Fabiano and Canavan 2019).

(2)	 Intermediate fusion: This type of fusion uses feature extraction from various time 
periods to get over synchronization problems. Additionally, odds for defective cases 
can be statistically predicted by comparing the current instances to the past ones (Shin 
et al. 2017).

Fig. 8   Different emotion recognition modalities
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(3)	 Late fusion: In this type of fusion, results from various classifiers are combined to 
produce a final result, frequently through voting. Since the classifiers can be trained 
independently on each modality, synchronization is not necessary. It is also known as 
decision level fusion (Yang and Lee 2019; Wang et al. 2015a, b).

However, the multimodal affective analysis can also be customized by combining sev-
eral modalities. In hybrid fusion feature level fusion and decision level fusion can be com-
bined to give more accurate results (Wang et al. 2022b).

1.3 � Features of the proposed review

The table lists some of the surveys and reviews on various emotion recognition methods 
that have been published. We compare our papers to those that have already been pub-
lished to determine whether the articles had key components (marked as ‘✓’ if discussed in 
Table 2) such as emotion models, ML and DL techniques, dataset discussion, applications. 
The Table 2 also include the review’s objective.

The primary goal of the suggested review is to provide a thorough and accurate analysis 
of research on EEG-Based Emotion Recognition and its applications in both medical and 
non-medical domains. The review’s characteristics are:

•	 This article offers several emotion models in both discrete and dimensional domains, in 
contrast to newly published review papers.

•	 It includes an overview of multimodal analysis for emotion detection as well as a brief 
explanation of the benchmark datasets used for EEG-based emotion recognition.

•	 Additionally, it illustrates a variety of uses in both medical and non-medical fields as 
well as potential research avenues.

This paper is organised as follows: Background information on brain-computer interac-
tion, several models for evoking emotions and multimodal emotion analysis are provided 
in Sect. 1. Section 2 outlines the function of each brain region in the development of emo-
tions, discusses EEG frequency bands and EEG features, and looks at how emotions and 
EEG data relate to one another. A summary of EEG signal acquisition, pre-processing, fea-
ture extraction, feature reduction and selection, classification, and performance evaluation 
for emotion recognition problems is given in Sect. 3 along with a description of the EEG-
based emotion recognition model. Section 4 explains public databases of EEG signal for 
emotional information. Section 5 give background details on deep learning and machine 
learning methodologies along with research that examines these approaches to recognise 
human emotional states using EEG-based BCI. Section 6 gives the summary of the find-
ings with a brief overview of the work. Applications of EEG-based emotion recognition 
are summarised in  Sect. 7. Sections 8, 9,  and 10  will explore unresolved problems, chal-
lenges, and upcoming research paths and the research review is concluded in Sect. 11.

1.3.1 � Papers selection method

This review of the role of machine learning and deep learning in  EEG-based emotion 
recognition used a method called PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses), which is a protocol for conducting systematic reviews and 
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meta-analyses (Page et al. 2021). PRISMA was used to locate research and cut down the 
data gathering for this review, as shown in Fig. 9.

The databases of Springer, Web of Science, IEEE, Elsevier, and Google Scholar were 
searched on January 3, 2022, using the following set of keywords: EEG AND emotion, 
(’Deep learning’ or ’machine learning’ or ’Deep machine learning’) in emotion recogni-
tion, (’EEG’ OR ’Electroencephalography’) signal in emotion, etc. Studies that did not 
meet the inclusion criteria (listed below) and duplicate entries in these databases were 
eliminated. The remaining studies’ full texts were then read through.

Unqualified studies were excluded based on the following standards:

•	 Electroencephalography only—Studies using multi-model datasets were disregarded in 
order to lower study variability.

Fig. 9   PRISMA flow diagram of the systematic review process
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•	 Task classification—This review concentrated on how EEG signals are used by humans 
to accomplish recognition and classification tasks. Other research was not included, 
including power analyses and non-human investigations.

•	 Time—Only studies published within the last five years were considered in this evalua-
tion due to the rapid advancement of this field’s research.

405 articles from the first phase were gathered. As a result, as part of the initial pre-
screening procedure, duplicate articles, unreviewed papers, and papers not written in Eng-
lish were disqualified from consideration. Each paper that made it beyond the screening 
stage underwent a thorough full-text review. Additional publications were eliminated in a 
final screening based on the following exclusion criteria: There is a shortage of attention 
paid to emotion recognition, as well as recent ML and DL studies and extensive infor-
mation, background knowledge on emotion recognition, and attention paid to EEG-based 
emotion recognition. Thus, 209 papers were still available and were taken into account in 
the review analysis.

2 � Overview of EEG signal and emotion

2.1 � Structure and functions of human brain

In scientific research the human brain is studied as the most complicated organ of human 
body. The greatest portion of the brain, the cerebral cortex, which is in charge of higher-
order functions including language, memory, learning, emotions, decision-making, intel-
ligence, etc., contains a type of bioelectric signal called brain electrical signal, with an 
amplitude between 10 and 100 V. This cerebral cortex is divided into two hemispheres and 
each hemisphere is again divided into four lobes namely frontal, parietal, temporal, and 
occipital lobes as shown in Fig. 10. Cognitive reasoning and emotional requirements make 
up the frontal lobe’s main functions. The parietal lobe reacts to human tactile sensation and 
is linked to balance and coordination in the human body. The temporal lobe is primarily 

Fig. 10   Different brain lobes (Alarcão and Fonseca 2019)
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involved in auditory and scent, as well as emotional and mental processes. And finally, 
the domain of the occipital lobe involves the processing of visual information (Wang and 
Wang 2021).

2.2 � Basics of EEG

A typical human brain generates an electric current of only a few microvolts. These voltage 
changes are brought on by ionic current that travels between the brain and the neurons. It 
takes almost 20–40 min to observe this random activity of brain. Due to this activity, EEG 
signals are produced (Gurrala et al. 2020).

EEG is one of the best tools for observing brain activity, also referred to as brain waves. 
In 1875 Richard Canton discovered the first electrical signals in animal brains, and Hans 
burger utilized this discovery as the ground work for the first ever recording of a human 
EEG signal in 1929 and subsequently published a paper. Following that, electrophysiolo-
gists and neurophysiologists eventually verified the outcomes of his research, leading EEG 
research in medicine and brain science to advance quickly. By examining the EEG waves, 
it is possible to comprehend how emotion varies. Neuronal potentials can be used to ana-
lyse the physiological and functional changes in the central nervous system (CNS). The 
electrical activity of a group of neurons in the region of the brain where the EEG recording 
electrode is placed is represented by the EEG; therefore, it includes a wide array of relevant 
and significant psychophysiological data. In medicine, neuroengineering, EEG signals pro-
vide diagnosing of certain diseases and disabilities for patients through its processing, clas-
sification and analysis techniques (Zhang et al. 2020).

Characteristics and Frequency Components of EEG Signal

EEG signal serves as a direct mirror of brain activity and is crucial for understanding 
the physiological processes that occur in the human brain. The following are its primary 
attributes:

(1)	 Noise: The EEG recordings are typically noisy and sensitive to disturbances from the 
environment. Typically, the EEG signal seems to have moderate amplitude (from 50 
to 100 μV). The EEG signals are frequently masked by noise, distortion, artefacts, and 
other signals (including EOG, EMG, and ECG).

(2)	 Non-linear: Other peripheral physiological signals that are present during the record-
ing of EEG signals typically affect the potentials in the EEG. Due to the physiological 
modification or reaction of human tissues, EEG signals are extremely nonlinear.

(3)	 Nonstationary: EEG signal fluctuations are unpredictable, prone to influences in the 
surrounding environment, and show a significant non-stationarity feature.

(4)	 Frequency-domain characteristics: The typical frequency band of EEG signals is 0.5–
100 Hz; however, the low frequency band of 0.5–30 Hz is the one that is most important 
for recognition. It is typically divided into five frequency bands, each of which related 
to a distinct brain performance.

EEG signals are often divided into two groups: evoked and spontaneous. The spontane-
ous EEG is a periodic potential variation that the neurological system creates on its own, 
independent of any outside stimulation. Evoked potentials are measurable changes in the 
cerebral cortex’s electrical potential caused by external stimulus  of a person’s sensory 
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organs. The rhythm of the EEG signals is due to continuous discharge of brain cells. As 
shown in Fig. 11, the EEG signal can be split into five different frequency bands.

Numerous studies on EEG signals have demonstrated that certain bands in the signal are 
closely associated with particular functions, as well as how difference in these frequencies 
is the foundation for the diagnosis of specific disorders and diseases. Table 3 gives a short 
description of five frequency bands (Kawala-Sterniuk et al. 2021).

2.3 � EEG‑based BCI in emotion recognition

When compared to other peripheral neuro-physiological signals, EEG is able to detect 
changes in brain activity accurately, providing details about interior emotional states. Addi-
tionally, EEG with a high temporal resolution enables the monitoring of an emotional state 
in real time. So many EEG-based emotion recognition techniques have lately been created 
(Wang et al. 2022a).

To educate the machine to interpret and recognise emotions, we must first understand 
the physical sources of the emotions in our bodies. Emotions can be communicated ver-
bally via well-known terms, or non-verbally via changes in voice tone or body language, or 
even physiologically, through our nervous system. But facial expressions and voice are not 
reliable indicators of emotion because they can be manipulated and cannot be taken as the 
outcome of a particular mood, whereas the physiological signals are more precise because 
the user has no influence over them.

Physiological changes are the basic causes of emotion in our bodies. There are two 
types of physiological changes: those that impact the peripheral nervous system (PNS) 
and those that affect the CNS. The CNS is made up of the spinal cord and brain. Various 
behaviours and emotions are caused by changes in electrical activity in human brain, which 

Fig. 11   The waveforms of five EEG rhythms



Role of machine learning and deep learning techniques in EEG‑based…

1 3

Page 19 of 66  50

Ta
bl

e 
3  

F
re

qu
en

cy
 ra

ng
e 

an
d 

de
sc

rip
tio

n 
of

 E
EG

 si
gn

al
s

EE
G

 rh
yt

hm
s

Fr
eq

ue
nc

y 
ra

ng
e 

(H
z)

M
en

ta
l c

on
di

tio
n

Lo
ca

tio
n 

an
d 

am
pl

itu
de

D
el

ta
0–

4
D

ee
p 

sl
ee

p,
 u

nc
on

sc
io

us
Fr

on
ta

l c
or

te
x,

 2
0–

20
0 

μV
Th

et
a

4–
8

D
ee

p 
re

la
xa

tio
n,

 m
ed

ita
tio

n
Pa

rie
ta

l a
nd

 te
m

po
ra

l l
ob

es
, 1

00
–1

50
 μ

V
Lo

w
 a

lp
ha

8–
10

W
ak

ef
ul

 re
la

xa
tio

n
O

cc
ip

ita
l l

ob
e 

an
d 

pa
rie

ta
l l

ob
e,

 2
0–

10
0 

μV
H

ig
h 

al
ph

a
10

–1
2

Se
lf-

aw
ar

en
es

s
Lo

w
 b

et
a

12
–1

8
A

ct
iv

e 
th

in
ki

ng
 a

nd
 d

ec
is

io
n 

m
ak

in
g

Fr
on

ta
l l

ob
e,

 5
–2

0 
μV

H
ig

h 
be

ta
18

–3
0

En
ga

ge
m

en
t i

n 
m

en
ta

l a
ct

iv
ity

Lo
w

 g
am

m
a

30
–5

0
C

og
ni

tiv
e 

pr
oc

es
si

ng
, s

el
f-

co
nt

ro
l

D
iff

er
en

t s
en

so
ry

 a
nd

 n
on

-s
en

so
ry

 c
or

tic
al

 
ne

tw
or

ks
, l

ow
er

 th
an

 2
 μ

V
H

ig
h 

ga
m

m
a

50
–7

0
C

og
ni

tiv
e 

ta
sk

s:
 m

em
or

y,
 re

ad
in

g 
an

d 
sp

ea
ki

ng



	 P. Samal, M. F. Hashmi 

1 3

50  Page 20 of 66

can be detected by an EEG (Houssein et al. 2022). Physiological signals like EEG contain 
a wealth of useful information about many emotional states of the brain. It is a particularly 
useful tool for comprehending human emotional states because it reacts more rapidly and 
accurately to changes in affective states. In EEG, the low frequency zone stimulates emo-
tions more strongly than high frequency zones (Wang and Wang 2021). Happiness, sad-
ness, and fear all exhibit considerably different average values for Beta, Alpha, and Theta 
waves on the midline of the brain as midline power spectrum is used as an important tool 
in classifying emotions (Zhao et al. 2018). According to physiological study, the cerebral 
cortex has a substantial impact on humans’ higher emotional and cognitive capabilities. It 
may be possible to determine the brain areas that are strongly associated with emotion by 
using EEG-based emotion detection. According to some studies, it has been stated that, 
there is a connection between emotional states and particular brain regions. The left fron-
tal regions of the brain are stimulated by enjoyment, according to Ekman and Davidson 
(1993). Increased theta band power in the frontal midline is correlated with positive emo-
tions, whereas negative emotions are correlated with the reverse. These investigations dem-
onstrate a relationship between emotional changes and the properties of the related EEG 
signals, which is highly relevant for the study of EEG signal emotion classification. Addi-
tionally, it provides a neurophysiological basis for identifying emotions in EEG data.

3 � EEG based BCI emotion recognition methodology

The process of recognising emotions using EEG signals, can be broken down into the fol-
lowing components.: Emotional induction is the first step, followed by signal acquisition, 
pre-processing, signal extraction, and feature selection and emotional pattern learning and 

Fig. 12   Emotion recognition steps
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classification as shown in Fig. 12. Following that, the discussion of each step is written in 
an orderly manner.

3.1 � Signal acquisition

EEG signal acquisition can be performed by both invasive and non-invasive methods. In 
invasive method, the signal to noise ratio and signal strength and accuracy are high com-
pared to non-invasive approaches, but the drawback is that requires surgical implant into 
the skull cavity and the electrodes enter the cerebral cortex to acquire signals. Therefore, 
non-invasive methods are most commonly used as these are affordable and signal acquisi-
tion can be done easily with the help of wearable EEG caps or headsets that place elec-
trodes along the scalp. In order to store and analyse signals, EEG electrodes acquire, 
amplify, and transfer them to a computer (or mobile device). There are many inexpensive 
EEG-based BCI devices on the market right now. However, with prolonged use, many of 
the current EEG-based BCI systems become difficult to use or users may find it an uneasy 
experience. Therefore, their efficiency needs improving.

3.1.1 � Acquisition equipment

The EEG acquisition equipment is varied in the emotional EEG experimental study due 
to various practical requirements. Table 4 represents various EEG acquisition equipment 
available in the market. Biosemi Active Two, Neuroscan Quik-Cap and Emotiv EPOC are 
examples of popular acquisition devices.

The Biosemi Active Two is a high-resolution, second-generation EEG monitoring 
device. In terms of sampling rate, bandwidth, and common mode rejection ratio, it is the 
industry leader. The signal quality is unaffected by the high electrode impedance under-
neath the active electrode. As a result, there is absolutely no need to prepare the skin, mak-
ing the experiment’s operation more convenient and efficient.

Emotive EPOC is a non-implantable electrode device having 16 sensors inside. 
While wearing, the posture should be properly set, and there should be no excess move-
ments. The Neuroscan’s QuikCap electrode cap, which uses a conventional EEG electrode 
placement method, is simple to use and suitable. For many emotion-related EEG investiga-
tions, a varied sampling rate is used. 1000, 128, 512 Hz, and more frequencies are standard 
sampling rates (Wang and Wang 2021).

3.1.2 � Electrodes distribution

According to several studies, the prefrontal lobe, temporal lobe edge, and posterior occipi-
tal lobe are where the majority of emotion-related EEG electrodes are located. These areas 
are perfectly matched with  the physical role for emotion generation. The derived feature 
dimension can be drastically lowered, the experiment can be made simpler, and the calcu-
lation’s complexity can be reduced by choosing electrode distribution.

During recording the International 10–20 electrode system is used to apply various elec-
trodes  (dry, wet, gel, etc.) to the scalp. Later on, this system is modified to create10-10 
electrode system for better efficiency as shown in Fig. 13. The electrodes in this system are 
positioned systematically and given names based on the areas of the brain they cover. Con-
sidering the electrodes’ names, frontopolar, anterior frontal, frontal, frontocentral, tempo-
ral, parietal, and occipital are represented by FP, AF, F, FC, T, P, and O, respectively. The 
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left hemisphere is denoted by an odd number suffix, while the right hemisphere is denoted 
by an even number.

3.1.3 � Normalisation

Depending on factors including variations in people’ alertness during the day, age, sex, 
etc.; the amplitude of EEG signals is affected. Therefore, to compensate this variation, 
measured values must be normalised. There are three approaches to normalise the feature 
data as given below:

(1)	 The first method involves recording baseline signals, in which the individual is either 
not subjected to any stimuli or is only introduced to simple, calming stimuli. Then, 
features obtained under different circumstances (where the subject is engaged in a task) 
are normalised by subtracting the baseline value or dividing by the baseline value, or 
by combining these methods.

(2)	 In the second method, the features extracted from baseline data are added to the feature 
space as independent features, doubling the feature space’s dimension. This strategy is 
known as “baseline matrix”.

(3)	 The third method basically involves converting data from each subject individually or 
from all subjects together to a specific range (for example, from 0 to 1 or from −1 to 
1). In this manner each feature is treated separately (Novak et al. 2012).

Fig. 13   Electrode positions and labels in the 10–10 system (Hart n.d.)
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3.2 � Signal pre‑processing

In EEG signals, Pre-processing refers to signal enhancing and cleaning. EEG signals are 
weak and readily affected by internal and external noise. Therefore, pre-processing steps 
are necessary to prevent noise contamination that can impact further classification. Various 
artefacts removal and filtering techniques are used to give pre-processed EEG signals as 
discussed in Table 5.

Artefacts Removal: Any part of the brain may produce artefacts due to other biologi-
cal signals or outside interferences. During signal acquisition, by blinking (EOG), moving 
the eyes or muscles (EMG), or beating the heart (ECG), or even getting affected by any 
external source, some electric signals are generated by the body which mix with EEG data. 
These extra signals are called artefacts. It can be challenging to distinguish artefacts from 
the EEG data since their amplitudes could be similar. In order to generate an EEG signal 
that is free of artefacts and can be used to extract accurate characteristics, the noise in the 
signal must be removed or attenuated (Agustina Garcés and Orosco 2018).

Independent component analysis (ICA), principal component analysis (PCA), common 
spatial patterns (CSP) and common average reference (CAR) are popular pre-processing 
techniques that have been used in several studies. Brief description about these methods 
is shown in the table below. Among all the artefact removal techniques, ICA is most com-
monly used as it is very effective.

Filtering: Frequency domain filters can be used to eliminate artefacts in the recorded 
EEG signals by reducing the bandwidth of the EEG signal under analysis. These filters are 
created so as to not modify or distort the signals in any manner. Some of the most popu-
lar filters are notch filters, Butterworth filters, high-frequency filters, low-frequency filters 
(also known as high-pass and low-pass filters). High-frequency filters and low-frequency 
filters are used to filter frequencies between 0.5 and 50–60 Hz. To eliminate the unsettling 
very low frequency components, such as those of breathing, high-pass filters with a cut-off 
frequency of typically less than 0.5  Hz are used. However, by applying low-pass filters 
with a cut-off frequency of roughly 50–60  Hz, high-frequency noise is reduced. Butter-
worth filters have a wide transition zone and a flat reaction in the stopband and passband. 
Notch filters are used to block the transmission of a single frequency instead of a range of 
frequencies. To guarantee perfect rejection of the potent 50 Hz power supply, notch filters 
with a null frequency of 50 Hz are required.

Baseline correction and removal: The baseline signal or pre-stimulus signal must 
often be corrected or removed during pre-processing before being compared to and ana-
lysed with the post-stimulus signal in many emotion identification applications as in Jimé-
nez-Guarneros and Alejo-Eleuterio (2022). The sliding window principle must be used 
for baseline signal removal. Windowing techniques and sizes can be selected based on the 
needs of the research.

3.3 � Feature extraction

The stage after pre-processing and noise reduction is feature extraction. The BCI must extract 
crucial features from the signals after they have been cleansed of noise so that they may be 
passed to the classifier. Finding information that can accurately reflect a person’s emotional 
state is the main goal of feature extraction in the emotion recognition process utilising EEG 
data. Algorithms for classifying emotions may then use this information. The extracted 
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properties mostly control how accurately emotions are identified. Consequently, it is crucial to 
identify the key EEG characteristics of emotional states. In the time, frequency, and time–fre-
quency domains, conventional EEG feature analysis are frequently carried out. EEG signals 
may be studied more thoroughly using nonlinear dynamics analysis since EEG data is nonlin-
ear. The time, frequency, time–frequency, and nonlinear feature analyses are the four EEG fea-
ture analysis techniques covered in this section that are used to identify emotions. The feature 
extraction techniques applied in the studies covered by this study are shown in the Table 6.

3.3.1 � Time domain

Period domain analyses have been used in the study of brain activity for a very long time. 
Most EEG acquisition tools available today collect EEG data in the time domain. There 
are numerous methods for analysing EEG in the time domain, including the event related 
potential (ERP), histogram analysis method, higher-order crossing (HOC) (Fan et  al. 
2022), PCA (Goshvarpour and Goshvarpour 2023), ICA (Chen et al. 2020a, b), and Higu-
chi’s fractal dimensions (FD) (Liu and Sourina 2014), Hjorth parameters which serve as 
a gauge of self-similarity and complexity of the signals in this domain. These methods 
depend on the extraction of time-based features. Statistical features including mean, power, 
maximum, minimum, median, standard deviation, kurtosis, skewness, relative band energy, 
variance etc. Time domain analysis begins with the geometric properties of EEG data, 
which the EEG analyser can accurately and intuitively statistically analyse. EEG data is 
included in the domain’s features with little information lost. However, there is no stand-
ardised technique for analysing the time-domain aspects of EEG signals due to the com-
plex waveform of EEG data. EEG analysers must therefore possess substantial experience 
and understanding.

(1)Power: Px =
1

T

T∑

t=1

|x(t)|2

(2)Mean: �x =
1

T

T∑

t=1

x(t)

(3)Standard deviation: �x =

√√√√ 1

T − 1

T∑

t=1

(x(t) − �x)
2

(4)1st difference: �
x
=

1

T − 1

√√√√
T∑

t=1

|(x(t + 1) − x(t)|

(5)Normalized 1st difference: �x =
�x

�x
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3.3.2 � Frequency domain

It has been shown that features in the frequency domain work better for automatic emotion 
identification with EEG than features in the time-domain. In order to assess and extract fre-
quency domain properties, frequency domain analysis techniques transform time-domain 
EEG signals into frequency domain signals. The EEG signal is often broken down into 
distinct sub-bands, and characteristics including power spectral density (PSD), logarithm 
energy spectrum, higher-order spectrum (HOS), and differential entropy (DE) are retrieved 
for study. Applying the fast Fourier transform (FFT) straight to a brief EEG segment is the 
most used technique for performing frequency analysis.

3.3.3 � Time–frequency domain

By combining data from the time and frequency domains, the time–frequency domain 
analysis technique enables localised time–frequency domain analysis. The ability to col-
lect time-varying and non-stationary signals, which can be utilised to characterise different 
emotional states, is made possible by time–frequency-domain characteristics. The Wavelet 
transform (Liu and Fu 2021) is the method of time–frequency analysis that is most fre-
quently utilised. Other crucial time–frequency domain analysis techniques include wavelet 
packet transform (WPT), and short-time Fourier transform (STFT) (Lin et  al. 2010) and 
many more.

3.3.4 � Non‑linear

Nonlinear dynamic analysis can be used to study highly complicated nonlinear and non-
periodic properties of EEG data. Numerous nonlinear analysis techniques have gained 
popularity in recent years for the study of EEG data. Permutation entropy, approximation 
entropy (Wang et  al. 2022a, b, c), power spectrum entropy, and sample entropy (Zhang 
et al. 2016) are examples of nonlinear dynamic approaches.

3.4 � Feature selection and reduction

The feature selection or reduction method is essential for EEG-based emotion recognition. 
The feature vectors in a BCI system are frequently very large. As a result, strategies for 
feature selection and/or reduction are routinely employed to reduce the number of features. 
These methods reduce the complexity of the problem by providing a classifier only features 

(6)2nd difference: �x =
1

T − 2

√√√√
T−2∑

t=1

|(x(t + 2) − x(t)|

(7)Normalized 2nd difference: �x =
�x

�x
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that contain important information. The efficiency and precision of model training can both 
be improved by using an appropriate feature selection and reduction approach. The Table 7 
shows a few feature selection strategies using emotion models.

Principal Component Analysis (Goshvarpour and Goshvarpour 2023), Linear Discrimi-
nant Analysis (Liu et al. 2018) are some prominent techniques for reducing EEG features. 
In less-dimensional space, PCA tries to represent d-dimensional data. This will reduce 
both the variety of options and the difficulties of time and space. Using LDA, a new vari-
able that includes the initial predictors is created. By maximising the differences in the new 
variable between the predefined groups, this is accomplished. The discriminant score is a 
new composite variable that is created by combining the prediction scores.

Minimal redundancy maximal relevance

Using mutual information, the MRMR method evaluates the relevance of features to target 
classes or other features in the feature space. It is founded on the maximisation of relevance 
and the minimization of redundancy. Here’s how maximum relevance is defined:

where S stands for feature set and I
(
xi, c

)
 for mutual information between feature i and tar-

get class c. Following is how minimum redundancy among features is calculated:

where I(xi, xj) stands for mutual information between feature i and j.
Combining Eqs. 8 and 9 produces the feature selection criterion for the mRMR method:

3.5 � Classification

The main task in emotion recognition is to categorise the input signals into one of the 
available class sets. Finding the optimal classifier that can correctly classify a variety of 
emotions is one of the most important steps in creating a successful emotion classification 
system. In order to determine the true class of an unknown observations in a validation 
dataset, a classifier uses a mathematical function. To categorise affective EEG data, a vari-
ety of classification techniques have been used in the affective computing field. These clas-
sifiers include basic ones (basic machine learning algorithms) like support vector machine 
(Zhang et al. 2016), decision trees (Li et al. 2022a, b, c, d) and linear discriminant analysis, 
as well as more sophisticated classifiers (deep learning algorithms) like recurrent neural 
networks and long short-term memory. K-nearest neighbour (KNN) (Mehmood and Lee 
2016), Random Forest (RF) (Zhang et al. 2021) are a few more classification models that 
are appropriate for emotion recognition.

(8)D =
1

|s|2
∑

xi∈S

I(xi, c)

(9)R =
1

|s|2
∑

xi,xj∈S

I(xi, xj)

(10)max(D − R)
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3.6 � Model assessment and selection

3.6.1 � Evaluation Method

By conducting tests to assess the classifier’s capacity to categorise new samples, it is pos-
sible to estimate the generalisation error of the classifier. The testing error on the testing set 
can be roughly equated to the generalisation error.

3.6.2 � Hold‑out method

There are two sets that are mutually exclusive within a dataset D. The training set S is one, 
while the testing set T is the other. It’s important to keep the data distribution as consistent 
as possible. In most cases, the experiments require multiple runs of random division before 
the average value is computed as the evaluation result. 20–30% of data of the dataset are 
usually used for training and the remaining samples are used for testing.

3.6.3 � Cross‑validation method

Two popular types of cross-validation techniques are used. K-fold crossing-validation is 
one example and Leave-one-out is another. For k-fold cross-validation, the initial sam-
pling is split into K sub-samples. The other K-1 samples are used for training, while one 
sub-sample serves as the testing set. The process of cross-validation is performed K times. 
Every subsample is validated once, and the final result is calculated using the average of K 
validations. The most used technique is tenfold cross-validation. In leave-one-out (LOO), 
the remaining samples are used as training sets and one of the primary samples is used as 
a testing set. Even though LOO produces more precise results, training takes too much 
time when the dataset is big.

3.6.4 � Performance evaluation parameters

To understand and compare with other study groups, the results for emotion recognition 
must be conveyed consistently for understanding and comparing with various study groups. 
Therefore, it is essential to properly choose and define evaluation procedures. Confusion 
matrix and accuracy are the most suggested performance evaluation metrics for measuring 
the effectiveness of the emotion classifiers.

A confusion matrix showed in Table 8 predicts the number of correctly identified and 
misidentified points during classifier training. Six classification performance measures—
accuracy, specificity, recall (sensitivity), precision, F-measure, and area under the curve 
(AUC)—are often generated based on the confusion matrix shown in the Table 9. These 
metrics are generally computed based on the four main metrics of a binary classification 
result, True Positive (TP) and True Negative (TN) indicates the predicted value matches 
the actual value whereas False Positive (FP) and False Negative (FN) indicates the pre-
dicted value was falsely predicted and does not match the actual value.
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4 � Datasets

There are various emotion databases that are openly accessible for anybody to down-
load and analyse without the requirement for permission from anyone or the involve-
ment of an organisation in their work. Those available data sets are listed below in 
the Table  10. Among all, DEAP and SEED datasets are most commonly employed 
for research work. Figure 14 shows the pie chart of various EEG datasets used in the 
papers discussed in the review.

DEAP: The DEAP database for analysing human emotions includes a 32-channel 
EEG and 12 other peripheral physiological signals, including 4 EMG (electromyo-
gram), 1 RSP (respiration pattern), 1 GSR (galvanic skin response), 4 EOG (electrooc-
ulogram), 1 P (Plethysmograph for blood volume pressure), and 1 T (skin temperature). 
Pre-processing procedures were carried out after the data was gathered at a sample 
rate of 512 Hz. The signals had their samples down to 128 Hz. By using a bandpass 
frequency filter on the EEG channels between 4 and 45  Hz, the EOG artefacts were 
removed from the data. 32 people were included in the database. Each participant saw 
40 music videos, each lasting one minute and with a different emotional theme. They 
gave the videos arousal, valence, dominance, liking and familiarity ratings after each 
trial. Arousal and valence ratings were measured by self-assessment manikins, and 
thumbs-up and thumbs-down responses were used for liking rating, which indicated 
how much the individual liked the video (Koelstra et al. 2012).

SEED: While the participants watched the films, Zheng and Lu recorded the SJTU 
EEG dataset (SEED), a physiological dataset gathered from 15 people. Three catego-
ries of emotions—positive, negative, and natural—were classified in the dataset. After 
watching the videos, participants were required to complete a questionnaire. Three dif-
ferent sessions were used to record the EEG. The interval between sessions was at 
least a week, and the international standard method 10–20 was used to record the EEG 
signals (Duan et al. 2013).

MAHNOB-HCI: MAHNOB-HCI is a multimedia database. While they looked 
at 20 videos and images, 27 people provided data. EEG signals (32 channels), ECG 
signals (3 signals), ERG signals (2 channels), GSR signals (2 channels), respiratory 
capacity signals, and skin temperature signals were among the data gathered. This 
experiment was divided into two phases. The participants in the first session were 
invited to watch video clips, and afterward, they were asked to respond to a question-
naire regarding their feelings. The films and photographs were simultaneously shown 
twice during the second session, once with the correct and incorrect labels and once 
without (Soleymani et al. 2012).

GAMEEMO: The GAMEEMO database is an emotion dataset based on brain phys-
iological signals (EEG). 28 participants took part in this dataset study at Firat Univer-
sity’s Department of Software Engineering. The study’s volunteers were 20–27 years 
old. It was not stated how many men and women made up the study’s subjects. Four 

Table 8   Confusion matrix True situation Prediction

Positive Negative

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)
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computer games were used as stimuli to extract the four fundamental feelings (bore-
dom, calm, scary, and hilarious) from the participants for a 5-min period. Each subject 
had access to EEG data for a total of 20  min. With the help of wearable EMOTIV 
EPOC + Mobile EEG gadget, data were gathered across 14 channels. 38,252 samples 
were collected from each participant and for each game (Alakus et al. 2020).

5 � Machine learning and deep learning in emotion recognition

The recognition of emotions is a classification or regression challenge, respectively. The 
emotional model that is employed to depict emotions forms the foundation of the dis-
tinction to depict feelings. In categorical representations, emotions are shown as discrete 
entities with labels. Contrary to discrete representations, dimensional models attempt to 
characterise emotions using continuous values of their defining characteristics, which are 
frequently depicted on axes. The majority of earlier methods approach emotion recogni-
tion as a classification problem. Emotion dimension regression benefits significantly less 
from the literature than classification of emotions in general. As a result, we focus on vari-
ous machine learning and deep learning classification approaches in this part as shown in 
(Fig. 15).

5.1 � Machine learning in emotion recognition

Machine learning algorithms were employed to categorise various emotional states from 
EEG-based BCI in the systems that recognise emotions. Machine learning has been a key 
component of BCI’s data analysis since it has helped distinguish between different brain 
activity patterns. Important facts and guidelines can be learned from the source task and 
then applied to the target task through machine learning. Additionally, machine learning 
algorithms can be used to analyse data that has been stored in a data management system 
in order to retrieve potentially crucial information. The final classification or prediction 
results might be greatly influenced by the machine learning method that is selected (Lv 
et al. 2021).

Machine learning models can be divided into two categories: supervised learning and 
unsupervised learning. Using training data, supervised machine learning can be used to 
determine the classifier’s parameters. The learning task is to adjust the settings of the sys-
tem for any valid input value after viewing the output value. To verify the effectiveness of 
a learned algorithm, a test dataset with data that has not been added to the model while it is 
learning is fed into the classifier. As opposed to supervised learning, unsupervised learning 
uses input data and a cost function that must be minimised to select parameters. A number 
of ML models have been put into practise recently for the management of the classifica-
tion of EEG signals for the recognition of human emotion (Houssein et al. 2022). Among 
these methods are Support Vector Machine (Zhang et al. 2016), Naıve Bayes (Hinvest et al. 
2022), k-nearest neighbour (Mehmood et al. 2016), Decision Trees (Li et al. 2022a, b, c, d), 
Random Forest (Zhang et al. 2021), and Artificial Neural Networks (Khubani and Kulkarni 
2022), which are widely used as classification methods. In the following sections, we will 
provide a brief description of each and Table 11 provides details of some existing machine 
learning methods used for EEG based emotion recognition.
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Support Vector Machine (SVM): Supervised learning is used by SVM to divide the data 
into two groups. The classes are identified by discriminant hyperplanes. The best hyper-
plane in SVM is the one that is nearest to the training values. To boost performance, it 
makes use of a range of kernel functions, including linear, polynomial, and radial basis 
(Khaliq and Sivani 2022). In Zhang et al. (2016) SVM was used to identify emotions from 
DEAP dataset. Authors used EMD for signal decomposition and used sample entropy as 
a feature of the study. Binary and multiclass classification is performed using the scale of 
valence and arousal and obtained with accuracy of 94.98% and 93.20% respectively.

K-Nearest Neighbor (KNN): Depending on the weights, K-NN is a relatively simple 
algorithm to learn and put into practise. Keeping track of all training sets takes more time 
and space. As a nonlinear classifier, KNN accurately assesses the decision boundary, but 
it also causes overfitting and limits the scope of possible generalisation. Wang and Mo 
(2013) found that a mean recognition rate of 82% could be achieved by combining a K-NN 
(K = 4) classifier with a feature selection Tabu search heuristic algorithm and a fourfold 
cross-validation approach to categorise four emotions (happiness, sorrow, pleasure, anger).

Linear Discriminant Analysis (LDA): As a linear classifier, LDA assigns feature val-
ues to the most recent subspace to establish group affiliation. The categorization process 
requires no more parameters. Scattering matrices must be non-singular for LDA to be 
applicable. Thus, Pseudoinverse LDA (pLDA) was employed to get around this restriction. 
Three individuals’ emotional states were correctly classified at the 95.5% level using SBS 
and pLDA in Kim and André (2008)

Random Forest: Random Forest (RF) (Breiman 2001) is a complex ensemble method 
that employs decision trees for classification and regression during training. It is based on 
the bagging algorithm. This method handles enormous volumes of data by using a limited 
number of attributes to create decision trees. Training time is significantly reduced com-
pared to other classifiers (Ayata et al. 2017). Random Forest is a common categorization 
method with these qualities. A step-by-step RF working model is provided below:

–	 Training sets are randomly selected and equal in size to the sample set.

Fig. 14   Pie chart of EEG datasets used in the papers discussed in the review
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–	 Decision trees are built from each training set.
–	 Randomly select a collection of attributes with equal likelihood, then select the best 

attribute to separate nodes.
–	 Each decision tree predicts.
–	 Every anticipated result gets a vote.
–	 The conclusion is based on the most voted results.

Decision tree: Decision tree (DT) is a popular machine-learning  technique for regres-
sion and classification. The method involves dividing a data set into subsets based on a cri-
terion that maximizes separation and then creating a tree (Loh 2011). The most prevalent 
criterion is information gain, which maximises entropy reduction from splits. Decision tree 
leaf nodes have class labels, whereas nonterminal nodes like the root and internal nodes 
include attribute testing requirements to differentiate records with unique properties (Bas-
tos et al. 2020). Decision trees aren’t black-box models and may be stated as rules, unlike 
other machine learning methods. This advantage is more significant in many application 
domains, making these models popular.

Artificial neural network: Artificial neural networks (ANNs) are a machine learning 
technology that simulates the human brain. Like neurons in the human nervous system, 
ANNs may learn from past data and respond with classifications or predictions. The system 

Fig. 15   Various ML and DL models used in emotion recognition



Role of machine learning and deep learning techniques in EEG‑based…

1 3

Page 39 of 66  50

Ta
bl

e 
11

  
Re

la
te

d 
stu

di
es

 u
si

ng
 m

ac
hi

ne
 le

ar
ni

ng
 a

lg
or

ith
m

s

Re
fe

re
nc

es
O

bj
ec

tiv
es

D
at

as
et

Em
ot

io
ns

Fe
at

ur
e 

re
pr

es
en

ta
tio

ns
C

la
ss

ifi
er

s
Re

co
gn

iti
on

 ra
te

s

Zh
an

g 
et

 a
l. 

(2
01

6)
C

om
bi

ne
d 

m
et

ho
d 

fo
r 

fe
at

ur
e 

ex
tra

ct
io

n
D

EA
P

Va
le

nc
e,

 a
ro

us
al

EM
D

, s
am

pE
n

SV
M

B
in

ar
y-

cl
as

s-
94

.9
8%

, 
m

ul
ti-

cl
as

s t
as

k-
93

.2
0%

Li
 e

t a
l. 

(2
02

2a
, b

, c
, d

)
Pr

op
os

in
g 

ne
w

 fe
at

ur
e 

na
m

ed
 M

D
E

D
EA

P
Va

le
nc

e,
 a

ro
us

al
, f

ou
r 

cl
as

se
s o

f e
m

ot
io

ns
M

ea
n,

 p
ow

er
, k

ur
to

si
s, 

D
E,

 M
D

E
R

F,
 D

T,
 G

B
D

T,
 S

V
M

A
ro

us
al

: 9
5.

15
%

 V
al

-
an

ce
: 9

4.
56

%
Fo

ur
 c

la
ss

es
: 9

1.
84

%
M

eh
m

oo
d 

et
 a

l. 
(2

01
6)

LP
P 

ba
se

d 
fe

at
ur

es
 

ex
tra

ct
io

n 
m

et
ho

d
O

w
n 

da
ta

se
t

Va
le

nc
e,

 a
ro

us
al

SF
, F

re
q 

do
m

ai
n 

fe
at

ur
es

, L
PP

 b
as

ed
 

fe
at

ur
es

SV
M

, K
N

N
K

N
N

: 5
6.

2%
SV

M
-5

7.
9%

Zh
an

g 
et

 a
l. 

(2
02

1)
M

ST
-b

as
ed

 B
ra

in
 

ne
tw

or
k 

an
d 

FV
M

D
-

G
A

M
PE

 m
et

ho
d

D
EA

P
Va

le
nc

e,
 a

ro
us

al
W

PT
, M

ST
FV

M
D

, L
F,

 B
C

, T
L,

 
C

PL
, D

EG
, G

E 
an

d 
EC

C
M

PE
 fe

at
ur

es

R
F

A
ro

us
al

: 8
8.

54
%

 
Va

le
nc

e:
 8

9.
58

%

H
in

ve
st 

et
 a

l. 
(2

02
2)

Em
pi

ric
al

 e
va

lu
at

io
n 

of
 

m
et

ho
do

lo
gi

es
O

w
n 

da
ta

se
t

H
ap

py
, s

ad
, a

ng
ry

, 
fe

ar
fu

l, 
su

rp
ris

e,
 

di
sg

us
t, 

ne
ut

ra
l

ER
P 

fe
at

ur
es

 (p
ea

k 
am

pl
itu

de
, m

ea
n 

am
pl

itu
de

, p
ea

k 
la

te
nc

y)
, p

ow
er

 
fe

at
ur

es

N
B

, D
T,

 G
B

D
T,

 K
N

N
, 

LR
, L

R
 w

ith
 l2

 
re

gu
la

riz
at

io
n

M
ul

tic
la

ss
-2

1.
1%

B
in

ar
y-

cl
as

s-
57

.8
%

G
ril

o 
Jr

 e
t a

l. 
(2

02
2)

A
rti

fa
ct

 re
m

ov
al

 u
si

ng
 

m
ut

ua
l i

nf
or

m
at

io
n 

an
d 

Ep
an

ec
hn

ik
ov

 
K

er
ne

l

O
w

n 
da

ta
se

t
N

eg
at

iv
e 

an
d 

po
si

tiv
e

H
jo

rth
 fe

at
ur

es
, H

O
C

 
fe

at
ur

es
SV

M
SV

M
-8

0.
13

%

K
um

ar
 e

t a
l. 

(2
01

6)
B

is
pe

ct
ra

l a
na

ly
si

s
D

EA
P

Va
le

nc
e,

 a
ro

us
al

FF
T,

 B
is

pe
ct

ru
m

 
fe

at
ur

es
 (B

E1
, B

E2
), 

M
M

O
B

), 
FO

SM
, 

SO
SM

LS
-S

V
M

, A
N

N
Va

le
nc

e-
61

.1
7%

A
ro

us
al

-6
4.

84
%



	 P. Samal, M. F. Hashmi 

1 3

50  Page 40 of 66

Ta
bl

e 
11

  (
co

nt
in

ue
d)

Re
fe

re
nc

es
O

bj
ec

tiv
es

D
at

as
et

Em
ot

io
ns

Fe
at

ur
e 

re
pr

es
en

ta
tio

ns
C

la
ss

ifi
er

s
Re

co
gn

iti
on

 ra
te

s

C
he

n 
et

 a
l. 

(2
02

0a
, b

)
LI

B
SV

M
 b

as
ed

 m
od

el
O

w
n 

da
ta

se
t

Va
le

nc
e,

 a
ro

us
al

Le
m

pe
l–

Zi
v 

co
m

pl
ex

-
ity

, W
av

el
et

 d
et

ai
l 

co
effi

ci
en

t, 
co

in
te

gr
a-

tio
n 

de
gr

ee
, E

M
D

, 
A

ve
ra

ge
 a

pp
ro

x.
 

en
tro

py

LI
B

SV
M

Va
le

nc
e-

82
.6

3%
A

ro
us

al
-7

4.
88

%

C
he

n 
et

 a
l. 

(2
02

0a
, b

)
LI

B
SV

M
 c

la
ss

ifi
er

 is
 

us
ed

 fo
r r

ec
og

ni
tio

n
O

w
n 

da
ta

se
t

Va
le

nc
e,

 a
ro

us
al

EM
D

, a
pp

ro
xi

m
at

e 
en

tro
py

 fe
at

ur
e

LI
B

SV
M

Va
le

nc
e-

82
.6

3%
A

ro
us

al
-7

4.
88

%
G

uo
 e

t a
l. 

(2
02

2a
, b

)
N

eu
ra

l n
et

w
or

k 
m

od
el

 
w

ith
 d

ep
th

 w
is

e 
co

nv
ol

ut
io

n 
an

d 
Tr

an
sf

or
m

er
 e

nc
od

er
s

SE
ED

Po
si

tiv
e,

 n
eg

at
iv

e,
 a

nd
 

ne
ut

ra
l

D
C

oT
A

cc
-9

3.
83

%

Lu
 (2

02
2)

LS
TM

 n
eu

ra
l n

et
w

or
k

SE
ED

Po
si

tiv
e,

 n
eg

at
iv

e,
 a

nd
 

ne
ut

ra
l

LS
TM

A
cc

-9
3%

C
he

n 
et

 a
l. 

(2
02

2a
, b

)
M

od
el

 b
as

ed
 o

n 
C

N
N

, 
LS

TM
, a

nd
 c

ha
nn

el
 

at
te

nt
io

n 
m

ec
ha

ni
sm

SE
ED

Po
si

tiv
e,

 n
eg

at
iv

e,
 a

nd
 

ne
ut

ra
l

C
LS

TM
A

cc
-9

3.
36

%

X
in

g 
et

 a
l. 

(2
02

2)
Sp

at
ia

l-f
re

qu
en

cy
-

te
m

po
ra

l C
R

N
N

O
V

PD
, S

EE
D

Po
si

tiv
e,

 n
eg

at
iv

e,
 a

nd
 

ne
ut

ra
l

3D
C

N
N

-B
iL

ST
M

A
cc

-9
8.

29
%

Zh
an

g 
et

 a
l. 

(2
01

9)
Sp

at
ia

l–
Te

m
po

ra
l R

N
N

SE
ED

, C
K

+
 

Po
si

tiv
e,

 n
eg

at
iv

e,
 a

nd
 

ne
ut

ra
l, 

an
ge

r, 
co

n-
te

m
pt

, d
is

gu
st,

fe
ar

, 
ha

pp
in

es
s, 

sa
dn

es
s,s

ur
pr

is
e

ST
R

N
N

SE
ED

-8
9.

50
%

CK
+

-9
5.

40
%

Li
 e

t a
l. 

(2
02

2a
, b

, c
, d

)
R

 G
C

B
-n

et
 m

od
el

 fo
r 

re
co

gn
iti

on
SE

ED
, D

R
EA

M
ER

Po
si

tiv
e,

 n
eg

at
iv

e,
 n

eu
-

tra
l, 

va
le

nc
e,

 a
ro

us
al

, 
do

m
in

an
ce

R
 G

C
B

-n
et

+
 B

LS
SE

ED
-9

4.
54

%
D

R
EA

M
ER

-9
1.

55
%

Pa
n 

et
 a

l. 
(2

02
0)

LR
 w

ith
 G

au
ss

ia
n 

K
er

ne
l a

nd
 L

ap
la

ci
an

 
Pr

io
r

D
EA

P
Va

le
nc

e,
 a

ro
us

al
PS

D
, D

E,
 D

A
SM

, 
R

A
SM

, D
CA

U
​

LO
R

SA
L,

 N
B

, S
V

M
Va

le
nc

e-
77

.1
7%

A
ro

us
al

-7
7.

03
%



Role of machine learning and deep learning techniques in EEG‑based…

1 3

Page 41 of 66  50

Ta
bl

e 
11

  (
co

nt
in

ue
d)

Re
fe

re
nc

es
O

bj
ec

tiv
es

D
at

as
et

Em
ot

io
ns

Fe
at

ur
e 

re
pr

es
en

ta
tio

ns
C

la
ss

ifi
er

s
Re

co
gn

iti
on

 ra
te

s

O
th

m
an

 e
t a

l. 
(2

01
3)

Tw
o 

di
m

en
si

on
al

 
m

od
el

s
O

w
n 

da
ta

se
t

H
ap

py
, s

ad
, n

eu
tra

l 
an

d 
fe

ar
M

FC
C

 a
nd

 K
D

E
M

LP
–

Pa
m

un
gk

as
 e

t a
l. 

(2
02

1)
C

la
ss

ifi
ca

tio
n 

of
 h

ap
py

 
an

d 
sa

d 
em

ot
io

ns
O

w
n 

da
ta

se
t

H
ap

py
, s

ad
SF

R
F,

 S
V

M
, K

N
N

, N
B

R
F-

88
.9

0%

K
am

bl
e 

an
d 

Se
ng

up
ta

 
(2

02
2)

En
se

m
bl

e 
M

 L
-b

as
ed

 
re

co
gn

iti
on

D
R

EA
M

ER
Va

le
nc

e,
 a

ro
us

al
D

W
T,

 E
M

D
, s

ta
tis

tic
al

 
fe

at
ur

es
B

ag
gi

ng
, R

F,
 R

R
F,

 
EG

B
, a

nd
 A

da
bo

os
t

Va
le

nc
e-

88
.9

0%
A

ro
us

al
-8

8.
95

%
K

hu
ba

ni
 a

nd
 K

ul
ka

rn
i 

(2
02

2)
B

SO
 b

as
ed

 A
N

N
 c

la
s-

si
fie

r
SE

ED
, D

EA
P

Va
le

nc
e,

 a
ro

us
al

, p
os

i-
tiv

e,
 n

eg
at

iv
e,

 n
eu

tra
l

B
SO

 fe
at

ur
es

, s
ta

tis
ti-

ca
l f

ea
tu

re
s

O
pt

im
iz

ed
 A

N
N

A
N

N
-9

4.
23

%

D
em

ir 
et

 a
l. 

(2
02

1)
D

L 
fe

at
ur

es
 fo

r a
ut

o-
m

at
ic

 c
la

ss
ifi

ca
tio

n
D

EA
P

Va
le

nc
e,

 a
ro

us
al

D
ee

p 
fe

at
ur

es
 

(A
le

xN
et

, V
G

G
16

, 
Re

sN
et

50
, 

Sq
ue

ez
eN

et
 a

nd
 

M
ob

ilN
et

v2
)

SV
M

A
cc

-9
8.

93
%

W
ag

h 
an

d 
Va

sa
nt

h 
(2

02
2)

Pe
rfo

rm
an

ce
 e

va
lu

at
io

n 
of

 E
EG

 b
as

ed
 ti

m
e 

fr
eq

ue
nc

y 
an

al
ys

is

SE
ED

N
eu

tra
l, 

ne
ga

tiv
e 

an
d 

po
si

tiv
e

PS
D

, E
ne

rg
y,

 S
F,

 
H

jo
rth

 p
ar

am
et

er
s, 

m
ax

im
um

 a
nd

 m
in

i-
m

um
 v

al
ue

, k
ur

to
si

s, 
sk

ew
ne

ss

SV
M

, K
N

N
, D

T
A

cc
-7

1.
52

%

A
nu

ra
gi

 e
t a

l. 
(2

02
2)

FB
SE

-E
W

T 
m

et
ho

d 
fo

r r
ec

og
ni

tio
n

SE
ED

, D
EA

P
Po

si
tiv

e,
 n

eg
at

iv
e 

an
d 

ne
ut

ra
l

En
tro

py
 a

nd
 e

ne
rg

y
A

N
N

, K
N

N
, e

ns
em

bl
e 

ba
gg

ed
 tr

ee
A

cc
-9

5.
7%

G
al

vã
o 

et
 a

l. 
(2

02
1)

O
pt

im
al

 fe
at

ur
es

, b
ra

in
 

w
av

es
 a

nd
 M

L 
fo

r 
pr

ed
ic

tio
n

D
EA

P
Va

le
nc

e,
 a

ro
us

al
H

jo
rth

 p
ar

am
et

er
, 

w
av

el
et

 e
ne

rg
y,

 IM
F 

po
w

er

K
N

N
, R

F
Va

le
nc

e:
 8

9.
84

%
A

ro
us

al
: 8

9.
83

%



	 P. Samal, M. F. Hashmi 

1 3

50  Page 42 of 66

consists of artificial neurons or nodes and their connections. The impact of one unit on 
the other is assessed by weighing the relationship between two units. Various units func-
tion as input, hidden, and output nodes, performing summation and thresholding (Basheer 
and Hajmeer 2000). Neural networks consist of three layers: input, hidden, and output, as 
depicted in Fig. 16.

The initial layer of an ANN accepts data such as numbers, words, image pixels, and 
audio recordings. Hidden layers are distributed throughout the ANN model. Hidden layers 
process input data to perform mathematical computations and identify patterns. The output 
layer displays the outcome of the middle layer’s rigorous computations (Fausett 2005). A 
neural network’s performance depends on several parameters and hyper-parameters. ANN 
output is mostly controlled by parameters like as weights, biases, batch size, learning rate 
etc. The literature describes numerous neural network types and designs, each with a dis-
tinct learning process (Basheer and Hajmeer 2000; Fausett 2005; Sharma et al. 2020a, b).

5.2 � Deep learning for emotion recognition

A subset of machine learning and artificial intelligence called deep learning (DL) which is 
capable of learning from the provided data (Dong et al. 2021). DL can produce considera-
ble results in various classification and regression problems and datasets. With applications 
in healthcare, visual identification, text analytics, cybersecurity, and many other areas, it 
has gained popularity in the computing industry (Sarker 2021). In order to accomplish 
multiple levels of nonlinear operations, DL makes use of various hidden layers in neural 
networks. In a classification challenge, complicated functions can be taught to recognise 
output classes using a variety of modifications and numerous hidden layers. Even though 
DL approaches for automated emotion recognition are relatively new compared to the long 
history of emotion research in psychophysiology, a number of articles on their use have 
lately been published.

Feature extraction and feature selection reduce the size of the feature set in order to 
increase classification performance and reduce computation time. There are two forms 
of feature extraction: shallow and deep. Shallow features are those that have been 

Fig. 16   Architecture of ANN
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manually created in various analytic domains, such as time domain, frequency domain, and 
time–frequency domain. Numerous feature selection or reduction techniques are employed 
to decrease higher-dimensional features, as mentioned in the section above. Unfortunately, 
shallow features heavily rely on hypotheses and demand a substantial amount of labelled 
data, both of which can be challenging to acquire in the context of real-world applications. 
Even though manual feature extraction and selection are typically time-consuming and tire-
some, it has a major impact on the performance of machine learning models. Hand-crafted 
shallow features are usually domain-specific, making it challenging to reuse them in dif-
ferent problems. Time series data with several variables might find it difficult to extract 
complex and nonlinear patterns using traditional feature engineering and machine learn-
ing techniques. Additionally, selecting the most critical characteristics from a large fea-
ture collection is essential and calls for the application of dimensionality reduction tech-
niques. Furthermore, computing feature extraction and selection requires a lot of time. For 
instance, when feature dimensionality increases, the cost of computing feature selection 
may increase exponentially. The best feature set for a specific ML model may not always be 
found via search methods. To overcome the difficulties of obtaining usable and reliable fea-
tures from time series data, several researchers have concentrated on DL approaches. For 
ML algorithms, DL makes it simpler to extract manually created features. Instead, it has 
the potential to learn the feature’s hierarchical representation on its own. This eliminates 
the need for feature space reconstruction and data pre-processing in a standard machine 
learning pipeline. Deep learning is based on artificial neural networks, where “deep” refers 
to the number of layers in a neural network. In DL approaches, deep neural networks are 
used to extract pertinent features by using high-level data representation. An enticing fea-
ture of DL techniques is their capacity to working with raw data and automating feature 
extraction and selection. The network is fed with time series samples, and with each non-
linear transformation, a hidden representation of the inputs from the layer before it is cre-
ated, resulting in a hierarchical data representation structure. Each layer uses a nonlinear 
mapping to translate the results from the layer before it into a new feature set in the deep 
network model.

CNN (Ahmed et al. 2022), autoencoder, DBN (Zheng et al. 2014), RNN, and NLP (Hol-
lenstein et al. 2021) are just a few of the applications where deep learning methods have 
recently had a significant impact. Different deep architectural models are put forth, applied 
to EEG signals, and the findings produced that are comparable to those of other traditional 
techniques. Recently, DL has been used to build reconfigurable emotion recognition sys-
tems because of its capacity to offer high-level data abstraction. Many DL models have 
been put into practise recently to control the classification of EEG signals for the iden-
tification of human emotions. These techniques include CNN, which are frequently used 
as classification methods, and RNN, which have LSTM networks as a special type. In the 
following sections, we will provide a brief description of each Table 12 provides details of 
some existing deep learning methods used for EEG based emotion recognition.

Convolutional neural network: The convolutional neural network is a deep, feed-
forward artificial neural network.  The three layers that make up a CNN are (i) an input 
layer, (ii) several hidden layers, and (iii) an output layer. The neural framework of a CNN 
is built using trainable weights and biases. Each neuron takes in data and then uses non-
linearity to carry out a dot product. Hidden layers show a sequence of convolutional layers 
that multiply or otherwise dot-product convolve. The network complexity in CNN may be 
reduced, and the good place image domain can be secured with the help of sharing weights 
and local connections (Kamble and Sengupta 2023).
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Long short-term memory network: LSTMs are a class of recurrent neural networks 
(RNNs) with a distinct design. In 1997, Hochreiter and Schmidhuber introduced it to alle-
viate long-term reliance on RNNs (Hochreiter and Schmidhuber 1997). Learning extended 
sequences with typical RNNs using backpropagation through time (BPTT) can be hard, 
resulting in the vanishing/exploding gradient problem (Guo 2013; Hochreiter et al. 2001). 
The RNN cell is replaced with a gated cell, such an LSTM cell, to address this issue. The 
memory block and gates in LSTM cells enable information to pass via the link. There are 
multiple connections to and from these gates. The network’s temporal state is kept in self-
connected memory cells, and information flow is regulated by gates in memory blocks 
(Hochreiter and Schmidhuber 1997). Initially, memory blocks had three gates: input, for-
get, and output. The first gate, a forget gate, employs a sigmoid layer to determine which 
cell state information to eliminate. The input gate, the second gate, uses a sigmoid layer to 
identify updated values and a tanh layer to generate a vector of modified values. Last, the 
output of the current state will be calculated using the sigmoid layer and the recently modi-
fied cell state. The sigmoid layer identifies final cell state features.

Recurrent neural network: Recurrent neural networks (RNNs) are used in deep learn-
ing to process variable-length sequential data, such as time series data, sound, or natural 
language. It consists of continuously connected feedforward neural networks. The system 
uses temporal correlations to represent input history and predict outputs within the net-
work. In typical neural networks, inputs and outputs are assumed to be independent. Using 
cyclic connections, RNNs can learn sequential data over time. Dynamic temporal patterns 
can be captured and saved in RNN networks due to internal feedback loops in each hidden 
layer. The hidden layer of an RNN consists of several nodes that generate outputs based on 
current inputs and previous hidden states. RNNs can be trained using the backpropagation 
through time (BPTT) algorithm (Guo 2013). Training RNNs can be challenging due to 
increasing gradient and vanishing difficulties, making it challenging to back-propagate gra-
dients over extended time intervals (Hochreiter et al. 2001; Reddy and Delen 2018). This 
limits access to essential context for sequencing data. Long short-term memory (LSTM) 
and gated recurrent unit (GRU) have become popular alternatives.

Probabilistic neural network: PNNs are a form of deep, feedforward neural network that 
employs a Bayesian approach. PNN’s high accuracy and noise/error tolerance come from 
its straightforward design and high learning potential compared to SVM. In a study using 
PNN for EEG-based emotion recognition with sub-band power features extraction, Zhang 
et al. (2017a, b) found that while PNN uses less channels in order to accomplish an identi-
cal outcome to that of using SVM, it gives a slightly lower classification rate than that of 
the SVM, with arousal (PNN-81.69%, SVM-82.26%) and valence (PNN-82.41%, SVM-
82.67%) serving as examples. Also its is found that PNN used only 9 channels for valence 
where as SVM used19 channels) and to measure arousal  PNN used 8 channels whereas, 
SVM used 14 channels.

Deep belief network: A deep belief network (DBN) is a specific kind of neural network 
that can be thought of as a probabilistic generative model or a generative graphical model. 
It is made up of multiple layers of latent variables (hidden units) that are connected to one 
another but not to each other at the unit level. This model is built by stacking a given num-
ber of restricted Boltzmann machines (RBMs), with the output of the lower-level RBMs 
feeding into the high-level RBM, as shown in Fig. 17.

In order to separate happy and sad emotions in EEG data, Zheng et al. (2014) recently 
presented the improved DBN with extra differential entropy (DE) properties. When a hid-
den Markov model (HMM) was incorporated, accuracy increased to an average of 87.62%. 
Zheng’s findings from experiments show in Zheng and Lu (2015) that the DBN classifier 
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outperforms the SVM classifier and the K-NN classifier at distinguishing between the three 
classes of emotions (positive, negative, and neutral).

6 � Summary of the findings

We reviewed more than 200 publications for this article, not only covering the cutting-
edge emotion identification methods that have recently been presented but also taking into 
account the datasets that are now accessible and outlining the key components of a data-
driven emotion recognition pipeline. We list some of the key conclusions we came to from 
this survey in this section.

The subject of human–computer interaction has seen a surge in interest in the study of 
emotion recognition due to the development of automation and human–machine systems 
technologies. This research examines methods for EEG-based emotion recognition. EEG 
reacts immediately to emotional changes. It is possible to extract, reduce, and then clas-
sify emotions using EEG characteristics. The following computing processes make up the 
general process of EEG-based emotion recognition: data collecting, data preprocessing, 
feature extraction, feature dimensionality reduction, and classification. Complete review of 
emotion recognition pipeline are the main topics of this study. The following is a summary 
of this paper’s main findings:

1.	 Each dimension of emotion was only given a binary classification in a lot of literature.

Fig. 17   A graphical model of DBN (Zheng et al. 2014)
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2.	 Traditionally, a predetermined threshold of the subjective rating data is used to deter-
mine the labelling of the actual/true/target emotion groups. Unfortunately, choosing the 
right threshold can be challenging. Using data clustering techniques, a novel approach 
is to concurrently examine the valence and arousal dimensions in order to identify the 
target classes of emotion.

3.	 Including baseline EEG information: In numerous investigations on emotion recognition, 
the baseline EEG data was ignored in favour of the EEG data collected under various 
emotional situations.

4.	 An evaluation of various data gathering tools and pre-processing methods for EEG 
signals is done in order to identify emotions. Various publicly accessible datasets are 
briefly reviewed, and it is discovered that the DEAP and SEED datasets are used for the 
majority of the research.

5.	 Reviews are given of several feature extraction techniques as well as time, frequency, 
time–frequency, and wavelet features. It is discovered that when recognising emotion 
using EEG data, entropy-based traits are more important.

6.	 A comparison of several dimensionality reduction strategies is done. We discovered that 
the most effective feature dimensionality reduction methodology changes depending on 
the type of feature extraction used.

7.	 Various machine learning-based classifiers, including KNN, NB, SVM, and RF, are 
discussed. It is discovered that SVM and RF outperform KNN and NB for the task of 
emotion recognition based on EEG. Additionally, a variety of deep learning models, 
such as CNN, DBN, LSTM, RNN, and PNN, are reviewed.

7 � Applications of EEG‑based emotion recognition

Emotion recognition systems have many uses in various  industries, including educa-
tion (Antonenko et  al. 2010), automobile (Katsis et  al. 2015), healthcare (Huang et  al. 
2021), entertainment (Du et al. 2023), etc. Figure 18 shows some applications of emotion 

Fig. 18   Applications of EEG-based emotion recognition
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recognition. These systems can identify and interpret  emotions by continuous real-time 
EEG signal monitoring, and they can modify their responses and activities as necessary. 
As indicated in Fig. 18, these applications can also be divided into two categories: medical 
applications and non-medical applications.

7.1 � Medical Applications

Medical professionals use EEG-based emotion detection devices to assess, improve, and 
diagnose patients’ emotions. These medically adapted EEG systems also diagnose neu-
rodevelopmental disorders. Neurodevelopmental illnesses can affect memory, emotions, 
learning, behaviour, and communication. Autism, depression, schizophrenia, and many 
other mental and neurological disorders are the most common.

Doctors can more accurately evaluate a patient’s physical state and consciousness by 
using computer-aided examination of their emotions. Most of the current research on emo-
tion recognition uses offline analysis. Huang et  al. (2021) used an online system to rec-
ognize emotions in patients with impairments of consciousness for the first time. They 
were successful in inducing and detecting the emotional traits of some patients with con-
sciousness issues in real time using this method. These experimental findings demonstrated 
that affective BCI systems have a lot of promise for identifying emotions in people with 
consciousness disorders. In an earlier work, Bălan et al. (2021) used the DEAP dataset to 
construct an autonomous emotion identification model employing SVM, LDA, KNN, and 
RF classifiers. The researchers developed a smart virtual therapist that uses physiological 
signals (EEG, ECG, and EDA) to identify human emotions and offers support, advice, and 
speech characteristics tailored to the situation.

Depression is a severe mental health condition with significant economic and societal 
implications. Many EEG-based biomarkers have been developed after numerous studies 
investigated the use of emotion recognition systems in depression diagnosis. de Aguiar 
Neto and Rosa (2019) wrote an overview of depression biomarkers based on EEG analysis. 
A physiological dataset was created by Cai et al. (2018) with 213 people (92 of whom had 
depression and 121 were healthy). During both resting condition and sound stimulation, 
EEG data were captured. They used KNN, DT, SVM, and NN classifiers and could identify 
depression with an accuracy of up to 79%. Additionally, by assisting in the perception and 
expression of feelings, emotion recognition systems can potentially improve the quality of 
life for people with a range of genetic illnesses, including autism.

Autism spectrum disorders (ASD) can be diagnosed using additional factors besides 
mood issues. However, clinicians have traditionally used patients’ emotional behaviours as 
the foundation for autism. Numerous studies have demonstrated that emotion classification 
based on EEG data processing can considerably enhance the ability of people with neuro-
logical disorders like acute Alzheimer’s to integrate socially (Gonzalez et al. 2019).

7.2 � Non‑Medical Applications

EEGs have been used in many fields other than medicine. Both physically fit people and 
people who have physical limitations use these applications. EEGs have been used in 
non-medical industries such entertainment, education, gaming, and monitoring. The table 
below lists the application categories for non-medical goods.
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Education: Students in education wore portable EEG devices with emotion recogni-
tion to track their emotions while receiving remote teaching. According to Elatlassi (2018‏) 
real-time biometric assessments of acuity, performance, and motivation can model student 
engagement in online contexts. Real-time biometrics like EEG and eye-tracking replicate 
acuity, performance, and motivation. Biometrics were tested in an online learning environ-
ment. Shen et  al. (2009) employed SVM on PPG, EDA and EEG signals to detect con-
fusion, boredom, hopefulness, and engagement as common during learning engagement 
with 86% accuracy. The emotion-aware e-learning system was compared to a baseline pro-
gramme. Based on the learner’s mood, their experiment prototype offered solutions. It was 
shown that the emotion-aware e-learning system reduced inputs and improved effective-
ness. Zhou et al. (2022a, b) conducted an in-depth analysis of a machine learning approach 
to recognising cognitive workload from EEG data. EEG-based cognitive workload recogni-
tion has been used in many fields including Education, air traffic control, and autism treat-
ments etc. (Aricò et al. 2016; L. Zhang et al. 2017a, b). Traditional machine learning tech-
niques are still used alongside those of deep learning.

Automotive environment: EEG-based emotion detection improves autonomous car 
autopilot accuracy by adding an emotion identification system (Park et  al. 2018). Brain-
computer interface technology can directly detect and send the passenger’s emotions to the 
driverless system, allowing it to adjust its driving mode. Gwak et al. (2018) used physi-
ological, behavioural, and driving performance variables to quantify drivers’ alert states. 
To establish the association between driver arousal, physiological indicators like EEG 
and ECG, behavioural assessments, and driving performance, driving simulator (DS) and 
driver monitoring system data were reviewed. From 10  s of data, machine learning dif-
ferentiates awake and  drowsy states using 32 features. KNN, LR, SVM, and DT classi-
fied driver fatigue and random Forest discriminated awake from moderately drowsy phases 
with 81.4% accuracy. Many accidents, especially traffic accidents, are caused by fatigue. 
This includes EEG-based driver fatigue estimate, which is less dependent on obvious 
behaviour and less deceptive (Mühl et al. 2014). EEG-based driver fatigue estimation can 
identify fatigue sooner than facial emotions since it originates deep in the brain. EEG-
based driver tiredness estimate uses many methods, including transfer learning (Cui et al. 
2019; Wei et al. 2018; Wu et al. 2017).

Gaming: We can create a game assistant system for emotional feedback control based 
on physiological and EEG signals in entertainment study, giving players a complete sense 
of engagement and incredibly participatory experiences. Emotion-enabled apps, such as 
emotion-based music therapy, were developed and implemented in the study of Sourina 
et al. (2011) along with EEG-based “serious” games for focus training.

8 � Open issues

Current ML and DL algorithms can be used with BCI devices to record EEG data and 
analyse them for practical applications of emotion detection technologies. But there are 
still problems there that must be remedied. Although recognition accuracy varies greatly 
depending on the application and is largely dependent on the datasets utilised in the study, 
previous techniques to emotion detection using EEG signals showed classification accura-
cies more than 80% on average. The evaluation revealed the following as some of the unre-
solved problems and directions for further study in the area of emotion recognition.
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1.	 The subjective dependent emotion recognition issue, which needs a customised classifier 
for each person, is the focus of current research. Real-world situations would greatly 
benefit from an emotion detection model that is subject independent and appropriate 
for a variety of people. As per the studies by Du et al. (2018), Sangineto et al. (2014), 
transfer learning techniques must be incorporated with the subject-independent classifier 
model in order to attain emotion detection results that is constant across people.

2.	 Most of the existing EEG datasets were gathered in laboratories using visual induction 
methods. The emotional state of the volunteers prior to the experimentation was not 
considered in earlier studies. These individual variations can lead to inconsistency in 
datasets.

3.	 In several investigations, each emotional dimension was solely considered in binary 
form.

4.	 At the moment, the discrete model and continuous model make up the majority of the 
theoretical foundation for emotion recognition. Although they are connected to one 
another, no one theoretical framework has been developed for them.

5.	 In the Internet era, protecting user privacy with regard to their personal information is 
a crucial moral and ethical concern. Users’ private information includes the EEG and 
other physiological data gathered in emotional computing, therefore privacy protection 
should be taken seriously.

6.	 Employing unobtrusive gadgets, such as smart bands, watches, or straps that can be 
worn without much difficulty, will help one design an emotion recognition system that 
is suited for everyday use.

7.	 In most studies on emotion recognition, researchers ignored the baseline (spontaneous) 
EEG data in favour of examining EEG data under various emotional states.

8.	 The literature did not mention EEG-based emotion recognition of mixed emotions, 
such as unpleasant sentiments, which incorporate both positive and negative impact felt 
simultaneously. These conflicting feelings are intriguing since they are related to study 
on how to enhance creative ability

9 � Future trends and research directions

The following will be taken into account in addition to the above-mentioned considerations 
in future development.

1.	 A predetermined subjective rating data threshold has historically been used to label 
actual emotion classes. It is very challenging to choose the right threshold. The simul-
taneous consideration of the valence and arousal dimensions, followed by the use of 
data clustering techniques to identify the real classes of emotions, is a novel approach.

2.	 Components of EEG-based BCI systems, like feature extraction and selection, are con-
stantly changing. They should be founded on a solid knowledge of biology and physiol-
ogy of the brain.

3.	 It is necessary to create emotional models dealing with a range of greater aspects. The 
two-dimensional emotion model is commonly used right now. Higher-dimensional emo-
tion models must be created in order to recognise multiple classes of emotions.

4.	 It is important to continue researching the relationship between explicit information 
in emotional computing—such as discrete emotions—and implicit information—such 
as the signal properties of various frequency bands of EEG signals corresponding to 
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those discrete emotions. Understanding how they relate to one another is crucial for 
comprehending the various emotional states indicated by EEG signals.

5.	 The majority of publicly accessible datasets for affective computing involve images, 
videos, music, and other external means to elicit emotional responses for EEG-based 
emotion recognition. These emotional changes are passive, as opposed to the active 
emotional changes that people make in actual scenarios, which may cause variances in 
their EEG patterns. Therefore, it is worthwhile to research how to distinguish between 
internal active emotional change and externally caused emotional change.

6.	 It is necessary to create improved machine learning methods, such as deep learning 
and compact machine learning. Emotions are a product of subjective and challenging 
cognitive processes. Therefore, it is challenging to provide a recognition approach that 
is only based on traditional ML techniques.

7.	 Conventional time series analysis methods must be combined with machine learning 
strategies in order to track temporal emotional variations in a timely manner.

8.	 Most engineering methods for identifying emotions demonstrate that arousal categori-
zation is typically more precise than that of valence. The explanation for this would be 
that although valence level requires a factor analysis of ANS reactions that are cross-
associated, changes in arousal level are directly related to ANS activities. As a result, 
we must propose a framework for categorising emotions specifically and extract a range 
of valence-relevant traits from EEG data across several analysis domains.

9.	 Since video games are faster at simulating “real-life” events and better at evoking emo-
tion, we need to build additional datasets that use active elicitation approaches.

10 � Challenges

One of the most essential concepts in emotion classification is the capacity to recognise 
emotions based on physiological information. EEG signals, writing, voice, and facial 
expressions are the various ways by which  emotions can be recognised. For psycholo-
gists, and researchers the issue has grown since EEG readings are internal brain impulses 
that a person cannot control. Finding the optimal techniques for reliably classifying emo-
tions based on EEG data or selecting an appropriate classifier is one of the major chal-
lenges. The primary problem for this is the dataset’s small sample sizes. For a model to be 
designed that can generalise successfully on new or previously unexplored data, it must 
first be trained and validated on a large number of subjects. Applying data augmentation 
techniques effectively helps address the issue of a small dataset as shown in the study (Luo 
et al. 2020). Another issue is noise in the signal and in low-frequency regions, where it is 
exceedingly difficult to eliminate noise from the signal through raw data processing. The 
data filtering process has made use of a number of approaches, including FIR filters, Adap-
tive Filters, Bandpass Filters, etc. In order to acquire high-quality noise free EEG signals, it 
is essential to develop hardware acquisition equipment; and conduct effective pre-process-
ing (noise reduction and artefact removal) techniques. Before acquiring an EEG signal, we 
should warn the individuals not to blink or perform any other actions that could introduce 
artifacts into the EEG acquisition. Then, as stated in Sect. 3.2, a variety of pre-processing 
approaches can be applied for some unavoidable artefacts. Reducing the size of the input 
features, handling data easily, and irregular EEG performance present further challenges. 
It is crucial to choose features for emotion detection tasks that have a significant capacity 
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to describe emotional state. There are many algorithms that can eliminate unnecessary or 
irrelevant features to reduce the number of dimensions.

11 � Conclusion

The significance of emotion recognition in the field of HCI has increased as technology 
and human interface technologies advance. EEG-based BCI emotion recognition has drawn 
plenty of attention in the field of emotional computing in recent times. Due to consider-
able advancements in the development of accessible and affordable BCI devices, various 
research investigations have been conducted. For this review, we looked over at 145 pub-
lications. EEG signals are trustworthy data that can’t be simulated or manipulated. EEG 
responds immediately to changes in emotion. Since several emotions can engage the same 
brain regions or, inversely, a single emotion might activate several structures, affective 
states cannot be simply mapped to particular brain structures.

We gave a general overview of BCI and its many approaches and applications. In order 
to characterise the output of emotional analysis, we divided the current emotion models 
focused on psychological concepts into discrete as well as dimensional models. Addition-
ally, many methods for evoking emotions were outlined. We also provided an overview 
of the human brain, the EEG signal, and its connection to emotions. Modern methods for 
identifying EEG emotions that have been developed recently were discussed. In addition, 
standard databases for training models for either DL or ML-based affective understanding 
are needed for the development of affective computing. We took into account the already-
available datasets and discussed some, which are primarily utilised for emotion recogni-
tion, we discussed the key elements of the EEG-based emotion detection pipeline. The 
general technique for EEG-based BCI emotion recognition consists of the following steps: 
data collection, pre-processing, feature extraction, feature selection, classification, and per-
formance evaluation. We looked at a variety of EEG signals acquisition systems with elec-
trode distribution during the data collection stage. We also gave a quick overview of the 
several methods for normalising EEG readings. Several pre-processing methods, such as 
filtering, artefact removal, base line correction, and data augmentation, were the subject 
of our review. Different feature extraction and classification strategies have been explained 
with a comparison system from various angles for the emotional feature extraction and 
classification of EEG research. According to our study, there doesn’t appear to be a single 
feature extraction or classification strategy that stands out as the top option for all applica-
tions when it comes to computational methods that can be utilised in these phases. The 
decision is based on the particular system paradigms and task. It has been advised to take 
into account as many algorithms as feasible, including pre-processing and synchronisation, 
to assess the viability of the suggested method. Most of the time, before making a decision 
that produces appropriate performance for the specific application, one should make com-
parisons with a variety of features and methodologies. Academics, researchers, and profes-
sionals working in the area of emotion recognition and detection can find reliable reference 
materials in our descriptive review. Our comprehension of numerous application principles 
for emotion recognition utilising BCI in various contexts is also aided by this study. This 
overview lists the uses of EEG-based emotion recognition in both medical and non-medi-
cal fields. Our findings indicated a sharp increase in journal papers relating to EEG-based 
emotion recognition. This demonstrates a rise in research interest in EEG-based emotion 
detection as a credible and salient field of study. This expansion was sparked by elements 
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including the widespread use of wireless EEG equipment, sophisticated computational 
intelligence methods, and machine learning. The quantity of EEG-based emotion detection 
research is something we anticipate expanding exponentially in the near future.

As this review demonstrates, it is challenging to investigate the connection between 
brain signals and emotions, and new approaches and applications are continually being 
created. It is anticipated that many of the outstanding problems and difficulties encoun-
tered while conducting this research will be overcome shortly, opening the door for a broad 
range of possible applications based on EEG-based emotion recognition. It is hoped that 
this review would give researchers, a better understanding of where things stand in terms 
of identifying and classifying emotional-oriented EEG signals.
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