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Abstract
Multimodal Aspect-Based Sentiment Analysis (MABSA) is an essential task in sentiment 
analysis that has garnered considerable attention in recent years. Typical approaches in 
MABSA often utilize cross-modal Transformers to capture interactions between textual 
and visual modalities. However, bridging the semantic gap between modalities spaces and 
addressing interference from irrelevant visual objects at different scales remains challeng-
ing. To tackle these limitations, we present the Multi-level Textual-Visual Alignment and 
Fusion Network (MTVAF) in this work, which incorporates three auxiliary tasks. Spe-
cifically, MTVAF first transforms multi-level image information into image descriptions, 
facial descriptions, and optical characters. These are then concatenated with the textual 
input to form a textual+visual input, facilitating comprehensive alignment between visual 
and textual modalities. Next, both inputs are fed into an integrated text model that incor-
porates relevant visual representations. Dynamic attention mechanisms are employed to 
generate visual prompts to control cross-modal fusion. Finally, we align the probability dis-
tributions of the textual input space and the textual+visual input space, effectively reduc-
ing noise introduced during the alignment process. Experimental results on two MABSA 
benchmark datasets demonstrate the effectiveness of the proposed MTVAF, showcasing 
its superior performance compared to state-of-the-art approaches. Our codes are available 
at https:// github. com/ MKMaS- GUET/ MTVAF.

Keywords Multimodal aspect-based sentiment analysis · Textual-visual alignment · Multi-
scale fusion · Multi-granularity translation

1 Introduction

Sentiment analysis, also known as opinion mining, plays a crucial role in natural language 
processing. Its objective is to analyze sentiments, opinions, evaluations, attitudes, and emo-
tions expressed in user-generated content online, such as tweets. Aspect-Based Sentiment 
Analysis (ABSA) is a fine-grained sentiment analysis task that attracts significant attention 
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due to its ability to offer detailed sentiment information, making it applicable to various 
scenarios. Many previous works on ABSA have focused on analyzing entities expressing 
user sentiment and their interrelationships from text, such as aspect terms, opinion terms, 
and sentiment polarities (Chen et al. 2020; Li et al. 2022; Liang et al. 2023). Users often 
express opinions through multimodal posts with both text and images, rather than just text. 
Analyzing these multimodal inputs enables more effective aspect-based sentiment analysis. 
The recent introduction of the multimodal aspect-based sentiment analysis (MABSA) task 
determines sentiment polarities towards different aspects mentioned in text-image pairs 
(Xu et al. 2019).

Previous research of MABSA is typically divided into three subtasks: Multimodal 
Aspect Term Extraction (MATE) (Wang et al. 2022; Chen et al. 2022), Multimodal Aspect-
oriented Sentiment Classification (MASC) (Khan and Fu 2021), and Joint Multimodal 
Aspect-Sentiment Analysis (JMASA) (Ju et al. 2021; Ling et al. 2022). Given a text-image 
pair as input, MATE aims to extract all the aspect terms mentioned in the text, MASC 
focuses on detecting the sentiment corresponding to specific aspect terms, and JMASA is 
designed to jointly extract aspect terms and their corresponding sentiments. For example, 
considering the two image-text pairs shown in Fig. 1, the goal of JMASA is to identify all 
aspect-sentiment pairs, such as (Brent Seabrook, Positive) and (Blackhawks, Negative) in 
(a), as well as (Jesse Eisenberg, Positive) in (b).

Since the output of the JMASA task includes both the results of MATE and MASC, it 
typically poses a greater challenge compared to either of them individually. Ju et al. (2021) 
regarded the global correlation between sentences and images as the degree to integrate 
visual cues into textual representations, almost completely neglecting the role of object-
level visual information. In contrast to coarse-grained text-image relevance judgments, the 
text in JMASA tasks comprises multiple complete aspect terms, while images often provide 
information related to only one or a few of these aspects. The information across different 
modalities is not always entirely consistent. Subsequently, Yang et al. (2022) leverage aux-
iliary tasks to capture highly sensitive multimodal representations. However, focusing too 
much on emotionally sensitive areas in visuals may introduce noise from unrelated images 

Fig. 1  Two examples of the MABSA task
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during cross-modal interactions. As shown in Fig.  1(a), the celebration action, serving 
as a region of interest (ROI) feature, exhibits low relevance to the Blackhawks, yet it still 
impacts the sentiment prediction with negative ground truth. Recently, Ling et al. (2022) 
devised a task-specific pre-training framework for MABSA closely associated with down-
stream tasks. Nevertheless, their work solely considers aligning fine-grained object visual 
information with text (Chen et al. 2022), overlooking hierarchical alignment of vision and 
language modalities at multiple granularities. For instance, in Fig. 1(b), visual information 
is distributed across the global images, local faces, and text in the image, each correspond-
ing to image descriptions at different levels. In this complex multimodal context, achieving 
cross-modal alignment and fusion between text and visual information at various levels is a 
significant challenge.

In this paper, we propose a multi-level textual-visual alignment and fusion network 
called MTVAF for the JMASA task to address the aforementioned limitations. We first 
construct an image-text alignment module that translates hierarchical visual information 
into the textual space by leveraging multi-granularity visual information. Next, the textual 
(T) input is connected with multi-level visual context as textual+visual (T+V) input and 
fed into a text-based pre-trained language model. To inject visual sentiment knowledge 
from low to high levels into the network, we design a multi-scale visual aspect-opinion 
fusion module that dynamically integrates additional visual features into the text modal 
model using a dynamic attention mechanism. Additionally, we process and obtain top-N 
visual aspect-opinion, providing explicit fine-grained visual cues. Finally, we adopt a text-
centered multimodal training approach using multi-scale visual data, enhancing the robust-
ness of the proposed model by minimizing the KL divergence between the probability 
distributions of the T input space and the T+V input space. Our main contributions are 
summarized as follows: 

1. We propose a multi-level textual-visual alignment and fusion network that bridges the 
semantic gap between text and images, which aligns them at multiple granularities and 
fully integrates hierarchical visual features into the textual space as context.

2. Building upon modal alignment, we further devise a multi-scale visual aspect-opinion 
fusion module that effectively incorporates significant visual information into the Trans-
former model, adaptively learning fine-grained knowledge from images.

3. Extensive experiments on two MABSA benchmark datasets demonstrate that the pro-
posed model consistently outperforms existing unimodal and multimodal approaches 
and achieves state-of-the-art results.

The remainder of this paper is organized as follows. Section  2 gives a brief review of 
related work. Section  3 formally defines the task and describes our proposed MTVAF 
model. In Sect. 4, we compare and discuss the experimental results to verify the effective-
ness of the proposed models. Finally, Sect. 5 concludes the paper and outlines future work.

2  Related work

2.1  Unimodal aspect‑based sentiment analysis

Unimodal aspect-based sentiment analysis involves classifying the sentiment polarity of 
aspect terms extracted within a single modality, typically text (Chen and Qian 2019; Chen 
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et  al. 2020). Early studies primarily concentrated on two independent subtasks: Aspect 
Term Extraction (ATE) and Aspect Sentiment Classification (ASC). ATE was initially for-
mulated as a sequence labeling task, with approaches emphasizing representation learn-
ing methods to enhance word embeddings and employ Conditional Random Field (CRF) 
models (Luo et al. 2019). Advancements in deep learning led to the increased popularity 
of neural networks like Convolutional Neural Networks (CNN) (Xue and Li 2018), Recur-
rent Neural Networks (RNN) (Ding et al. 2017), and Recursive Neural Networks (RecNN) 
(Wang and Pan 2020) in ATE research.

ASC tasks are typically categorized based on the aspect type: aspect term sentiment 
classification and aspect category sentiment classification. Many existing approaches 
address these problems by designing models that leverage attention mechanisms to capture 
positional information and obtain aspect-specific representations for sentiment detection 
(Tang et  al. 2016). These models effectively integrate the relationships between aspects 
(terms/categories) and sentence contexts. Additionally, researchers have explored methods 
based on Graph Neural Network (GNN) to explicitly leverage the syntactic structural rela-
tions between aspects and corresponding opinions for sentiment polarity detection (Sun 
et al. 2019).

Recognizing that aspects provide valuable cues for sentiment classification and polar-
ity detection, the joint ABSA task, which extracts both aspect terms and their correspond-
ing sentiment polarities, has gained substantial attention (Chen et al. 2020). Recent ABSA 
research has increasingly focused on extracting more fine-grained information, encompass-
ing aspect sentiment triplet extraction, aspect category sentiment detection, and aspect sen-
timent quad prediction. While unimodal ABSA has made significant progress, it overlooks 
a key fact: real-world sentiments are often expressed through integrating information from 
multiple modalities. This includes not just words, but also visual cues.

2.2  Multimodal aspect‑based sentiment analysis

In addition to the coarse-grained multimodal sentiment analysis conducted at the sen-
tence level (Zadeh et al. 2017; Yu et al. 2020; Gandhi et al. 2023), the MABSA task aims 
to extract more detailed information from text-image pairs. This includes tasks such as 
multimodal aspect term extraction (MATE), multimodal aspect-sentiment classification 
(MASC), and joint multimodal aspect-sentiment analysis (JMASA). Regarding the MATE 
task, similar to information extraction, sequential annotation methods such as CRF (Wang 
et al. 2022) and GNN (Zhang et al. 2021) are employed for entity extraction. In contrast, 
the MASC task is typically approached as a sequence classification problem, and various 
neural network-based models, including Bidirectional Long Short-Term Memory (BiL-
STM) (Zhou et al. 2021), BERT (Khan and Fu 2021), have been proposed.

Recent MABSA research has been focused on acquiring crucial visual features to 
enhance the semantic representation of entities in complex scenes. Yu et al. (2022) intro-
duce a hierarchical interaction module with assisted image reconstruction. However, this 
module primarily emphasizes local interactions and overlooks global semantic relation-
ships and modality heterogeneity. Another approach, pioneered by Khan and Fu (2021), 
involves converting images to textual descriptions to avoid bias arising from cross-modal 
interactions. Despite aiding cross-modal alignment, this approach often results in neutral 
descriptions of images, introducing noise when learning the diverse emotional cues in the 
visual modality. Consequently, Yang et al. (2022) employ facial emotions as a supervised 
signal for learning visual emotions. Nonetheless, this method overlooks scenarios where 
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facial expressions are absent in images, making it challenging to capture emotional visual 
cues.

The JMASA task proposed by Ju et al. (2021) aims to simultaneously address both sub-
tasks: extracting aspect terms and classifying their corresponding sentiments while also 
considering text-image relation detection through annotated datasets. Nonetheless, this 
approach primarily emphasizes cross-modal global interactions and does not extensively 
examine fine-grained aspects and sentiments. VLP-MABSA (Ling et al. 2022) simulates 
text-based ABSA and designs specific pre-trained tasks for images to achieve cross-modal 
alignment. However, this approach demands significant computational resources and relies 
on extensive pre-trained labeled data. To tackle this challenge, CMMT (Yang et al. 2022) 
introduces multi-aspect and sentiment detection tasks for cross-modal interaction learning, 
using a unified label. However, few studies have delved into bridging the semantic gap 
between modalities and efficiently harnessing visual information for coarse-grained to fine-
grained alignment. Different from them, the goal of our model is to effectively translate 
different granularities of image information into the textual space, thereby achieving accu-
rate alignment between images and text.

2.3  Pretrained vision‑language models

Inspired by the success of foundational pre-trained language models like BERT (Dev-
lin et al. 2019), RoBERTa (Liu et al. 2019), BART (Yan et al. 2021), and GPT (Radford 
et  al.  2019) across various domains in natural language processing, Vision-Language 
models have gained prominence. Pre-trained vision-language models have been trained 
on large-scale image-text pair datasets. These models have shown impressive generaliza-
tion abilities in various vision-language tasks. For example, in image-text retrieval, visual 
question answering, and image captioning (Tu et al. 2021, 2022), pre-trained models have 
achieved state-of-the-art performance.

Early Vision-Language Pretraining (VLP) approaches, such as Oscar (Li et  al. 2020) 
and Uniter (Chen et  al. 2020), heavily relied on pre-trained Object Detectors for visual 
feature extraction during pretraining. This reliance resulted in limited generalization capa-
bilities and a strong dependence on prior knowledge. To address these issues, CLIP (Rad-
ford et al. 2021), ALBEF (Li et al. 2021), and others proposed incorporating the Vision 
Transformer architecture in VLP (Li et al. 2022; Zhan et al. 2023), enabling the learning 
of more abstract and versatile visual representations. More recently, models like BLIP (Li 
et al. 2022) and BEiT-3 (Wang et al. 2022) introduced Transformer-based encoder-decoder 
architectures that almost unified all aspects of visual-language understanding and genera-
tion tasks. In this paper, we utilize the CLIP for image captioning tasks, translating global 
image information into the textual feature space.

Vision-Language models typically adopt coarse-grained pre-training tasks like Masked 
Language Modeling (MLM), Masked Region Classification (MRC), and Image-Text 
Matching (ITM). These tasks aim to equally understand and learn from both images and 
text. However, in the case of MABSA tasks, the focus shifts to prioritizing using aligned 
visual information to enhance text representations, especially for aspects and emotions. 
The VAL (Chen et al. 2020) and VLP-MABSA (Ling et al. 2022) respectively align visual 
and language information at the levels of multi-grained and fine-grained to obtain expres-
sive representations. Considering the limited data resources for MABSA tasks, in order to 
effectively utilize alignment information, our work proposes a method of integrating multi-
scale image information as prompts into text representations.
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3  Methodlogy

Task definition: Following previous works (Ju et al. 2021; Yang et al. 2022), we formulate 
the JMASA task as a sequence labeling problem with a unified tagging scheme. Formally, 
considering a sentence S = ( s1 , s2 , ⋯ , sn ) comprising n words, along with its correspond-
ing global image G. The objective of JMASA is to identify the aspect terms within the 
sentence S and their corresponding sentiment polarities. In particular, we aim to derive 
a joint label sequence y = (y1, y2,⋯ , yn) , where yi ∈ {B-POS, B-NEU, B-NEG, I-POS, 
I-NEU, I-NEG, O } . The labels B, I, and O signify the beginning, inside and out of an 
aspect, respectively. POS, NEU, and NEG represent positive, neutral, and negative senti-
ments towards the aspect. For example, when the word si is tagged with the label B-POS, 
it indicates that the word represents the beginning of an aspect with a positive sentiment.

3.1  Model overview

As mentioned before, two challenges of MABSA are to extract effective emotional visual 
features at various levels of granularity and bridge the gap between different modalities. 
To tackle these challenges, we propose a multi-level textual-visual alignment and fusion 
network. Figure 2 provides an overview of the proposed framework. Our approach lever-
ages hierarchical visual information from ResNet (He et al. 2016) and transforms it into the 
visual prompt, facilitating the seamless integration of richer visual information into both 
the T input space and T+V input space.

As shown in Fig.  2, the proposed MTVAF consists of the following three main 
components: 

1. Multi-granularity visual translation alignment: This component aims to align textual 
and visual spaces by translating the image into visual context.

2. Multi-scale visual aspect-opinion fusion: It is designed to project multi-scale visual 
features into the same low-dimensional space and dynamically fuse them into each layer 
of the Transformer. By incorporating visual aspect-opinion supervision, it enables the 
acquisition of fine-grained visual information throughout the model.

3. Text-centered multimodal training: To enhance robustness, this component minimizes 
the KL divergence over the output distributions of two inputs, effectively denoising the 
visual modality. Furthermore, it employs CRF for generating JMASA output.

3.2  Multi‑granularity visual translation alignment

Despite recent multimodal research has explored different ways to align textual and vis-
ual spaces (Yang et al. 2022; Ling et al. 2022), these studies have consistently neglected 
the need for precise alignment, particularly in the ranging from coarse to fine-grained lev-
els. This oversight might hinder the recognition of visual clues that could enhance textual 
representations.

To address this issue, we propose a multi-granularity visual translation alignment 
module, as shown in Fig. 3, which transforms images into visual context inputs at differ-
ent granularity levels. These inputs are combined with the T input and subsequently fed 
into a stacked bidirectional Transformer with multi-layer attention modules. This method 
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Fig. 2  The overall architecture of our proposed MTVAF

Fig. 3  The workflow of multi-granularity visual translation alignment
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indirectly accomplishes multi-granularity alignment between images and text, covering 
three levels of granularity alignment: global, local, and character-level.

3.2.1  Global coarse‑grained alignment

Our primary objective is to establish a coarse-grained alignment between global images 
and text. We use an image captioning model to create a comprehensive connection between 
visual and textual modalities, reducing the impact of irrelevant images. This process strives 
to generate meaningful and accurate image descriptions that convey the semantic informa-
tion of visual content at a coarse-grained level. In particular, we apply an image captioning 
tool ClipCap (Mokady et al. 2021), which generates the high-quality caption for scenes, 
denoted as C:

where C denotes the comprehensive description of the image generated from Caption, 
serving as a coarse-grained text-aligned mapping of the entire image.

3.2.2  Local fine‑grained alignment

Building upon the global coarse-grained alignment, local fine-grained alignment focuses 
on translating local facial features into the textual space to obtain aligned descriptions of 
faces. Facial expressions, being a direct means for humans to convey emotions, are invalu-
able for the exact identification of emotions at the object level in images (Fan et al. 2018). 
Our observations of the Twitter-2017 dataset reveal that facial expressions appear in over 
half of the images within tweets.

Hence, for the extraction of fine-grained emotional visual information, we initiate the 
process by utilizing the LightFace1 face detector to identify all faces and transform them 
into textual facial attributes. Following this, we adopt the facial expression description 
template proposed by Yang et al. (2022) to generate face descriptions:

where D =
{
D1,D2, ...,Dd

}
 , and d represents the number of facial descriptions.

After obtaining the facial attributes in textual form, we sort them in descending order 
based on the prediction confidence of the face detector, allowing us to filter out attributes 
with low prediction confidence. This step is essential for focusing on emotionally relevant 
information from local regions in images and achieving fine-grained alignment between 
different modalities.

3.2.3  Optical Character‑grained Alignment

In addition, images that include text offer valuable semantic information that enhances 
the visual content (Wang et  al. 2022; Yao et  al. 2023). Conventional image encoders 
often face challenges in comprehending this information such as slogans in advertise-
ments, text within emojis, famous quotes on posters, and so on. Thus, we apply Google’s 

(1)C = Caption(G)

(2)D = Face_Description(G)

1 https:// github. com/ seren gil/ light face

https://github.com/serengil/lightface
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Tesseract OCR engine2, an advanced lightweight open-source OCR system to extract text 
from images. Through accurate text identification and extraction from images, our method 
achieves character-level alignment, greatly improving its sensitivity to the emotional infor-
mation conveyed by these images.

where Oc represents the concatenated sequence of English words extracted by the OCR 
model.

To mitigate the noise caused by irrelevant images, we concatenate Oc 
with C and D to generate a textual-visual alignment of visual context called 
Vc = (C, [SEP],D, [SEP],Oc, [SEP]) . At this stage, visual information is mapped into 
the text space, and after concatenating it with the T input, a T+V input is formed. Just 
like before, we insert the [SEP] token between the T input (S) and the visual context 
( Vc ). Both T+V and T pass through a Transformer-based model to acquire the final hid-
den representations HL

T+V
 and HL

T
 , which are fed into the CRF layer. For a label sequence 

y = (y1, y2, ..., yn) , we define the probability of the tag sequence y based on the hidden rep-
resentations HL as follows:

where Myj,yj+1
 is the randomly initialized transition matrix from label yj to yj+1 , Pj,yj

 denotes 
the emission matrix of label yj linearly transformed from the HL.

3.3  Multi‑scale visual aspect‑opinion fusion

In this module, three primary subtasks are addressed. Firstly, the multi-scale visual feature 
subtask is dedicated to converting the input image into visual features at various scales. 
Secondly, the top-N visual aspect-opinion subtask aims to acquire detailed aspect-opin-
ion information from visual data. To achieve this goal, it employs Adjective-Noun Pairs 
(ANPs) (Borth et al. 2013) and predicts their top-N probabilities, which serve as supervi-
sion signals. Finally, the prompt-based dynamic visual fusion subtask primarily focuses on 
dynamically integrating multi-scale visual cues, acting as key-value prompt information 
in the multi-layer bidirectional Transformer (BERT) (Devlin et al. 2019) for two inputs: T 
input and T+V input.

3.3.1  Multi‑scale visual feature

Recent research (Tian et al. 2023) has shown the ability of convolutional neural networks 
(CNN) to hierarchically extract target features. It’s been shown that different layers of these 
networks, both shallow and deep, possess distinct receptive fields suitable for processing 
objects of various sizes. This is particularly important when dealing with various-grained 
images. Our module’s objective is to capture multi-scale visual features and obtain corre-
sponding hierarchical visual representations.

(3)Oc = OCR(G)

(4)
s(HL, y) =

n∑

j=0

Myj ,yj+1
+

n∑

j=1

Pj,yj

p(y|HL) = Softmax(s(HL, y))

2 https:// github. com/ madma ze/ pytes seract

https://github.com/madmaze/pytesseract
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To accomplish this, we incorporate global and regional images as supplementary visual 
information. Global images help capture large-scale abstract concepts such as entity con-
text and overall emotional clues. On the other hand, regional images act as vital visual cues 
for smaller-scale details, guiding visual feature learning. By combining semantic and spa-
tial information from deep and shallow features, we obtain multi-scale visual features. Spe-
cifically, we utilize a four-block structured ResNet (He et al. 2016) as the visual encoder 
and YOLOv5x63 as the object detector. We retain at most z regions Ob = (O1,O2, ...,Oz) 
with the highest confidence scores.

The multi-scale image inputs are fed into the visual encoder, where deep information is 
upsampled and element-wise added with shallow information. This process extracts multi-
scale feature maps F = (F1,F2, ...,Fr) , which are then fused. Following this, an average 
pooling operation is executed to enhance the recognition capability of visual aspects within 
the image:

where 
[
F1,F2, ...,Fr

]
G

 and 
[
F1,F2, ...,Fr

]
Ob

 represent the visual features obtained from the 
fusion of multi-scale feature maps, including global image features and object features. Ave 
denotes the average pooling layer, which transforms Fi into same dimension.

3.3.2  Top‑N visual aspect‑opinion

When integrating a significant amount of fine-grained visual information into two inputs, 
it’s clear that exploring the fine-grained relationships of the visual features obtained from 
the multi-scale network is essential. Inspired by VLP-MABSA (Ling et al. 2022), we uti-
lize Adjective-Noun Pairs (ANPs) as supervision for visual aspects and opinions. These 
ANPs are derived from the pre-trained ANP detector, DeepSentiBank4 (Chen et al. 2014), 
which predicts the class distribution of 2089 ANPs within the entire image, reflecting vis-
ual aspect-opinion information.

Since depending just on the predicted ANP causes an error propagation issue and utiliz-
ing the entire distribution for supervision creates redundant noise, we propose using adjec-
tive-noun pairs with top-N prediction probabilities for the guided model. For instance, in 
the middle right part of Fig. 2, the top-N adjective-noun pairs from the input image contain 
an ordered list relevant to the visual aspect-opinion, potentially guiding our model’s focus 
on fine-grained visual information. The distribution of top-N prediction P is computed as:

with r=4, where W ∈ ℝ
d×N and b ∈ ℝ

N represent trainable parameters, d represents the 
dimension of the text representation in BERT.

To bring the predicted distribution P closer to the ground-truth top-N adjective-noun 
pairs distribution A, we employ the standard Cross-Entropy loss to find fine-grained 
information from image input:

(5)

[
F1,F2, ...,Fr

]
G
;
[
F1,F2, ...,Fr

]
Ob

= Visual_Encoder([G];[Ob])

F̂i = Ave(Fi)

(6)P = Softmax(WT (
1

r

r∑

i=1

(F̂i)) + b)

3 https:// docs. ultra lytics. com/ yolov5/
4 https:// github. com/ steph en- pilli/ DeepS entiB ank

https://docs.ultralytics.com/yolov5/
https://github.com/stephen-pilli/DeepSentiBank
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This loss function is designed to minimize the discrepancy between the predicted and 
ground-truth distributions, thereby enhancing the model’s capability to capture the needed 
visual aspect-opinion relationship.

3.3.3  Prompt‑based dynamic visual fusion

In multimodal aspect-based sentiment analysis, the textual modality remains crucial for 
identifying entities and sentiments, even as the visual modality plays a significant role 
(Zhan et al. 2023). Therefore, we propose a submodule that employs dynamic attention 
mechanism (Chen et  al. 2018) to project multi-level visual information, including not 
only full image details but also object-level information, as prompts to the l-th layer of 
BERT within the textual modality. These visual prompts concatenate keys and values in 
each layer during multi-head attention calculations, mitigating noise interference from 
irrelevant visual information. This dynamic projector calculates multiple normalized 
vectors that control the extent of visual feature transformation for each BERT block. 
Firstly, we calculate the logits �l

i
 for the projecting signal:

where MLP represents a layer that appropriately reduces the feature dimensionality.
As for integrating textual and visual features, we employ multi-head self-attention. 

This process combines the visual prompts with the key/value vectors of contextual rep-
resentations in each BERT layer. Here, Vl represents the transformed visual features, 
which are fed into the l-th layer of BERT.

where visual prompts �l
k
, �l

v
∈ ℝ

(z+1)hw×d , (z + 1)hw denotes the length of visual features. 
The multi-scale visual features undergo a linear transformation Wl

�
∈ ℝ

d×2×d projects them 
into the same embedding space as the textual representations.

The equally-length visual prompts are then concatenated with the origin key and 
value vector from the previous BERT layer, which acts as the new key and value during 
the attention process. Formally, the fusion of visual prompts with text-based attention is 
calculated as follows:

where Wl
Q
Hl−1 , [�l

k
;Wl

K
Hl−1] and [�l

v
;Wl

V
Hl−1] represent the query, key, and value in the new 

attention matrices.

(7)LV = −Alog(P)

(8)
ei = MLP(F̂i)

𝛼l
i
=

exp(ei)∑r

k=1
(exp(ek))

(9)
Vl = [Vl

G
;Vl

Ob
] =

r∑

i=1

(𝛼l
i
⋅ F̂i)

[𝛿l
k
;𝛿l

v
] = Wl

𝛿
Vl

(10)Fusion_Attention =
Softmax(Wl

Q
Hl−1

⋅ [�l
k
;Wl

K
Hl−1])

√
d

[�l
v
;Wl

V
Hl−1]



 Y. Li et al.

1 3

78 Page 12 of 26

3.4  Text‑centered multimodal training

Given the diverse and multi-level visual information, when input to multi-layer bidirec-
tional Transformers, there’s a risk of excessive attention toward lengthy visual context. 
This can overshadow the primary role of textual information during gradient loss back-
propagation. Furthermore, the absence of annotated labels for supervising the alignment 
between textual and multimodal information poses a challenge. Thus, we introduce mini-
mizing the KL-divergence over two probability distributions, which is obtained from feed-
ing two inputs into the Transformer-based model in Eq. 10. It is equivalent to calculating 
the cross-entropy loss between the two distributions:

where p(y|HL
T+V

) and p(y|HL
T
) are T+V and T probability distributions derived from two 

inputs through Eq. 4.
As T+V information introduces noise in the aspect-sentiment pairs process of the 

MABSA model, we adopt a text-centered approach to transfer crucial information from the 
T+V context. Thereby, only p(y|HL

T
) is backpropagated. This loss function is the negative 

log probability of the ground truth label sequence as follows:

The final combined objective function is defined as follows:

where � , � , and � ∈ [0, 1] are trade-off hyper-parameters to control the contribution of each 
module.

4  Experiments

4.1  Experimental settings

Datasets: We demonstrate the effectiveness of our approaches on the Twitter-2015 and 
Twitter-2017 datasets (Yu et  al. 2019) for MABSA. These datasets comprise text-image 
pairs extracted from tweets spanning the years 2014 to 2017. The statistics of these two 
datasets are presented in Table 1. And the detailed statistics of the multi-granularity visual 
translation alignment are shown in Table 2.

Evaluation metrics: Following previous works (Ju et al. 2021; Ling et al. 2022; Yang 
et al. 2022; Yang et al. 2023), we adopted Precision (P), Recall (R), and F1 score as the 
evaluation metrics to assess the performance of different methods in the MABSA task.

(11)LT+V = KL(p(y|HL
T+V

)||p(y|HL
T
)) =

∑

y∈Y

p(y|HL
T+V

)log(p(y|HL
T
))

(12)LT = −

n∑

i=1

log(p(y|HL
T
))

(13)LMTVAF = � ⋅ LT + � ⋅ LV + � ⋅ LT+V

(14)Precision =
#true

#prediction
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where #prediction and #ground truth denote the number of predicted and ground truth 
aspect-sentiment pairs, respectively. The amount of correct predictions in aspect-sentiment 
pairs is represented by #true , implying that both the aspect boundary and sentiment clas-
sification are correct.

Implementation details: To ensure fair comparisons, we employed BERT-base-uncased5 
as our textual backbone and ResNet152 as the visual encoder, consistent with recent stud-
ies. The Transformer model had 12 attention heads and a dropout rate of 0.1. Training 
lasted for 30 epochs, with evaluation after the 16th epoch. In optimization, we used the 
AdamW optimizer with a weight decay of 0.01. Additionally, the learning rate was linearly 
warmed up to its maximum value during the first 1 % of training steps. For the Twitter-2015 
dataset, we used a learning rate of 2e–5 and a batch size of 16. For the Twitter-2017 data-
set, a learning rate of 1.5e–5 and a batch size of 4 were employed. The length of the prompt 
was set to 4, and its dimensionality was reduced to 800. The number of image objects was 

(15)Recall =
#true

#ground truth

(16)F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall

Table 1  Statistics of two benchmark datasets (All: number of all aspects, # S: number of sentences, Mean: 
mean length of sentences, Max: maximum length of sentences)

Datasets Postive Neutral Negative All #S Mean Max

Twitter-2015 Train 928 1883 368 3179 2101 15 35
Dev 303 670 149 1122 727 16 40
Test 317 607 113 1037 674 16 37

Twitter-2017 Train 1508 1638 416 3562 1746 15 39
Dev 515 517 144 1176 577 16 31
Test 493 573 168 1234 587 15 38

Table 2  A statistic about the number of sentences with different-granularity visual contexts and their mean 
and maximum length

We translate from the image by the multi-granularity alignment methods introduced in Sect. 3.2

Twitter-2015 Twitter-2017

Num of image caption / Total Sentences 3502 / 3502 (100%) 2910 / 2910 (100%)
Mean / Max of image caption 51.0 / 105 51.5 / 160
Num of face description / Total Sentences 1205 / 3502 (34.41%) 1646 / 2910 

(56.56%)
Mean / Max of face description 63.0 / 163 72.1 / 162
Num of OCR text / Total Sentences 861 / 3502 (24.59%) 786 / 2910 (27.01%)
Mean / Max of OCR text 61.2 / 100 59.3 / 100

5 https:// huggi ngface. co/ bert- base- uncas ed

https://huggingface.co/bert-base-uncased
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limited to no more than 3, and the OCR text length was limited to 100 characters. Besides, 
we consider the top-N visual aspect-opinion as its fine-grained concepts, i.e., N set to 10. 
The impact of tradeoff hyperparameters � and � impact on performance is not particularly 
sensitive, as both are set to 1 in our model. Conversely, another hyperparameter � demon-
strates high sensitivity to performance. In subsection 4.5.2, we via a grid-search strategy 
determine the optimal trade-off values for � , resulting in values of 0.3 and 0.2 for the Twit-
ter-2015 and Twitter-2017 datasets, respectively. We implemented all our methods using 
PyTorch and executed them on a single NVIDIA Tesla V100 GPU.

4.2  Baselines

In this subsection, we conduct a comprehensive comparison by comparing our MTVAF 
model with two groups of competitive models. Specifically, we consider the unimodal and 
multimodal baselines.

Text-based methods:  

1. SpanABSA (Hu et al. 2019) is a span-based hierarchical method for textual ABSA.
2. D-GCN (Chen et al. 2020) proposes the concept of second-order proximity information, 

which is used to extend the convolution operation receptive field to extract more features 
on the directed graph.

3. GPT-2 (Radford et al. 2019) adopts a Transformer-based architecture using only a 
decoder structure, enabling end-to-end applications in textual ABSA through text gen-
eration.

4. RoBERTa (Liu et al. 2019) is an advanced pre-trained transformer-based model, which 
feeds the contextualized text representation into a CRF layer for sequence labeling.

5. BART  (Yan et al. 2021) is an Encoder-Decoder Transformer architecture that combines 
contextual information and autoregressive features, formulating textual ABSA as an 
index generation task.

Multimodal methods:  

1. UMT-collapsed (Yu et al. 2020), OSCGA-collapsed (Wu et al. 2020) and RpBERT-
collapse (Sun et al. 2021) are model the multimodal named entity recognition (MNER) 
task originally, replaced with collapsed tagging for MABSA task. Note that UMT-
collapsed uses the cross-modal Transformer to model the interaction between text and 
images, and OSCGA-collapsed combines object-level visual information with textual 
information. The RpBERT-collapsed uses the confidence of the image-text relationship 
to fuse the two modalities.

2. CLIP (Radford et al. 2021) employs contrastive pretraining to encode rich semantic 
representations both images and text, which can be applied in MABSA.

3. JML (Ju et al. 2021) performs a span-based hierarchical joint learning approach while 
introducing an auxiliary cross-model relationship detection task to integrate appropriate 
visual information.

4. CMMT (Yang et al. 2022) uses a gating mechanism to control the contribution of text 
and image representations and to capture the interaction between them, with two uni-
modal auxiliary tasks.

5. VLP-MABSA (Ling et al. 2022) designs multiple distinct vision-language pre-training 
tasks on an extra pre-labeled dataset containing over 17,500 image-text pairs. This 
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approach aims to bridge the gap between a fine-grained MABSA task with limited 
resources and a general pre-training task.

6. GMP (Yang et al. 2023) utilizes multimodal encoders and decoders to automatically 
generate aspect-oriented and sentiment-oriented prompts for MABSA in text-image 
few-shot scenarios.

7. AoM (Zhou et al. 2023) reduces inter-modal noise for fine-grained sentiment analysis 
by jointly modeling aspect level semantics and guided sentiment aggregation.

4.3  Main results

In Table  3, we compare our approach with the baselines on the Twitter-2015 and Twit-
ter-2017 datasets to demonstrate superior performance, and the following observations can 
be made.

Incorporating additional visual content enhances the model’s understanding of the 
correlation between aspects and sentiments, resulting in promoting performance in the 
MABSA task. Multimodal models that leverage visual information clearly outperform text-
only methods in MABSA. A notable comparison can be drawn by contrasting the unimodal 
baseline BART with its corresponding multimodal method VLP-MABSA, both based on 
pre-training. The latter outperforms the former, with F1 scores increased by 3.4% and 2.4% 
on the two datasets, respectively. This finding further emphasizes the valuable role and sig-
nificance of visual information in aspect-level sentiment analysis in a multimodal setting.

The representation capacity of the model can be improved by incorporating relevant 
auxiliary tasks to filter out irrelevant image and text information, like multimodal relation 
detection and late-stage weighted fusion. Among the multimodal baseline models, UMT-
collapse and OSCGA-collapse perform poorly because they do not consider the relevance 

Table 3  A comparison of 
our MTVAF model and other 
competitive baselines for 
MABSA

The best scores on each metric are indicated in bold

Modality Approaches Twitter-2015 Twitter-2017

P R F1 P R F1

Text SpanABSA 53.7 53.9 53.8 59.6 61.7 60.6
D-GCN 58.3 58.8 59.4 64.2 64.1 64.1
GPT-2 66.6 60.9 63.6 55.3 59.6 57.4
RoBERTa 62.4 64.5 63.4 65.3 66.6 65.9
BART 62.9 65.0 63.9 65.2 65.6 65.4

Text-Image UMT-collapse 60.4 61.6 61.0 60.0 61.7 60.8
OSCGA-collapse 63.1 63.7 63.2 63.5 63.5 63.5
RpBERT-collapse 49.3 46.9 48.0 57.0 55.4 56.2
CLIP 44.9 47.1 45.9 51.8 54.2 53.0
JML 65.0 63.2 64.1 65.8 65.2 65.5
CMMT 63.5 66.6 65.0 66.1 69.0 67.5
VLP-MABSA 65.7 69.0 67.3 67.4 68.2 67.8
GMP 65.5 68.8 67.1 66.8 68.0 67.4
AoM 67.5 69.0 68.2 67.6 67.0 67.3
MTVAF(Ours) 69.3 72.8 71.0 68.1 68.3 68.2
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to downstream tasks and simply fuse visual features without alignment. Direct fusing of 
image and text features into RpBERT-collapse through naive fusion results in remarka-
bly inferior performance. On the other hand, JML and CMMT design auxiliary tasks to 
explore coarse-grained or fine-grained alignment information in visual content, yielding 
better results. However, they do not fully exploit the diverse range of semantic information 
present in images, resulting in the omission of crucial visual cues. In contrast, MTVAF 
leverages multi-level visual-textual alignment and visual representations as prompts. The 
table results show that our method effectively mitigates interference from irrelevant global 
and local image information, providing a more comprehensive approach for visual-lan-
guage alignment and fusion in MABSA.

Multimodal pre-trained models generally require task-specific pre-training or prompt-
based learning to provide supervised signals for model fine-tuning. Although CLIP can 
capture semantically powerful multimodal representations through contrastive learning, 
its performance is significantly lower than VLP-MABSA guided by proper pre-training 
tasks. In comparison, GMP may help model the correlations between input images, text, 
and output sentiments better by automatically generating customized multimodal prompts 
for MABSA. This also highlights the effectiveness of visual prompt-based fusion for inter-
modality interaction in MTVAF.

As shown in Table 3, it is evident that the proposed MTVAF outperforms the state-
of-the-art AoM model by 1.8% , 3.8% , and 2.8% in terms of Precision, Recall, and F1 
score, respectively, on the Twitter-2015 dataset. This observation indicates that even 
selectively attending to aspect-relevant visual-textual contents and aggregating associ-
ated sentiment signals may still be insufficient to completely filter out misaligned vis-
ual noise. For the MABSA task, our approach leverages multi-level visual knowledge 
aligned with text, which proves to be more beneficial in training text-based models.

Table 4  Ablation study of the MTVAF

Approaches Twitter-2015 Twitter-2017

P R F1 P R F1

MTVAF (Full) 69.3 72.8 71.0 68.1 68.3 68.2
only global coarse-grained alignment 68.5 71.4 69.9 66.3 67.2 66.7
only local fine-grained alignment 67.2 71.2 69.1 66.5 67.6 67.0
only optical character-grained alignment 66.2 70.1 68.5 65.9 66.4 66.1
w/o global coarse-grained alignment 67.6 71.4 69.4 66.2 68.2 67.2
w/o local fine-grained alignment 68.0 72.4 70.1 66.4 68.4 67.4
w/o optical character-grained alignment 69.3 72.1 70.7 67.8 68.8 68.3
w/o multi-granularity visual translation alignment 65.9 68.8 67.3 64.8 66.5 65.6
w/o top-N visual aspect-opinion 66.9 70.7 68.8 66.0 66.7 66.3
w/o prompt-based dynamic visual fusion 66.0 69.4 67.7 63.6 64.2 63.9
w/o multi-scale visual aspect-opinion fusion 65.2 64.3 64.7 67.8 53.7 60.0
rep. text-centered multimodal training 67.5 70.9 69.1 67.1 67.8 67.5
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4.4  Ablation study

In Table 4, we conducted ablation experiments to further analyze the contributions of 
each module in our model. (1) only global/local/character-grained alignment: Retain 
only the alignment translation at the specified level. (2) w/o global/local/character 
alignment: Remove alignment translation at the specified level (various combinations 
of multi-granularity alignment). (3) w/o multi-granularity visual translation alignment: 
Completely remove T+V input and KL divergence in Fig.  2 top left. (4) w/o top-N 
visual aspect-opinion: Remove the visual aspect-opinion loss in Eq. 7. (5) w/o prompt-
based dynamic visual fusion: Exclude the fusion of image information via visual 
prompts, only use translated visual contexts as visual modality input. (6) rep. text-cen-
tered multimodal training: Replace text probability distribution with T+V distribution 
in Eq. 12 for backpropagation, eliminating the two-distribution loss in Eq. 11.

We conducted a series of experiments to validate the vital role played by various 
granularity alignment methods and their combinations. The performance drop of only 
global coarse-grained alignment on Twitter-2015 is less significant than on Twit-
ter-2017. This difference could be due to the dominance of neutral samples in Twit-
ter-2015, as shown in Table  1 and Table  2, where face descriptions, accounting for 
sentiment clues, only make up 34.41%. During training, the model may tend to focus 
more on objective global coarse-grained alignment in such cases. Meanwhile, on Twit-
ter-2017, F1 of w/o local fine-grained alignment is slightly higher than the complete 
MTVAF model. There could be two reasons for this result. First, OCR has weaker rec-
ognition capability on low-quality or complex images, which may introduce irrelevant 
information during multi-granularity visual translation alignment. Second, a great 
deal of OCR text in the Twitter datasets exhibit little semantic association with linked 
sentences. OCR text not only fail to enhance visual alignment, but they also intro-
duce noise. Subsequently, we removed all visual context (w/o multi-granularity visual 
translation alignment). Performance degradation was observed on both datasets, with 
a larger decrease of 3.7% and 2.6% when the visual context was removed. This reveals 
that translating visual information from coarse-grained to fine-grained levels into the 
textual space can bridge the semantic gap between the image and text modalities.

To demonstrate the practicality of multi-scaled visual fusion, we conducted experi-
ments involving the removal of two components: top-N adjective-noun pairs (w/o top-N 
visual aspect-opinion), and multi-scaled fusion (w/o prompt-based dynamic visual 
fusion) both as ablative models. When we eliminated auxiliary supervision, there was 
a decrease of 2.2% and 1.9% in F1 scores on the two Twitter datasets, indicating that 
the predictions of ANPs may capture the visual aspect-opinion information. Further-
more, when we excluded multi-scale visual cues, there was a significant decline in per-
formance. This emphasizes the importance of our proposed MTVAF, which facilitates 
comprehensive and informative interactions within the textual model by integrating vis-
ual cues of different scales.

Besides, the decline observed in both datasets by removing the loss of the two distribu-
tions in Eq. 11 (w/o text-centered multimodal training), as it effectively reduces noise intro-
duced by redundant visual context.
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4.5  In‑depth analysis

We perform the in-depth analysis on two Twitter datasets to investigate the effect of the 
number of adjective-noun pairs, hyper-parameter settings, and layers of the Image Encoder 
on the performance, which further demonstrates the validity of the proposed MTVAF 
model.

4.5.1  Analysis of the sensitivity of the top‑N visual aspect‑opinion

At the top-N adjective-noun pairs stage, we investigated the influence of different settings 
for N. We explored values of 0, 1, 5, 10, 25, 100, as well as the entire distribution (2089) to 
understand their impact. Our tests revealed the sensitivity of the number of adjective-noun 
pairs. Figure 4(a) manifests that using adjective-noun pairs generally enhances the perfor-
mance of MABSA compared to the top-0 (w/o top-N visual aspect-opinion).

Moreover, using only the adjective-noun pair with the highest predicted probability (N 
= 1) may lead to error propagation, while employing the distribution data of a large num-
ber of adjective-noun pairs (whole distribution) may introduce noise. Through our observa-
tions, setting the number of adjective-noun pairs to 10 yielded the best result. This finding 
highlights that adopting an appropriate number of adjective-noun pairs can effectively alle-
viate error propagation and visual noise problems to a certain extent, consequently leading 
to improved performance.

4.5.2  Analysis of the sensitivity of the hyper‑parameter

We conduct a hyperparameter experiment of MTVAF to effectively utilize aligned image 
information through translating input image into three granularity, as depicted in Fig. 4(b), 
based on the final performance on the development set. For the hyperparameter � in Eq. 13, 
we experimented with different settings ranging from 0.1 to 1.0 in increments of 0.1. We 
found that the optimal values for � were 0.3 and 0.2 for the two Twitter datasets, yielding 
the best performance.

As previously emphasized, reducing irrelevant image information is crucial in the 
context of the MABSA task. The tradeoff parameter � inherently signifies the degree of 

Fig. 4  The result of different top-n adjective-noun pairs and contribution of multi-granularity visual transla-
tion alignment module for MTVAF
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influence exerted by the aligned image content. When � sets a larger value, it implies 
the introduction of redundant T+V input, potentially biasing the model training process 
and resulting in decreased robustness. On the contrary, selecting a smaller � reduces the 
number of T+V inputs, negatively impacting overall performance. Therefore, to strike a 
balance between incorporating sufficiently aligned visual information and mitigating the 
impact of noise, it is advisable to assign a relatively smaller value to the contribution level 
of T+V input, optimizing the model’s performance.

4.5.3  Analysis of the effectiveness of the image encoder

The importance of layers in the image encoder is emphasized in Fig.  5, we conducted 
experiments by replacing ResNet152 with alternative ResNet variants featuring vary-
ing numbers of layers. Notably, we observed a consistent decrease in F1 scores across the 
Twitter-2015 and Twitter-2017 datasets as the number of layers diminished. This observa-
tion underscores the importance of increasing the number of residual blocks within each 
module, as it enables the capture of more comprehensive bottom-up syntactic and semantic 
information within the images, despite the overall similarity in structure.

4.6  Case study

In this subsection, we selected three representative test examples in Table 5 for comparison 
among four models: the textual baseline BART, the multimodal benchmark model JML, 
VLP-MABSA, and our MTVAF framework.

As shown in Table 5, in example (a), we find that JML failed to identify the aspect term 
(Brandon Carr), while BART and VLP-MABSA additionally identified an aspect word the 
and BART also made an incorrect sentiment prediction. MTVAF might takes advantage of 
the image caption and relevant object-level images, which do not have specific emotional 
tendencies, aiding in entity recognition and sentiment prediction. In example (b), owing to 
the lack of image input, BART did not identify the aspect term (LFC). JML only extracted 
one aspect word Steven, and VLP-MABSA made an incorrect sentiment prediction. 
MTVAF, on the other hand, aligns the second entity, which combines the facial descrip-
tion of angry expression with adjective-noun pairs such as tough face and extreme violence 
to capture emotional visual contextual cues. As a result, MTVAF correctly extracts two 
aspect terms and classifies their sentiment as neutral and negative. In example (c), BART 

Fig. 5  Performance comparison of image encoder on twitter datasets
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and JML only extracted partial entities, with JML identifying an additional aspect word 
Show compared to BART. Although VLP-MABSA accurately predicted the correct aspect 
term (The Seth Leibsohn Show), it failed to classify sentiment, probably due to its equal 
treatment of images and text.

In the case of using images as an auxiliary modality, the MTVAF model not only cor-
rectly recognizes the aspect term (The Seth Leibsohn Show) through character-grained vis-
ual context, but also predicts a positive sentiment in combination with image information. 
These case results demonstrate that our MTVAF model can obtain all correct aspect terms 
and their associated sentiments by comprehensively aligning and fusing textual informa-
tion with relevant images at different scales.

4.7  Comparison with human assessment

Is MTVAF consistent with human assessment? To gain a deeper understanding of the cor-
relation and discrepancies between our approach and human perception of multimodal 
data, we engaged three graduate students (majoring in computer science and technology) 
to independently annotate each text along with its associated image. Their task was to 
assess whether the image enhances aspect recognition and sentiment detection in the text. 
To reduce semantic discrepancies and ensure dataset quality, we randomly sample three 
groups of 100 samples from the Twitter-2015 test set using different seeds (12, 43, 100). 
Cohen’s Kappa (Cohen  1960) is adopted to measure inter-annotator agreement, and the 
highest average Kappa score among the three groups is presented in Table 6. This subset, 
demonstrating agreement at a fundamental level, was chosen as the evaluation dataset. The 
majority label among the three annotations was then adopted as the ground truth label.

We evaluated our model’s performance in both unimodal and multimodal settings on 
the data subset, as shown in Table 7. When annotators considered the visual modality sup-
portive for ABSA tasks, our model exhibited a significant improvement upon incorporat-
ing the visual modality, indicating its effective utilization of additional image information, 
in alignment with human judgment. However, in the evaluation of 19 unsupported sam-
ples, MTVAF showed marginal improvements of 4.3%. This observation underscores that 
even for human annotators, subject to inherent subjectivity and limited prior knowledge, 

Table 6  Agreement between 
every pair of three graduate 
annotators (G1, G2, G3)

Graduate annotators

Cohen’s kappa G1–G2 G1–G3 G2–G3
0.59 0.68 0.65

Table 7  Performance on human-
annotated datasets for MTVAF 
and its ablative variants

MTVAF-Unimodal refers to the approach that utilizes text as input 
exclusively
Supported and unsupported refer to whether the image has a positive 
or potentially hindering impact on MABSA

Dataset MTVAF-unimodal MTVAF-
multimodal

supported (81%) 61.9 72.2
unsupported (19%) 62.4 66.7



 Y. Li et al.

1 3

78 Page 22 of 26

the assessment of image support in image-text pairs can vary, as discussed by Lake et al. 
(2017) and others.

Our model may mitigate the semantic gap between images and text during modality 
alignment and reduce interference from irrelevant images during fusion. Although there is 
a modest decline in performance compared to cases where judgments align with image-text 
correlation, the multi-level image information may still provide implicit semantic knowl-
edge for MABSA. Therefore, aligning and fusing information from different modalities 
into an effective and robust multimodal representation holds great potential. This is not 
only because it aligns with human cognitive processes but also because it enables a more 
comprehensive understanding and richer representation.

5  Conclusions

In this paper, we present a novel multimodal textual-visual alignment and fusion network 
for performing joint multimodal aspect-sentiment analysis (JMASA). Our approach ena-
bles comprehensive interaction between textual and visual modalities by integrating multi-
granularity alignment and multi-scale fusion techniques. Moreover, we introduce a text-
centered multimodal training strategy to effectively address the noise introduced by the 
extensive visual context. Experimental results on two benchmark MABSA datasets dem-
onstrate that our proposed model outperforms the state-of-the-art baselines in the MABSA 
task. Furthermore, in-depth analysis validates the effectiveness of our proposed model and 
the appropriateness of our chosen hyperparameters, highlighting its ability to accurately 
handle the complexities of JMASA in a comprehensive manner.

In future work, we aim to delve into more refined modeling approaches, extending the 
proposed method to cater to a broader range of multimodal tasks in practical applications, 
such as multimodal aspect sentiment triplet extraction. Furthermore, we plan to design 
alignment mechanisms for incorporating relevant multi-granularity visual contexts into our 
model training to reduce reliance on external alignment tools. This will enhance the overall 
robustness of our approach and enable more sophisticated integration of visual information 
into the analysis process.
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