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Abstract

Transformers are state-of-the-art technology to support diverse Natural Language Process-
ing (NLP) tasks, such as language translation and word/sentence predictions. The main
advantage of transformers is their ability to obtain high accuracies when processing long
sequences since they avoid the vanishing gradient problem and use the attention mecha-
nism to maintain the focus on the information that matters. These features are fostering
the use of transformers in other domains beyond NLP. This paper employs a systematic
protocol to identify and analyze studies that propose new transformers’ architectures for
processing longitudinal health datasets, which are often dense, and specifically focused on
physiological, symptoms, functioning, and other daily life data. Our analysis considered
21 of 456 initial papers, collecting evidence to characterize how recent studies modified or
extended these architectures to handle longitudinal multifeatured health representations or
provide better ways to generate outcomes. Our findings suggest, for example, that the main
efforts are focused on methods to integrate multiple vocabularies, encode input data, and
represent temporal notions among longitudinal dependencies. We comprehensively discuss
these and other findings, addressing major issues that are still open to efficiently deploy
transformers architectures for longitudinal multifeatured healthcare data analysis.
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1 Introduction

Longitudinal data implies continuous assessments repeated over time. This type of data is
common in the health area, and its major advantage is its capacity to separate cohort and
temporal effects in the context of the analyses (Diggle et al. 2002). For example, longitu-
dinal data is part of clinical studies that follow a group of patients with diabetes over five
years to track changes in their blood sugar levels and complications. Longitudinal data con-
trast with cross-sectional data in which a single outcome is measured for each individual.
An example of cross-sectional study may determine the prevalence of hypertension among
adults living in a specific metropolitan area, by collecting data at a single point in time and
providing a snapshot of the population’s hypertension status, rather than following all the
individuals over time. Thus, longitudinal data analysis can generate important conclusions
for health personnel from a temporal perspective. For example, the study of Zhao et al.
(2019) relies on longitudinal Electronic Health Records (EHR) and genetic data to cre-
ate a model for 10-years cardiovascular disease event prediction. Similarly, Severson et al.
(2021) employed longitudinal data collected for up to seven years to develop a Parkinson’s
disease progression model for intra-individual and inter-individual variability and medica-
tion effects. Perveen et al. (2020) aimed to create models that provide predictions concern-
ing the future condition of pre-diabetic individuals. They exploited sequences of clinical
measurements obtained from longitudinal data from a sample of patients. According to all
these studies, prognostic modeling techniques are important decision support tools to iden-
tify a prior patients’ health status and characterize progression patterns. In other words,
they support the health personnel by predicting future health conditions that could guide
the implementation of preventive and adequate interventions.

These and other recent research efforts have in common the use of machine learning
techniques. The main example is the family of deep learning recurrent neural networks
(RNNs), specially designed to provide a tractable solution to handle longitudinal data
(Mao and Sejdi¢ 2022). RNNs support tasks such as sequence classification, anomaly
detection, decision-making, and status prediction. These tasks rely on identifying tem-
poral patterns and modeling nonstationary dynamics of human contexts (e.g., physi-
cal, physiological, mental, social, and environmental), providing a way to understand
complex time variations and dependencies. The literature brings several derivations
of RNNs already employed in the health area. For example, long short-term memory
(LSTM) networks are a type of RNN capable of learning order dependence in long
sequence prediction problems. Guo et al. (2021) used LSTM models to predict future
cardiovascular health levels based on previous measurements from longitudinal elec-
tronic health record (EHR) data. Gated Recurrent Units (GRU) are derivations of RNN
that use gates to control the flow of information, deciding what information should be
passed to the output. GRU was used, for example, for early detection of post-surgical
complications using longitudinal EHR data (Chen et al. 2021a). Bidirectional RNNs
can analyze longitudinal data in both directions, and they were used, for example, to
detect medical events (e.g., adverse drug events) in EHR (Jagannatha and Yu 2016).
This type of RNNs offers advantages in the health domain due to their ability to cap-
ture data from past and future time intervals. For example, consider the heart rate (HR)
anomaly detection task. While unidirectional RNNs only consider data points from the
past to detect an eventual problem, bidirectional RNNs consider both past and future
heart rate measurements for each data point in an HR sequence. Thus, this approach
allows a better understanding of the temporal context and dynamics of the patient’s
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heart rate. Some studies also use different RNN derivations in the same problem (e.g.,
longitudinal prediction modeling of Alzheimer’s disease) to identify the best strategy
in terms of accuracy (Tabarestani et al. 2019).

RNNs have a strong ability to deal with longitudinal data since their recurrent
architecture can remember past information and utilize it to make predictions at future
time steps. Therefore, RNNs can model the temporal dependencies between parts of
the longitudinal data and understand how they evolve over time. However, they can-
not keep up with context and content for longer sequences. The main reason is that
RNNs suffer from the vanishing gradient problem since long-term information must
sequentially travel through all RNN units before generating results. Thus, such infor-
mation will likely vanish by being multiplied many times by small values. RNN-like
networks, such as LSTM and GRU, consider this problem, but their more complex
architectures still present sequential paths from older past units until the final one. For
example, mHealth applications daily assess different multifeature longitudinal data of
their users, which generate multi-longitudinal sequences of health data (Wac 2016). In
five years, the longitudinal data sequence will have about 1825 timesteps. According
to experimental results (Culurciello 2018), RNNs are good for remembering sentences
in the order of hundreds but not thousands of timesteps. Moreover, this sequential flow
through RNN units also brings performance problems since RNNs must process data
sequentially. Thus, they cannot employ parallel computing hardware and graphics pro-
cessing units (GPU) in training and inference.

Transformers (Vaswani et al. 2017) are a recent type of deep neural network focused
on analyzing sequences. Their architecture allows the processing of entire sequences in
parallel. Consequently, it is possible to scale the speed and capacity of such processing
compared to previous RNN-like approaches. Moreover, transformers introduced the atten-
tion mechanism, which considers the relationship between attributes, irrespective of where
they are placed in a sequence. This mechanism allows tracking of the relations between
attributes across long sequences in both forward and reverse directions. While transformers
were originally conceived to cover traditional problems of the Natural Language Process-
ing (NLP) area, such as text classification and named entity recognition, their high per-
formance in dealing with sequential data encouraged the adaptation of this architecture to
other areas that involve the analysis of longitudinal data, such as digital health.

This paper uses a systematic review protocol to identify and analyze studies that pro-
posed adaptations for transformers’ architectures so they can handle longitudinal health
data. This protocol contains a set of research questions that guide the analysis of these
approaches regarding their architectures, input vocabulary, aims, positional embedding
implementations, explainability, and other technical aspects. Moreover, this analysis also
allows the identification of trends in the area, main limitations, and opportunities for
research directions. Thus, our main contribution is to consolidate a body of knowledge that
supports advances in longitudinal health data analysis using transformers.

2 Transformers background
This section summarizes the main concepts of transformers intending to enable a bet-

ter understanding of this review. These concepts are also used to formulate the research
questions of the research protocol (Sect. 3).
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2.1 Encode-decode architectures

The original transformer architecture (Fig. 1) is composed of two modules: an encoder
(Fig. 1, left) and a decoder (Fig. 1, right). The basic unit of an encoder (Nx) has two sub-
modules: a multi-head attention (composed of multiple self-attention layers), followed by
a fully connected network (Feed Forward). Normalization layers and residual connections
are also used in both sub-modules to stabilize the network over training. The encoder func-
tion is to extract features from input sequences. To that end, the complete sequence is par-
allelly processed at once. Each token of the sequence flows through its own path inside
the architecture but maintains dependencies on the paths of the other tokens. This strat-
egy enriches each token with contextual information from the whole sentence. Encoder
units (Nx) can be stacked on each other according to the task. For example, Bidirectional

Fig.1 The original transformer Output
encoder-decoder architecture Probabilities
(Vaswani et al. 2017). The left-

side block represents the encoder,

while the right-side block repre-

sents the decoder

-

Add & Norm

Feed
Forward

Add & Norm Add & Norm
Multi-Head
Add & Norm Add & Norm
Masked
Multi-Head Multi-Head
Attention Attention
Positional Positional
Encoding®'€“9 | Encoding
Input Output
Embedding Embedding
Inputs Output
(shifted right)

@ Springer



Transformers in health: a systematic review on architectures. .. Page50f39 32

Encoder Representations from Transformers (BERT) uses a stack of 12 encoders in its
basic version (Devlin et al. 2018).

The decoder and encoder architectures are very similar, and decoder units (Nx) can also
be stacked on each other. However, the decoder outputs one token at a time since each
output token becomes part of the next decoder input (auto-regressive process). Over this
process, the vector of features from the encoder supports the decoder in focusing on the
appropriate positions of the input sequence. We suggest the original paper “Attention is All
You Need” (Vaswani et al. 2017) for details about these components.

Transformers can be classified into three types according to the modules that they
implement: encoder-only (only the encoder module is implemented), decoder-only (only
the decoder module is implemented), and encoder-decoder (the complete architecture is
implemented). Apart from this classification, architectural designs can modify one or more
layers according to the target task.

2.2 Vocabulary

Transformers were initially designed to support the solution of natural language processing
problems. Thus, their inputs and outputs are tokens (words) that compose a vocabulary. For
example, the illustrated Softmax layer (Fig. 1) produces probabilities over an output vocab-
ulary during a language translation task. In NLP problems, this vocabulary corresponds
to the lexicon of a language such as English or French. Similarly, programming language
code generation using transformers (Svyatkovskiy et al. 2020) employs the tokens of the
programming language as vocabulary. Observe that vocabularies are neither compulsory
nor necessarily composed of textual tokens. For example, the study in Bao et al. (2021)
shows that patches of an original image are employed as visual tokens. Therefore, like nat-
ural language, images are represented as sequences of discrete tokens obtained by an image
tokenizer. Transformers that use health images as input are out of the scope of this paper. A
review on this subject can be seen in He et al. (2022).

2.3 Input embedding

The input embedding layer is a type of lookup table that contains vectorial representations
of input data (e.g., each term of the vocabulary). This layer is essential because transform-
ers process vectors of continuous values like any other machine learning algorithm. There
are several proposals for input embeddings, which can be classified into context-independ-
ent (traditional) and context-dependent (contextualized) embeddings (Wang et al. 2020).
While the former produces unique and distinct representations for each token without con-
sidering its context; the latter learns different embeddings for the same token according
to its context (Fig. 2). Transformers also allow each sequential input to contain multiple
embeddings. This approach is essentially a kind of early fusion (sum or concatenation) of
embeddings. The papers discussed in our review bring several examples in such a direction.

2.4 Positional encoding
The positional encoding layer adds a positional vector to each set of inputs assessed simul-

taneously. This step is essential since transformers process all the inputs in parallel, unlike
RNN or LTSM approaches, where inputs are fed in sequence. While these techniques do
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Token Code

- [[0.2,0.3,0.81, [0.4,0.5,0.7], [0.1,0.4,0.7], [0.5,0.5,0.5], ...]
Token Code She [0.1,0.3,0.5]
S [02,03,08] [[0.1,0.3.0.51, [0.2.0.4,0.6], [0.3,03,0.8], [0.8,0.3,0.81. ...] cuts [02. 0.4, 0.6]

cuts [0.4,0.5,0.7] an [03,0.3,0.8]
an [0.1,0.4,0.7] orange [0.8.0.3,0.8]
orange  [0.5,0.5,0.5] <—>| Context-independent Context-dependent / with [0.6,0.3,0.8]
with  [0.7,0.6,0.4] her [0.2,0.3,0.6]
her [0.2,0.9,0.1] orange [0.1,0.2,0.2]
knife  [0.5,0.3,03] She cuts an orange with her orange knife Knife [05.0.6,0.7]

Fig.2 Difference between context-independent and dependent embeddings. The left case shows that each
word has only one entry in the lookup table. On the right, the same token can have multiple entries accord-
ing to its context (neighborhood tokens indicate if orange is a noun or an adjective)

not require any specific positional strategy because they already understand the sequence
of the inputs, transformers need this additional information. The use of sequential indexes
is the simplest strategy to generate positional encodings. It works well if the number
of sequential inputs is low. However, it becomes problematic as the number of inputs
increases since the high values of the latter positional encodings may dominate the initial
values, distorting the final results. A simple solution is to convert the encoding values as a
fraction of length, i.e., index/w, where w is the number of inputs. However, several appli-
cations do not know this w value a priori. Strategies such as frequency-based positional
encodings (Vaswani et al. 2017) avoid this issue. The study in Dufter (2021) brings a com-
prehensive discussion about positional encoding.

2.5 Target task

Transformers are used to different tasks, which usually affect how their architectures are
designed. Some tasks, such as question answering and text translation, are specific for nat-
ural language processing. Apart from that, tasks that can use longitudinal data are:

e (lassification of sequences: This task usually employs architectures that have the soft-
max as the activation function of their final layer. Such a function returns probabilities
over pre-defined classes according to the input sequence (Prakash et al. 2021).

e Language modeling: This is the traditional strategy used to train transformers models.
The aim is to fit a model to a corpus, which normally is domain specific (Yang et al.
2022). This strategy is also useful for inputting missing data on health records (Liu
et al. 2023).

e Prediction: Given a sequence of tokens, the aim is to predict the next token of this
sequence. Thus, architectures are designed to only attend to the left context (tokens on
the left of the current position). The prognostic of a disease is an example of this task
(Florez et al. 2021).

2.6 Training strategies
The original training process of transformers is conducted in two phases. First, they are

pretrained using strategies such as Masked Language Modeling (MLM) and Next Sentence
Prediction (NSP) (Devlin 2018). The transformer model is trained to predict masked words
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in the former strategy. In the latter strategy, the model must predict whether two sentences
follow each other. After the pretraining, the model is fine-tuned to a specific task, replacing,
for example, part of the language model with additional linear layers (traditional machine
learning training). However, transformer architectures can also be designed to avoid the
pretraining phase. In this case, they directly learn using backward propagation, such as the
architecture described in Dong et al. (2021) that predicts early signs of generalized anxiety
disorder and depression.

2.7 Validation and comparisons

A common approach to validate the results obtained using transformers is to compare such
results with outcomes of other machine learning methods. This approach was found in
almost all the reviewed papers, as discussed later in this paper (Sect. 4.5). Indeed, longi-
tudinal data analysis in health does not have a “gold standard” machine learning method
that could be used as a comparisons baseline. The choice of this depends on the specific
research question, the nature of the health data, and the goals of the analysis. A useful
way to verify the effectiveness of transformers is by comparing their results with outcomes
generated by clinicians. However, only two papers (Li et al. 2020; Rasmy et al. 2021)
employed clinicians during the validation process. Section 4.5 discusses this topic in more
detail.

3 Research method

A systematic review protocol, as stated by Kitchenham (2004), was used as the research
method in this paper. The steps of this method follow the schema illustrated in Fig. 3.

According to Kitchenham, the formulation of research questions is the first and most
important activity of the protocol definition. We have defined such questions considering
four different perspectives. Demographical questions focus on metadata aspects of the
paper. These questions are:

e DemRQ1: When was the paper published (year)?
e DemRQ2: Where was the paper published (journal or conference name and impact fac-
tor)?

| Protocol Definition | Execution Analysis
N Search string Automatic selection
definition using search string
Formulation of Selection of digital _ S§13Cﬁ°ﬂ screening c;::slz-};;;;;nndof
Research questions libraries 7 title and abstract
l results
Inclusion/exclusion Fu]]—tex; a;;?S?Ed for
criteria definition chglbity

Fig.3 Systematic review schema applied
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e DemRQ3: What is the main research group/university?
e DemRQ4: Which is the objective and scientific contribution?

Input questions focus on the format and organization of the input data. These ques-
tions are:

InpRQ1: Which is the input vocabulary and how was it created?

InpRQ2: Which is the data unit and frequency (periodic or aperiodic)?
InpRQ3: Are static attributes also employed?

InpRQ4: Which is the strategy used to implement the positional encoding?
InpRQ5: How are these attributes embedded?

Architectural questions characterize the organization of the network layers and pos-
sible adaptations regarding the traditional transformer architecture (Fig. 1):

e ArcRQI1: Which is the architectural type (Encoder-only, Decoder-only, Encoder-
Decoder)?
ArcRQ2: How are the Nx modules (see Fig. 1) organized?
ArcRQ3: How does the proposed architectural design support the learning objective
(task)?

Evaluation questions focus on the training process and evaluation aspects of the
trained model:

EvaRQ1: What are the characteristics of the dataset used for evaluation (e.g., size)?
EvaRQ2: What is the pretraining strategy?

EvaRQ3: What is the fine-tuning strategy?

EvaRQ4: Which are the evaluation criteria?

EvaRQ5: Are there comparisons to other approaches?

Explainability question tries to identify if the approach presents ways to explain its
results.

e ExpRQI: Is the interpretability/explainability of the model discussed?

The next step is the search string definition. We relied on general terms associated
with the research questions to compose such a string (Kitchenham 2004). This strategy
avoids bias and low covering. After a stage of string calibration, where we tried sev-
eral terms’ combinations, the resultant string was: (transformer) AND (“deep learning”
OR “neural network” OR “machine learning”) AND (health OR medical OR patient).
We defined four datasets to use this string (ScienceDirect, IEEE Xplore Digital Library,
ACM Digital Library, and PubMed), and three stages for paper selection, which are:

e Stage 1: Automatic match process using the search string. Only the title and abstract
were considered as the search space for this match. Moreover, we only considered
full papers written in English and dated from 2018 to 2023.

e Stage 2: Manual title and abstract screening of the papers that resulted from the pre-
vious stage. The aim was to identify papers that are related to our research area and
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have the potential to answer our research questions. This stage only considered pri-
mary studies and dropped out duplicate papers.

e Stage 3: Remaining papers from the previous stage were fully analyzed to extract the
data that could answer the research questions. Papers that did not contain enough infor-
mation were dropped out.

The temporal search range was defined from 2018 to 2023 since the studies about
transformers were initiated after the seminal paper of Vaswani et al. (2017), released in
December 2017. Two reviews separately conducted the paper selection over stages 1 and
2 to avoid bias. A third reviewer participated in cases of disagreements, looking for a
consensus.

4 Results

This section first discusses the selection process conducted in this review. Then, we con-
solidate the results obtained in the four sets of research questions (demographical, input,
architectural, evaluation, and explainability), emphasizing their main remarks.

4.1 Selection process

The selection of papers based on search string (stage 1) returned 456 papers. After analyz-
ing their title and abstract, 59 papers were chosen for a more detailed analysis (stage 2).
We selected 21 papers (stage 3) from this set to compose our study. Most of the 38 papers
discarded during stage 3 are related to NLP (14 papers) and image-based (6 papers) appli-
cations in health. However, their approaches do not process longitudinal multifeature data.
The next paragraphs discuss some of the discarded papers, emphasizing the rationale of
our decisions and better characterizing the scope of this review.

Papers related to NLP discuss mechanisms to process textual health documents (e.g.,
EHR notes). As we could expect, since transformers come from the NLP area, the ini-
tial use of this technology in health was focused on tasks such as identifying similar sen-
tences (Mahajan et al. 2020), named entity recognition (Falissard et al. 2022), summariza-
tion (Chen et al. 2020), and classification based on text analysis. For example, the work in
Mahajan et al. (2020) relied on ClinicalBERT (Huang et al.2019), a pre-trained domain-
specific transformer-based language model for identifying semantic textual similarity in the
clinical domain and redundant information in clinical notes. The work in Falissard et al.
(2022) focused on automatically recognizing ICD-10 medical entities from the French nat-
ural language using transformers. The work in Chen et al. (2020) relied on a BERT-based
structure to build a diagnoses-extractive summarization model for hospital information
systems. Regarding classification based on text analysis, the work in Shibly et al. (2020)
created a transfer learning system by fine-tuning the BERT language model. The aim was
to identify the right doctor, in terms of clinical expertise, who should receive the prelimi-
nary textual diagnosis description.

Papers that present image-based approaches investigate the use of transformers for
medical image analysis. For example, the work of Liu et al. (2021a) investigates the use
of transformer layers to optimize the extracted features of breast cancer tumor images.
The work of Fu et al. (2022) uses a transformer-encoded Generative Adversarial Network
(transGAN) to reconstruct low-dose PET (L-PET) images into high-quality full-dose PET
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(F-PET). W-Transformer (Yao et al. 2022) and xViTCOS (Mondal et al. 2021) are other
examples of transformer-based works focused on health image analysis. While the for-
mer integrates convolutional and transformers layers to detect spinal deformities in X-ray
images, the latter uses a transfer learning technique (pre-trained transformer model) for
COVID-19 screening tests that rely on chest radiography.

Apart from papers of these two groups, other papers that use transformers, for example,
to analyze types of sounds (e.g., cough sounds for disease detection (Yan et al. 2022)) and
define new health corpora to train transformers (Wang et al. 2019), were also discarded
since they do not consider multifeature longitudinal health data. This means simultane-
ous data streams (e.g., physiological, physical, psychological, social, or contextual) that are
assessed over long periods in daily life.

4.2 Demographical research questions

The 21 remaining papers are temporally distributed according to their year of publication
(DemRQ1) as follows: three papers in 2020, fourteen papers in 2021, three papers in 2022,
and one in 2023. This temporal distribution emphasizes that no paper was identified in the
initial two years of our search (2018 and 2019). This fact suggests that the transformers
technology had a maturation time until research groups identified its potential for analyzing
other than NLP longitudinal health data.

The quality of the publication vehicles (DemRQ?2) is a factor that indicates the impor-
tance of the technology. Our analysis identified that most of these 21 papers were pub-
lished in standing journals with high-impact factors, such as the IEEE Transactions on
Neural Networks and Learning Systems (IF=14.25) (Rao et al. 2022a, b), IEEE Journal
of Biomedical and Health Informatics IF=7.021) (Rao et al. 2022a, b; Meng et al. 2021;
Darabi et al. 2020; Li et al. 2023a, b), Scientific Reports IF=4.996) (Li et al. 2020; Zeng
et al. 2022), Nature Digital Medicine IF=11.653) (Rasmy et al. 2021), and Journal of
Biomedical Informatics (IF=8.000) (Li et al. 2021). Similarly, papers were also published
in important conferences such as the ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (IF=7.02) (Ren et al. 2021), AAAI Conference on Artificial Intelligence
(IF=3.4) (Prakash et al. 2021), International Conference on Machine Learning and Appli-
cations (IF=3.844) (Fouladvand et al. 2021; Dong et al. 2021), and International Sympo-
sium on Computer-Based Medical Systems (IF=1.040) (Florez et al. 2021).

The identification of several papers from the same research group (DemRQ3) shows
the ongoing efforts and technological developments rather than a paper resulting from a
one-off, isolated study. We found only one case in our analysis. The University of Oxford
released the BEHRT model in 2020 (Li et al. 2020) and advanced this model in two works
published in 2022 (Rao et al. 2022a, b) and another in 2023 (Li et al. 2023a, b). The Gradu-
ate Institute of Biomedical Electronics and Bioinformatics at the National Taiwan Univer-
sity used transformer models for two disease pattern retrieval and classification in 2021
(Boursalie et al. 2021) and prediction of postoperative mortality in 2022 (Chen et al. 2022).
However, our analysis did not consider this latter application since it does not use longitu-
dinal data. DemRQ3 was also useful to attest to the strong interdisciplinarity of this type
of research. Many papers involve authors that are from some health-related department/
faculty such as Medicine (Li et al 2020; Li et al 2021; Rasmy et al. 2021), Women’s and
Reproductive Health (Rao et al. 2022a, b), Radiologic Sciences (Meng et al. 2021), and
Biomedical Informatics (Boursalie et al. 2021). The most interesting example is the study
in Fouladvand et al. (2021), with authors from the Biomedical Informatics, Computer
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Science, Internal Medicine, Pharmaceutical Sciences, Biostatistics, Psychiatry, Family and
Community Medicine departments. In this case, the involvement of interdisciplinary teams
is related to the research complexity that involves aspects of opioid use disorder.

Finally, Table 1 summarizes our findings regarding the learning objective (task) and
application domain (DemRQ4). This table shows that prediction is the most common
learning task, while the scientific contributions are mainly focused on:

e Designing domain-specific vocabularies (e.g., diagnosis codes for EHR) and their
embeddings using simple operations such as sum or concatenation (Li et al 2020; Rao
et al. 2022a; Florez et al. 2021; Meng et al. 2021; Rasmy et al. 2021).

¢ Including temporal semantic elements, such as temporal distance between inputs (Bour-
salie et al. 2021; An et al. 2022), artificial time tokens as part of the vocabulary, (Pang
et al. 2021), time reference for an event from defined anchor date (Prakash et al. 2021),
and special representations for duration of visits and interval between visits (Peng et al.
2021).

e Conducting a more complex input data preprocessing, using, for example, LSTM (Fou-
ladvand et al. 2021) or a pre-transformer (Chen et al. 2021b) module, including spa-
tial dependences (Li et al. 2021), creating hierarchical input structures (Ye et al. 2020;
Li et al. 2023a, b), filtering relevant information (Shome 2021), using self-supervised
learning to augment the input value (Dong et al. 2021, and joining categorical and tex-
tual information (Darabi et al. 2020).

e Modifying the learning algorithm to simultaneously analyze different data streams
(Fouladvand et al. 2021), employing an attention mechanism based on probabilities (Li
et al. 2021), or proposing new forms of pre-training (Zeng et al. 2022; Ren et al. 2021).

These scientific contributions are better discussed along this paper.

4.3 Transformers input research questions

Table 2 summarizes the answers to the input research questions. The second column (Lon-
gitudinal inputs) indicates the vocabulary (lexicon) used in each approach (InpRQ1).
Many papers (Li et al. 2020; Rao et al. 2022a, Florez et al. 2021, Pang et al. 2021, Prakash
et al. 2021) use standardized categorical codes of diagnosis (e.g., ICD), medications, and
other health elements as part of their vocabulary. Some papers mix categorical and con-
tinuous data (Li et al. 2023a, b; Rao et al. 2022b). In this case, they apply a categorization
process to transform the continuous data into tokens of a vocabulary. Works that assess
data from sensors (Shome 2021; Dong et al. 2021; An et al. 2022] do not use the concept
of vocabulary since their training strategies directly use the raw data as input. A third type
of input representation strategy uses special modules to learn their input (FCNN (Chen
et al. 2021b), DTW (Li et al. 2021)).

The third column represents the longitudinal unit, which aggregates the data assessed at
each timestep (InpRQ2). Many studies use the idea of visits as longitudinal unit, and they
are aperiodic (Li et al. 2020; Darabi et al. 2020). For aperiodic units, for example, the work
in Boursalie et al. (2021) proposes concatenating the time between assessments (elapsed
time) in the unit encode. Proposals based on sensors (Shome 2021; Dong et al. 2021) have
each data capture cycle as their longitudinal unit, which is mostly periodic.
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The fourth column indicates whether the approaches consider static attributes
(InpRQ3). The most common are age and gender, used at the beginning of each patient
sequence (Boursalie et al. 2021; Rao et al. 2022b) or directly in the last layer of the archi-
tecture (Fouladvand et al. 2021). However, some works use the attribute age as a resource
to improve the sequential semantic notion (Li et al. 2020; Rao et al. 2022a). Thus, they
support the positional encoding task. Our review shows that diverse concepts and union
of concepts are used as positional encode (InpRQ4). For example, the sinusoidal function
(Florez et al. 2021; Li et al. 2021; Darabi et al. 2020), which is used in the original trans-
former paper (Devlin et al. 2018), simple sequential values (Rasmy et al. 2021; Li et al.
2023a, b; Rao et al. 2022b), and calendar dates (Zeng et al. 2022; Dong et al. 2021). A/B
segments are encodings used as an additional semantic layer to distinguish two adjacent
longitudinal units (Li et al. 2020; Meng et al. 2021; Chen et al. 2021b). For example, infor-
mation related to each patient visit alternately receives the segments A and B. However, the
advantages of its use to improve the representation of positional encodings are unclear in
the literature. There are also slight variations. For example, the work in Ren et al. (2021)
uses the number of weeks as the input parameter of the sinusoidal function rather than
simple sequential values. On the other hand, some papers completely redefine the idea of
positional encoding. The work in Pang et al. (2021) defines two embeddings, one for rep-
resenting the idea of continuous time using age as basis (A,,,,) and another for cyclic time
using the calendar data as basis (T,,,;,). The work in Peng et al. (2021) uses two ordinary
differential equations (ODE) to represent visit durations given their initial and final time
and the interval between such visits. According to Peng et al. (2021), ODEs are particularly
interesting in handling arbitrary time gaps between observations.

The sixth column indicates how the input information is embedded (InpRQS). As dis-
cussed in the previous section, the contribution of most papers focused on these embedding
functions. For example, the work in Fouladvand et al. (2021) uses the sum of two LSTM
network outputs, which have the diagnosis and medication longitudinal data as input.
These inputs are also summed to the months when they were assessed. The work in Bour-
salie et al. (2021) first calculates the elapsed time between two visits (longitudinal unit)
and concatenates this value to the diagnosis and medication codes. The final embedding is
summed to the positional encoding. The approach in Shome (2021) uses the results of a set
of depthwise separable residual feature extractor networks. This set receives the concat-
enation of the assessed sensorial data and the timestep when such data were assessed. The
work presented in Darabi et al. (2020) considers two different input modalities. Firstly, the
encoding of the sum of categorial inputs and positional encoding. Secondly, the summari-
zation of medical notes, also with its positional encoding. The final embedding is given by
concatenating these two information and demographics data. Hierarchies of transformers
(Pang et al. 2021) are also used to create clusters of sequential data according to a slid-
ing window. A pre-transformer handles each of these clusters, and all the results are con-
catenated and used as the input of the main architectural transformer. Another interesting
approach is proposed in Peng et al. (2021), which uses medical ontologies to augment the
sequential information of patients. Thus, this approach uses an ontology encoder to map
the ontology information to a vector.

4.4 Architectural research questions

Table 3 shows that encode-only is the most common architectural type (ArcRQ1) found in
our analysis.

@ Springer
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Table 3 Architectural type of reviewed papers

Transformer

Encode-only Decode-only Enc/Dec

Li et al. (2020), Rao et al. (2022a), Meng Florez et al. (2021), Boursalie Lietal. (2021), Pang
et al. (2021), Fouladvand et al. (2021), Chen et al. (2021), Prakash et al. etal. (2021), An
et al. (2021b), Ye et al. (2020), Rasmy et al. (2021) et al. (2022)

(2021), Zeng et al. (2022), Shome (2021),
Dong et al. (2021), Darabi et al. (2020), Li
et al. (2023a, b), Ren et al. (2021), Rao et al.
(2022b), Peng et al. (2021)

This result may be expected since the best-known transformer example (BERT) also fol-
lows the encode-only approach. Thus, the authors were motivated by the results obtained
for BERT. However, it is interesting to analyze why other works employed different archi-
tectural types rather than the encode-only approach. The proposals in Florez et al. (2021),
Prakash et al. (2021), and Boursalie et al. (2021) construct models that do not need pre-
training. Moreover, they are interested in producing step-by-step iterative outcomes, where
the previous output is used as input for the current process. This feature requires autore-
gressive architectures, such as the decode-only discussed in Sect. 2.1. The work in Li et al.
(2021) employs an enc/dec architecture since its problem requires a pre-analysis of long
time-series sequences at once (encode function) and the use of this analysis to support
multi-step-ahead time-series predictions in a generative style (decoder function). The pro-
posal in Pang et al. (2021) uses a simple decoder to implement a second learning objective
(Visit type Prediction—VTP) to boost further the performance of the encoder learning,
which relies on the traditional masked language modelling (MLM) as its learning strategy.
In An et al. (2022), the authors use end/dec architectures to derive an aware contextual fea-
ture representation of inputs. The result is a list of temporal features generated one by one
according to the autoregressive decoder style.

The next step is to understand how the Nx module of each approach differs
(ArcRQ2) from the original design illustrated in Fig. 1. Part of the works (Li et al.
2020; Rao et al. 2022a; Meng et al. 2021; Rasmy et al. 2021; Zeng et al. 2022; Shome
2021; Darabi et al. 2020; Li et al. 2023a, b; Rao et al. 2022b; Peng et al. 2021) basically
follow the encoder stage of the original transformer architecture (Fig. 1), including a
final fully connected layer for classification/prediction. This layer uses activation func-
tions such as Sigmoid (Li et al. 2020; Rao et al. 2022a) and Softmax (Florez et al. 2021;
Zeng et al. 2022). Other works follow (Florez et al. 2021; Boursalie et al. 2021; Prakash
et al. 2021) the decoder stage of this architecture, while the proposal in An et al. (2022)
relies on both stages. While these proposals did not present significant changes in the
Nx module, the remaining works conducted diverse modifications (Fig. 4). The work
in Dong et al. (2021) includes a layer called Prediction Bag Label, which is a specific
component to the problem of predicting classes for groups of graphs. The work in Chen
et al. (2021b) uses two transformers since the first transformer generates an embedding
of diseases, which is used as input of the second transformer to augment its classifica-
tion accuracy. The work in Fouladvand et al. (2021) proposed three main modifications.
Firstly, it does not use residual connections. Secondly, the multi-head attention block is
modified to generate attention weights between different input streams. As these streams
were mixed, the architecture also includes reconstruction layers to redefine the original
streams. The work in Li et al. (2021) uses the encoder-decoder transformer architecture.
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(Dongetal. 2021) (Chen etal. 2021) (Fouladvand et al. 2021)
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Fig.4 Schema of the proposed modifications in the Nx module
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However, the encoder is modified to use a probabilistic attention mechanism with a
convolutional neural network, while the decoder uses this same mechanism with a full
attention layer. The work in Ye et al. (2020) concatenates the results of a traditional
transformer with the results of a 1-dimensional convolutional layer (conv). The hierar-
chical attention mechanism (TAM) layer receives this result, generating a dense diag-
nostic embedding for each longitudinal unit. The work in Pang et al. (2021) uses the
contextualized embedding generated by the encoder to support a new learning process
conducted by the decoder module, called visit type prediction. Finally, the work in Ren
et al. (2021) proposes a new multi-head attention module to handle irregular time inter-
vals. This architecture uses a fully connected layer (multilayer perceptron—MLP) to
capture the time span information, which relies on position encoding outputs. The other
layers account for integrating such temporal information into the health data.

Many works that follow the traditional architecture (Li et al. 2020; Rao et al. 2022a;
Florez et al. 2021; Meng et al. 2021; Rasmy et al. 2021; Zeng et al. 2022; Shome 2021;
Darabi et al. 2020; Prakash et al. 2021) include a classification/prediction layer as
the way of conducting, for example, the fine-tuning process in their specific domains.
Meanwhile, the other 14 works presented more complex modifications. Thus, we tried
to identify the motivations for their design decisions (ArcRQ3). The work in Foulad-
vand et al. (2021) combines each stream of each type of health data (e.g., diagnosis and
medication codes) inside the transformer module, rather than previously concatenating
or summing such streams and dealing with them as a unique input stream. According to
the authors, this approach facilitates exploring associations within and between these
patients’ data streams. The work in Chen et al. (2021b) considers the relation between
diseases as fundamental to predict care tasks. Thus, the use of its first transformer is
justified to extract features of this relation that enhance the predictions of the second
transformer. Li et al. (2021) argue that their modifications avoid the quadratic computa-
tion of self-attention, its memory bottleneck in stacking layers for long inputs, and the
speed plunge in predicting long outputs. The work in Ye et al. (2020) intends to better
learn the long and short dependencies among longitudinal data. Thus, it uses two com-
ponents, which are a traditional transformer and a 1-dimensional convolutional layer.
The work in Dong et al. (2021) relies on graphs as input. Thus, the specialization of its
final prediction layer is a natural design step for the learning process.

The hierarchical approach in Li et al. (2023a, b) relies on the classical divide-and-
conquer metaphor to analyze long sequences. However, transformers do not theoreti-
cally have this limitation regarding their sequence size. Thus, the main reason is the
hypothesis that hierarchical information clusters improve the learning process and,
thus, the accuracy of the model. As the authors emphasize, “medical records naturally
have stronger correlation when they are closer in time” (Li et al. 2023a, b). In Pang
et al. (2021), the visit type prediction learning strategy takes advantage of the available
semantics for augmenting the information gain of the transformer. Indeed, the type of
visit is a type of information that is not used in other approaches. At last, the support
for temporal notions has motivated some approaches to conducting their modifications,
which affect the task processing in the following way:

e The values of intervals between visits are included as tokens. However, they are not
part of the vocabulary, and the decoder layers are thus modified to analyze the event-
pairs (interval time, visit information) rather than only each token (Boursalie et al.
2021).
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e The standard equations of the transformer self-attention are modified to consider the
irregular time interval between visits. This information is separately calculated and
then integrated into the visit information (Ren et al. 2021).

e Traditional transformers are specifically used to create temporal representations
employing time-aware attention weights. An interesting aspect is the use of a trans-
former for each data type (lab tests and vital signs). A later hierarchical feature fusion
model is then used to integrate such temporal data with the prescription patient infor-
mation (An et al. 2022).

e The approach in Peng et al. (2021) also uses the transformer to learn temporal notions.
In this case, the admission intervals and length of sequential visits of a patient. Like the
previous case, the transformer is not modified. Rather, the proposal incorporates the
information regarding admission intervals and visit lengths to the transformer input to
support its learning objective.

Based on this analysis, the transformer literature does not present a concrete strategy to
represent this temporal notion. This is one of the main issues of this type of architecture, as
detailed later in this paper.

4.5 Evaluation questions

Table 4 summarizes the results regarding the evaluation questions. The data characteriza-
tion (EvaRQ1) column shows that most of the datasets present a high number of sam-
ples. This high number is essential for approaches that require a pretraining stage. We also
included the data dimension (dim) used for each approach between square brackets. For
example, the work of Li et al. (2020) has only one dimension represented by diagnosis
codes. Approaches that do not require this stage and rely on mobile data (Shome 2021;
Dong et al. 2021), for example, present fewer samples. The third column indicates which
proposals use pretraining strategies and identifies these strategies (EvaRQ2). Masked Lan-
guage Model (MLM) is the main strategy used for pretraining. However, we also found
some variations. For example, the work in Li et al. (2023a, b) implements the Bootstrap
your own latent (BYOL) strategy with MLM (Li et al. 2023a, b). BYOL trains two net-
works (online and target), which are augmented separately. The idea is to minimize the
mean squared loss between the output of the online predictor and the target projector. In
Pang et al. (2021), the visit time prediction (VTP) is concurrently conducted with MLM,
using a different semantical content that can provide gains to the learning process.

The fourth column characterizes the fine-tuning strategies (EvaRQ3) when they are
employed. These strategies use traditional layers for prediction or classification, which use
sigmoid or softmax as the activation function. A particular strategy (Positive unlabeled
(PU)-learning) is proposed in Prakash et al. (2021) aimed at handling the class imbal-
ance. According to this strategy, the training data comprises only positive and unlabeled
instances, whereas unlabeled examples include both positive and negative classes. When
fine-tuning is not used, the proposals usually employ the traditional backward propaga-
tion as the learning mechanism (Florez et al. 2021; Fouladvand et al. 2021; Li et al. 2021;
Shome 2021; Dong et al. 2021; An et al. 2022; Peng et al. 2021). The unique exception is
the work in Boursalie et al. (2021), which uses predictions for the random subset of ele-
ments masked as the final training (Boursalie et al. 2021).

The evaluation criteria (EvaRQ4) of the proposals are indicated in the fifth column,
which emphasizes the preference of such proposals for the Area Under the Curve-Receiver

@ Springer
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Operating Characteristic (AUC-ROC). Indeed, this performance measurement is interest-
ing because it visually tells how much the model can distinguish between classes (degree
or measure of separability) at various threshold settings. Finally, the sixth column shows
that comparative analysis is a frequent way to validate the approaches (EvaRQ5). How-
ever, different from the AUC-ROC, which is almost a default performance measurement,
the approaches use diverse techniques for this analysis.

4.6 Explainability question

While the explainability/interpretability of results is desirable for inductive systems, such
a feature is compulsory for health support systems. Indeed, previous works (Shortliffe and
Sepilveda 2018; Amann et al. 2020) show that this lack of explainability, which causes
legal and ethical uncertainties, is one of the main barriers that impede the advance of
machine learning techniques in the health domain. In this context, we could expect dis-
cussions about the implementation and evaluation (EvaRQ®6) of explanainability in the
reviewed works. The following schema (Table 5) summarizes our findings regarding the
use of explainability in the reviewed papers.

We defined four groups. The first group lists references that do not consider explainabil-
ity in their research. The second group contains references that agree about the importance
of explainability. Such a topic is indicated as one of their future research directions (Fou-
ladvand et al. 2021; Li et al. 2021; Zeng et al. 2022; An et al. 2022). The third group lists
references that exclusively rely on the attention weights to associate input features with
results. For example, the works (Meng et al. 2021) and (Ye et al. 2020) employ attention
weights to relate symptoms to disease codes. Thus, they evaluate the explanations using a
quantitative analysis of such weights. The works (Li et al. 2020) and (Rasmy et al. 2021)
also rely on attention weights, but they use a visualization tool (Vig 2019) that supports
and augments the analysis of such weights. For example, this tool allows detecting model
bias, locating relevant attention heads, and linking neurons to model behavior.

The last group also relies on attention weights but uses additional techniques. For
example, the work in Rao et al. (2022a) employs perturbation-based techniques (Ivanovs
et al. 2021) to show the importance of different contexts in prediction. These techniques
are model-agnostic and not exclusive to transformers since they only perturb the input
and observe changes in the output. Unlike model-agnostic methods, model-specific strate-
gies, which take advantage of the particularities of neural network architectures, were not
identified in our review. This last group brings two works (Dong et al. 2021; Peng et al.
2021) that show an interesting trend of combining inductive architectures with symbolic
approaches to augment the explainability power. The work in Dong et al. (2021) also uses
attention weights to show the importance of the input elements. However, such inputs are
given in the form of graphs that relate concepts of the domain. Thus, this approach aug-
ments the explainability of the attention mechanism since it relies on the attention weights
assigned for each graph instance rather than only weights between inputs and outcomes.
The work in Peng et al. (2021) shows that its model learns interpretable representations
according to the structure of an ontology given as input. Thus, it is possible to derive more
interpretable embeddings of medical codes. However, capturing all relevant knowledge
within an ontology can be difficult. For example, some nuances, tacit knowledge, or rap-
idly evolving information may be challenging to be represented accurately. Moreover, if the
ontology presents biased data, inconsistent or incorrect definitions, relationships, or con-
cepts, it can lead to errors in the interpretable representations.
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5 Discussion

This section relies on the results of our review to identify important issues that limit the
ability of transformers in handling longitudinal health data. Therefore, we summarize such
issues and discuss initial efforts that we have identified to address them.

5.1 Data diversity

This review shows that clinical-based sparse electronic health records are the main multi-
featured longitudinal data source for transformers in the health domain (Sect. 4.3). How-
ever, only a few classes of features (e.g., medication and diagnosis codes) have been con-
sidered at the same time thus far. An interesting exception is the work in Li et al. (2023a,
b), which uses several health data types (diagnosis, medication, procedure, examinations,
blood pressure, drinking status, smoking status, and body mass index). However, such data
are part of the same vocabulary, and thus, the learning process cannot explore the particu-
lar semantics of each. In other words, the model does not know if a token represents, for
example, a medication or a diagnosis. A different approach explicitly indicates this type,
such as in Prakash et al. (2021). This additional semantics can buster the efficiency and
effectiveness of the learning process, similar to natural language processing, when the
model knows that a token represents a noun or an adjective.

In this context, the taxonomy for health data proposed by Mayo et al. (2017) shows that
health records are mainly composed of Clinician-reported (ClinRO—evaluations from a
trained professional) and performance-reported outcomes (PerfRO—e.g., tests of walking,
dexterity, and cognition). However, these outcomes are usually complemented with other
types of daily-life assessments using technology-reported outcomes (TechRO, e.g., weara-
bles). Thus, longitudinal health data can be modelled with a set of vocabularies beyond
the simple use of diagnoses and medication (Li et al. 2020; Rao et al. 2022a; Fouladvand
et al. 2021; Boursalie et al. 2021). Approaches that employ multiple vocabularies (Meng
et al. 2021) usually sum or concatenate their inputs to generate a unique data stream (Li
et al. 2020; Rao et al. 2022a). A different approach is proposed in Fouladvand et al. (2021),
which considers distinct feature streams and their combination is conducted during the cal-
culation of the attention weights. This approach seems to better explore the relationship
between the feature types. However, its complexity is exponential regarding the number of
streams since the model needs to conduct more operations and maintain the results of these
operations in memory for the next steps.

We are currently investigating alternatives to address this problem. According to the
representation proposed by many of the approaches of our review, the history of visits of
each patient (Vp) is represented as in Eq. (1), where CLS and SEP are the start and sepa-
rate special words, Vpi represents each visit i of patient p, and » is the total number of visits
of p.

_ 1 2 n
V, = (CLS,v!.SEP.»2, SEP, ... V", SEP) )

v;) = {dl,dz, ,dm},where [dl..dm] eD )

In Eq. (2), visits are composed of m words (diagnosis codes d;) that are part of a
unique vocabulary D. Then, the challenge is to extend the representation in (2) towards
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multifeature inputs from different vocabularies (e.g., clinical examinations (E), diagnoses
(D), and treatments (T), such as in (3):

Vo= {ej.ey, ..., SEP . dy.dy, ... dyy, SEP 1y, 1y, ..t SEP },

where [el..eh] €E, [dl..dm] eD, [tl..tw] eT @

This representation uses a new special word SEP’ to set different positions inside vis-
its for words of different vocabularies. However, this approach brings implications to the
architecture since the word/sentence/document concept is broken. Thus, this approach may
also have implications for the model’s accuracy. Another possible strategy to overcome
the multiple vocabulary representation is to use a similar idea than segment embeddings
to distinguish elements of different vocabularies. This approach seems more natural, and a
similar strategy is already explored in Prakash et al. (2021). The following schema (Fig. 5)
illustrates this idea using an example.

According to this strategy, a further embedding called “Vocab_type” could be added to
the other inputs, including the semantics of each vocabulary to the final embedding. How-
ever, this approach generates an overload of information in the final embedding. Thus, we
must evaluate the real predictive value of the embeddings to eliminate or represent them
differently.

5.2 Temporal handling

Table 2 shows that most approaches use the same positional encoding principles to pro-
vide the notion of position (or order) to input tokens. While such encoding works well
for textual data, since a text is just a homogeneous sequence of sentences (or words), they
represent a limitation to modeling clinical data. By depicting diagnoses as words, each visit
as a sentence, and a patient’s entire medical history as a document, this representation does
not allow to include the notion of temporal (variable and unpredicted) distance between
visits and, consequently, diagnoses or any other concept represented inside the visits. Some
papers of our review (Rao et al. 2022a; Boursalie et al. 2021), for example, define the posi-
tion as a continuous crescent numeric stamp for each visit. However, this simple strategy
becomes problematic for long periods since the high values of latter positional embeddings

Visit 1 Visit 2
r : Vo s \
- (3 0 0 (0 0 0 0 D (50 D D
cLs D1 D2 E1 T S | W E1 E2 E3 1 SEP
+ + + + + + o+ + + + + +
+ + + + + + 1+ + + + + +

Fig.5 Possible representation for different input vocabularies (e.g., diagnoses D, examinations E, treat-
ments T)
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may dominate the initial values, distorting final results. Moreover, it does not capture the
notion of time distance between clinical events.

In this context, we have observed a trend in incorporating temporal notions, such as
the inclusion of temporal distances as part of the input (Boursalie et al. 2021; An et al.
2022). While the approach in An et al. (2022) only sums the temporal and input represen-
tations, the approach in Boursalie et al. (2021) includes this distance as a token that is not
part of a vocabulary. The work in Pang et al. (2021) handles this limitation by creating
an artificial vocabulary for temporal distances (e.g., token LT to temporal distance longer
than 365 days). However, this approach may lose precision. The approach in Peng et al.
(2021) augments this temporal notion since it also considers the temporal length of vis-
its rather than uniquely the distance between visits. Therefore, these two pieces of infor-
mation (length of visit and distance between current and previous visits) are added to the
input content representation (numeric medical codes). Another alternative is to explicitly
adapt the positional encoding for a date/time encoding. For example, the work in Ren et al.
(2021) uses a continuous value of weeks as input of the positional encoding.

Apart from strategies representing the temporal notion, longitudinal health data present
issues such as sparse and irregular time assessment intervals. According to Li et al. (2023a,
b) and corroborated with our review, while self-attention is a flexible and efficient learn-
ing mechanism for longitudinal analysis, its ability to interpret temporal distance between
sparse, irregular data has yet to be investigated. Thus, time representation and modifica-
tions in the attention mechanisms may need to be conducted jointly.

5.3 Continuous numerical data

While several works follow the original ideas of transformers (vocabulary definition, pre-
training, and fine-tuning) using categorical data as input, other proposals use numeric val-
ues as input. The need to handle such data is mainly derived from the current trend of using
mobile health technology—mHealth (e.g., wearables) to assess multifeature longitudinal
health data. For example, the works (Shome 2021) and (Dong et al. 2021) are examples in
such a direction, while the taxonomy of Mayo et al. (2017) for health data already consid-
ers such a technology (TechROs) as a source of health information.

Current approaches that use continuous numerical data do not take advantage of the
original transformers’ training methods since they use the traditional three steps (forward
propagation, calculation of the loss function, backward propagation) neural network learn-
ing process. A research line is the creation of vocabularies that relies on such continuous
data. For example, the work in Li et al. (2023a, b) mixes standard vocabularies to repre-
sent tokens of diagnosis (ICD-10) and medications (British National Formulary—BNF)
with defined vocabularies for continuous values. For example: “For continuous values, we
included systolic pressure, diastolic pressure, and BMI within range 80 to 200 mmHg, 50
to 140 mmHg, and 16 to 50 kg/m?, respectively. Afterwards, we categorized systolic and
diastolic pressure into bins with a 5-mmHg step size (e.g., 80-85 mmHg). BMI was pro-
cessed the same way with a step size 1 kg/m%” (Li et al. 2023a, b). According to Siebra
et al. (2022), the number of categories affects the accuracy of the predictions and can cre-
ate imbalanced clusters. Thus, the specification of the intervals must consider the clusters
balance and use of standard feature-specific categories. For example, the heart rate fea-
ture is usually categorized into five zones regarding the level of physical activities: recov-
ery/easy, aerobic/base, tempo, lactate threshold, and anaerobic (Shortliffe and Sepulveda
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2018). If such a categorization creates imbalanced clusters, such clusters could be merged
or divided to avoid overfitting issues in the learning process.

5.4 Validation

We observed that most contributions are associated with defining ways to encode the input
data rather than significant redefinitions of the transformer architecture. In other words, the
proposals are focused on how to encode multifeatured data so the transformers’ equations
can process such data. This focus on input embeddings becomes evident when we ana-
lyze the last column (Input Embedding) of Table 2, which shows diverse combinations and
forms to embed the input data. However, some design decisions are not clear in the sur-
veyed works. For example, proposals such as (Li et al. 2020) and (Chen et al. 2021b) use
A/B segment embeddings to provide extra information to differentiate codes in adjacent
longitudinal units. The validation of this strategy is hard without the execution of experi-
mental analysis. Some works (Pang et al. 2021; Ren et al. 2021; Li et al. 2023a, b; Pang
et al. 2021; Ren et al. 2021; Prakash et al. 2021; Rao et al. 2022b; An et al. 2022; Peng
et al. 2021) use ablation analysis to demonstrate the influence of specific architectural ele-
ments on task accuracy. This analysis is very interesting since it supports, for example,
simplifying the approach when we identify elements (e.g., A/B segment or the use of SEP
special token) that are not significantly contributing to the learning process.

In general, transformers suffer from a lack of benchmarks. Each work uses its own data-
sets, which are mostly not public. Even the use of the AUC-ROC measurement, which
is a trend among the works, presents some problems. According to the authors of Meng
et al. (2021), for example, the AUC-ROC definition in Li et al. (2020) was nonstandard,
making it difficult to compare their results with other studies. In common, works that have
compared their approaches with traditional deep learning techniques (Florez et al. 2021;
Fouladvand et al. 2021; Ye et al. 2020; Rasmy et al. 2021) agree on the superior perfor-
mance of transformer-based approaches. Only two papers (Li et al. 2020; Rasmy et al.
2021) involved clinicians during the validation process. Li et al. (2020) identified a rate of
76% of overlapping between clinical researchers and automatic decisions regarding the top
10 closest diseases to each of the 87 most common diseases. In the second paper (Rasmy
et al. 2021), clinical experts were involved to verify the reliability of the semantic rela-
tions between diseases identified by the models. Apart from these simple cases, none of
the approaches were adopted or presented follow-up papers that show the application or
validations of the proposals in real scenarios. Indeed, Table 4 suggests that performance
comparisons are only conducted using other computational approaches. This inexistence
of such advanced evaluation processes may be associated with the need for regulations, as
discussed in the previous comments. In other words, the technology transition from aca-
demia to the market requires well-defined regulatory compliances to guide such a process.

5.5 Explainability and ethics

Our review shows that several transformer architectures provide and evaluate approaches
for explainability, aiming to engender trust with the healthcare professionals and pro-
vide transparency to the decision-making process. However, such approaches still need
to evolve to be used in clinical practice. Moreover, in the mid-term, Al regulations make
explainability of the decision models a requirement for so-called high-risk Al applications/
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domains, such as health. An example of such regulations is the European Union Artificial
Intelligence Act (EU Al Act), which will regulate the use of Al in the EU and enforce the
use of explainable models (Panigutti et al. 2023). However, as identified in our review, the
current approaches for explainability mostly rely on identifying the importance of input
features to the models’ outcomes (predictions or classifications). Such approaches are still
raising several ethical considerations (Ghassemi et al. 2021) since they cannot, for exam-
ple, identify when AI models inherit biases in the data used for their training or assist in
mitigating and ensuring that the generated models provide equitable and fair healthcare
outcomes. Moreover, explainability strategies must also be extended to characterize better
liability regarding potential errors, which is a critical aspect for legal and ethical reasons in
clinical practice (Naik et al. 2022).

Approaches that address these and other ethical questions may employ neuro-symbolic
strategies, which integrate symbolic knowledge (e.g., ontologies, knowledge graphs) into
the inductive reasoning process. These strategies can be designed to incorporate explicit
ethical rules and principles, as well as be programmed with ethical guidelines to guide
their decision-making and prevent them from making unethical choices. The study of
Dong et al. (2021), for example, represents the first step in this direction as it relies on
the weights assigned for each graph. In other words, this process indicates the concepts
and relations (part of a graph) that are important to the modeling of outcomes. However,
research advances are still required in this area since ethical considerations regarding the
use of Al in health must imply multiple, complex and evolving requirements, including
data privacy, transparency, accountability, fairness, and more, and addressing these con-
cerns requires a multi-faceted approach that extends beyond the choice of the transformer
architectures, or an Al model or a strategy of applying it.

5.6 A guideline for pragmatic development

We relied on the knowledge obtained in this review to create a guideline that considers
pragmatic requirements (e.g., data diversity, temporal handling, continuous values, and
explainability generation) that represent strong barriers to using the transformer-based
approaches in real scenarios. Then, we map proposals identified in this review to handle
each requirement (Fig. 6), discussing their weaknesses and benefits.

The first requirement is the inclusion of data diversity (R1). Our review showed that
several proposals are based on a unique vocabulary, such as for diagnosis codes (Li et al.
2020; Florez et al. 2021). There are two main directions to increase this diversity:

e At the level of vocabulary and embeddings (R1a): This approach defines different
vocabularies and one or more embeddings to indicate the vocabulary of each token.
The use of different vocabularies impacts the size of the unit of analysis (e.g., visit),
which tends to contain several tokens of different vocabularies. The work of Li et al.
(2023a, b) proposed the use of a hierarchy of transformers to handle these long
sequences. While this “divide-and-conquer” approach can cover the complexity of long
sequences, it increases the computational complexity given the number of transformers
used to handle each part of this hierarchy.

e At the level of the internal transformer architecture (R1b): In this case, the architecture
formulation is modified to receive different data streams (Fouladvand et al. 2021). The
main advantage is that outputs capture the associations between input streams, repre-
sented as attention weights between different tokens across such streams. This approach
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Fig.6 Visual schema emphasizing the architectural components affected by the requirements implementa-
tion according to different approaches

preserves the original semantics of each stream while the network units handle them.
However, the weakness of this approach is the exponential complexity regarding the
number of streams since each stream must interact with all other streams. As the work
of Fouladvand et al. (2021) only demonstrated this approach using two data streams, we
cannot attest its adequacy when more streams are used.

The second requirement is associated with the use of continuous data since transformers
are based on discrete vocabularies (R2). Two main approaches can be used in this situation:

e At the vocabulary level (R2a): This case relies on categorizing continuous values to
create a vocabulary for each of their types. As discussed by Siebra et al. (2022), while
this process is simple, it presents the loss of granularity as a drawback.

e At the level of input of one of the transformer’s layers (R2b): In this case, pre-pro-
cessing strategies can create a feature vector that is integrated into one of the layers of
the transformers or even in its input. Shome (2021) follows this approach using a set
of CNN-based blocks to create a feature vector as input of a transformer architecture.
This approach has as the main advantage the use of CNN as a feature extractor mod-
ule since this CNN ability is already recognized in the machine learning area. Several
CNN-based blocks can be part of this architecture, and skipping connections enable the
network to learn negligible weights for the layers that are not relevant and do not con-
tribute to overall accuracy. Thus, the number of blocks is not an essential hyperparam-

@ Springer



32 Page34o0f39 C.A.Siebraetal.

eter to tune. However, this architecture was exclusively designed to handle continuous
values. The inclusion of no continuous data can generate a problem of temporal scale
since the architecture must deal with data from different temporal granularities.

The third requirement is associated with temporal handling since transformers only

represent the notion of sequence (R3). We identified three different approaches to imple-
ment such a requirement:

At the level of embeddings (R3a): This is the most common approach, and it is
implemented using adaptations of the positional encoding (Florez et al. 2021; Fou-
ladvand et al. 2021). While implementing this approach is simple, with minimal
changes in the original transformer’s architecture, its expressiveness is poor since it
cannot explicitly represent temporal distances between clinical events.

At the vocabulary level (R3b): As proposed by Boursalie et al. (2021), the temporal
distance between patients’ visits could be part of the input data. As an advantage,
the input representation is simple since temporal distances between two patient vis-
its are considered as input tokens. However, temporal distances are infinite numeric
values rather than categorical values. This representation must be modified since
distances must be employed as tokens that are part of a discrete vocabulary. Moreo-
ver, the architecture must also be modified, as exemplified by Boursalie et al. (2021),
so it can analyze the main content (patient visit information) together with its dis-
tance to other visits. This approach increases the complexity of the training process,
requiring a high amount and diversity of data.

At the level of internal transformer architecture (R3c): This approach considers that
temporal information is directly included in one of the layers of the architecture. The
work of Peng et al. (2021) is an example of such a direction. This approach increases
the expressiveness of representations since both the distance between visits and the
length of each visit can be integrated into the learning process. However, the form as
this information is integrated into the architecture can affect accuracy. For example,
Peng et al. (2021) implemented this integration using an “Add & Normalize” layer.
Thus, the semantics are mixed before reaching the core transformer components.

The fourth requirement concerns using the Masked Language Model (MLM) as the

main strategy for pretraining (R4). The changes to handle the three previous require-
ments may invalidate the standard MLM process and parameters. Thus, other strategies
or modifications should be considered. For example:

The literature usually employs a 15% probability of masking in the MLM process.
While this value works as a default value, it is not an absolute consensus (Wettig
2022). Moreover, using more than one vocabulary can create other needs that affect
this probability.

The representation of temporal notions and data diversity has the advantage of
increasing the expressiveness of the models. On the other hand, such expressive-
ness also increases the complexity of the learning process. Therefore, this scenario
requires further strategies to buster this process. One of these strategies is to modify
a percentage of the words with randomly chosen words from the vocabulary. This
action is similar to inserting noise into the learning process, which creates more
robust results (Li et al. 2020).
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The fifth requirement is related to the generation of explanations (RS5). The
approaches found for explainability can be implemented at two levels:

e At the level of weights (R5a): This simple method creates visual descriptions regard-
ing the weight values of the network. While simple, it is also restricted since the main
information is only the strongness of the relationships between tokens.

e At the level of external knowledge (R5b): This approach is more complex, and current
proposals only implement simple versions of this solution to integrate symbolic knowl-
edge into the learning process (Dong et al 2021; Peng et al. 2021). These solutions
represent inputs in the form of knowledge graphs or ontologies. While such methods
are well-established in the artificial intelligence community, they present limitations for
longitudinal representations (Siebra and Wac 2022).

A final remark is about the integrity of the architecture. The efficacy of transformers
comes from their architecture. Thus, adaptations should minimally affect its structure or be
very well justified and validated. Otherwise, such adaptations may raise several side effects
that are hard to understand.

6 Conclusion

There is a huge amount of knowledge codified in the health datasets (e.g., EHRs), derived
from the experience of a large number of experts for several years. As we show in this
paper, current transformer models rely on such knowledge to make conclusions that are
impossible or very hard to derive by humans due to the amount and complexity of relations
involved. The approaches discussed in this review try to demonstrate a future where this
ability can be leveraged accurately as a decision-support tool for healthcare experts. As the
use of transformers to analyze multifeatured longitudinal health data is recent, we have not
identified a convergence regarding aspects such as positional encoding, input embedding,
or training strategies using categorical or numerical values. Differently, we have identified
studies for temporal handling and explanation as the two main research trends in this area.
Temporal handling is a compulsory requirement for the health domain and the inexistence
of such ability is a barrier for the use of the transformer technology in real applications.
Similarly, explainability is also becoming a compulsory requirement for deep learning
models, according to the upcoming Al regulations. Indeed, the explainability for trans-
formers models and their results are in the initial stage, and this area requires strategies
beyond the simple analysis of attention weights. These open questions are opportunities for
research directions, which must mainly consider replicable forms to compare and justify
their designs. To the best of our knowledge, this is the first review that analyzes proposals
that adapt the transformers technology for longitudinal health data. Other reviews focused
on general aspects of transformers (Lin et al. 2022), time series (Wen et al. 2022) and com-
putational vision (Khan et al. 2022; Liu et al. 2021b). We have also used comprehensive
language, avoiding as much as possible the use of complex equations, such as in Lin et al.
(2022), so this text could be an important reference for research groups that work within
the boundaries of interdisciplinary health informatics research.
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