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Abstract
Combinational therapies with synergistic effects provide a powerful treatment strategy for 
tackling complex diseases, particularly malignancies. Discovering these synergistic com-
binations, often involving various compounds and structures, necessitates exploring a 
vast array of compound pairings. However, practical constraints such as cost, feasibility, 
and complexity hinder exhaustive in  vivo and in  vitro experimentation. In recent years, 
machine learning methods have made significant inroads in pharmacology. Among these, 
Graph Neural Networks (GNNs) have gained increasing attention in drug discovery due 
to their ability to represent complex molecular structures as networks, capture vital struc-
tural information, and seamlessly handle diverse data types. This review aims to provide a 
comprehensive overview of various GNN models developed for predicting effective drug 
combinations, examining the limitations and strengths of different models, and comparing 
their predictive performance. Additionally, we discuss the datasets used for drug synergism 
prediction and the extraction of drug-related information as predictive features. By sum-
marizing the state-of-the-art GNN-driven drug combination prediction, this review aims to 
offer valuable insights into the promising field of computational pharmacotherapy.

Keywords Graph neural networks · Drug combination · Synergy prediction · Cancer 
treatment

1 Introduction

Combination therapy, a treatment modality that combines two or more therapeutic agents, 
has increasingly become the preferred approach for many human diseases, especially 
those caused by alterations in multiple genes or pathways, such as cancer. The integration 
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of anti-cancer drugs enhances efficacy compared to using a single therapy, as it targets 
different key pathways in a synergistic or additive manner. By combining drugs with distinct 
mechanisms of action, therapeutic effectiveness can be enhanced, allowing for lower-dose 
prescriptions, and reducing the potential risks of side effects and toxicity. Clinical evidence 
consistently demonstrates the utility of combining different therapeutics to improve treatment 
efficacy in various cancer types, such as breast cancer (Fisusi and Akala 2019), lung cancer 
(Molina-Arcas et al. 2019), and ovarian cancer (Lui et al. 2020), among others.

However, the search for effective combinations is hindered by the sheer number of poten-
tial drug pairs, leading to a combinatorial explosion (Azad et al. 2021b; Gilvary et al. 2019). 
It is infeasible to experimentally screen the enormous search space of all possible drug 
combinations. Consequently, the development of computational models to identify poten-
tial anti-cancer synergistic drug combinations efficiently and accurately has garnered sig-
nificant attention from both the scientific community and the pharmaceutical industry. With 
the increasing availability of large-scale high-throughput screening datasets for identifying 
synergistic drug combinations, a growing number of artificial intelligence (AI) methods are 
being employed for in silico predictions of efficacious drug combinations (Hosseini and 
Zhou 2023; Hu et al. 2022; Zhang et al. 2023; Zhang and Tu 2023; Wang et al. 2022a).

Among different AI models, GNNs have emerged as a powerful class of artificial neural 
networks designed to process and learn from data structured as graphs. Graphs consist of 
nodes (vertices) connected by edges (links or relationships), and they are widely used to 
represent complex relationships and interactions between different entities. Due to their 
versatility, GNNs have found applications in various fields, including computer vision, 
natural language processing, social network analysis, bioinformatics, and drug discovery, 
among others (Zhou et al. 2020).

The increasing importance and application of AI and machine learning in drug discov-
ery have prompted different review articles outlining various data sets, machine learning 
algorithms, and deep learning models developed to predict synergistic drug combina-
tions in cancer (Torkamannia et al. 2022; Wu et al. 2022; Pearson et al. 2023; Kumar and 
Dogra 2022). For instance, Torkamannia et al. (Torkamannia et al. 2022) comprehensively 
reviewed a wide array of drug development data sources, encompassing biological datasets 
like molecular omics data, drug target information, and molecular interactions, as well as 
datasets containing high-throughput in vitro screening of drug combinations. Additionally, 
they presented an overview of the literature on computational methods designed for drug 
synergy prediction, broadly categorized into deep learning (DL), traditional machine learn-
ing (ML), and network-based methods.

Around the same time, Wu et al. (2022)- performed a similar review of machine learn-
ing methods used in drug combination prediction across algorithmic categories of systems 
biology or network-based methods, kinetic models, mathematical models, stochastic search 
algorithms, classic machine learning, and deep learning methods. They summarized 29 
studies, providing details of their respective algorithms, drug combination datasets, input 
data types, and the availability of program code.

Further, Kumar et al. (2022) conducted a review focused on deep learning-based tech-
niques for the prediction of synergistic drug combinations in cancer. They performed a 
comparative analysis of prediction techniques based on various performance measures. 
Additionally, they covered the theoretical aspects of drug synergy and scoring models at 
length with their mathematical formulations. However, all these reviews were conducted 
before the surge of GNN techniques in drug discovery. Therefore, they neither adequately 
cover GNN-related drug combination prediction studies nor represent recent advancements 
in GNN algorithms.
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The rise in the use of GNNs in drug discovery is due to their ability to handle and inter-
pret complex data, such as molecular graphs and biological networks (Bongini et al. 2021; 
Zhao et  al. 2021). GNN-based models have demonstrated high performance and have 
yielded promising results in various aspects of drug discovery, including virtual screening, 
molecular property prediction, protein–ligand binding prediction, and drug repurposing 
(Son and Kim 2021; Wang et al. 2022c; Krasoulis et al. 2022). While GNNs have shown 
promise in capturing relationships and interactions in various domains (Nguyen et  al. 
2021; Cai et al. 2021a; Zhao et al. 2021), their specific effectiveness in the context of drug 
synergy prediction is still an active area of exploration. Considering the increasing use of 
GNNs in drug synergy prediction, their proven efficacy compared to the widely-used high-
performing methods (such as MatchMaker (Kuru et al. 2021), DeepSynergy (Preuer et al. 
2018), DTF (Sun et al. 2020b), among others) (Hu et al. 2022; Liu et al. 2022; Rozem-
berczki et al. 2022; Zhang et al. 2023), and the growing importance of drug combination 
discovery in both research and industry (Alves et al. 2022), there is a pressing need for a 
comprehensive review study that focuses on the latest advances in the field and provide 
insights into the future directions.

This study aims to bridge this gap by providing an in-depth review of the advancements, 
challenges, and potential of GNN-based approaches in drug synergy prediction. By exam-
ining existing literature, we discuss the strengths and limitations. Our review assesses the 
effectiveness of GNN-based methods, highlighting their reported performance and com-
petitiveness compared to the state-of-the-art machine learning models. Furthermore, we 
emphasize the importance of systematic comparisons to guide researchers and industry 
professionals in selecting appropriate methods. This review serves as a valuable resource 
for those seeking a deeper understanding of the role and capabilities of GNNs in identify-
ing synergistic drug combinations.

2  A brief overview of GNNs

GNNs have emerged as a powerful category of neural networks specifically designed to 
process data organized in graph structures. Unlike traditional neural networks which are 
primarily tailored for processing vector or matrix data, GNNs excel at capturing intricate 
relationships and dependencies between entities within a graph. At the core of GNNs is the 
fundamental concept of learning representations for each node by aggregating information 
from its neighboring nodes. These representations are then leveraged to perform prediction 
and classification tasks. By effectively encapsulating both local and global contexts within 
a graph, GNNs enable the modeling of complex interactions and dependencies, making 
them highly versatile across a wide range of applications (Zhou et al. 2020). In the follow-
ing, we outline core mechanisms and commonly used architectures of GNNs.

2.1  GNN core mechanisms

The section provides a brief overview of the fundamental components that enable GNNs to 
process graph-structured data. These core mechanisms are essential for understanding how 
GNNs capture relationships and dependencies within graphs and form the foundation for 
various GNN architectures and algorithms.

Message passing function is a key mechanism in GNNs that updates node embeddings 
through an iterative process. Each iteration involves two main steps: aggregating messages 
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and updating node embeddings. During message passing, each node gathers information 
from its neighboring nodes and combines it into a message. This message carries informa-
tion from nearby nodes and edges. It is used to update the embedding (i.e., low dimen-
sional numerical representation) of each node u at iteration k denoted as hk

u
 based on the 

embeddings of nodes in its neighborhood N(u) . This update can be represented as

where update(.) and aggregate(.) are arbitrary differentiable functions (typically neural net-
works). The message mN(u) , the output of the aggregate function, encompasses the infor-
mation gathered from u ’s neighbors in the graph. The aggregation step is responsible for 
merging information from neighboring nodes, while the update step iteratively improves 
node embeddings across layers. This iterative process enables GNNs to capture intricate 
relationships and dependencies within the graph (Hamilton, 2020).

Aggregation function is responsible for combining information from a node’s neighbor-
ing nodes to produce a single vector representation. Traditional aggregation methods, such 
as summing or averaging over the neighbor embeddings, may fall short in capturing the 
intricate nature of the graph structure and relationships between nodes. However, employ-
ing more advanced aggregation techniques can enhance the performance of GNNs. One 
approach to defining an aggregation function is through the concept of permutation invari-
ant neural networks. This approach treats the set of neighbor embeddings hv,∀v ∈ N(u) as 
an unordered set that is invariant to permutations and maps this set to a single vector repre-
sentation mN(u) . A universal set function approximator, as shown by Zaheer et al. (2017), is 
an aggregation function that can approximate any permutation-invariant function, mapping 
a set of embeddings to a single embedding. This can be represented as

where MLP� and MLP� are multi-layer perceptron parameterized by trainable parameters � 
and � , respectively. Node-level aggregation is a common approach that combines informa-
tion from neighboring nodes to compute representations for individual nodes. This method 
treats nodes as unstructured entities and does not explicitly consider the graph structure 
during aggregation. On the other hand, graph-level aggregation takes into account the local 
structural information during the aggregation process. It goes beyond simple node-level 
aggregation and considers the relationships and connectivity between nodes to perform 
higher-order graph aggregation. This results in a more comprehensive and structured repre-
sentation of the graph (Yang et al. 2022; Cai et al. 2021b, Hamilton, 2020).

Node or graph representations in GNNs involve learning through the aggregation of 
information from neighboring nodes. This enables each node to update its representa-
tion, capturing both local and global dependencies. For example, the two-dimensional 
structure of any chemical compound can be represented as a graph, and its node repre-
sentation can be articulated through a detailed description of chemical properties and 
atomic bonding characteristics. Additionally, employing this representation for drug 
candidates and comparing them with existing drugs can be instrumental in identifying 
potential drugs with a high probability of success. The essence of node and graph repre-
sentations in GNNs lies in leveraging neural networks to learn expressive features from 
graph-structured data (Khoshraftar and An 2022).
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Attention mechanism in GNNs is a technique that allows the network to assign differ-
ent importance weights to nodes or edges within a graph during the aggregation step. This 
mechanism enables the network to focus on the most relevant information and adaptively 
weigh the influence of different components of the graph. The basic idea behind the atten-
tion mechanism is to compute attention weights for each neighbor in the graph, which are 
used to weigh their contributions during the aggregation process. These attention weights 
are learned by the network and can be based on various factors such as the similarity, rel-
evance, or importance of the neighbors. The attention weights reflect the importance or 
significance of each neighbor with respect to the current node being processed. In GNNs, 
attention can be applied in various ways, but a common approach is to compute the atten-
tion weights as a function of the node features and/or edge connections. This is typically 
done using trainable parameters such as weight matrices and attention vectors. The atten-
tion weights are then used to compute a weighted sum or aggregation of the neighbor 
embeddings, where the weights determine the contribution of each neighbor to the final 
aggregated representation (Zhang and Xie 2020, Hamilton, 2020).

2.2  GNN architectures

Notable advancements of graph neural networks in recent years have resulted in the devel-
opment of various architectures that tackle different aspects of graph-structured data. 
Below, we provide a summary of some main GNN architectures that have found applica-
tions in drug combination prediction.

Graph Convolutional Networks (GCNs) are a variant of Convolutional Neural Networks 
(CNNs) designed to operate on graph-structured data. GCNs leverage both the node fea-
tures and the graph structure to learn a latent representation that captures the underlying 
relationships and dependencies within the graph. In GCNs, the input consists of a node 
feature matrix X , which contains the features of each node, and an adjacency matrix A , 
which encodes the relationships or similarities between pairs of nodes. The goal is to learn 
a latent representation Z that preserves important information from both the node features 
and the graph structure. The key idea behind GCNs is to propagate and aggregate informa-
tion from neighboring nodes to update the node representations. By considering the local 
neighborhood information of each node, GCNs capture both the node features and the rela-
tionships among nodes (Hell et al. 2020; Liang et al. 2021).

Graph AutoEncoders (GAEs) are unsupervised learning frameworks used to learn 
low-dimensional representations of graph-structured data. The core idea behind GAEs is 
to encode the graph information into a compact representation and then reconstruct the 
original graph from this representation. In GAEs, a GCN is typically used as an encoder to 
transform the input graph into a latent representation. The encoder takes into account the 
node features and the adjacency matrix of the graph to learn informative node representa-
tions. The latent representation, denoted as Z , is obtained from the GCN encoder. The goal 
of GAEs is to capture the inherent relationships and dependencies within the graph, allow-
ing for meaningful analysis and prediction tasks (Lin et al. 2023; Liang et al. 2021).

Graph Attention Networks (GATs) are neural networks designed to operate on graph-
structured data by leveraging the concept of attention. GATs assign different weights, 
called attention coefficients, to the neighboring nodes during the process of central node 
information aggregation. In GATs, each node in the graph undergoes linear transformations 
and is mapped to a learnable vector using a single-layer neural network called the mapping 
function fa . The attention coefficient �ij represents the influence of node j on node i and is 
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calculated based on the transformed node representations. The final output embedding of 
the central node is obtained by taking a weighted summation of the representations of its 
neighboring nodes. The weights for the summation are determined by the attention coef-
ficients. This allows the GAT to focus on the most relevant and informative neighboring 
nodes for each central node (Veličković et al. 2017; Shao et al. 2022).

Graph SAmple and aggreGatE (GraphSAGE) is a general framework for inductive node 
embedding, which aims to learn representations for nodes in a graph. Unlike traditional 
approaches that rely solely on the graph’s structure, GraphSAGE uses both the topological 
structure and the node features to generate embeddings that generalize to unseen nodes. 
The core idea behind GraphSAGE is to leverage aggregator functions instead of training 
individual embedding vectors for each node. In this way, GraphSAGE can effectively cap-
ture and utilize the collective knowledge of a node’s local neighborhood (Hamilton et al. 
2017).

Overall, these models collectively contribute to the advancement of graph-based learn-
ing in pharmacology by providing insights into complex drug networks and facilitating the 
discovery of effective drug combinations (Jiang et al. 2021; Sun et al. 2020a; Nguyen et al. 
2021).

Graph Regularization is a technique used in optimization problems to impose desired 
properties on solutions with respect to a graph structure. Graph regularization is closely 
related to GNNs because both approaches deal with graph-structured data and aim to 
capture relationships and interactions between objects represented by nodes in the graph. 
GNNs use message passing and aggregation mechanisms to update node embeddings based 
on their graph neighborhoods, while graph regularization incorporates graph information 
into optimization problems to guide the solutions towards desired properties. Both methods 
leverage the inherent graph structure to improve the handling of complex relationships and 
interactions within the data. For instance, if we have knowledge that the signal should have 
sparsity (i.e., few non-zero values), we can introduce a regularization term that encourages 
sparsity in the solution (Lee, 2021).

3  Drug combination synergy prediction

The schematic view of drug combination synergy prediction is depicted in Fig.  1. A 
drug combination, as defined by the FDA (Food and Administration 2018), involves the 
combination of two or more regulated components, such as drugs, devices, or biologics. 
These components are physically or chemically mixed to create a single entity. When 
multiple drugs are administered simultaneously, a synergistic drug combination occurs, 
resulting in a stronger therapeutic effect that surpasses the mere sum of their individual 
effects. In simpler terms, the combined impact of these drugs exceeds what would be 
expected by merely adding up their individual effects. On the other hand, an additive drug 
combination occurs when the combined effect of the drugs is equal to the sum of their 
individual effects. In this case, there is no enhancement or reduction in the overall effect 
when the drugs are used together. Conversely, an antagonistic drug combination exists 
when the combined effect of the drugs is lower than the sum of their individual effects. 
This happens when the drugs interfere with or counteract each other, resulting in a lower 
overall effect (García-Fuente et al. 2018). In experiments conducted on cancer cell lines, 
researchers utilize the in vitro method such as cell culture to assess the impacts of different 
combinations of drugs on key aspects such as restraining tumor growth, promoting cancer 
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cell apoptosis, and preventing metastasis. (Mokhtari et al. 2017). In these studies, cancer 
cells are exposed to different concentrations of drug combinations and the collective 
effects they produce were analyzed. When drugs synergistically interact, they exhibit 
a more pronounced inhibition of cancer cell proliferation, or a heightened rate of cell 
death compared to their individual effects. Conversely, an antagonistic combination can 
diminish efficacy and potentially undermine the desired therapeutic outcome (Kucuksayan 
et al. 2021). In the following, we will explore quantitative measures of drug combination 
synergy.

3.1  Metrics of synergism in drug combinations

Determining whether a combination of compounds exhibits an interaction effect involves 
comparing the observed effects with what would be expected based on a non-interactive 

Fig. 1  Schematic view of relevant data and the generic pipeline of synergistic drug combination prediction 
using GNNs. a Datasets of drug combination synergism can be categorized into in  vitro screening data 
and clinical trials studies (read more in Sect.  4.1). b Diverse types of data relevant to drugs, cell lines, 
diseases, and patients are often retrieved from multiple datasets, and whenever relevant, complex 
biological or chemical relationships are represented as graphs (read more in Sect. 3.3). c Various types of 
GNNs are then used to extract numerical features for graph representation (read more in Sect. 3.3). d The 
corresponding features, along with label data, are then used to predict the synergism of drug combinations 
as a classification or regression task (read more in Sect. 4.2) and assessed using diverse evaluation metrics 
(read more in Sect. 5). Acronyms: AUC: Area under the ROC curve, ACC: Accuracy, AUPR: Area under 
the precision-recall curve, F1: F1-score, RMSE: Root mean square error, MSE: Mean square error
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(additive) effect. To evaluate the effects of drug combinations and synergy, various 
metrics are employed. These metrics provide measurements that help assess the 
combined effects of compounds. By utilizing these frequently used measurements, 
researchers can determine if the observed effects of a compound combination surpass 
what would be expected from an additive effect alone. This allows for a comprehensive 
evaluation of the potential interaction and synergy between different compounds in 
order to optimize drug combinations for enhanced therapeutic outcomes. Described 
below are some commonly used metrics that facilitate this evaluation process (Ianevski 
et al. 2020).

Loewe Additivity, defined by Loewe in 1926, is based on the principle of sham com-
bination which assumes no interaction effect when a compound is combined with itself 
(Loewe, 1953). It is a dose–effect-based concept that is widely used in pharmacology 
and toxicology. In pharmacology, a dose–response curve is a graphical representation 
of the relationship between the dose of a drug or compound and its effect. The curve 
shows how the effect changes as the dose increases. Loewe additivity assumes that the 
dose–response curves for two compounds are parallel, meaning that they have the same 
shape and slope. This allows for the calculation of an additive effect, which is simply the 
sum of the individual effects at a given dose. If the combined experiments are carried 
out in concentrations with dose xi , we have according to Loewe Additivity principle:

X1,… ,Xn represent the doses applied to the drugs within individual experiments, 
while E stands for the resultant effect (Goldoni and Johansson 2007). The mentioned 
combination involves fractions of individual doses that achieve the effect separately. 
When these fractions are added together, they sum up to one and result in the same 
effect (Lederer et al. 2019). To make this concept clearer imagine two substances: com-
pound A and compound B. Each of these compounds, when administered alone at spe-
cific doses, i.e., X1 and X2 respectively, produces a desired effect. The idea is that if you 
take a fraction ( x1

X1

 ) of dose X1 from compound A and a fraction 
(

x2

X2

)
 of dose X2 from 

compound B, such that their sum equals 1, then this combination should yield the same 
effect as taking dose X1 from compound B and dose X2 from compound A. Subsequently, 
when we have two compounds and their fractions 

(
x1

X1

)
 and 

(
x2

X2

)
 satisfy the condition of 

x1

X1

+
x2

X2

< 1 (i.e., 
∑

i∈[1,n]

xi

Xi

< 1 in multi-compound combination experiments) then we 

consider the effect synergistic meaning that the combined effect of these compounds is 
greater than what would be expected if their effects were simply additive. Conversely, if 
x1

X1

+
x2

X2

> 1 (i.e., 
∑

i∈[1,n]

xi

Xi

> 1) , the interaction is considered antagonistic, indicating an 

overall effect less than expected.
Bliss Independence score refers to the concept of Bliss independence (Baeder et al. 

2016), which is a concept used in pharmacology to assess whether the combined effects 
of multiple compounds are additive, synergistic, or antagonistic. The main assump-
tion of the Bliss independence criterion is that two or more substances act indepen-
dently from one another. The Bliss independence criterion is mathematically expressed 
through the Bliss equation.

E
(
x1, x2 … , xn

)
= E

(
X1

)
= E

(
X2

)
= E

(
Xn

)
, such that

∑
i∈[1,n]

xi

Xi

= 1



A review on graph neural networks for predicting synergistic…

1 3

Page 9 of 38 49

Loewe additivity is suitable when the drugs have shared targets, while Bliss inde-
pendence is more appropriate when each drug targets a distinct pathway (Liu et  al. 
2018). For a simplified example with two compounds (A and B), the Bliss equation is:

EAB = EA + EB − EA × EB,
Where EA and EB represents the effect of drug A at dose x and drug B at dose y , respec-

tively. EAB represents the combined effect of drugs A and B at doses x and y . If the com-
bined effect EAB matches the calculated value from the equation, the compounds are acting 
independently. When drug A and drug B are combined, the effect of drug B is modified by 
the proportion 

(
1 − EA

)
 that is “spared” by drug A. By summing up these two terms, i.e., 

EA and EB

(
1−EA

)
 , we get the expected combined effect EAB.

The above relation indicates that if the value of EAB is greater than EA + EB

(
1 − EA

)
 , 

then it signifies synergism. If the two values are equal, it suggests additivity, and otherwise, 
it implies antagonism (Duarte and Vale 2022).

Zero Interaction Potency (ZIP) score is a valuable tool used to assess the synergistic or 
antagonistic effects of drug combinations. It combines the strengths of the Loewe and Bliss 
models, allowing for a systematic evaluation of various patterns of drug interaction. The 
ZIP score provides a numerical value ranging from − 1 to 1, indicating the degree of syn-
ergy or antagonism observed in a drug combination. it is derived from the concept of zero 
interaction (Sühnel 1992), which assumes that the potency of a drug’s dose–response curve 
remains unaltered when combined with another drug (Yadav et al. 2015).

Highest Single Agent (HSA) model, also known as Gaddum’s non-interaction model 
(Berenbaum, 1989), provides a simple approach to estimate the expected combination 
effect of multiple drugs. According to this model, the expected combination effect is deter-
mined by taking the difference between the combined response of the drugs E(A,B,C,…,N) and 
the maximum response observed among the individual drugs max

(
EA,EB,EC,… ,EN

)
 . In 

other words, the HSA model assumes that the combination effect is equal to the highest 
response achieved by any single drug at the corresponding concentrations. The HSA model 
offers a straightforward way to estimate the expected outcome of drug combinations and 
serves as a baseline for assessing whether observed effects deviate from the additive expec-
tation (Lehár et al. 2007).

Each of these metrics has distinctive strengths and limitations, as outlined in previous 
reviews (Duarte and Vale 2022). The choice of a specific metric is influenced by various 
factors, including the experimental design, biological context, and data availability, as 
elaborated further in the Discussion section. Nonetheless, The field of drug combination 
synergy analysis is dynamic, with ongoing metric development reflecting deeper insights 
into drug interactions (Liu et al. 2018; Lederer et al. 2019).

3.2  Supervised drug synergy prediction in cancer

Supervised anticancer drug synergy prediction, driven by machine learning and artificial 
intelligence, typically involves training models on two distinct types of datasets: (1) in vitro 

EA + EB

�
1 − EA

�
EAB

⎧⎪⎨⎪⎩

< 1, synergism

= 1, additive

> 1, , antagonism
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experiments conducted on various cell lines, evaluating the synergistic effects of different 
drug combinations at varying concentrations using diverse reference models (e.g., Loewe, 
Bliss, ZIP, HAS), and (2) clinical trial studies of drug combinations in patient populations, 
comprising information on clinical response, treatment outcomes, and adverse effects.

In the clinical trial dataset, the prediction task is often treated as a classification prob-
lem, where the goal is to determine positive versus negative clinical outcomes for specific 
drug combinations. On the other hand, the in vitro experiments yield continuous measures 
of synergism, which can be approached as either a regression or a classification problem 
after categorizing the synergy measures.

In classification tasks, the synergistic values of drugs on cell lines are grouped into 
either two categories (synergistic versus non-synergistic) or three categories (synergistic, 
additive, and antagonistic) by applying predefined thresholds to split the data. Neverthe-
less, establishing the most suitable threshold poses challenges and tends to differ for vari-
ous synergy measures. For instance, GraphSynergy (Yang et al. 2021) uses the threshold of 
zero to binarize Loewe measure with a score greater than or less than 0 indicating a syner-
gistic or non-synergistic effect, respectively. Zhang et al. (Zhang et al. 2023), on the other 
hand, categorized Loewe and ZIP synergistic scores using quartiles. The highest quartile 
represents synergistic effects, and the lowest quartile represents antagonistic effects. Addi-
tionally, some other studies (Wang et al. 2022a; Zhang et al. 2022) consider Loewe synergy 
scores above 10 as synergistic and scores below 0 as antagonistic.

Nonetheless, once the class labels have been determined, various machine learning 
algorithms, such as random forests (Singh et  al. 2018), support vector machines (Preuer 
et al. 2018), or neural networks (Preuer et al. 2018), can be employed to perform the clas-
sification task. These models learn patterns and relationships from features encompassing 
diverse information about drugs and cell lines to make predictions.

Regression, on the other hand, focuses on predicting a quantitative measure of synergy 
for each drug combination on a particular cell line. Instead of discrete class labels, regres-
sion models estimate the degree or magnitude of synergy, providing continuous output val-
ues. Regression techniques, including linear regression (Kuru et al. 2021), gradient boost-
ing, or deep learning approaches (Preuer et al. 2018), have been used to predict the synergy 
level of drug combinations.

Some of the commonly employed models for feature extraction from the key factors that 
contribute to predicting drug synergy will be discussed below.

3.3  Feature extraction

Feature extraction provides the predictive variables for a machine learning-based model, 
constituting a crucial step for addressing multifactorial complex problems, such as drug 
synergy prediction. The process of feature extraction is preceded by the collection and rep-
resentation of biological information, as illustrated in Fig. 2 and elaborated below:

Biological data collection Drug synergy prediction algorithms frequently leverage open-
access bioinformatics databases to acquire pertinent biological, chemical, and clinical 
information related to drugs, cell lines, and diseases or patients. This encompasses details 
about drug chemical structures, drug protein targets, mechanisms of action, cell line gene 
expression profiles, molecular interactions (e.g., protein–protein interactions, pathways), 
human gene-disease associations, and functional genomics, among others. Comprehensive 
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discussions about this information and their respective databases can be found in previ-
ous reviews (Torkamannia et  al. 2022; Kumar and Dogra 2022; Chen et  al. 2015), and 
interested readers are referred to those sources. It has been consistently demonstrated that 
incorporating diverse types of features, capturing complementary information about drugs, 
enhances the prediction performance of drug discovery applications (Wang et al. 2022a, b; 
Azad et al. 2021a; Liu et al. 2022; Zhang et al. 2023).
Feature representation: Following the extraction and, when necessary, preprocessing of 
biological data (e.g., data normalization in gene expression profiles or extraction of embed-
dings from protein sequences), this information is represented either as numerical vectors 
or graphs. Examples of vector-based encoding include molecular fingerprints, gene expres-
sion profiles, one-hot encoding of disease-related genes, protein sequences, among others 
(Gan et al. 2023; Liu et al. 2022). In the context of GNN models, the use of network-based 
representations has gained popularity. Various types of biological information, such as drug 
target interactions, protein–protein interactions, molecular pathways, gene co-expression, 
and synergistic drug pairs associated with a particular cell line, have been represented as 
graphs. Some studies have even combined different types of interactions and diverse node 
types into heterogeneous networks for subsequent feature extraction (Zhang et  al. 2023; 
Zhang and Tu 2022; Yu et al. 2021).
Feature extraction In general, feature extraction can be categorized into two major 
approaches: feature transformation and feature selection (Vijayan et al. 2022). The latter 
involves selecting a subset of features as variables for a predictive model, such as choosing 
gene expression values related to cancer or identifying mutational signatures in the context 
of a specific disease. However, the majority of techniques rely on feature transformation, 
wherein statistical methods (e.g., different dimensionality reduction methods (Koch et al. 
2021) or singular value decomposition methods (Chen et al. 2022)) or representation learn-
ing algorithms (especially neural networks) are used to extract latent features represent-
ing complex relationships in data (Gunawan et al. 2023). In the context of GNN models, 
multiple graph-based neural networks (e.g., GCN, GAE, and GAT), have been employed 
to learn low-dimensional representations from network-based data. These features are then 

Fig. 2  Feature extraction procedure comprising biological data collection (and pre-processing), feature 
representation and extraction of contributing (latent) features. Acronyms include MoA: mechanism of 
action, EHR: electronic health records, MLP: multi-layer perceptron, GCN: graph convolutional network, 
GAT: graph attention, GAE: graph autoencoders
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utilized as variables for a predictive model (Liu et al. 2022) or to prioritize drug synergies 
based on a ranking mechanism (Jin et al. 2021).

4  Review of GNN methods for predicting drug synergy

We conducted a comprehensive search of PubMed, Google Scholar, and Web of Sci-
ence until July 2023, using the keywords ‘graph’, ‘drug combination’, and ‘synergy’ and 
screened retrieved articles with respect to their relevance to drug synergy predictions in 
cancers using GNNs. Overall, we identified 25 relevant articles within the timeframe of 
February 2020–July 2023. We observed a sharp upward trend in the development of GNNs 
for drug synergy prediction (Fig.  3a). Moreover, we collected machine learning studies 
related to drug synergy prediction from 2010 to 2023, not restricted solely to GNNs (Sup-
plementary Table 1). Interestingly, we observed that since the inception of GNNs in this 
field, their development for drug synergy prediction is becoming on par (and potentially 
even surpassing in the near future) the combined progress of all other machine learning 
methods, as depicted in Fig. 3b. These trends underscore the significance and timeliness of 
our review in providing insights into this evolving landscape.

4.1  Datasets

Predicting synergistic drug combinations through machine learning techniques relies on 
the availability of a gold standard training dataset. Typically, such datasets fall into one of 
two categories: (1) those encompassing drug pairs and their corresponding synergy met-
rics derived from various cell lines (in vitro screening experiments) or (2) datasets derived 
from clinical trials, where drug combinations are associated with positive or negative clini-
cal outcomes. Table 1 provides a comprehensive overview of the diverse datasets used in 
both in vitro screening and clinical studies, offering insights into the number of drugs, cell 
lines, drug pairs, samples, and pertinent references.

Figure  4 visually illustrates the utilization of in  vitro screening datasets by different 
GNN models, taking into account the dataset size employed by each study. It is worth 

Fig. 3  The growth of studies related to Graph Neural Network (GNN) models for predicting drug 
combinations. a) The cumulative count of published studies over time. The counts are segmented within 
each half-year period starting from the first study’s publication in 2020 until the end of Q2, 2023. b) the 
rising use of GNNs in drug combination prediction, as compared to alternative computational methods
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noting that various studies may have applied filtering strategies or other data preprocess-
ing techniques, resulting in the utilization of specific subsets of the dataset. Notably, Fig. 4 
highlights the frequent usage of Merck dataset (O’Neil et al. 2016) and DrugComb data-
base (Zagidullin et al. 2019). The latter, in particular, consolidates multiple drug synergy 
datasets, substantially expanding the training set and consequently establishing itself as the 
commonly favored dataset for synergy prediction modelling. On the other hand, datasets 
such as FORCINA which only focuses on one specific cell line are less frequently utilized 
in computational models for predicting drug synergy with GNNs.

4.2  Drug combination prediction based on in vitro experiments

In this section, we offer an examination of research works centered on drug combination 
prediction using in vitro synergy experiments. Table 2 offers a comprehensive summary of 
these studies, outlining their individual merits and limitations. We organize these studies 
into two main sub-sections: classification and regression, as detailed in Table 2.

4.2.1  Classification methods

As detailed in Table 2, 16 studies have used classification to predict drug synergism. Out 
of them, 5 studies have also developed regression-based models which were covered in the 
next section. We grouped the remaining 11 studies based on their underlying GNN archi-
tecture namely GAT, GCN and GAE and summarized below:

Fig. 4  Dataset sizes across different drug combination studies, limited to studies using in vitro screening 
datasets as datasets using clinical records are not consistent across different studies
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4.2.1.1 GAT‑based methods  In four different models, researchers have used the GAT 
to extract important features. GAT’s attention mechanisms allow it to focus on relevant 
parts of a graph and increase model performance. For instance, in the case of DeepDDS 
(Wang et  al. 2022a), GAT is used to gather important information from the structure of 
drugs. Additionally, Zhang et al.(Zhang et al. 2023) and Hu et al. (Hu et al. 2023) take a 
knowledge graph (KG) approach, creating graphs and using Graph Attention Networks to 
gather valuable insights from these graphs. Here, we’ll delve into these models in more 
detail to provide a clear understanding of their methods.

The DeepDDS model employs two different types of GNNs: GAT and GCN. These 
GNNs are assessed to extract features from the molecular graphs of drugs. The genomic 
characteristics of cancer cells are encoded using a MLP. These resulting embeddings are 
combined to create the ultimate feature representation for each combination of drug and 
cell line. These features then go through fully connected layers to classify drug pairs as 
either synergistic or antagonistic. Hu et al. proposed a model using a diverse graph with 
drug, protein, and disease nodes. It employs GNNs for message spreading, refining node 
embeddings through layers of attention-based mechanisms. This enhances the embeddings’ 
quality, later combined for synergy prediction through MLP module. The model predicts 
drug combination effects effectively by leveraging GNNs and pre-trained models. KGAN-
Synergy has three main steps: KG hierarchical propagation, KG attention layer, and predic-
tion. The model explores relationships between drugs, cell lines, proteins, and tissues. The 
attention layer updates entity representations using neural network-based attention, and the 
prediction layer calculates synergy scores. SDCNet uses GCN for predicting specific drug 
synergy without requiring cell line data. It models synergy as graphs per cell line, treating 
them as relations. R-GCN captures combo traits within each relation and invariant patterns. 
SDCNet, an encoder-decoder network, learns drug embeddings and forecasts SDCs across 
cell lines. This method balances cell-specific and invariant features. However, new drug 
combos could pose accuracy challenges.

4.2.1.2 GCN‑based methods  GCN is used as a mechanism to extract meaningful features 
from complex relations in networks. Among the reviewed studies, the use of GCN works in 
drug-protein interaction networks or molecular structure (Bao et al. 2023; Yang et al. 2021; 
Wang et al. 2022b). In various models, including those proposed by Hu et al. model (Hu 
et al. 2022), and the MPFFPSDC model (Bao et al. 2023), the GCN encoder’s pivotal role 
is in contextualizing drug structures within networks. This enables the transformation of 
drug structures into embeddings in new spaces. In these models, the GCN is employed to 
extract higher-order neighbor feature representations for atoms in drug molecular structures. 
In the GraphSynergy model (Yang et al. 2021), a GCN is employed, specially tailored to 
understand the connections between drugs and disease modules within this network. 
MOOMIN (Rozemberczki et al. 2022) learns drug representations by encoding properties 
of compounds and sequence proteins into vertex features. Similarly, SDCNet (Zhang et al. 
2022a) applies GCN with attention layers to get relevant details from the drug-cell line 
network, creating important features.

The framework of the DTSyn model consists of two paths: a fine-grained block and 
a coarse-grained block. To use GCN, input chemical features are processed through 
GCN blocks and combined with gene embeddings. These features are then fed into the 
fine-grained Transformer encoder block, which learns chemical substructures and gene 
interactions. Finally, by aggregating features and using MLP, it predicts synergy. Bao et al. 
in 2023 proposed MPFFPSDC, a model for predicting drug synergy. It employs GCNs 
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and an MLP to extract features from drug graphs and cell lines. The model aggregates 
these features to classify drug pair synergy using a classifier module. In the MOOMIN 
model, they consider the cell type when creating drug combination representations. 
This leads to a scoring function that predicts synergy for new drug pairs. Yang et  al. 
propose GraphSynergy for predicting effective drug combinations in cancer using the 
Protein–Protein Interaction (PPI) network. It uses GCN to grasp drug-disease connections, 
attention highlights key proteins, and two scores evaluate therapy and toxicity.

4.2.1.3 GAE and GCN encoder‑based methods  The GCN Encoder is designed to learn 
node embeddings that capture both the structure of the graph and the attributes associated 
with its nodes. It excels at uncovering relationships between nodes and using these rela-
tionships for predictive tasks by integrating feature information and graph structure (Jiang 
et al. 2020). On the other hand, the GAE acts as an autoencoder with the goal of creating 
a more condensed representation of the graph while also reconstructing the original adja-
cency matrix from the embeddings (Kipf and Welling 2016). This reconstruction helps in 
inferring missing connections and gaining a comprehensive understanding of the graph’s 
connections.

In the GAECDS model (Li et  al. 2023a), GAE encodes drug combination informa-
tion using the adjacency matrix and drug features. The encoded latent features are then 
used to reconstruct the drug synergy graph and uncover novel relationships. Jiang et  al. 
(2020) applied a GCN encoder to process diverse networks encompassing drug-drug syn-
ergy, drug-target interactions, and protein–protein interactions. This encoder transforms 
drug nodes into new-space embeddings. The model examines 39 heterogeneous networks, 
generating embeddings via GCN encoding. Finally, using these embeddings and predic-
tive models, drug synergy is forecasted. The GAECDS model consists of three key parts: 
a GAE, an MLP, and a CNN. The GAE encodes drug synergy graphs and decodes them 
to find new relationships. An MLP generates cell line features, while a CNN predicts drug 
synergy by combining drug and cell line features.

One of the classification studies based on Graph Regularization is which was proposed 
by Lv et al. (2022). They collected antibiotic combinations and target information from the 
literature and described drug actions through network propagation and network proximity. 
The study focused on pairwise antibiotic combinations and quantified interactions based on 
the α-score. The model’s goal was to predict synergistic antibiotic combinations by consid-
ering pharmacological similarity between drugs. The affinity matrix W was constructed to 
differentiate between pharmacologically similar drugs (potentially synergistic) and phar-
macologically identical drugs (additive effect).

4.2.2  Regression methods

Various approaches address drug synergy prediction using regression methods. Categories 
include GAT, GCN, and GAE models, each enhancing performance with distinct models.

4.2.2.1 GAT‑based methods GAT is a mechanism that operates within the models to focus 
on important interactions and features, contributing to accurate synergy score predictions. 
In Model Numcharoenpinij et al. (2022), GAT is employed in the GNN model based on the 
Message-Passing Neural Network (MPNN) framework. These weights guide the aggregation 
process, allowing the model to focus on critical interactions. In the Muthene (Yue et  al. 



A review on graph neural networks for predicting synergistic…

1 3

Page 23 of 38 49

2023), GAT creates meta-path-specific embeddings for end/central nodes by assigning 
weights to neighbor features based on attention mechanisms. In CGMS model (Wang et al. 
2023), GAT is used within the Heterogeneous Graph Attention Network (HAN). HAN has 
three layers and employs a self-attention mechanism to capture important information and 
produce cell line embeddings. Each model leverages GAT uniquely within its architecture, 
highlighting its versatility in different scenarios.

Numcharoenpinij et  al. incorporate genetic data from the Cancer Cell Line Encyclo-
pedia (CCLE), including gene expression, copy number variation, and somatic mutation. 
To reduce dimensionality while retaining crucial details, they employ autoencoders: deep, 
sparse, and deep sparse. For drug information, two representations—Extended Connectiv-
ity Fingerprints (ECFPs) and molecular graphs—are utilized. Their model’s architecture 
encompasses DNNs and Autoencoders for genetic and drug data processing. To predict 
synergy, they employ a GNN framework, utilizing the concept of an MPNN. Muthene 
predicts drug combination effectiveness by identifying shared mechanistic traits between 
adverse events (AEs) and therapeutic effects (TEs). It tackles both tasks using meta-path 
schemas, capturing drug-target interactions and mechanisms of action (MoAs). The model 
generates drug embeddings from meta-paths and chemical features, predicting AE proba-
bilities and therapeutic synergy. However, it can’t forecast synergy for new drugs or unseen 
cell lines. The CGMS model predicts anti-cancer synergistic drug combinations using a 
complete graph. This graph integrates cell lines and drugs through different meta-paths, 
representing drug-cell line interactions and drug-drug interactions. Employing the HAN, 
the model generates whole-graph embeddings hierarchically, capturing important graph 
information.

4.2.2.2 GCN‑based methods GCNs excel at capturing complex interactions in graphical 
data, which are common in drug synergistic prediction models. In these models, GCNs 
are used to process molecular structures of drugs or knowledge graphs containing various 
entities and relationships. This ability to capture rich information from different networks 
makes GCNs a good choice for modeling complex biological relationships (Wang et  al. 
2022b; Zhang et  al. 2023; Liu and Xie 2021). The PRODeepSyn (Wang et  al. 2022b) 
model leverages the GCN to construct gene hidden states based on the PPI network. Zhang 
et  al. (Zhang and Tu 2022) emphasize the pivotal role of GCNs in extracting valuable 
information from the constructed KG. In the TranSynergy model (Liu and Xie 2021), the 
GCN is utilized to extract important features from the drug’s molecular graph structure. 
In the HypergraphSynergy model (Liu et  al. 2022), GCN embeds drugs and cell lines; 
After forming a hypergraph based on drugs and cell lines, it learns and finally records the 
embedding of nodes.

To predict drug synergy, PRODeepSyn initially forms drug features using molecu-
lar fingerprints and descriptors. For cell line features, it combines gene expression, gene 
mutation, and interactions among gene products. GCN is applied to create gene hidden 
states from the PPI network, considering protein interactions. These states estimate the 
gene’s evident state using omics data. Finally, PRODeepSyn forecasts synergy scores using 
a DNN, utilizing both drug features and cell line embeddings as inputs. The KGE-DC 
model utilizes a KG containing drugs, targets, enzymes, and transporters to predict syn-
ergy. GCNs extract features from the KG, improving information extraction. Drug embed-
dings and cell line gene expressions are integrated, and a neural network predicts synergy 
scores. Liu et al. utilize a drug synergistic hypergraph with drugs and cell lines as nodes 
and hyperedges for synergistic relationships. GCN learns embeddings for drugs and cell 
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lines, capturing hypergraph features. These learned features represent drugs. Gene expres-
sion features of cell lines are captured via a network. Finally, matrices of drug and cell 
line features enter the hypergraph network for predicting drug synergy scores. The Tran-
Synergy model employs a transformer to analyze drug and cell line data while integrating 
drug target profiles for comprehensive features. It enhances cell line representations using 
gene expression data. Additionally, a GCN is utilized to extract drug features from drug 
structures.

4.2.2.3 GAE ‑based methods GAE acts as a transformative tool in the two investigated 
regression models. In MGAE-DC model (Zhang and Tu 2023), GAE encodes drug com-
binations, learning drug embeddings. In Zagidullin et  al. (Zagidullin et  al. 2021) GAE 
transforms molecular structures into fingerprints. By considering synergistic, additive, and 
antagonistic combinations as distinct input channels, MAGE-DC enhances drug embed-
dings’ ability to differentiate between synergy and non-synergy. This improved detection 
is achieved via a GAE. Using concatenated embeddings, drug fingerprints, and cell line 
features, the prediction module synergistic scores. Zagidullin et al. proposed an approach 
where genetic and drug data are used to predict drug combination synergy scores. Genetic 
data informs about cancer cell lines, while drug data include molecular structures. The 
model employs GAE to encode drug structures, yielding synergy predictions. While this 
work focused solely on comparing fingerprint types, future research could explore combin-
ing molecular structure or investigating other molecular features.

Although these models are promising in predicting drug synergy, there are limitations 
that require further research and improvement for better performance, which we will dis-
cuss below.

4.3  Drug combination prediction based on clinical studies

Five methods utilized clinical studies to construct datasets of synergistic drug combina-
tions, all employing GCNs as their primary neural network approach for the classification 
task (Table 2).

4.3.1  Classification methods

4.3.1.1 GCN‑based methods  The MK-GNN model (Gao et al. 2023) is a deep learning 
approach designed to predict effective drug combinations for patient treatment. It utilizes 
multi-head attention to learn patient features from diagnosis and treatment procedure 
sequences. Additionally, it incorporates prior medical knowledge derived from electronic 
health record data, considering the relationship between diagnoses and medications. The 
model also employs a GCN to learn medication representation vectors, capturing drug 
knowledge from a formulated drug network. However, the model’s generalization is limited 
due to variations in drug combination recommendations among different doctors and regions. 
To address this, future research aims to study feature invariance in drug combinations and 
enhance the algorithm’s applicability in real clinical settings. Chen et al. (2022) proposed 
a novel computational pipeline called DCMGCN for predicting drug combinations. The 
pipeline integrates diverse drug-related information to learn low-dimensional representations 
of drugs from attributes and similarity networks. They identified that the drug-drug network 
had heterophily and sparseness, which could limit the effectiveness of the GCN. To address 
this, they introduced two modifications to GCN. The drug representations were then 
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optimized using the modified GCN (MGCN) to predict drug combinations. By integrating 
various data types, including clinical data, DCMGCN becomes a powerful tool for drug 
discovery and repositioning, with potential for further extension by incorporating more 
heterogeneous information and experimental validation. ComboNet model (Jin et al. 2021) 
is designed to jointly learn drug-target interactions and drug-drug synergy. It comprises 
two components: a drug-target interaction module and a target-disease association module. 
This architecture enables the model to utilize data on drug-target interactions, single-
agent antiviral activity, and available drug-drug combination datasets. The DTI network 
in ComboNet predicts likely targets for drugs, while the target-disease association network 
models how biological targets and structural features of molecules are related to antiviral 
activity and synergy. The model’s strength lies in considering single-agent activity, which 
enhances the effectiveness of drug combination predictions against SarsCov-2. However, a 
limitation is the scarcity of training data for accurate drug synergy prediction.

MG-DDIS model (Deng et  al. 2021) is an end-to-end multi-task learning framework 
based on a GCN for predicting DDIs and synergistic drug combinations. The model to cap-
ture important information from the molecular structures, the R-radius subgraph method 
is applied, producing a series of subgraphs for each drug. These subgraphs are then fed 
into the GCN encoder to learn a latent representation of drugs. The model is trained using 
a multi-task approach to simultaneously predict DDIs and synergistic drug combinations. 
Despite its success, the model’s limitations include the possibility of adverse reactions aris-
ing from various factors unrelated to synergy, such as individual drug sensitivity and inde-
pendent toxic properties of certain drugs.

4.3.1.2 GAE ‑based methods Karimi et al. (Karimi et al. 2020) introduced a novel deep 
generative model for drug combination design, named as the Hierarchical Variational Graph 
Autoencoder (HVGAE), which leverages graph-structured domain knowledge and rein-
forcement learning-based chemical graph-set designer. In HVGAE, GAE has been utilized 
in learning and encoding features from graph-structured data at two levels: (1) Gene–Gene 
Embedding where GAE is applied to the gene–gene network, represented as a graph, to 
extract features related to gene interactions, and (2) Disease-Disease Embedding where 
GAE operates on the disease-disease network, building on the gene representations learned 
in the first level. Simultaneously, GCNs are applied to process the graph structures rep-
resenting gene–gene interactions. The HVGAE framework integrates these dual levels of 
GAE and the insights from GCNs into an end-to-end representation learning process. The 
learned features serve as a foundation for subsequent drug combination design. The model’s 
core objective is to design a reinforcement learning-based (RL-based) drug combination 
generator, operating within a chemistry- and system-aware environment.

Across these models, the interesting aspect of using GCN lies in its ability to capture 
complex relationships and structural information from different types of data, such as 
molecular graphs, networks, and clinical information.

5  Evaluation of GNNs on in vitro datasets

In this section, we discuss the findings presented in Table 3, which includes the results of 
various drug combination prediction studies. By reviewing and analyzing these results, we 
aim to gain valuable insights into the challenges in studies and advances in this field.
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Table 3  Performance evaluation of drug combinations studies using GNNs
Study Validation more less Dataset Metric AUC ACC AUPR F1 RMSE MSE
Hu et al. (Hu et al., 
2023) 10-fold CV AstraZeneca NA 0.84 0.88 0.87

DrugComb NA 0.96 0.87 0.95 0.97
GAECDS (Li et al., 
2023b) 5-fold CV 0 0 DrugComb Loewe 0.98 0.87 0.93 0.77

KGANSynergy(Zhang et 
al., 2023) 5-fold CV quartile quartile DrugComb ZIP 0.895 0.817 0.892

quartile quartile Merck Loewe 0.891 0.822 0.898
MPFFPSDC (Bao et al., 
2023) 5-fold CV AstraZeneca Loewe 0.67 0.71 0.84 0.82

Merck Loewe 0.94 0.87 0.94 0.86
DeepDDS (Wang et al., 
2022a) 5-fold CV 10 0 AstraZeneca Loewe 0.66 0.64 0.82

10 0 Merck Loewe 0.93 0.85 0.93
SDCNet (Zhang et al., 
2022a) 10-fold CV 10 0 Merck Loewe 0.93 0.85 0.92 0.83

3.68 −3.37 Bliss 0.96 0.9 0.97 0.92
3.87 -3.02 ZIP 0.95 0.91 0.98 0.94
2.64 -4.48 HSA 0.94 0.92 0.98 0.95
10 0 ALMANAC Loewe 0.85 0.75 0.88 0.67
3.68 −3.37 Bliss 0.86 0.78 0.86 0.78
3.87 -3.02 ZIP 0.93 0.86 0.92 0.84
2.64 -4.48 HSA 0.9 0.85 0.85 0.76
10 0 CLOUD Loewe 0.51 0.64 0.56 0.31
3.68 −3.37 Bliss 0.52 0.52 0.51 0.53
3.87 -3.02 ZIP 0.51 0.52 0.51 0.25
2.64 -4.48 HSA 0.51 0.5 0.5 0.3
10 0 FORCINA Loewe 0.65 0.68 0.59 0.55
3.68 −3.37 Bliss 0.6 0.86 0.85 0.92
3.87 -3.02 ZIP 0.57 0.9 0.85 0.92
2.64 -4.48 HSA 0.64 0.87 0.83 0.9
10 0 Transfer Loewe 0.88 0.8 0.88 0.79

MOOMIN(Rozembercz
ki et al., 2022) 5-fold CV NA NA DrugComb 0.77 0.702 0.63

ComboNet (Jin et al., - Riva et al. 0.68
2021) Bobrowski et al. 0.82

NCATS 0.815
MG-DDIS (Deng et al., 
2021) NA - - DrugBank - 0.978 0.955 0.953

GraphSynergy (Yang et 
al., 2021) 3-fold CV 0 0 DrugComb - 0.83 0.75 0.81 0.72

0 0 Merck - 0.84 0.76 0.84 0.77
Jiang et al. (Jiang et al., 
2020) 10-fold CV 30 30 Merck Loewe 0.89 0.91 0.79

DTSyn [6] - - - Merck Loewe 0.89 0.81 0.87
PRODeepSyn (Wang et 
al., 2022b) 5-fold CV 30 30 Merck Loewe 0.9 0.93 0.63 15.09 229.49

HypergraphSynergy
(Liu et al., 2022) 5-fold CV 30 30 Merck Loewe 0.923 0.6025 0.632 0.9254 14.36

ALMANAC NA 0.853 0.5295 0.557 0.8902 43.65

KGE-DC (Zhang and 
Tu, 2022)

10-fold CV 10 10
Merck, ALMANAC, 
CLOUD, and
FORCINA

Loewe 0.86 0.94 0.6 0.51 204.9
3.68 3.68 Bliss 0.69 0.8 0.51 0.33 70.53
2.64 2.64 ZIP 0.72 0.81 0.54 0.37 62.18
3.87 3.87 HSA 0.73 0.82 0.56 0.46 67.69

TranSynergy (Liu and 
Xie, 2021) 5-fold CV 30 30 O’Neil Loewe 0.907 0.627 231

CGMS (Wang et al., 
2023) 5-fold CV - - DrugComb Loewe 14.38 208.38

- - Merck Loewe - 208.38
MGAE-DC (Zhang and 
Tu, 2023) 10-fold CV 30 0 Merck Loewe 12.73 162.21

3.68 -3.37 Bliss 4.15 17.36
2.64 -4.48 ZIP 3.27 10.68
3.87 -3.02 HSA 4.22 17.89
30 0 CLOUD Loewe 18.09 327.35
3.68 -3.37 Bliss 18.05 325.99
2.64 -4.48 ZIP 17.97 323.43
3.87 -3.02 HSA 17.71 313.78
30 0 FORCINA Loewe 14.1 200.48
3.68 -3.37 Bliss 13.44 184.35
2.64 -4.48 ZIP 14.55 212.89
3.87 -3.02 HSA 14.31 207.36
30 0 ALMANAC Loewe 11.01 121.18
3.68 -3.37 Bliss 3.99 15.93
2.64 -4.48 ZIP 3.59 12.88
3.87 -3.02 HSA 3.69 13.63

Muthene (Yue et al., 
2023) hold out DrugComb Loewe 180.62

Bliss 45.74
ZIP 29.24
HSA 30.23

Numcharoenpinij et al.
(Numcharoenpinij et al., 
2022)

5-fold CV DrugComb 12.09 146.137

Zagidullin et al
(Zagidullin et al., 2021) 5-fold CV DrugComb Loewe 0.73

Bliss 0.78
ZIP 0.76
HSA 0.8

MK-GNN (Gao et al., 
2023) 3-fold CV EHR - - 0.28 0.44

Lv et al. (Lv et al., 2022) hold out α-score ≤ 
−0.25

α-score 
≥ 1 E coli MG1655 0.9 0.78

HVGAE (Karimi et al., 
2020) hold out FDA.gov, Cheng et al _ 0.96 0.79

DCMGCN (Chen et al., 
2022) 5-fold CV

Cheng et al. TTD, 
ClinicalTrials.gov, 
eMedExpert, FDA.gov

0.945 0.297 0.348
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Both the DeepDDS (Wang et  al. 2022a) and Hu et  al. (2023) models employ GAT-
based classification approaches and evaluate their performance on the AstraZeneca data-
set. However, there is a notable difference in their results. Hu’s model achieves an AUC 
of 0.84, while DeepDDS achieves a comparative AUC of 0.66 Additionally, Hu’s model 
obtains a higher AUPR score. When comparing these models with the same cross fold 
and same train dataset, Hu’s model still outperforms DeepDDS. This might be attributed 
to Hu’s more comprehensive feature extraction process. Hu’s model incorporates diverse 
features from drugs, cell lines, and diseases, utilizing pre-trained models in a heterogene-
ous graph as a node’s features. In contrast, DeepDDS focuses on drug features extracted 
solely through GAT and GCN from the drug’s structure. This highlights that this approach, 
incorporating a wider range of features and relationships, yields better predictive perfor-
mance in comparison to DeepDDS’s more focused feature extraction. In other words, Hu 
et al. obtained initial embeddings for different types of entities (heterogeneous entities such 
as drugs, proteins, and diseases) using separate MLPs. After obtaining these initial embed-
dings, they further enhanced and refined these embeddings using GATs.

The Hu’s model was compared to the TranSynergy (Liu and Xie 2021) model using a 
tenfold cross-validation on the DrugComb dataset. The Hu model outperformed the Tran-
Synergy model in predicting drug combination synergism. This superiority is attributed to 
the Hu model’s utilization of comprehensive drug and cell line features, which enhanced its 
ability to identify synergistic effects compared to the TranSynergy model that solely relied 
on drug target proteins. The advantage of Hu’s model is that it enables the model to capture 
and propagate information through the graph effectively. However, TranSynergy lacks the 
capacity to capture the same level of information regarding relationships between entities.

SDCNet (Zhang et  al. 2022a), a GAT-based model, is compared with DeepDDS and 
Jiang’s model (Jiang et al. 2020) on various datasets (ALMANAC, Merck, Cloud, FORCINA) 
using different metrics (Loewe, Bliss, HSA, Zip). SDCNet benefits from drug features derived 
from the training dataset and cell line-based information. Unlike traditional GCNs, R-GCN 
employs distinct aggregation mechanisms tailored to different types of relationships. As a 
result, the SDC-Net model succeeds in obtaining more informative representations for drugs 
specific to each cell line. This advantage leads to more informative features for classification. 
Despite dataset imbalances, SDCNet achieves superior AUC, AUPR, and F1-score compared 
to DeepDDS and Jiang’s model. Since in the prediction of drug synergy, the accurate detec-
tion of positive cases (synergistic combinations) is more important than the detection of nega-
tive cases due to data imbalance, criteria such as AUPR and F1-score are used to evaluate the 
models fairly. These measures take into account the importance of positive samples and make 
them suitable for unbalanced data sets. If the SDCNet model is trained with appropriate data, 
it can effectively predict drug synergy. Notably, the DeepDDS model outperforms SDCNet 
in leave-one-drug-out evaluation, likely because DeepDDS’s performance isn’t heavily reliant 
on the training data. Conversely, in leave-one-cell-line-out evaluation, SDCNet excels. This 
is because SDCNet processes features individually for each cell line, considering the interac-
tion type of medicinal compounds (synergistic or antagonistic). Overall, SDCNet’s success is 
attributed to its specialized feature processing for different cell lines. The study (Wang et al. 

Table 3  (continued)
* α-score: For each drug pair, a drug interaction score (α-score) quantifying the concavity of the isopheno-
typic curve was compute (Cokol et al. 2011)
Color legend of classification metrics: 0  1.0
Color legend of regression metrics: 0  400



 M. Besharatifard, F. Vafaee 

1 3

49 Page 28 of 38

2022a) highlights an intriguing observation regarding the DeepDDS model’s performance. It 
reveals that when the model’s complexity increases and features become excessively dimen-
sional, its performance can actually suffer. A comparison between DeepDDS and TranSyn-
ergy underscores this point. In TranSynergy, features are not only high-dimensional but also 
embedded using a transformer. On the Merck dataset, the DeepDDS model outperforms Tran-
Synergy, emphasizing that overly complex models and extensive feature dimensions might not 
always yield improved results. Among other GAT-based models, the KGANSynergy (Zhang 
et  al. 2023) model which extracts the features of drugs and cell lines using the knowledge 
graph and based on attention, and compared to the GraphSynergy model (Yang et al. 2021), it 
has been able to perform better.

The MPFFPSDC model (Bao et al. 2023), which is based on the GCN approach, outper-
forms DeepDDS on the Merck dataset. While both models achieve almost the same results, 
MPFFPSDC demonstrates superior performance. This could be due to variations in how fea-
tures are integrated for classification. Despite this difference, both models follow almost the 
same methods to extract features from drugs and cell lines. DTSyn (Hu et al. 2022) extracts 
drug features using cell line data and known train’s data labels. However, it’s less accurate than 
other machine learning models for predicting drug synergy scores of drugs that it has not seen 
so far. MOOMIN’s model (Rozemberczki et al. 2022) lacks a defined threshold for categoriz-
ing drug synergism. It employs random walk on a drug-target network and GCN to embed 
drugs and capture structural features. However, its performance is comparatively weaker due 
to the absence of cell line features and comprehensive drug-related information, unlike other 
GCN-based models. GAECDS, a GCN-based model, classifies drug compound data from 
DrugComb using a threshold of 0. While using a fixed threshold can introduce noise, GAE-
CDS outperforms both the DeepDDS model and the GraphSynergy model, both of which also 
use the same dataset and threshold. This improved performance might stem from GAECDS’s 
use of GAE on the drug-drug synergy network, which effectively distinguishes drug combina-
tions in a new data space.

Using an attention-based approach and meta-path on a diverse graph of drug and cell line 
connections, the CGMS model (Wang et al. 2023) outperformed PRODeepSyn (Wang et al. 
2022b), TranSynergy, and DeepDDS. This suggests CGMS effectively predicted drug syn-
ergy, surpassing existing methods. Numcharoenpinij et al. introduced a GAT-based regression 
approach in their model, which utilizes autoencoders to capture key features of cell lines. This 
method demonstrated higher accuracy compared to other models, although the specific metric 
type of the dataset was not specified. Notably, the GAT-based approach outperformed Deep-
DDS, exhibiting lower error. Using adverse and therapeutic effect data as synergistic infor-
mation for drug combinations has led the Muthene model to outperform other models like 
CGMS. This unique approach has resulted in lower errors in predicting drug synergy. Muth-
ene benefits from including adverse and therapeutic effects, enhancing its accuracy compared 
to CGMS and similar models.

MGAE-DC (Zhang and Tu 2023) is a GAE-based model that has shown lower error rates 
in regression than PRODeepSyn, HypergraphSynergy, and DeepDDS. However, in classifica-
tion mode, its results are comparable to those of the PRODeepSyn model. This may be due to 
an imbalance in the data. The embedding of GAE and GCN encoders appears to work simi-
larly. The Zagidullin’s model is related to the optimal selection of drug fingerprints for predict-
ing drug synergy, which achieved the lowest error for predicting synergy on DrugComb data 
with E3FP 1024 bits long fingerprints generated from SMILES strings.

As discussed earlier, five studies on clinical data were analyzed for synergistic prediction 
with graph-based models and their classification results are shown in Table 3.
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6  Discussion

6.1  GNN for drug synergy prediction: strengths and limitations

GNNs possess a distinct advantage over other machine learning techniques due to their 
ability to capture intricate relationships within biological networks. This advantage is 
particularly relevant in drug discovery, where compounds can be intuitively represented 
as graphs via molecular graph representation—i.e., molecules can be decomposed 
into individual atoms, with the bonds between them forming a graph structure. Unlike 
other machine learning algorithms that often require predefined chemical descriptors or 
molecular fingerprints, GNNs can extract features directly from the graph representation 
of drugs (Zhang et al. 2022b). Consequently, GNN models are commonly employed in 
drug synergy prediction models to obtain drug representations as features for a classifi-
cation or regression model (Bao et al. 2023; Wang et al. 2022a; Hu et al. 2022). Moreo-
ver, GNNs can be utilized to learn complex structural relationships in diverse biological 
systems, such as protein–protein interactions and drug-target interactions. For example, 
KGANSynergy (Zhang et al. 2023) integrated multiple types of associations (drug–pro-
tein, cell line–protein, cell line–tissue, and protein–protein associations) into a knowl-
edge graph to learn representations of cell lines and drugs using GNN models.

However, GNNs also have limitations in the context of drug synergy prediction and 
in general. GNNs can be computationally intensive, and their complex architecture often 
demands a substantial amount of data for effective training. On the other hand, the space 
of possible drug combinations is vast, and only a small fraction of potential drug pairs 
has been experimentally tested. This sparsity in the synergy space can make it difficult 
for GNNs to make accurate predictions, especially for untested combinations. With lim-
ited data and complex models, there is a high risk of overfitting, where the model learns 
to perform well on the training data but fails to generalize to new drug combinations. 
Careful regularization and validation strategies are needed to address this issue.

Moreover, interpretability is a major concern, as GNNs are frequently seen as black-
box models, rendering it difficult to discern the reasoning behind their predictions (Zhu 
et al. 2022). These models often lack the mechanistic insights necessary to explain the 
underlying reasons for the synergistic or antagonistic effects observed in specific drug 
or compound combinations.

Particular GNN architectures may hinder the expressivity of GNNs, which pertains 
to their ability to represent and differentiate diverse graph structures. Despite their pop-
ularity, some widely used GNNs, including GCNs, exhibit a theoretical limitation in 
expressivity. This lack of expressivity can lead to these models underfitting the training 
data, resulting in suboptimal performance, particularly when confronted with complex 
relationships within graph data (Xu et al. 2018).

Additionally, the presence of heterophily, where interconnected nodes exhibit diverse 
attributes or labels, presents a challenge for GNNs (Luan et al. 2022). GNNs may face 
difficulties when applied to heterophilic graphs in the context of link prediction (Zhou 
et al. 2022). An example of a heterophilic graph in drug synergy prediction is one that 
incorporates links representing synergistic interactions between drug pairs and vari-
ous cell lines. Such a graph poses a challenge for link prediction, demanding for the 
adoption or development of GNNs specially tailored to operate on graphs with diverse 
node types and attributes such as Heterogeneous Graph Attention Networks (Wang et al. 
2019).
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Overall, while GNNs hold promise in the field of drug synergy prediction, they come 
with various specific or general limitations. These limitations call for active exploration of 
techniques to enhance the strengths of GNNs to improve the accuracy, generalizability, and 
interpretability of drug synergy predictions.

6.2  The choice of metrics of synergism: no standard reference model

To optimize drug combinations, efficient identification of synergistic effects is crucial. 
Classical reference models often fall into two categories of effect-based (e.g., Bliss Inde-
pendence and HSA) and dose–effect-based (e.g., Loewe Additivity and ZIP). Effect-based 
models assess interaction effects based on individual drug effects, often measured by cell 
responses like cell death, viability, and growth rate. Dose–effect-based models, introduced 
more recently, offer enhanced definitions of synergy, additivity, and antagonism for drugs 
with nonlinear dose–effect curves, surpassing the limitations of reference models.

While Loewe additivity and Bliss independence are commonly employed in synergism 
research, there is still no consensus due to the limitations inherent in all reference models, 
as discussed in prior reviews (Duarte and Vale 2022). Furthermore, the suitability of differ-
ent metrics varies depending on the specific biological context. For instance, Loewe addi-
tivity is well-suited when drugs target the same pathways, while the Bliss independence 
principle is more relevance in cases where drugs are mutually nonexclusive, each targeting 
distinct signaling pathways (Liu et al. 2018). Consequently, the development of new syner-
gism metrics remains an active research area (Wooten et al. 2021).

Developing GNN models with metric-agnostic capabilities has the potential to improve 
their suitability for experimental testing. For instance, SDCNet (Zhang et al. 2022a) was 
assessed across various metrics and datasets, mitigating the performance biases associ-
ated with specific synergism reference models. DeepDDS (Wang et al. 2022a), on the other 
hand, aggregated various synergy scores associated with identical drug pair-cell line com-
binations through averaging through averaging. This strategy has the potential to improve 
annotation accuracy while reducing reliance on a specific synergy metric for defining 
synergism.

Nonetheless, it is important to note that synergism alone may not suffice for evaluating 
the clinical promise of drug combinations. Complementary measures, such as the thera-
peutic index, which assesses the relative toxicity of anticancer treatments in normal tissues, 
should also be considered (Ocana et al. 2012).

6.3  Synergy score thresholding and class imbalance mitigation

The process of thresholding synergism metrics to categorize numerical values into either 
synergistic, additive, and antagonistic (or non-synergistic) annotations plays an important 
role in the development of classification models. This step significantly impacts class bal-
ance, data distribution, sample sizes, and the accuracy of categorization of numeric scores 
to categories. Different synergy metrics exhibit diverse distributions, and thresholding 
should be executed while considering the underlying data distribution, in conjunction with 
biological relevance and clinical evidence when available. Current studies often underesti-
mate the importance of thresholding, leading to the selection of seemingly arbitrary thresh-
olds or the adoption of thresholds used in previous studies without adequate justification. 
Therefore, there is a need for a benchmarking study to systematically evaluate the impact 
of threshold selections on the performance of GNN models.
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Thresholding strategies have a direct impact on class imbalance. For example, one 
can designate the upper quartile and lower quartile scores as synergistic and antagonistic, 
respectively, in order to attain a balanced dataset and improve the accuracy of categori-
zation (i.e., reduce the risk of false positive or false negative annotations resulting from 
more relaxed thresholding). However, this approach comes at the cost of reducing the size 
of the training set. Alternatively, techniques like oversampling or undersampling, such as 
SMOTE (Chawla et  al. 2002), can be employed to balance the dataset. Class imbalance 
also affects the performance metrics on the test set. To address this, Jiang et  al. (2020) 
selected 10% of the positive data as test samples and balanced this by randomly choosing 
an equal number of negative samples for their evaluation. However, it is important to note 
that due to the inherent imbalance in drug synergism (i.e., synergistic drug combinations 
are often rare when compared to non-synergistic ones), creating a perfectly balanced test 
dataset may not provide an accurate assessment of the model’s effectiveness.

The choice of performance evaluation measures is also important in the presence of 
class imbalance. AUC (area under the ROC curve) and AUPR (area under the precision-
recall curve) are two commonly used metrics for evaluating drug synergy performance. 
AUC-ROC measures the trade-off between sensitivity and specificity, making it suitable 
when the cost of false positives and false negatives is roughly equal or when positive and 
negative instances are approximately balanced. In contrast, AUC-PR is more appropriate 
when the cost of false positives and false negatives is highly asymmetric or when the posi-
tive class is rare (Sofaer et al. 2019). Li et al. (2023b) demonstrated that even when nega-
tive data outnumbered positive data threefold (using the DrugComb dataset), the model’s 
AUC remained unaffected. Hence, the use of AUPR is more recommended.

7  Conclusions

In this study, we present a comprehensive review of GNN-based approaches for predict-
ing synergistic drug combinations. We have curated a total of 25 GNN-based models 
developed up to the date of our literature search (July 2023). We assessed these models, 
considering various aspects, including their underlying GNN architectures, the nature of 
the prediction problem (classification vs. regression), the types of datasets employed (in 
vitro or clinical), the features incorporated, and the synergy metrics applied. Furthermore, 
we summarized the strengths, and limitations of each study. Additionally, we conducted a 
comparative assessment of the prediction performance of GNNs in in vitro studies, strati-
fied by the respective datasets, synergism metrics, thresholding approaches, and validation 
strategies employed. This comprehensive study provides an overview of the current state of 
the field, offering insights into the progress and challenges in the field of synergistic drug 
combination prediction using GNNs and beyond.

7.1  Limitations and future directions

While we have presented performance evaluation metrics of GNN models on differ-
ent datasets, direct comparisons are challenging due to variations in data preprocessing 
methods such as thresholding, among other factors. A benchmarking study that controls 
confounding conditions is essential to facilitate direct model performance comparisons on 
identical datasets, enabling the identification of state-of-the-art algorithms. Additionally, 
this study does not aim to provide either qualitative or quantitative assessments of GNNs 
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in comparison to other drug synergy prediction algorithms, given the limited space availa-
ble. However, a future study comparing high-performing GNNs with other top-performing 
drug synergy prediction algorithms could offer valuable insights.

The field of GNNs for drug synergy prediction offers room for improvement from vari-
ous perspectives. In addition to the suggestions outlined in the Discussion section, deeper 
integration of biological networks and graph theory concepts could enhance performance. 
Exploring techniques such as identifying maximum cliques with GNNs to unveil relation-
ships between entities (Min et al. 2022) and utilizing minimum dominating sets for more 
accurate link predictions among neighbors (Rani 2012) offers promising directions for 
future research. These strategies have demonstrated potential in recent drug synergy pre-
diction studies (Zhang et al. 2023; Zhang and Tu 2022).

Enhancing the biological relevance of predictions can be achieved through the incor-
poration of knowledge graphs reflecting associations in biological systems, such as pro-
tein–protein interactions. By integrating these graphs with complex protein features, 
predictions can be improved. Leveraging cutting-edge protein structure prediction (For 
proteins whose structure may not be available) algorithms like Alphafold (Jumper et  al. 
2021), can significantly improve the accuracy of protein representations for integration into 
GNN models.

In summary, the field of drug synergy prediction using GNN and emerging techniques 
continues to evolve. Ongoing research, including benchmarking studies, enhancing bio-
logical relevance, and exploring novel strategies, offers prospects for more accurate and 
clinically translatable predictions. Despite the general interest within the research commu-
nity and pharmaceutical industry regarding the use of GNNs in drug discovery, the practi-
cal implementation of these methods in pre-clinical and clinical settings is still in its early 
stages due to the recent emergence of this technology in this field. As the field continues to 
evolve, future research and advancements will likely contribute to a more comprehensive 
understanding of the advantages and applications of GNN in drug combination prediction 
across diverse disease areas.
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