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Abstract

Autoencoders have become a hot researched topic in unsupervised learning due to their
ability to learn data features and act as a dimensionality reduction method. With rapid
evolution of autoencoder methods, there has yet to be a complete study that provides a
full autoencoders roadmap for both stimulating technical improvements and orienting
research newbies to autoencoders. In this paper, we present a comprehensive survey of
autoencoders, starting with an explanation of the principle of conventional autoencoder and
their primary development process. We then provide a taxonomy of autoencoders based
on their structures and principles and thoroughly analyze and discuss the related models.
Furthermore, we review the applications of autoencoders in various fields, including
machine vision, natural language processing, complex network, recommender system,
speech process, anomaly detection, and others. Lastly, we summarize the limitations of
current autoencoder algorithms and discuss the future directions of the field.
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The input

The reconstructed output

The noisy input

The hidden representation of the input data
The graph Laplacian matrix

Non-negative matrices (basis vectors)
Non-negative matrices (coefficients or activations)
The encoder weight matrix

The decoder weight matrix

The distances matrix between neighbors

The number of data points

The expectation operator

The regularization parameter

The Kullback-Leibler divergence

The probability distribution

The approximate probability distribution of p(.)
The encoder function

The decoder function

The trace of the matrix

The discriminator’s output for a real data point
The generator’s output for the latent variable
The 2-norm of a vector

The Frobenius norm

The reconstruction loss

Abbreviations

AA
AAE
AE
AGAE
BAE
BCE
BiRNNAE
CAE
CAE
CNN
CVAE
CSAE
DAE
DVAE
GAE
GAAE
GCN
GMAE
GPU
GRUAE
ISOMAP
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Adversarial Autoencoder
Adversarial Autoencoder
Autoencoder

Adversarial Graph Autoencoder
Bayesian Autoencoder

Binary Cross-Entropy
Bidirectional Autoencoder
Convolutional Autoencoder
Convolutional Autoencoder
Convolutional Neural Network
Convolutional Variational Autoencoder
Convolutional Sparse Autoencoder
Denoising Autoencoder
Disentangled Variational Autoencoder
Graph Autoencoder

Graph Attentional Autoencoder
Graph Convolution Network
Graph Masked Autoencoder
Graphics Processing Unit

GRU Autoencoder

Isometric Feature Mapping
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LAE Laplacian Autoencoder
L2,1-RAE L2,1 Robust Autoencoder
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory

LSTMAE  LSTM Autoencoder
LSRAE Label and Sparse Regularized Autoencoder

MAE Masked Autoencoder

MLP Multi-Layer Perceptron

M-DAE Marginalized Denoising Autoencoder
NLP Natural Language Processing

NMF Non-Negative Matrix Factorization

NN Neural Network

OAE Orthogonal Autoencoder

PCA Principal Component Analysis

RAE Robust Autoencoder

ReLU Rectified Linear Unit

SAE Stacked Autoencoder

SDMAE Self-Distilled Masked AutoEncoder

SGD Stochastic Gradient Descent

SSVAE Semi-supervised Variational Autoencoder
SSAE Semi-supervised Autoencoders

t-SNE T-Distributed Stochastic Neighbor Embedding
VAE Variational Autoencoder

VGAE Variational Graph Autoencoder

1 Introduction

Dimension reduction is crucial in machine learning for simplifying complex data sets
(Van Der Maaten et al. 2009), reducing computational complexity (Ray et al. 2021),
and mitigating the curse of dimensionality (Talpur et al. 2023), ultimately improving
model performance and interpretability. Dimension reduction encompasses two primary
approaches: feature selection (Solorio-Fernandez et al. 2022), which involves choosing a
subset of the most informative features from the original data-set to reduce dimensionality
while maintaining interpretability; and feature extraction (Li et al. 2022), a method where
new, lower-dimensional features are derived from the original data to capture essential
patterns and relationships.

Feature extraction comprises both linear and nonlinear techniques that transform the
original data into a lower-dimensional representation. Linear feature extraction such as
Factor Analysis (FA) (Garson 2022), Linear Discriminant Analysis (LDA) (Balakrishnama
and Ganapathiraju 1998), Principal Component Analysis (PCA) (Abdi and Williams
2010) and Non-negative Matrix Factorization (NMF) (Lee and Seung 2000) involves
transforming the input data into a new set of features using linear combinations of the
original input features (Wang et al. 2023).

Linear methods are relatively straightforward and computationally efficient. They
often provide interpretable results, making it easier to understand the importance
of each feature, and are effective when the underlying relationships in the data
are approximately linear. However, they capture global correlations, and result in
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information loss, particularly when the data contains non-linear relationships or
interactions between features (Wang et al. 2023). They are also sensitive to outliers,
can be computationally expensive, particularly when dealing with high-dimensional
data. Their linear projections can be difficult to interpret, and they can be prone to
overfitting when the number of input features is significantly greater than the number of
observations available (Jha et al. 2023).

In contrast, nonlinear feature extraction utilizes nonlinear transformations of the input
features to generate a new feature set that can more effectively capture the underlying
patterns present in the data (Wang et al. 2022). By mapping the data into a higher-
dimensional feature space, nonlinear methods can find patterns that are not apparent in the
original feature space, even when the number of features significantly exceeds the number
of samples.

Nonlinear methods also can capture complex relationships between the input features
and output variables without the need for domain knowledge or prior assumptions about
the data and often leads to better predictive performance (Wang et al. 2022). Manifold-
based feature extraction is a nonlinear technique, that relies on the assumption that high-
dimensional data can be embedded in a low-dimensional space without losing important
information. This is achieved by finding a non-linear mapping that preserves the
structure of the data (Li et al. 2022). Some common manifold-based techniques include,
ISOMAP (Ding et al. 2022), Locally Linear Embedding (LLE) (Miao et al. 2022)
and t-SNE (t-distributed Stochastic Neighbor Embedding) (Meyer et al. 2022). These
techniques may not always capture the global structure of the data and its performance
is highly dependent on hyperparameter settings.

Another effective method to extract complex, hierarchical, and high-level features from
nonlinear data is deep learning. Deep learning models can automatically learn abstract and
high-level features, enabling better data representation from raw data and reducing the need
for handcrafted feature engineering. They can be used for end-to-end feature extraction and
task-specific modelling including image classification, object detection, Natural language
Processing (NLP), and speech recognition. In this context, there are several deep learning-
based nonlinear feature extraction techniques, some of which are: Convolutional Neural
Networks (CNNs) (Molaei et al. 2022), Recurrent Neural Networks (RNNs) (Shi et al.
2022), and Autoencoders (AEs) (Bank et al. 2023). Deep learning models like CNNs
and RNNs often require large amounts of labelled data for training and its training can

Feature
Extraction

[Manifolld-base] [ Deep Llearning

—/

Fig. 1 Categorization of feature extraction methods into linear and non-linear approaches
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Fig.2 All published papers in gScholar, Web of Science and arxiv since 2012 with keywords
"Autoencoders" and "Machine Learning"

be computationally expensive, requiring powerful hardware. Figure 1 and Table 1 shows
various feature extraction methods and their loss functions.

AEs are neural networks that use back propagation algorithm for feature learning.
They are primarily used for unsupervised learning tasks, which means they do not require
labelled data during training. In contrast, CNNs and RNNs are often used for supervised or
semi-supervised tasks, which rely on labelled data. This makes AEs suitable for situations
where labelled data is scarce or expensive to obtain (Bank et al. 2020). Furthermore, AEs
automatically learn relevant features from the data without the need for manual feature
engineering which can save significant time and effort in pre-processing. This encourages
the AEs to capture the crucial characteristics of the input data in its encoding, thereby
learning a meaningful representation of the data in the latent code (Liu et al. 2023).

AEs also provide a multitude of benefits additionally to dimensionality reduction across
various machine learning and data analysis applications mainly used in complex high-
dimensional data. They are equally valuable in the context of data compression, where they
can efficiently encode information for storage or transmission, making them particularly
beneficial for resource-constrained applications. Furthermore, they excel in anomaly
detection by quantifying the reconstruction error; instances with elevated reconstruction
errors are flagged as anomalies, aiding in the identification of outliers or irregularities
within the data (Bank et al. 2020). Data denoising is another strength of AEs. AEs can
be trained to eliminate noise or irrelevant information from input data, enhancing data
quality. Beyond these applications feature learning, AEs foster a deeper understanding of
data through the creation of meaningful representations. They also find practical utility in
semantic embedding for NLP and information retrieval tasks and effectively reducing file
sizes without compromising quality in image and signal compression (Liu et al. 2023).
Furthermore, AEs contribute to privacy preservation techniques, such as differential
privacy, by protecting sensitive data while enabling analysis and insights. In addition to
these applications, AEs are instrumental in reducing data storage requirements, enhancing
interpretability by revealing essential data features, and demonstrating robustness by
generalizing well to new data and effectively handling noisy or incomplete data-sets (Liu
et al. 2023). Overall, AEs stand as versatile and indispensable tools, offering an extensive
array of applications across diverse domains and problem types in machine learning and
data analysis.
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However, AEs offer a powerful set of capabilities but also come with certain drawbacks
that should be considered. One of the main drawbacks of using AEs is that they are sensitive
to the choice of hyperparameters, such as the number and size of layers, the learning rate,
the loss function, and the regularization. These hyperparameters can affect the performance
and the quality of the autoencoder, and may require trial and error or grid search to find
the optimal values (Bank et al. 2020). Another common concern with AEs is their lack of
robustness. They can be sensitive to noisy data, outliers, and variations in input, which can
lead to suboptimal representations and reconstructions (Singh and Ogunfunmi 2022). AEs
can be prone to overfitting, especially when trained on limited data. Additionally, they may
not inherently preserve the spatial or temporal locality of data during training. This can
be problematic for tasks where preserving the local structure is essential, such as image
segmentation or sequence modeling (Liu et al. 2023). Furthermore, AEs tend to capture
lower-order features and may struggle to represent complex, higher-order relationships in
the data. This limitation can impact their performance on tasks that require understanding
intricate dependencies (Miuccio et al. 2022).

In recent years, substantial research efforts have been dedicated to addressing these
drawbacks through advancements in deep learning and AE techniques. Some of the
presented architectures in this area include regularization AEs, robust AE, generative
AE, convolutional AE, recurrent AE, semi-supervised AE, graph AE and masked AE.
These improvements, as demonstrated in Fig. 2, have caused that the use of autoencoder
algorithms in machine learning has gained increasing interest over the years. The
graph shows the trend of papers published in the field of "autoencoder" and “machine
learning” since 2012, revealing that over 90% of all indexed papers were published
between 2018 and 2023.

Despite being an important area of research, there is currently a lack of
comprehensive studies exploring the applications of AE algorithms in machine learning
on a wide scale. While existing review papers have examined specific themes, there has
been no comprehensive review conducted. In Table 2, we compare our contribution in
this paper to the descriptions of existing review papers in the field.

To this knowledge gap, our review will focus on addressing three key research
questions:

e What are the different types of AE algorithms that have been developed and utilized
in machine learning applications?

e What are the main methodological frameworks and the latest achievements in the
application of AE algorithms?

e What are the gaps and future directions in this field, and how can they be addressed
to enhance the effectiveness of AE algorithms in machine learning applications?

This review paper represents a significant endeavor to systematically categorize
the diverse array of applications of AEs within the domain of machine learning.
Furthermore, it embarks on the crucial endeavor of not only elucidating the advantages
and challenges associated with these applications but also unraveling the existing
frameworks that underpin this evolving field. In this pioneering exploration, we offer
the following noteworthy contributions:

e New taxonomy. In this paper, we propose a comprehensive new taxonomy that

categorizes major and modern AE methods within the realm of machine learning
into distinct categories in recent years.
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e Comprehensive overview. We not only provide an exhaustive review of the variations
within each AE category but also offer detailed descriptions and unified schematic
representations. Our in-depth exploration of each approach includes elucidating key
equations and presenting pertinent performance comparisons.

e Abundant resources. We curate and present a valuable collection of AE resources,
encompassing open-source code repositories for select reviewed methods, widely
recognized benchmark datasets, and performance assessments across datasets with
varying label rates.

e Future trends. we pinpoint unresolved challenges and explore potential directions for
future research, drawing insights from recent seminal studies in this field.

This paper is organized as follows. Section 2 provides a concise overview of the structure
and hyperparameter in AEs. Section 3 discusses various taxonomies of AEs that have
been proposed in the literature. In Sect. 4, we review previous applications of AEs in the
machine learning domain, categorizing them according to the task they were used for. In
Sect. 5, we review explore publicly available software and platforms that can be used to
construct and develop AEs the performance of various autoencoders. Section 6 is dedicated
to discussing future directions in the field. Finally, in Sect. 7, we present our conclusions
based on the insights gathered from our analysis.

2 Background of autoencoder

AE is a fundamental building block that can be used hierarchically to create deep models.
They organize, compress, and extract high-level features, allowing unsupervised learning
and the extraction of non-linear features (Chen and Guo 2023). Autoencoders have
advantages over Restricted Boltzmann Machines (RBMs) as they can learn more complex
data representations. RBMs are widely used for generating various data types, including
images (Hinton et al. 2006). RBMs are a type of Boltzmann Machine (BM) that learns a
probability distribution from inputs (Chen and Guo 2023). The main difference between
Autoencoders, RBMs, and BMs lies in their architectures. AEs have an encoder and a
decoder, while RBMs consist of visible and hidden layers. Boltzmann Machines (BMs)
are more general and fully connected, making them less tractable compared to RBMs.
AEs are feed-forward neural networks, allowing information to flow in one direction. In
contrast, RBMs and BMs are generative models capable of generating new samples from
the learned distribution.

2.1 Vanilla autoencoder

The concept of AE was initially introduced in a research paper by Rumelhart (1985).
AEs are a type of neural network designed for learning and reconstructing input data. In
unsupervised learning, the primary goal is to obtain an "informative" data representation.
AEs encode input data into a compressed and semantically meaningful form and then
decode it to faithfully reconstruct the original input data (Bank et al. 2023). The term
"vanilla" is used to describe the simplest form of autoencoder, which has no additional
complexities or architectural variations. A vanilla autoencoder typically consists of an
input layer, one or more hidden layers, and an output layer (Zhang et al. 2016). You can
visualize the structure of a vanilla autoencoder in Fig. 3.

@ Springer
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Fig.3 illustrates the structure Input Output
of an autoencoder, where X L
represents the input data of the Layer ayer

Hidden

input layer, Z represents the
data in the hidden layer, and
X' represents the reconstructed
output data in the output layer

©O00O000

During the encoding step, an AE maps an input vector X to a code vector Z using an
encoding function fy. In the decoding step, it maps the code vector Z back to the output
vector X', aiming to reconstruct the input data using a decoding function g,. AEs adjust
the network’s weights (W) through fine-tuning, achieved by minimizing the reconstruction
error L between X and the reconstructed data X’. This reconstruction error acts as a loss
function used to optimize the network’s parameters (Chai et al. 2019). The objective
function of an AE can be written as:

minJ,£(0) = min ; I(x;,%]) = min ; 1x;, 8 (X)) )

where x; represents the ith dimension of the training sample, x/ represents the ith dimension
of the output data, and » is the total amount of training data. The term "1" refers to the
reconstruction error between the input and output, defined as:

LX) = Y IX - X)) @)

i=1

The encoder and decoder mapping functions are Z =f,(X)=s(WX+b) and
X' =go(Z2)=s(W'Z+Vb'), where "s" is a non-linear activation function like sigmoid
or ReLU. W and W’ are weight matrices, and b and b’ are bias vectors. During training,
the weights and biases of the autoencoder are adjusted to minimize the reconstruction
error using an optimization algorithm like stochastic gradient descent. Once trained, the
encoding function can create low-dimensional representations of new input data (Z),
while the decoding function can reconstruct the original data from the low-dimensional
representation (X’).

2.2 Stack autoencoder

Traditional AE typically employs a single-layer encoder, making it challenging to extract
deep features. To enhance feature extraction, one effective strategy is to deepen the
neural network structure. By employing a layer-wise learning approach, multiple basic
autoencoders can be stacked together to form a Stacked Autoencoder (SAE), allowing
for the extraction of complex data features. The training process of each individual
autoencoder involves learning a condensed data representation, with the final output
obtained by combining the outputs of these individual autoencoders. Typically, training a
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Stacked Autoencoder follows a layer-wise approach (Hoang and Kang 2019; Hinton et al.
2006). After training layer 1, it serves as the input for training layer 2. When evaluating
the reconstruction loss, it is assessed relative to layer 1 rather than the input layer. The
encoding process can be mathematically represented as follows:

d'=fWia 05, k=1:n 3)

in which k represents the k-th autoencoder, a, represents the encoding outcome of the k-th
autoencoder, and when k = 1, a, = x denotes the input data. The decoding process can be
mathematically represented as follows:

k= W=D k=t 4 pn==byy =1 2y &)

when k = 1, ¢, = a,, and when k = n, ¢, = & represents the reconstructed data of the input
variable x (Hoang and Kang 2019).

2.3 Hyperparameters in autoencoder

Autoencoders come with various hyperparameters that must be defined prior to training,
and their values can significantly influence the model’s performance. It’s crucial to
understand that certain hyperparameters are usually set before training and remain
constant, while others can be dynamically tuned during training to optimize the model’s
performance. Selecting and adjusting hyperparameters often involves experimentation
and validation to achieve the best results for a particular task. The following outlines the
most common hyperparameters in autoencoders:

e Number of Hidden Layers: The quantity of hidden layers within the autoencoder
defines its network depth and its capacity to capture intricate data patterns. This
parameter is configured before training. While adding more hidden layers can
enhance the model’s representational power, it may also introduce optimization
challenges and elevate the risk of overfitting.

e Number of Neurons in Each Layer: The number of neurons in each layer governs
the network’s data representation capacity and is typically set before training. A
higher count of neurons can amplify the network’s capacity but might also elevate
the risk of overfitting and complicate the optimization process.

e Size of Latent Space: Adjusting the size of the bottleneck layer permits fine-tuning
the balance between model complexity and performance. This parameter is set prior
to training.

e Activation Function: The activation function utilized in the bottleneck layer plays
a pivotal role in the autoencoder’s performance. To optimize the autoencoder’s
performance, the bottleneck layer activation function should be tailored before
training. These functions determine the network’s nonlinearity and its ability to
learn intricate data patterns. Common activation functions employed in bottleneck
layers encompass sigmoid, tanh, ReLU, and SELU. Further details, including their
equations, outputs, and output curves, are outlined in Table 3.

¢ Objective Function: The objective function, also known as the loss function, is a
critical element of an autoencoder, serving to train the network by minimizing the
distinction between input and output data. It gauges the dissimilarity between the
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Table 3 Activation functions

Activation Function Equation Output Output Curve

I+e™

Sigmoid f) = —— [0.1] [———

Tanh Foo) = % [-1.1]
ReLU f(x) = max(0, x) [0, o0]
SELU

X ifx>0 [-2, 0] R
f(x)_/l{ae"—aifxgo ’

input and output data, and the autoencoder is trained to diminish this dissimilarity.
The selection of the objective function hinges on the data type and the specific
application and is generally determined before training. Common objective functions
used in autoencoders include:

— Mean Squared Error (MSE): This is the predominant objective function in
autoencoders, measuring the average squared difference between input and output
data. MSE is defined by formulas (1):

Lyp(X,X') = min (|IX = X"|I}) @

— Binary Cross-Entropy(BCE): BCE employed when the input data is binary (0
or 1), this function measures the difference between predicted and actual output
in terms of binary cross-entropy loss. Cross-entropy is defined in formulas (2):

n
Lyg(X,X") ==Y (x;log(x)) + (1 — x) log(1 — x)) (5)
i=1
When choosing an autoencoder loss function, consider the problem’s unique needs.
MSE suits regression tasks, offering robustness against outliers but sensitivity to data
scaling. BCE is for binary classification but can be numerically unstable near 0 or 1
probabilities. The choice depends on the problem and task requirements. MSE is the
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most prevalent autoencoder loss function, quantifying input—output discrepancies in the
latent space.

e Optimization Algorithm: Autoencoders utilize optimization algorithms to minimize
the objective function during training. These algorithms adjust network weights and
biases to train the autoencoder effectively. The choice of the optimization algorithm
is made prior to training but may involve hyperparameter tuning during training.
Several optimization techniques can be employed to train autoencoders, with the most
notable ones being Stochastic Gradient Descent (SGD), Adam, and Adagrad. Further
elaboration on each of these methods is provided below.

— Stochastic Gradient Descent (SGD): A widely used algorithm that updates
network parameters after processing small batches of data. While computationally
efficient, it may converge slowly for complex models and datasets. Careful tuning of
initial learning rates is often needed.

— Adam: Combines features of SGD with adaptive learning rates and momentum
to accelerate convergence and reduce the risk of getting stuck in local minima.
Requires tuning of hyperparameters like betal and beta2 and is suitable for non-
stationary and noisy objectives.

— Adagrad: An adaptive algorithm adjusting learning rates based on parameter
update frequency. Effective for sparse data, it can lead to quick convergence but may
also converge prematurely and face challenges with non-convex optimization.

The choice of optimization algorithm depends on dataset size, model complexity,
loss function type, and computational resources. Each has its advantages and
disadvantages, so selecting the right one is crucial for optimal performance.

e Learning Rate: The learning rate, a hyperparameter, dictates the step size during
optimization. It influences weight and bias updates and the convergence speed of the
objective function. High values can cause overshooting, while low ones may lead to
local minima trapping. The learning rate is preset but may be adjusted with schedules
during training for better convergence.

e Number of Epochs: Epochs are training iterations, representing full dataset passes.
More epochs can enhance model accuracy but risk overfitting. The ideal count depends
on dataset size and problem complexity. Learning rate initially set may require
modification if convergence isn’t reached or early stopping is used to curb overfitting.

e Batch Size: Batch size, in each optimization iteration, affects gradient noise and
optimization efficiency. Smaller sizes yield noisier gradients but faster, memory-
efficient optimization. Larger sizes offer stable gradients but slower, memory-intensive
optimization. Batch size is determined beforehand but can be adjusted during training
for optimization and memory use.

These interconnected hyperparameters necessitate careful selection for optimal
performance, often requiring experimentation despite the time investment, crucial for
building an effective autoencoder model.
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Fig.4 Taxonomy of Autoencoder architectures categorized by network structure

3 Autoencoder taxonomy

Autoencoders, frequently employed in unsupervised learning, excel in dimensionality
reduction tasks. They adeptly capture intricate, non-linear data relationships, enabling
a hierarchical transformation of high-dimensional input into a lower-dimensional latent
space. Autoencoders exhibit remarkable flexibility, allowing for customization across
diverse data types and tasks by adjusting their architecture or objective functions. Over
the past decade, a myriad of autoencoder variants has emerged, as illustrated in Fig. 4.

Autoencoder enhances feature discrimination through the incorporation of
regularization techniques. Robust autoencoder aims to fortify the encoded data against
noise or outliers, enhancing its ability to handle noisy or corrupted input data. The
generative autoencoder specializes in learning a generative model using the extracted
encoded representations, enabling the generation of new data samples closely
resembling the distribution of the training data. Convolutional autoencoders replace
fully connected layers with convolutional layers in both the encoder and decoder,
making them particularly well-suited for image data by excelling at capturing spatial
relationships within the data. Recurrent autoencoders leverage recurrent layers, such
as LSTM or GRU, in both the encoder and decoder, proving invaluable for sequence
data by capturing temporal dependencies within the information. Semi-supervised
autoencoders harness the power of both labeled and unlabeled data to enhance model
performance and generalization, demonstrating their value in scenarios with limited
labeled data or resource constraints. Graph autoencoder leverages graph structures to
learn data representations by processing graph-structured inputs and utilizing graph
convolutional layers, allowing for the effective modeling of complex data dependencies.
Masked autoencoders represent a straightforward autoencoding technique designed to
reconstruct the original signal from its partially observed form.

The breadth of autoencoder models and their specialization options empowers
fine-tuning for various applications. The adaptability of the autoencoder architecture
and objective functions underscores their ability to be tailored to specific use cases,
establishing them as indispensable tools for machine learning researchers and
developers. In the following sections, we provide detailed explanations for each
category.

3.1 Regularized autoencoder

Regularized Autoencoder (RAE) is a neural network architecture that extracts a
compressed representation of input data while enforcing regularization constraints. These
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constraints encourage the formation of a discriminative, low-dimensional feature space. By
incorporating different regularization techniques into the autoencoder, it becomes possible
to create specialized models with desired properties, such as sparsity, manifold structure,
or orthogonality.

3.1.1 Sparse autoencoder

Sparse Autoencoder (SAE) (Ng 2011) is characterized by having a limited number of
simultaneously active neural nodes, as it aims to learn a sparse representation of input data
by incorporating a sparsity constraint into the loss function. Its objective is to minimize
the disparity between input data and reconstructed data while adhering to constraints on
the sparsity of the latent representation. The loss function in a Sparse Autoencoder (SAE)
comprises two components: the reconstruction loss and the sparsity loss, represented as
follows:

Loap(X. X") = min (||IX — X'||7. + AKL(p || 9)) (6)

where KL(p || g¢) calculates the Kullback—Leibler divergence between a target sparsity
parameter (p) and the estimated average activation of each neuron (g) during training,
defined as

l_
Y plog <E>+(1—p)log<—p> %)
q l—gq

This combined penalty term encourages the model to acquire a sparse representation,
wherein only a limited number of neurons are active for each input.

3.1.2 Contractive autoencoder

Contractive Autoencoder (CAE) (Rifai et al. 2011) is an autoencoder that aims to produce
similar representations for similar input data by adding a penalty term to the loss function.
This penalty term, based on the Frobenius norm of the Jacobian matrix of the encoder
concerning the input data, encourages local stability in the learned representation. The
primary objective of the CAE is to minimize the difference between the input data and
the reconstructed data while taking the penalty term into account, promoting similarity
in representations for similar input data. The overall loss function of CAE includes the
reconstruction loss and a penalty term as follows:

LeagX,X') = min (|1X = X'|I7. + AlT-COII%) (8)

where ||JF(X)||12, represents the squared Frobenius norm of the Jacobian matrix of the
encoded representation concerning the input data. This norm measures the sensitivity of
the encoded representation to small variations, calculated as:

ohy(X)\*
||JF<X>||§=Z< e > ©)

iy
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3.1.3 Laplacian autoencoder

The standard Autoencoder may not emphasize the relationships between nearby data
points during its learning process, which can lead to extracted features lacking crucial
information about the data’s internal structure. In contrast, the Laplacian Autoencoder
prioritizes preserving the distances between neighboring data points, effectively capturing
the significant internal structure within the data. Inspired by this concept, the Laplacian
Autoencoder (LAE) (Jia et al. 2015) was introduced to facilitate the generation of lower-
dimensional representations for Autoencoders. This approach ensures that the learned
representations incorporate essential local structural information, enhancing their
suitability for specific data analysis tasks. The loss function for the Laplacian Autoencoder
is defined as follows:

Lyp(X,X') = min (||X - X'||7 + A(Z'LZ)) (10)

where matrix L, known as the graph Laplacian, is calculated based on how similar pairwise
are in the latent space. This calculation typically involves techniques like using k-nearest
neighbor graphs or Gaussian kernels.

3.1.4 Orthogonal autoencoder

Orthogonal Autoencoder (OAE) (Wang et al. 2019) is designed to enhance the
orthogonality of learned embeddings, leading to more discriminative and diverse feature
representations. Unlike the standard Autoencoder, OAE introduces a regularization
term known as the orthogonal reconstruction error into the reconstruction loss function.
This term promotes orthogonality among latent features, thereby improving class
discriminability. The OAE loss function can be expressed as follows:

LoagX. X"y = min (X = X'|I2. + AZ"Z - 1|}.) (11)

where I is the identity matrix, Z” represents the transpose of the compressed representation
Z, and A is a penalization parameter. Notably, setting A to zero yields a conventional
autoencoder.

3.2 Robust autoencoder

Robust Autoencoder (RAE) is utilized to enhance the robustness of autoencoders when
dealing with noisy or corrupted input data. They prove especially valuable in situations
where the input data exhibits noise, outliers, or imperfections. These issues are
commonplace in real-world datasets, including those found in healthcare, finance, and
sensor networks, where RAEs can effectively handle the data’s imperfections while
retaining its valuable information. Three primary variants of robust autoencoders include
Denoising Autoencoder, Marginalized Denoising Autoencoder, and L, ; Autoencoder.

@ Springer



Autoencoders and their applications in machine learning: a... Page 190f52 28

3.2.1 Denoising autoencoder

Denoising Autoencoder (DAE) (Vincent et al. 2010) is designed to reconstruct clean
data from noisy input by introducing noise during training. The primary objective is
to minimize the dissimilarity between the clean data and the reconstructed output.
DAE training involves intentionally corrupting input data with various forms of noise
and then minimizing the difference between the original clean input data and the
reconstructed clean data. This process allows the DAE to discern valuable features
within the input data while disregarding noise and irrelevant aspects. The DAE loss
function is expressed as follows:

Lpap(X,X') = min (||X — X'||2) (12)

where X represents the clean input data, and X’ denotes the noisy input data.

3.2.2 Marginalized denoising autoencoder

Marginalized Denoising Autoencoder (M-DAE) (Chen et al. 2012) is a specialized
version of the Denoising Autoencoder (DAE) designed to handle datasets with missing
or incomplete features. Like the standard DAE, the M-DAE is a neural network crafted
to reconstruct clean input data from noisy versions. It achieves this by restoring clean
data from corrupted counterparts, where input data X is intentionally subjected to
random corruption. Each feature has a probability p of being set to 0, creating these
corrupted versions referred to as f(r The primary goal of the M-DAE is to minimize a
specific loss function represented as:

i=1

1 < 5
L X, X' = = X - X'W|?
s (X, X)) mln(m 2 IIF> (13)

where W signifies the learned transformation matrix, and m represents the total number of
input examples.

The M-DAE seeks the best solution for W, which can be expressed mathematically
as:

W = E[Q'|E[P] (14)

this equation calculates E[Q7!'] based on the inverse of the expected QO and E[P] using
the expected P. These expectations are calculated using specific formulas involving the
covariance matrix of the uncorrupted data X.

3.2.3 L, robust autoencoder

L, Robust Autoencoder (L, -RAE) (Li et al. 2018) is a modified version of the Robust
Autoencoder (RAE) designed to enhance the autoencoder’s resilience when dealing
with noisy or corrupted input data. This enhancement is achieved through the use of
a specific type of regularization known as L,; regularization. L, regularization
encourages the learned features to possess specific properties. Notably, it promotes
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feature sparsity, meaning that most features consist of zeros, and robustness, enabling
them to handle scenarios with data outliers or noise. The mathematical expression of
the L, |-RAE loss function is given as follows:

Lo, irag X X) = min (IX = X"I[7.+ 4~ 1Z]1") (15)

where || Z]|, | represents the L2,1-norm of the latent representations, which emphasizes both
sparsity and robustness in these learned features.

3.3 Generative autoencoder

Generative Aautoencoder (GAE) differs from traditional autoencoders by focusing on
learning the underlying probability distribution of data rather than just dimensionality
reduction. This enables GAE to generate new data samples that resemble the training data,
making them valuable for tasks like image or text generation. Examples of GAE include
Variational Autoencoders, Adversarial Autoencoders, Bayesian Autoencoder and Diffusion
Autoencoder.

3.3.1 Variational autoencoder

Variational Autoencoder (VAE) (An and Cho 2015) is a type of autoencoder that learns
to represent data in a lower-dimensional latent space and generate new data samples that
resemble the input. Unlike traditional autoencoders, VAEs are generative models that
can capture the underlying distribution of input data. In a VAE, the encoder maps input
data to a posterior distribution g(Z|X) instead of a fixed latent representation Z. During
reconstruction, Z is sampled from this distribution and passed through a decoder. The
regularization loss in VAE encourages ¢(Z|X) to match a specific distribution, often a
standard Gaussian. The VAE loss function is defined as:

Lyag = — E(@(Z1X) [logIp(X|2)]] + KL(g(ZIX)|p(Z)) (16)

the first term measures the difference between the original input data (p(X|Z)) and the data

reconstructed by the decoder. The second term, a regularization component, quantifies the
KL divergence between ¢(Z|X) and p(Z), typically a standard Gaussian distribution. This
loss function guides VAE training to balance accurate data reconstruction with a structured
latent space for generative purposes.

3.3.2 Adversarial autoencoder

Adversarial Autoencoder (AAE) (Makhzani et al. 2015) is a specialized type of
autoencoder designed to align its learned latent representations with a desired prior
distribution. It consists of three main parts: an encoder, a decoder, and a discriminator. The
encoder and decoder work together to create data that can deceive the discriminator, which
is trained to distinguish between real input data and fake data produced by the decoder.
The adversarial loss in AAE assesses its ability to generate data that resembles the original
input data distribution. The discriminator aims to maximize its accuracy in telling real and
generated data apart, while the decoder aims to minimize the discriminator’s accuracy. The
overall loss function for AAE is expressed as:
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Ly (X, X") = min ([IX — X'||2 + log(D(X)) + log(1 — D(G(Z)))) (17)

where G(z) is the decoder function that converts the latent representation back to the
original input data, and D(X) represents the discriminator’s output for the original input
data. The term log(1 — D(G(Z))) reflects the discriminator’s output for data generated by
the decoder.

3.3.3 Bayesian autoencoder

Bayesian Autoencoder (BAE) (Yong and Brintrup 2022) is a probabilistic AE that models
all parameters, in contrast to the Variational Autoencoder (VAE) that mainly models the
latent layer. BAE combines a Gaussian likelihood for data reconstruction with an isotropic
Gaussian prior for parameter uncertainty. The loss function maximizes data likelihood and
minimizes model complexity. The BAE loss function is defined as:

D
1 1 1
10gp(x|0)= —<BZE(Xi—x;)2+§10gO'i2> (18)

where o'l.2 is the variance of the Gaussian distribution, and log p(x|0) represents the log-
likelihood of observing the original data x given the model parameters 6. It quantifies data
reconstruction through squared errors and variances while promoting model simplicity.
The training objective is to maximize this log-likelihood while minimizing regularization
to find optimal parameters 6 for effective data pattern and uncertainty capture.

3.3.4 Diffusion autoencoder

Diffusion Autoencoder (DiffusionAE) (Preechakul et al. 2022) is a specialized type of
autoencoder designed for generative modeling tasks. It draws inspiration from diffusion
models and is engineered to capture intricate data distributions. In this framework, data
is subjected to a progressive denoising process, allowing the model to grasp complex
data patterns effectively. A fundamental element of DiffusionAE is its employment of a
unique loss function known as the Diffusion Probabilistic Loss. This loss function guides
the training by modeling how data evolves over time. Mathematically, the loss function is
represented as:

L(X,X") = —log P(X|X") (19)

in which P(X|X”) signifies the conditional probability of observing the original data X when
given the reconstructed data X’. During training, the primary objective is to minimize this
loss, driving the Diffusion Autoencoder to generate X’ that closely resembles the original
data X.

3.4 Convolutional autoencoder

Convolutional Autoencoder (CAE) (Seyfioglu et al. 2018) employs convolutional layers
instead of fully connected layers in both the encoder and decoder. The encoder uses these
layers to create a compact representation from input images, while the decoder employs
deconvolution layers for image reconstruction. CAEs are particularly effective for image
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data, as they excel at capturing spatial dependencies, which refer to the patterns and
relationships among pixels or locations within individual images or data frames. They find
wide-ranging applications in tasks such as image denoising, inpainting, segmentation, and
super-resolution.

3.4.1 Convolutional variational autoencoder

convolutional variational autoencoder (CVAE) (Semeniuta et al. 2017) is a significant
variant of Convolutional Autoencoders (CAEs) that incorporates probabilistic modeling,
allowing for the generation of new data samples. In a CVAE, input images undergo
a reconstruction process where a latent variable, denoted as Z, is sampled from a
Gaussian distribution, and subsequently passed through a decoder. This decoder employs
convolutional and upsampling layers to reconstruct the original image. The loss function in
CVAE, similar to Variational Autoencoder (VAE), is defined as:

Leyag = = EQZ1X)) [loglp(X12)]] + KL(@ZIX)|p(2)) (20)

the first term measures the difference between the original image and its reconstruction by
the decoder, while the second term encourages the latent representation ¢(Z|X) to follow a
standard Gaussian distribution through KL divergence regularization, ensuring a structured
latent space for effective generative capabilities.

3.4.2 Convolutional LSTM autoencoder

Convolutional LSTM (ConvLSTM) (Luo et al. 2017) is an advanced neural network
architecture specialized in spatiotemporal data analysis. It combines convolutional
structures with recurrent operations, allowing it to capture both spatial dependencies
and temporal relationships in data. This design employs 3D tensors, with the last two
dimensions representing spatial dimensions (e.g., rows and columns). ConvLSTM excels
in tasks involving both spatial and temporal patterns, such as precipitation nowcasting and
video analysis. It utilizes a unique loss function to make predictions based on neighboring
cells, consistently outperforming traditional RNNs and contemporary algorithms in various
spatiotemporal forecasting applications. The overall loss function for a ConvLSTM can be
defined as follows:

T

iz« (I = X315 @21)

j=1 t=1

LeonyLst X, X') = min

N
i=1
where N is the number of spatial rows in the data, M is the number of spatial columns in
the data, 7 is the number of time steps in the sequence, X”-,- represents the ground truth
value at spatial location (i, j) at time step ¢, and X[’ij represents the predicted value at spatial
location (i, j) at time step ¢.

3.4.3 Convolutional sparse autoencoder
Convolutional Sparse Autoencoder (CSAE) (Luo et al. 2017) is a neural network
architecture that combines convolutional autoencoder principles with techniques to induce

sparsity, such as max-pooling and feature channel competition. This integration simplifies
the training process by eliminating the need for complex optimization procedures. CSAE
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includes a sparsifying module designed to create sparse feature maps. This module retains
the highest value and its corresponding position within each local subregion before
performing unpooling, primarily through max pooling. The loss function used in CSAE,
which quantifies the disparities between the original input and the reconstructed output,
relies on the Frobenius norm and is defined as follows:

L
2
LesapX.X') = min Y <||X<l> -x) 22)
F
=1
d
x'0=3 (rot(W,, 180) = Z!) + ¢, (23)
i=1
7'=G,u(Z") = GpulfW;- X b)) (24)

where [ is the number of layers, X represents the original input at layer I/, X’ @ represents
the reconstructed output at layer I/, d is the number of feature channels, Zf is the ith
sparsified feature map, and G, (X) represents the sparsifying operator, involving max-
pooling and unpooling operations to create sparse feature maps.

3.5 Recurrent autoencoder

RNNs (Medsker and Jain 2001) are designed for processing sequential data, like time
series where the current state (') relies on the previous state (h'~!). Vanilla RNNs have
a limitation of short-term memory, leading to gradient problems in long sequences. To
address this, LSTM equipped with three gates (forget gate, input gate, and output gate),
and GRU networks consist of two gates (update gate and reset gate) were introduced.
These architectures incorporate self-loops to effectively manage gradients over extended
sequences, addressing the vanishing or exploding gradient issue. Recurrent Autoencoder is
an autoencoder that incorporates recurrent layers, such as LSTM or GRU, within both the
encoder and decoder components.

3.5.1 Long short term memory autoencoder

LSTM Autoencoder (LSTMAE) (Nguyen et al. 2021) is an advanced variation of the
recurrent autoencoder, specifically designed to capture representations from sequential
data. In this architecture, both the encoder and decoder components are built using LSTM
units, a type of recurrent layer. The encoder LSTM takes in a sequence of vectors, which
can represent images or features. In contrast, the decoder LSTM reconstructs the original
input sequence, often in reverse order. The MSE loss function computes the average
squared differences between the input and the reconstructed output at each time step. The
formula for MSE loss is as follows:

Ly stmapX, X') = min (|IX - X'||2) (25)

where X represents the clean input sequence and X’ represents the reconstructed output
sequence.
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3.5.2 Gated recurrent unit autoencoder

GRU Autoencoder (GRUAE) (Dehghan et al. 2014) employs GRU units in both the
encoder and decoder parts. Unlike LSTM, GRU has a simpler architecture with only two
gates: the update and reset gates. This architectural simplicity can lead to easier training
and faster processing while still capturing long-term dependencies in input sequences.
The formulation of a GRU Autoencoder is similar to that of an LSTM Autoencoder,
making it flexible and effective for modeling sequential data,

LoguaeX. X") = min (|IX — X'|12) (26)

where X represents the clean input sequence and X’ represents the reconstructed output
sequence.

3.5.3 Bidirectional autoencoder

Bidirectional Autoencoder (BiRNNAE) (Marchi et al. 2015) is a neural network
designed for unsupervised learning from sequential data. It utilizes bidirectional RNNs
like LSTM or GRU in both the encoder and decoder parts. While traditional RNNs only
consider information in one direction, bidirectional RNNs incorporate knowledge from
both forward and backward directions, improving their grasp of temporal relationships.
The BiRNN-AE aims to minimize the squared reconstruction error between the original
input sequence and the generated sequence during training. To represent the input data
efficiently, it combines the final hidden states from all encoder layers. This compact
representation can be valuable for various downstream tasks involving sequential data.
The loss function for BIRNN-AE is the Mean Squared Error (MSE) loss, which can be
mathematically expressed as:

T
.1 2
LyipanapX. X') = min T Z (I1x, = X;117.) @7

t=1

where T is the sequence length, X, represents the input at time step ¢, and Xt’ represents the
reconstructed output at time step .

3.6 Semi-supervised autoencoder

Semi-supervised Autoencoders (SSAE) is autoencoder model that utilize both labeled
and unlabeled data to enhance feature learning, especially in scenarios with limited
labeled data. The primary objective of SSAE is to leverage the available labeled data to
facilitate the extraction of crucial latent features, which can subsequently be applied to
tasks such as clustering or classification (Yang et al. 2022). This approach proves highly
advantageous when dealing with a scarcity of labeled data, as it enables the exploitation
of abundant unlabeled data, a common occurrence in real-world applications. In the
following section, we delve into an explanation of the three methods of semi-supervised
Autoencoder.
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3.6.1 Semi-supervised variational autoencoder

Semi-supervised Variational Autoencoder (SSVAE) (Xu et al. 2017) is a category
of generative models employed in semi-supervised learning scenarios. In SSVAE,
the encoder responsible for generating the latent variable, denoted as z, is defined as
q4(zlx,y). This implies that the latent variable z is parameterized by both input data x
and label y. The decoder, on the other hand, generates samples from the distribution
Pe(xy,2). The label predictive distribution g,(y|x) is determined by a classification
network. Notably, the label y is also considered a latent variable and plays a role
in generating a sample x in conjunction with z. The loss function for SSVAE is
mathematically expressed as follows:

Lssvae = = By, 102 Py (x]y, 2)]

28
~ log Py + KL(gy(zlx, Wl Ip(2)) 8)

in which the first term represents the expectation of the conditional log-likelihood of the
latent variable z, the second term denotes the log-likelihood associated with y, and the third
term quantifies the Kullback-Leibler divergence between the prior distribution p(z) and the
posterior distribution g, (z|x, y).

3.6.2 Disentangled variational autoencoder

Disentangled Variational Autoencoder (DVAE) (Higgins et al. 2016) is a sophisticated
generative model designed to untangle complex data representations. By incorporating
specific graphical model structures and distinct encoding factors, it can effectively
separate and capture meaningful information. This model leverages neural networks
within a graphical framework to capture relationships among observed and unobserved
variables. To optimize its performance, it employs a conditional probability
factorization, ¢(y,z|x), which is different from traditional approaches. This change
requires advanced variational inference methods. In essence, Disentangled VAEs are
adept at modeling intricate data patterns, making them valuable for various machine
learning tasks. Mathematically, they use a loss function expressed as:

Ey .10 (0g p(xly, 2) + log p(y) + log p(z) — log g(y|x, z) — log g(z|x)) (29)

In simpler terms, this loss function guides the model to generate data resembling real-
world data while considering the relationships between observed and latent variables.

3.6.3 Label and sparse regularized autoencoder

Label and Sparse Regularized Autoencoder (LSRAE) (Chai et al. 2019) is a novel
approach that combines label and sparse regularizations with autoencoders to create a
semi-supervised learning method. This method effectively leverages the strengths of
both unsupervised and supervised learning processes. On one hand, sparse regularization
selectively activates a subset of neurons, enhancing the extraction of localized and
informative features. This unsupervised learning process helps uncover underlying data
concepts, improving generalization. On the other hand, label regularization enforces the
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extraction of features aligned with category rules, leading to improved categorization
accuracy. The objective function of LSRAE is defined as follows:

d 1

L spapX, X') = min <||X X2 +KLp | @)+ ), D (W) + Y |IL- T||) (30)
i=1

i=1 j=1

where the first term ensures precise data reconstruction, the second term promotes sparsity
within the hidden layer, facilitating efficient feature extraction. The third term acts as a
safeguard against overfitting by penalizing excessive weights. Lastly, the fourth term
enhances classification accuracy by quantifying the label error. Here, L denotes the actual
label, and T represents the desired label.

3.7 Graph autoencoder

Graph Autoencoder (GAE) (Pan et al. 2018) is a power method for reducing the
dimensionality of graph data, enhancing efficiency in graph analytics. It takes a graph
as input and outputs a condensed vector representation that captures its essential feature.
Within GAE, the encoder converts the input graph into a lower-dimensional vector,
which the decoder uses to recreate the original graph. The model aims to minimize the
dissimilarity between input and output graphs while capturing essential graph features. The
loss function for GAE is defined as:

Loap(X.X") = min (|IX - X'|17) 31

where X’ is computed from the inner product of the hidden representation Z and its
transpose Z using the logistic sigmoid function 6(ZZ7). Z = GCN(F, X), obtained through
the Graph Convolutional Network (GCN) applied to the node features matrix F, is based
on the input data X.

3.7.1 Variational graph autoencoder

Variational Graph Autoencoder (VGAE) (Kipf and Welling 2016) is a framework for
learning interpretable latent representations of graph-structured data. It employs a
probabilistic approach to encode graph information effectively. VGAE consists of two
essential components: an encoder and a decoder. The encoder utilizes a Graph Convolution
Network (GCN) to transform graph nodes into a lower-dimensional latent space. It
generates latent variables z; for each node by sampling from Gaussian distributions. These
latent variables capture crucial structural information of the graph. The decoder functions
as a generative model, aiming to reconstruct the original graph structure using the latent
variables z;. It estimates the likelihood of connections (edges) between nodes based on
their corresponding latent vectors. The VGAE loss function combines a reconstruction term
and a regularization term to guide the learning process effectively:

Lygag = —E(q(Z|F, X))[log[p(X|2)]] + KL(¢(Z|F, X)||p(Z)) (32)

where g(Z|F,X) represents the encoding distribution, p(X|Z) models the likelihood of
the adjacency matrix given the latent variables, and KL(g(Z|F, X)||p(Z)) quantifies the
divergence between the encoding distribution and the prior distribution governing the
latent variables Z.
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3.7.2 Adversarial graph autoencoder

Adversarial Graph Autoencoder (AGAE) (Pan et al. 2018) leverages adversarial training
to acquire a lower-dimensional representation of the input graph. It employs an encoder to
map graph nodes to this lower-dimensional space and a decoder to reconstruct the original
graph. AGAE integrates an adversarial component, akin to a discriminator, to ensure the
learned embeddings preserve the graph structure. This unsupervised model combines
autoencoder-based reconstruction with adversarial training to generate high-quality graph
representations. The AGAE loss function is defined as follows:

Lagag = E(HNPZ)[log D(Z)] + Ex[log(1 — D(G(F, X)))] (33)

where G(-) represents the generator, and D(-) signifies the discriminator. The
discriminator’s role is to distinguish between the real input graph, p_, and the reconstructed
graph generated by the generator G(F, X).

3.7.3 Graph attention autoencoder

Graph Attentional Autoencoder (GAAE) (Salehi and Davulcu 2019) is a variant of graph
autoencoders that combines Graph Attention Network (GAT) with GAE. It employs
attention mechanisms to weigh the importance of neighboring nodes and edges during the
reconstruction process. In essence, GAAE aims to learn a low-dimensional representation
of a graph while preserving its structural information using attention mechanisms. The
GAAE loss function is defined as follows:

Lopag = min ([|IX — Sigmoid(ZZ"))||2) (34)

in which Z represents the hidden layer representation of node v. The calculation of Zi(l) is
based on the formula:

7z’ =q ) aijW(l‘l)Z;[_])) (35)

=

where N; denotes the set of neighbors of node v;, and W'D represents the learnable
parameter matrix. The attention coefficient a; is computed using the following formula:

exp(6M(a’ [Wx;[|Wx;1)

7Y o exp(6M,al (W, [Wx,1) (36)

where M represents topological weights, and 6 is the LeakyReLU activation function.

3.8 Masked autoencoders

Masked AE (MAE) is a variant of autoencoder used for sequence modeling, particularly in
vision and NLP. It operates by taking a sequence of data and randomly masking or hiding
some of the elements. The model’s task is to predict the masked or missing elements based
on the context provided by the unmasked portions. This training approach enables MAE to
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generate coherent and contextually appropriate text or videos, making them valuable for
tasks like text completion (Zhang et al. 2022), text generation (Zhang et al. 2023,) language
modeling, image captioning (Alzu’bi et al. 2021) and data augmentation (Xu et al. 2022).

3.8.1 Graph masked autoencoder

Graph Masked Autoencoder (GMAE) (Hou et al. 2022) is a simplified and cost-effective
approach for self-supervised graph representation learning. Unlike most GAEs that focus
on reconstructing graph structures, GMAE’s core emphasis is on feature reconstruction
through masking. Additionally, GMAE departs from using MSE, opting for the cosine
error, which benefits cases where feature magnitudes vary, common in graph node
attributes. The primary objective of GMAE is to reconstruct the masked features of nodes,
V' C V, given the partially observed node signals. Formally, for GMAE, the Loss function
is as follow, where it is averaged over all masked nodes,

T
X,z

Y
.1
L = min — l———], 721 37
VAR |v'|2( ||xi||.||zi||> GD

v,eV!

3.8.2 Contrastive masked autoencoder

Contrastive Masked Autoencoders (CMAE) (Huang et al. 2022) is a novel self-supervised
pre-training method designed to enhance the learning of comprehensive and versatile
vision representations. CMAE comprises two distinct branches: the online branch,
characterized by an asymmetric encoder-decoder configuration, and the target branch,
featuring a momentum-updated encoder. During the training process, the online encoder
is tasked with reconstructing original images from latent representations of masked images
with positional embeddings added. The loss uses cosine similarity p between (2 and zf )
and negative ; pairs. The final objective function is as follow,

(—exr)(%))
Levae = min| [|Y,, = Y, [} + Alog ——————— (38)
exp(L) + T, exp()

3.8.3 Self-distillated masked autoencoder

Self-Distilled Masked AutoEncoder (SDMAE) (Chen et al. 2022) is composed of two
branches: a student branch equipped tasked with reconstructing missing information, and
a teacher branch responsible for generating latent representations of masked tokens. In this
approach, a student network f, trained through gradient descent using % as inputs and a
teacher network f. Based on the MAE method, a value normalization function is proposed
for the teacher outputs as fy(x;). This function calculates the mean and standard deviation
of feature values within a patch. Subsequently, the optimization objective involves
minimizing the normalized teacher features with the output features of the student decoder,
utilizing feature cosine similarity as follow,
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Yo M (x)f5 (%)

—— — (39)
VX M) T, mi(fp ()

Table 4 presents a comprehensive summary of different autoencoder methods, offering
insights into the specific enhancements each method brings to the table as well as the loss
functions they employ for optimization.

Lspmag = min(log g,,(£]%)) ~ min

4 Application autoencoder

AEs have been widely used in various domains, including computer vision, natural
language processing, complex network analysis, recommenders, anomaly detection,
speech recognition, and more. Different types of autoencoder architectures have been
proposed to address specific challenges and improve performance in these domains.
For example, convolutional autoencoders are commonly used in image processing
tasks, while recurrent autoencoders are well-suited for sequential data processing. In
addition, variational autoencoders have been developed for generating new data samples
and improving model generalization. Although each architecture has its own advantages
and limitations, it is important to consider the specific requirements of the application
domain when selecting an appropriate architecture. Figure 5 provides an overview of
the applications of autoencoders in various domains, which can be used as a starting
point for selecting an appropriate architecture. However, further research is needed to
investigate which architectures are more suitable for which application categories and
which architectures are more popular in specific domains.

Application of
Autoencoder
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Fig.5 The process of creating the consensus matrix, including the generation of random walks of different
lengths and their combination
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4.1 Machine vision

Machine vision utilizes computer algorithms and software to analyze and interpret
images or video data, aiming to enable machines to understand and interact with
the visual world (Jain et al. 1995). AEs play a vital role in various machine vision
applications by learning to extract meaningful image features and reducing data
dimensionality. These applications encompass tasks such as image classification
(Vincent et al. 2010), image clustering (Guo et al. 2017), image segmentation
(Myronenko 2019), image inpainting (Bertalmio et al. 2000), image generation (Vahdat
and Kautz 2020), object detection (Liang et al. 2018), and 3D shape analysis (Todd
2004).

AEs are instrumental in image classification. Methods like Semi-supervised stacked
distance autoencoder (Hou et al. 2020) enhance feature representation by incorporating
semi-supervised learning, utilizing both labeled and unlabeled data to learn inter-data
point distances. Deep Convolutional Autoencoders (DCAE) aid in semi-supervised
classification, as seen in Geng et al. (2015), where they pre-train on unlabeled Synthetic
Aperture Radar (SAR) images and fine-tune using labeled data for high-resolution SAR
images classification.

AEs are also valuable in image clustering, where they learn compressed image
representations for grouping similar images in the latent space. This technique involves
training a clustering algorithm like K-means on the latent space, as described in
references Song et al. (2013) and Yang et al. (2017). Additionally, AEs can be used for
unsupervised image clustering, making them suitable for scenarios with limited labeled
data.

AEs are instrumental in image segmentation, with a wide array of applications that
enhance the precision and efficiency of this critical computer vision task. By learning
meaningful feature representations from image data, AEs provide a valuable foundation
for distinguishing objects and boundaries in images. Their capability for dimensionality
reduction streamlines the processing of high-resolution images, making segmentation
algorithms computationally more tractable (Zhang et al. 2019). AEs also excel in noise
reduction, eliminating unwanted artifacts from images, which is pivotal for accurate
segmentation (Tripathi 2021). They are integral in semantic segmentation (Ohgushi
et al. 2020), where they classify each pixel in an image, and instance segmentation (Lin
et al. 2020), distinguishing individual object instances. Furthermore, AEs contribute
to medical image segmentation (Ma et al. 2022), aiding in the precise identification
of structures and anomalies in healthcare images. Overall, AEs substantially elevate
the accuracy and efficiency of image segmentation tasks, encompassing a range of
applications that extend from object recognition to medical diagnosis.

AEs find significant applications in the domain of image inpainting, a process
of reconstructing missing or corrupted parts of an image. They excel at capturing
complex patterns and textures within images, making them invaluable for this task.
AEs, particularly VAEs and GANSs, offer high-quality inpainting results by learning to
generate realistic and coherent content to fill in the gaps (Tian et al. 2023; Han and
Wang 2021). They effectively model the underlying structures and features of images,
ensuring that the inpainted regions seamlessly blend with the surrounding content.

AEs find versatile applications in image generation tasks, contributing to the creation
of high-quality and diverse visual content. They serve as a foundational component
in generative models, VAEs and GANSs, enabling the synthesis of realistic and novel
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images (Huang and Jafari 2023). AEs are essential in encoding and decoding operations,
effectively generating images with specific features, styles, and content (Xu et al. 2019).
They also play a vital role in style transfer, where they transform images to adopt the
artistic characteristics of other images or styles (Kim et al. 2021).

AEs play a role in object detection by extracting valuable features from images or video
frames, improving detection accuracy. Convolutional AEs are used to learn compressed
image representations that enhance the performance of object detection algorithms, such
as Region-based Convolutional Neural Networks (R-CNN) (Ding et al. 2019). VAE further
enhanes object detection accuracy, as seen in the integration of VAE with You Only Look
Once (YOLO) (Redmon et al. 2016).

In the domain of 3D shape analysis, AEs learn compressed representations for tasks like
shape generation, completion, and retrieval. Achieving a disentangled latent representation
that separates various factors of variation is a challenge. Recent research introduces
methods like Split-AE (Saha et al. 2022) and 3D Shape Variational Autoencoder Latent
Disentanglement (Foti et al. 2022), addressing this challenge. Other approaches employ
deep learning features for 3D shape retrieval by projecting 3D shapes into 2D space and
utilizing AEs for feature learning (Zhu et al. 2016). Additionally, architectures like point-
cloud AEs combined with VAEs are explored to partition the latent space and enhance 3D
shape analysis (Aumentado-Armstrong et al. 2019).

While AEs offer valuable capabilities in various machine vision applications, their
effectiveness often depends on the specific task and dataset characteristics, and they may
be complemented by specialized models in certain scenarios.

4.2 NLP

NLP is a field that explores how computers can understand and work with human
language in speech or text form to perform useful tasks (Chowdhary and Chowdhary
2020). This area mainly concentrates on methods for handling text data, including tasks
like categorizing text (text classification) (Kowsari et al. 2019), grouping similar texts
together (text clustering) (Aggarwal and Zhai 2012), generating new text (text generation)
(McKeown 1992), and assessing the sentiment expressed in text (sentiment analysis)
(Medhat et al. 2014). To tackle the complexities of working with textual data, researchers
have developed advanced models, often incorporating AEs. These models have proven
effective in addressing the challenges associated with processing text data (Li et al. 2023).
AEs play a versatile role in text classification tasks, offering feature learning to capture
crucial patterns in text data (Guo et al. 2023; Ye et al. 2022), dimensionality reduction
for efficient processing of high-dimensional text features (Le et al. 2023; Che et al. 2020),
noise reduction to clean and enhance noisy text (Garcia-Mendoza et al. 2022; Che et al.
2020), and semi-supervised learning for improved classification using limited labeled
data (Wu et al. 2019; Xu et al. 2017). They also excel in topic modeling by uncovering
underlying themes within text documents (Paul et al. 2023; Smatana and Butka 2019),
aid in anomaly detection to identify unusual patterns (Gorokhov et al. 2023; Bursic
et al. 2019), and enable coherent text generation (Semeniuta et al. 2017; Zhao et al.
2021). Their adaptability and versatility make them indispensable tools in NLP and text
analysis, enhancing various aspects of text classification. Another application of AE in
the field of NLP is text clustering. In this context, AEs have been applied to organize text
documents into meaningful groups. One approach utilizes stacked AEs, combining them
with k-means clustering to effectively group text documents into meaningful clusters
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(Hosseini and Varzaneh 2022). In Deep Embedded Clustering (DEC), AEs play a pivotal
role by initializing feature representations of data points and serving as the foundation for
similarity computations during the clustering process. The embeddings learned by AEs
are jointly optimized with cluster assignments, thereby enhancing the overall quality of
clustering results (Xie et al. 2016; Daneshfar et al. 2023). AEs also provide a solution
to the challenges of short text clustering. They address the sparsity problem in short text
representations by employing low-dimensional continuous representations or embeddings
like Smooth Inverse Frequency (SIF) embeddings. Here, the encoder maps the input
short texts to a lower-dimensional continuous representation, and the decoder strives to
reconstruct the input from this representation. AEs are used to encode and reconstruct
these SIF embeddings, resulting in improved short text clustering quality (Hadifar et al.
2019).

4.3 Complex network

Autoencoders have emerged as valuable tools in complex network analysis, playing a
pivotal role in transforming and enhancing network data for various tasks, including
network embedding (Cui et al. 2018), deep clustering (Berahmand et al. 2023), and link
prediction (Martinez et al. 2016). These applications harness the capability of autoencoders
to capture complex, non-linear relationships within network data, enabling more effective
and insightful analyses.

Network embedding involves learning compact representations of nodes and edges
in a network. Autoencoders excel in this task by seeking optimal non-linear functions to
preserve intricate graph structures. For instance, the Structural Deep Network Embedding
(SDNE) method (Wang et al. 2016) employs a deep autoencoder approach to address
challenges such as high non-linearity, structure preservation, and sparsity. It utilizes
multiple non-linear layers to preserve neighbor structures of nodes, enhancing the depth
of representation learning. Another method, DNGR (Cao et al. 2016), captures both the
weighted graph structure and nodes’ non-linear characteristics by employing a random
surfing model inspired by PageRank. This approach constructs node representations
through a weighted transition probability matrix and employs stacked denoising
autoencoders for latent representation learning. Additionally, the adversarial framework
ARGA (Pan et al. 2018) aims to balance graph structure reconstruction and enforcing
latent code adherence to a prior distribution, producing robust graph representations.

Deep clustering focuses on dividing a network into meaningful clusters of nodes with
similar attributes or behaviors. The Marginalized Graph Autoencoder (MGAE) augments
autoencoder-based representation learning with GCN to achieve deep node representations
(Wang et al. 2017). Shaohua Fan et al. introduce the One2Multi graph autoencoder (Fan
et al. 2020), which learns node embeddings by reconstructing multiple graph views
using one informative graph view and content data. This approach effectively captures
shared feature representations and optimizes cluster label assignments and embeddings
through self-training and autoencoder-based reconstruction. In contrast, the N2D method
(McConville et al. 2021) simplifies deep clustering by replacing the clustering network with
an alternative framework, reducing the complexity of typical deep clustering algorithms.

Link prediction aims to predict missing or future connections in a network based on
observed data. In this context, the Heterogeneous Hypergraph Variational Autoencoder
(HeteHG-VAE) transforms Heterogeneous Information Networks (HINs) into
heterogeneous hypergraphs, capturing both high-order semantics and complex relationships
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while preserving pairwise topology (Fan et al. 2021). Bayesian deep generative
frameworks are used to learn deep latent representations, improving link prediction in
HINs. Another method (Salha et al. 2019) inspired by Newtonian gravity extends the graph
autoencoder and VAE frameworks to address link prediction in directed graphs, effectively
reconstructing directed graphs from node embeddings. Lastly, the Multi-Scale Variational
Graph Autoencoder (MSVGAE) introduces a novel graph embedding framework that
leverages graph attribute information through self-supervised learning (Guo et al. 2022).

In conclusion, autoencoders are versatile tools for intricate network analysis,
contributing significantly to tasks such as network embedding, deep clustering, and link
prediction by capturing complex patterns, enhancing representations, and enabling precise
predictions.

4.4 Recommender system

Autoencoders find valuable applications in recommendation systems, which aim to suggest
items to users based on their historical behavior or preferences. Recommender systems
play a pivotal role in various domains, including e-commerce, social media, and online
content platforms, offering personalized recommendations to users (Zhang et al. 2019).
However, traditional recommender systems grapple with the challenges posed by the
immense volume, complexity, and dynamic nature of information (Zhang et al. 2020).

The concept behind autoencoder-based recommender systems involves using AEs to
acquire a lower-dimensional representation of both items and users. This representation
can subsequently predict a user’s preferences for items they haven’t yet interacted with.
Autoencoder-based recommender systems fall into two categories: pure autoencoder
models and integrated autoencoder models, depending on the model architecture employed
(Zhang et al. 2020).

In pure autoencoder models, the autoencoder serves as the sole architecture for
recommendation. These models rely exclusively on user-item interaction data and/
or item features to learn a compressed representation of the data, enabling personalized
recommendations. Examples of pure autoencoder models include the Collaborative
Denoising Autoencoder (CDAE) (Wu et al. 2016) and Deep Content-based Autoencoder
(DCAE) (Van den Oord et al. 2013). CDAE is tailored for collaborative filtering data, where
user-item interactions form a sparse matrix. It learns low-dimensional representations
of users and items by reconstructing missing entries in the matrix. In contrast, DCAE
handles content-based data, representing items as feature vectors. This model learns low-
dimensional representations of items by reconstructing the original feature vectors (Wang
et al. 2015). Additional examples include Collaborative Filtering Neural Network (CFN)
(Strub et al. 2016, 2015), Hybrid Collaborative Recommendation via Semi-Autoencoder
(HCRSAE) (Zhang et al. 2017), and Imputation-boosted Denoising Autoencoder (IDAE)
(Lee and Lee 2017). Each model has its specific strengths and limitations, rendering them
suitable for distinct recommendation scenarios.

In integrated autoencoder models, the autoencoder collaborates with other
recommendation models, such as matrix factorization or neural network-based models,
to enhance recommendation accuracy. These models use the autoencoder to learn a
compressed representation of the data, which is then integrated with other models to
generate recommendations (Strub et al. 2016). Examples of integrated autoencoder models
include the Hybrid Collaborative Content-based Autoencoder (HCCAE) (Zhang et al.
2017), Variational Autoencoders for Collaborative Filtering (VAE-CFs) (Liang et al. 2018),
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and Neural Collaborative Autoencoder (NCAE) (He et al. 2017). HCCAE combines the
learned representations with other recommendation models, while NCAE utilizes a neural
network to generate recommendations directly from the learned representations. These
models leverage additional information such as content features, social relationships, or
visual data to enhance their recommendations. Each model possesses unique characteristics
and objectives, making them suitable for addressing various challenges like cold start
problems, sequential data, semantic information, or visual styles.

4.5 Anomaly detection

While AEs have the ability to learn complex patterns in data and detect anomalies that are
not easily identifiable, it has been widely used in the field of anomaly detection (Pang et al.
2021). An anomaly detection model can be used to detect a fraudulent transaction or any
highly imbalanced supervised tasks (Chandola et al. 2009). AEs can be used in supervised
(Alsadhan 2023), unsupervised (Lopes et al. 2022), and semi-supervised (Akcay et al.
2018; Ruff et al. 2019) anomaly detection tasks.

In supervised anomaly detection, AEs are trained on both normal and anomalous
data. The AE is first trained on normal data to learn the underlying patterns and features
of normal data. Then, the AE is fine-tuned on the combined normal and anomalous
data to capture the difference between normal and anomalous data. During training, the
objective is to minimize the reconstruction error between the input and the output of the
AE. After training, the reconstruction error of the test data is compared to a threshold. If
the reconstruction error is above the threshold, the input data is classified as anomalous
(Pang et al. 2021). This approach combines the feature learning capabilities of AEs with
the discriminative power of supervised classifiers, enhancing the accuracy of anomaly
detection in real-world applications, including fraud detection (Alsadhan 2023; Debener
et al. 2023; Fanai and Abbasimehr 2023), network security (Ghorbani and Fakhrahmad
2022; Lopes et al. 2022), and fault detection (Ding et al. 2022; Ying et al. 2023) in
industrial processes.

In unsupervised tasks, the idea is to train AEs on only sample data of one class
(majority class). This way the network is capable of re-constructing the input with good
or less reconstruction loss. Now, if a sample data of another target class is passed through
the AE network, it results in comparatively larger reconstruction loss, a threshold value
of reconstruction loss (anomaly score) can be decided, larger than that can be considered
an anomaly (Sakurada and Yairi 2014). This inherent ability to capture complex data
representations without labeled anomalies makes AEs effective in detecting anomalies,
whether in cyber-security for identifying network intrusions (Lopes et al. 2022; An
et al. 2022; Lewandowski and Paffenroth 2022), in manufacturing for spotting defects
(Papananias et al. 2023; Sudo et al. 2021), or in finance for fraud detection (Du et al. 2022;
Jiang et al. 2023; Kennedy et al. 2023). The versatility of AEs and their capacity to adapt
to diverse data types contribute to their widespread use in unsupervised anomaly detection
scenarios, enhancing system security and reliability.

AEs have been employed effectively in semi-supervised anomaly detection by
capitalizing on their capacity to learn rich data representations (Zhou et al. 2023). In this
context, a portion of the training data is labeled as normal, while the majority remains
unlabeled. The AE is trained to reconstruct the normal data accurately, and during this
process, it learns to capture the underlying structure and features of the normal class.
When presented with new, unlabeled data, the AE endeavors to reconstruct it (Ruff et al.
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2019). Anomalies, which deviate significantly from the learned normal patterns, result
in high reconstruction errors. By setting a suitable threshold on the reconstruction error,
anomalies can be effectively detected. This semi-supervised approach minimizes the need
for extensive labeled anomaly data and has proven effective in various domains, including
fraud detection (Charitou et al. 2020; DeLise 2023; Dzakiyullah et al. 2021), network
security (Dong et al. 2022; Hara and Shiomoto 2020; Hoang and Kim 2022; Thai et al.
2022), and quality control (Cacciarelli et al. 2022; Sae-Ang et al. 2022), where labeled
anomalies are often scarce.

4.6 Speech processing

Speech processing is focused on enabling machines to understand and interpret human
speech with the ultimate objective of creating systems that facilitate natural and intuitive
interaction between humans and machines (Hickok and Poeppel 2007). AEs have found
numerous applications in speech processing, especially in speech denoising (Bhangale
and Kothandaraman 2022; Tanveer et al. 2023), speech recognition (Kumar et al. 2022;
Sayed et al. 2023), speech representation (Alex and Mary 2023; Seki et al. 2023), speech
compression (Li et al. 2021; Srikotr 2022), feature representation (Shixin et al. 2022; Tian
et al. 2022), and speech emotion recognition (Dutt and Gader 2023; Gao et al. 2023).

Speech denoising is a vital process aimed at eliminating unwanted noise from speech
signals (Azarang and Kehtarnavaz 2020). AEs have emerged as a powerful tool for this
task, where the objective is to enhance the quality of speech by removing noise (Hosseini
et al. 2021). In the denoising AE framework, the model is trained using noisy speech
samples, with the noisy speech serving as the input and the corresponding clean speech
as the target. Through this training, the AE becomes adept at reconstructing noise-free
speech from noisy inputs, enabling it to effectively denoise unseen speech signals. The
encoder component of the AE extracts informative features from the noisy speech, while
the decoder component reconstructs the clean speech based on these extracted features.
Denoising AEs have demonstrated remarkable efficacy in mitigating various types of noise
in speech signals, including background noise, reverberation, and distortion.

Speech recognition is the process of converting spoken words into text or commands
that a computer can understand and execute (Gaikwad et al. 2010). AEs can be used in
speech recognition as a pre-processing step for feature extraction. The AE can learn to
encode the raw audio signals into a more compact and meaningful representation of the
speech signal, which can then be used as input to a speech recognition model. This can
improve the accuracy and efficiency of speech recognition systems, especially in noisy or
variable acoustic environments (Sayed et al. 2023; Wubet and Lian 2022). Additionally,
AEs can be used for speaker identification, where the AE can learn to distinguish between
different speakers based on their speech patterns (Liao et al. 2022; Rituerto-Gonzalez
and Peldaez-Moreno 2021). A popular approach is using a CNN as the encoder to extract
local features from the audio signal, and a RNN as the decoder to capture the temporal
dependencies in the speech signal, with the output of the RNN decoder able to transcribe
the speech signal (Palaz and Collobert 2015; Rusnac and Grigore 2022).
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4.7 Other

Autoencoders have diverse applications in fault diagnosis, intrusion detection, and
hyperspectral imaging. They help detect faults in systems, identify network intrusions, and
enhance the analysis of hyperspectral data for applications like remote sensing. Different
autoencoder versions are tailored to meet specific challenges in these domains.

4.7.1 Fault diagnosis

Fault diagnosis is the process of identifying, isolating, and characterizing faults or
anomalies in a system or machine. It involves analyzing the behavior of the system
or machine and identifying any deviations from normal or expected behavior. Fault
diagnosis is critical in various fields, including manufacturing, automotive, aerospace,
and healthcare, as it can help prevent failures, reduce downtime, and improve safety
and reliability (Gao et al. 2015). Autoencoders have demonstrated significant potential
in fault diagnosis applications. By training an autoencoder on normal data, it can
detect deviations from the norm, indicating the presence of a fault or anomaly. To use
an autoencoder for fault diagnosis, the initial step is to collect a dataset of normal
operating conditions for the system or equipment. This dataset is then employed to
train the autoencoder to learn the normal data patterns. Subsequently, it can be applied
to new data for fault diagnosis by identifying deviations from these learned patterns
citeyang2022autoencoder.

One crucial aspect of using autoencoders for fault diagnosis is selecting an
appropriate anomaly detection threshold. Typically, this threshold is determined based
on the distribution of the reconstruction error for normal data. Any data that produces a
reconstruction error exceeding the threshold is flagged as an anomaly (Ma et al. 2018).
Autoencoders are effective for fault diagnosis because they can autonomously learn
intricate patterns and recognize deviations from those patterns, eliminating the need
for explicit feature engineering. This capability makes them well-suited for detecting
subtle anomalies that might be challenging to identify using traditional fault diagnosis
methods (Lei et al. 2020).

4.7.2 Intrusion detection

The process of intrusion detection involves continuous monitoring of a system or
network to identify and respond to instances of malicious activity or breaches of
established policies. Its purpose is to detect anomalous behavior or indicators of
potential attacks to prevent or mitigate any potential damage (Farahnakian and
Heikkonen 2018). Al-Qatf et al. (2018) have proposed a deep autoencoder-based
intrusion detection system that utilizes enhanced representative features to enhance
intrusion detection accuracy. The autoencoder extracts representative features from
network traffic data, which are subsequently employed to train a classification model
for intrusion detection. Another technique to improve intrusion detection systems is
the use of Stacked Sparse Autoencoders (SSAE). Yan and Han (2018) utilize SSAE,
which is trained on a combination of normal and attack traffic to uncover underlying
patterns in network traffic data. These extracted features serve as the basis for training
a classifier to detect attacks.
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Autoencoders can play a significant role in automatic feature extraction for intrusion
detection systems. Kunang et al. (2018) propose a method in which an autoencoder is
employed to extract relevant features from raw network traffic data. These extracted
features are then used as input for a classifier, such as a Support Vector Machine
(SVM), to distinguish between normal and malicious traffic. Compared to traditional
rule-based or signature-based methods, autoencoders have the potential to enhance the
accuracy and efficiency of intrusion detection systems (Ieracitano et al. 2020).

4.7.3 Hyperspectral imaging

AEs find wide-ranging applications in hyperspectral image analysis due to their ability
to learn concise representations of high-dimensional data. Hyperspectral imaging is a
potent technique for capturing detailed spectral information about objects or scenes. It
involves multi-dimensional data where each pixel contains a spectrum of reflectance
or radiance values across numerous narrow, contiguous spectral bands (Jaiswal et al.
2023).

AEs are employed for various tasks in managing hyperspectral data, including
hyperspectral data compression (Minkin et al. 2021), hyperspectral unmixing (Ksiazek
et al. 2022), blind hyperspectral unmixing (Palsson et al. 2022), and dimensionality
reduction (Zabalza et al. 2016). In data compression, AEs condense hyperspectral data
while retaining crucial information, facilitating subsequent analysis and processing.
Hyperspectral unmixing entails decomposing a hyperspectral image into its constituent
parts, referred to as endmembers. AEs play a pivotal role in reconstructing the spectral
profiles of these identified components (endmembers) and determining their proportional
mixing amounts (abundances). This is indispensable for enhancing the efficiency of
hyperspectral analysis and classification tasks (Su et al. 2019). Blind hyperspectral
unmixing involves deconstructing the recorded spectrum of a pixel into a mixture of
endmembers while simultaneously discerning the proportions or fractions of these
endmembers within the pixel. Training an AE on hyperspectral images results in a lower-
dimensional representation of the data, rendering it more manageable for subsequent
analysis (Petersson et al. 2016).

5 Autoencoder libraries and practical applications

The development and availability of open-source libraries for various versions of AEs
have greatly facilitated research in this field. Three popular libraries that are widely
used for building and training autoencoder models are TensorFlow, PyTorch, and
Keras. Each of these libraries has its strengths and is preferred by different segments of
the machine learning and deep learning community. Table 5 presented in this section
provides a comprehensive overview of the source code for our proposed category of AE
variants. Researchers can access these code repositories to implement and test different
versions of AEs, and to compare their performance on various tasks. For instance, one
could use the available code to train a variational AE for image reconstruction or a graph
attention AE for node embedding. These libraries are not only useful for research but
also for practical applications, as they enable practitioners to easily deploy pre-trained
models on their own datasets. Table 6 presents a comprehensive overview of various AE
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Table5 AE Models and their corresponding years of publication, programming languages, and code
repositories

Subsection Model Year Language Code Repository
ReAE SAE 2011 Python https://github.com/siddharth-agrawal/Sparse-Autoencoder
CAE 2011 Python https://github.com/avijit9/Contractive_Autoencoder_in_
Pytorch
LAE 2015 Python https://github.com/IIMioFrizzantinoAmabile/Laplacian_
Autoencoder
OAE 2019 Python https://github.com/Ghost———Shadow/orthogonal-autoe
ncoder
RoAE DAE 2010 Python https://github.com/jatinshah/ufldl- utorial/tree/master/assig
nment2
M-DAE 2012 Python https://github.com/douxu896/mSDA
L_2,1-RAE 2018 Python -
GAE VAE 2015 Python https://github.com/keras-team/keras/blob/master/examples/
AAE 2015 Python https://github.com/Naresh1318/Adversarial_Autoencoder
BAE 2021 Python https://github.com/bangxiangyong/bae-anomaly-uncertainty
DiffusionAE 2022 Python https://github.com/phizaz/diffae
CAE CVAE 2015 Python https://github.com/o-tawab/Variational-Autoencoder-pytorch
ConvLSTM 2016 Python https://github.com/AnthonySMaida/convLSTM-autoencoder
CSAE 2017 Python https://github.com/CyprienGille/Sparse-Convolutional-
AutoEncoder
RAE LSTMAE 2016 Python https://github.com/iwyoo/LSTM-autoencoder

GRUAE 2014 Python https://github.com/satolab12/GRU-Autoencoder
BiRNNAE 2015 Python https://github.com/ecdraayer/Bidirectional_Autoencoder

SSAE SSVAE 2017 Python https://github.com/gcolmenarejo/asva
DVAE 2016 Python https://github.com/AndrewSpano/Disentangled-Variational-
Autoencoder
LSRAE 2019 Python -
GaAE VGAE 2016 Python https://github.com/tkipf/gae
AGAE 2018 Python https://github.com/GRAND-Lab/ARGA
GAAE 2019 Python https://github.com/sktoyo/cancerGATE
MAE GMAE 2022 Python https://github.com/THUDM/GraphMAE.
CMAE 2022 Python https://github.com/ZhichengHuang/CMAE

SDMAE 2022 Python https://github.com/AbrahamYabo/SdAE

models and their diverse applications in machine learning. Each model is associated with
specific applications, datasets, methodology, evaluation metrics, and performance results.
Notable applications include feature learning, dimensionality reduction, graph-based data
representation, generative modeling, anomaly detection, and sequential data analysis. The
evaluation metrics vary depending on the application but commonly include error rates,
accuracy, precision, recall, F1 score, Area Under the Curve (AUC), and more. These AEs
demonstrate their effectiveness in tasks ranging from image classification and sentiment
analysis to graph representation learning and acoustic novelty detection, showcasing
their versatility in addressing a wide array of machine learning challenges across various
domains.
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6 Future directions

Despite in-depth research on autoencoders and their improved algorithms in recent years,
the following issues still need to be addressed.

6.1 Semi-supervised and self-supervised learning in autoencoder

Autoencoders, a prominent tool in unsupervised learning, primarily function without the
need for labeled data. However, a significant research gap lies in exploring their adaptability
to semi-supervised learning paradigms. This entails investigating methodologies for
integrating labeled information into the training process, potentially enhancing their
performance when only limited labeled data is available. Additionally, another intriguing
avenue for exploration is the incorporation of self-supervised learning techniques within
autoencoder frameworks. Such an endeavor aims to allow autoencoders to autonomously
learn meaningful representations from unlabeled data, reducing their reliance on extensive
labeled datasets. Addressing these aspects could significantly expand the applicability and
effectiveness of autoencoders across various real-world scenarios with limited labeled data
resources.

6.2 Hypergraph autoencoder

Autoencoders have proven effective in preserving the non-linear structure of data due to
their deep learning capabilities. However, they face a challenge in preserving higher-order
neighbors in complex datasets. While autoencoders can address the former concern, they
may not inherently handle the latter. To bridge this gap, integrating hypergraph-based
representations of data into the autoencoder framework emerges as a potential solution. By
transforming the data into a hypergraph and feeding it as input to the autoencoder, it may
be possible to preserve the critical high-order neighbor relationships. This approach holds
promise for enhancing the utility of autoencoders in scenarios where preserving intricate
data dependencies is crucial, potentially leading to improved performance across various
applications.

6.3 Tuning parameter with reinforcement learning

Constructing an autoencoder involves crucial decisions about parameters like the number
of hidden layers and nodes, which significantly influence the model’s final performance.
While parameter selection is essential, the process of identifying the most suitable
configuration can be challenging. In current research efforts, some have explored leveraging
reinforcement learning techniques in conjunction with autoencoder construction. This
novel approach aims to optimize autoencoder parameters efficiently, potentially enhancing
model performance. The integration of reinforcement learning into parameter tuning
represents an evolving research gap that holds promise for automating and improving the
autoencoder design process.
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6.4 Handling multi-modal and heterogeneous data with autoencoders

Autoencoders are proficient at capturing patterns in data, especially in scenarios involving
different types of data sources or modalities, like text, images, and numerical features,
which make data structures more complex. The current challenge lies in effectively
handling such multi-modal and heterogeneous datasets. Existing autoencoder models
may struggle to efficiently capture and integrate the information present in these intricate
datasets. As a result, there is a research gap in developing autoencoder variants or
techniques that can adeptly manage multi-modal and heterogeneous data, leading to more
comprehensive and valuable data representations. Addressing this gap has the potential to
significantly enhance the applicability of autoencoders in various real-world applications.

7 Conclusion

Autoencoders have become a focal point in unsupervised learning due to their remarkable abil-
ity to uncover data features and serve as a valuable dimensionality reduction tool. This paper has
conducted a thorough examination of autoencoders, covering their fundamental principles and a
detailed classification of models based on unique characteristics. We have also explored their use
in various areas, from computer vision to natural language processing, highlighting their adapt-
ability. During this study, we’ve recognized both the advantages and occasional drawbacks of
autoencoders. By classifying and summarizing these models based on their unique traits, we’ve
revealed possible directions for future enhancements and innovations. This insight paves the way
for further progress in the field.

In summary, autoencoders have an important role in the field of machine learning,
and their significance is continuously growing. They have the remarkable ability to
find valuable insights in data and create smart results, which can greatly impact vari-
ous areas. We expect an ongoing journey of progress and important developments in
the field of autoencoders, ultimately leading to the creation of even more powerful and
intelligent solutions that benefit society as a whole. Autoencoders are positioned to fos-
ter innovation and shape the future of machine learning.

Author contributions KB and FD has made a substantial contribution to the concept of the article and
drafted the article, ES has made an analysis of the article data, and YL and YX has revised the article.

Funding The authors have not disclosed any funding.

Data availability The data that support the findings of this study are available from the corresponding author
upon reasonable request.

Declarations

Conflict of interest The authors declared no potential conflicts of interest with respect to the research,
authorship, and/or publication of this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not

@ Springer



Autoencoders and their applications in machine learning: a... Page 450f52 28

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdi H, Williams LJ (2010) Principal component analysis. Wiley interdisciplinary reviews:
computational statistics 2(4):433-459

Aggarwal CC, Zhai C (2012) A survey of text clustering algorithms. Mining Text Data, 77-128

Akcay S, Atapour-Abarghouei A, Breckon TP (2018) Ganomaly: Semi-supervised anomaly detection via
adversarial training. In: Computer Vision-ACCV 2018: 14th Asian conference on computer vision,
Perth, Australia, December 2-6, 2018, Revised Selected Papers, Part III 14, Springer, pp 622-637

Alex SB, Mary L (2023) Variational autoencoder for prosody-based speaker recognition. ETRI J
45(4):678-689

Al-Qatf M, Lasheng Y, Al-Habib M, Al-Sabahi K (2018) Deep learning approach combining sparse
autoencoder with SVM for network intrusion detection. IEEE Access 6:52843-52856

Alsadhan N (2023) A multi-module machine learning approach to detect tax fraud. Comput Syst Sci Eng
46(1):241-253

Alzu’bi A, Albalas F, Al-Hadhrami T, Younis LB, Bashayreh A (2021) Masked face recognition using
deep learning: a review. Electronics 10(21):2666

An J, Cho S (2015) Variational autoencoder based anomaly detection using reconstruction probability.
Special Lecture IE 2(1):1-18

An P, Wang Z, Zhang C (2022) Ensemble unsupervised autoencoders and gaussian mixture model for
cyberattack detection. Inform Process Manag 59(2):102844

Aumentado-Armstrong T, Tsogkas S, Jepson A, Dickinson S (2019) Geometric disentanglement for
generative latent shape models. In: Proceedings of the IEEE/CVF international conference on
computer vision, pp 8181-8190

Azarang A, Kehtarnavaz N (2020) A review of multi-objective deep learning speech denoising methods.
Speech Commun 122:1-10

Balakrishnama S, Ganapathiraju A (1998) Linear discriminant analysis-a brief tutorial. Inst Signal
Inform Process 18(1998):1-8

Bank D, Koenigstein N, Giryes R (2020) Autoencoders. arXiv preprint arXiv:2003.05991

Bank D, Koenigstein N, Giryes R (2023) Autoencoders. Machine Learning for Data Science Handbook:
Data Mining and Knowledge Discovery Handbook 353-374

Bank D, Koenigstein N, Giryes R (2023) Autoencoders. Machine learning for data science handbook:
Data mining and knowledge discovery handbook, pp 353-374

Berahmand K, Li Y, Xu Y (2023) DAC-HPP: deep attributed clustering with high-order proximity
preserve. Neural Comput Appl pp 1-19

Bertalmio M, Sapiro G, CasellesV, Ballester C (2000) Image inpainting. In: Proceedings of the 27th
annual conference on computer graphics and interactive techniques, pp 417424

Bhangale KB, Kothandaraman M (2022) Survey of deep learning paradigms for speech processing.
Wireless Pers Commun 125(2):1913-1949

Bursic S, Cuculo V, D’Amelio A (2019) Anomaly detection from log files using unsupervised deep
learning. In: International symposium on formal methods, Springer, pp 200-207

Cacciarelli D, Kulahci M, Tyssedal J (2022) Online active learning for soft sensor development using
semi-supervised autoencoders. arXiv preprint arXiv:2212.13067

Cao S, Lu W, Xu Q (2016) Deep neural networks for learning graph representations. In: Proceedings of
the AAAI conference on artificial intelligence, vol. 30

Chai Z, Song W, Wang H, Liu F (2019) A semi-supervised auto-encoder using label and sparse
regularizations for classification. Appl Soft Comput 77:205-217

Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):1-58

Charitou C, Garcez Ad, Dragicevic S (2020) Semi-supervised gans for fraud detection. In: 2020
international joint conference on neural networks (IICNN), IEEE, pp 1-8

Charte D, Charte F, Garcia S, del Jesus MJ, Herrera F (2018) A practical tutorial on autoencoders for
nonlinear feature fusion: taxonomy, models, software and guidelines. Inform Fus 44:78-96

Che L, Yang X, Wang L (2020) Text feature extraction based on stacked variational autoencoder.
Microprocess Microsyst 76:103063

Chen S, Guo W (2023) Auto-encoders in deep learning-a review with new perspectives. Mathematics
11(8):1777

Chen Y, Liu Y, Jiang D, Zhang X, Dai W, Xiong H, Tian Q (2022) Sdae: Self-distillated masked
autoencoder. In: European conference on computer vision, Springer, pp 108-124

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2003.05991
http://arxiv.org/abs/2212.13067

28 Page 46 of 52 K. Berahmand et al.

Chen M, Xu Z, Weinberger K, Sha F (2012) Marginalized denoising autoencoders for domain adaptation.
arXiv preprint arXiv:1206.4683

Chowdhary K, Chowdhary K (2020) Natural language processing. Fundamentals of artificial
intelligence, pp 603—-649

Cui P, Wang X, Pei J, Zhu W (2018) A survey on network embedding. IEEE Trans Knowl Data Eng
31(5):833-852

Daneshfar F, Soleymanbaigi S, Nafisi A, Yamini P (2023) Elastic deep autoencoder for text embedding
clustering by an improved graph regularization. Expert Syst Appl 121780

Debener J, Heinke V, Kriebel J (2023) Detecting insurance fraud using supervised and unsupervised
machine learning. J Risk Insurance

Dehghan A, Ortiz EG, Villegas R, Shah M (2014) Who do i look like? determining parent-offspring
resemblance via gated autoencoders. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp 1757-1764

DeLise T (2023) Deep semi-supervised anomaly detection for finding fraud in the futures market. arXiv
preprint arXiv:2309.00088

Ding L, Liu G-W, Zhao B-C, Zhou Y-P, Li S, Zhang Z-D, Guo Y-T, Li A-Q, Lu Y, Yao H-W et al
(2019) Artificial intelligence system of faster region-based convolutional neural network
surpassing senior radiologists in evaluation of metastatic lymph nodes of rectal cancer. Chin Med
J 132(04):379-387

Ding S, Keal CA, Zhao L, Yu D (2022) Dimensionality reduction and classification for hyperspectral
image based on robust supervised Isomap. J Ind Prod Eng 39(1):19-29

Ding Y, Zhuang J, Ding P, Jia M (2022) Self-supervised pretraining via contrast learning for intelligent
incipient fault detection of bearings. Reliab Eng Syst Saf 218:108126

Dong Y, Chen K, Peng Y, Ma Z (2022) Comparative study on supervised versus semi-supervised machine
learning for anomaly detection of in-vehicle can network. In: 2022 IEEE 25th international conference
on intelligent transportation systems (ITSC), IEEE, pp 2914-2919

Du X, Yu J, Chu Z, Jin L, Chen J (2022) Graph autoencoder-based unsupervised outlier detection. Inf Sci
608:532-550

Dutt A, Gader P (2023) Wavelet multiresolution analysis based speech emotion recognition system using 1d
CNN LSTM networks. IN: IEEE/ACM Transactions on audio, speech, and language processing

Dzakiyullah NR, Pramuntadi A, Fauziyyah AK (2021) Semi-supervised classification on credit card fraud
detection using autoencoders. J Appl Data Sci 2(1):01-07

Fan H, Zhang F, Wei Y, Li Z, Zou C, Gao Y, Dai Q (2021) Heterogeneous hypergraph variational
autoencoder for link prediction. IEEE Trans Pattern Anal Mach Intell 44(8):4125-4138

Fanai H, Abbasimehr H (2023) A novel combined approach based on deep autoencoder and deep classifiers
for credit card fraud detection. Expert Syst Appl 217:119562

Fan S, Wang X, Sh, C, Lu E, Lin K, Wang B (2020) One2multi graph autoencoder for multi-view graph
clustering. In: Proceedings of the web conference 2020, pp 3070-3076

Farahnakian F, Heikkonen J (2018) A deep auto-encoder based approach for intrusion detection system.
In: 2018 20th international conference on advanced communication technology (ICACT), IEEE, pp
178-183

Foti S, Koo B, Stoyanov D, Clarkson MJ (2022) 3d shape variational autoencoder latent disentanglement
via mini-batch feature swapping for bodies and faces. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp 18730-18739

Gaikwad SK, Gawali BW, Yannawar P (2010) A review on speech recognition technique. Int J Comput Appl
10(3):16-24

Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-tolerant techniques-part I: fault
diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron 62(6):3757-3767

Gao Y, Wang L, Liu J, Dang J, Okada S (2023) Adversarial domain generalized transformer for cross-corpus
speech emotion recognition. IEEE Trans Affect Comput. https://doi.org/10.1109/TAFFC.2023.32907
95

Garcia-Mendoza J-L, Villasefior-Pineda L, Orihuela-Espina F, Bustio-Martinez L (2022) An autoencoder-
based representation for noise reduction in distant supervision of relation extraction. J Intell Fuzzy
Syst 42(5):4523-4529

Garson GD (2022) Factor analysis and dimension reduction in R: a social Scientist’s Toolkit. Taylor &
Francis, New York

Geng J, Fan J, Wang H, Ma X, Li B, Chen F (2015) High-resolution SAR image classification via deep
convolutional autoencoders. IEEE Geosci Remote Sens Lett 12(11):2351-2355

@ Springer


http://arxiv.org/abs/1206.4683
http://arxiv.org/abs/2309.00088
https://doi.org/10.1109/TAFFC.2023.3290795
https://doi.org/10.1109/TAFFC.2023.3290795

Autoencoders and their applications in machine learning: a... Page 47 of 52 28

Ghorbani A, Fakhrahmad SM (2022) A deep learning approach to network intrusion detection using
a proposed supervised sparse auto-encoder and SVM. Iran J Sci Technol Trans Electr Eng
46(3):829-846

Girin L, Leglaive S, Bie X, Diard J, Hueber T, Alameda-Pineda X (2020) Dynamical variational
autoencoders: a comprehensive review. arXiv preprint arXiv:2008.12595

Gorokhov O, Petrovskiy M, Mashechkin I, Kazachuk M (2023) Fuzzy CNN autoencoder for unsupervised
anomaly detection in log data. Mathematics 11(18):3995

Guo X, Liu X, Zhu E, Yin J (2017) Deep clustering with convolutional autoencoders. In: Neural information
processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18,
2017, Proceedings, Part II 24, Springer, pp 373-382

Guo Z, Wang F, Yao K, Liang J, Wang Z (2022) Multi-scale variational graph autoencoder for link
prediction. In: Proceedings of the Fifteenth ACM international conference on web search and data
mining, pp 334-342

Guo Y, Zhou D, Ruan X, Cao J (2023) Variational gated autoencoder-based feature extraction model for
inferring disease-Mirna associations based on multiview features. Neural Netw

Hadifar A, Sterckx L, Demeester T, Develder C (2019) A self-training approach for short text clustering. In:
Proceedings of the 4th workshop on representation learning for NLP (RepL4NLP-2019), pp 194-199

Han C, Wang J (2021) Face image inpainting with evolutionary generators. IEEE Signal Process Lett
28:190-193

Hara K, Shiomoto K (2022) Intrusion detection system using semi-supervised learning with adversarial
auto-encoder. In: NOMS 2020-2020 IEEE/IFIP network operations and management symposium,
IEEE, pp 1-8

Hasan BMS, Abdulazeez AM (2021) A review of principal component analysis algorithm for dimensionality
reduction. J Soft Comput Data Min 2(1):20-30

He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S (2017) Neural collaborative filtering. In: Proceedings of the
26th international conference on world wide web, pp 173-182

Hickok G, Poeppel D (2007) The cortical organization of speech processing. Nat Rev Neurosci 8(5):393-402

Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A (2016) beta-vae:
Learning basic visual concepts with a constrained variational framework. In: International conference
on learning representations

Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput
18(7):1527-1554

Hoang D-T, Kang H-J (2019) A survey on deep learning based bearing fault diagnosis. Neurocomputing
335:327-335

Hoang T-N, Kim D (2022) Detecting in-vehicle intrusion via semi-supervised learning-based convolutional
adversarial autoencoders. Veh Commun 38:100520

Hosseini S, Varzaneh ZA (2022) Deep text clustering using stacked autoencoder. Multimedia tools and
applications 81(8):10861-10881

Hosseini M, Celotti L, Plourde E (2021) Speaker-independent brain enhanced speech denoising. In: ICASSP
2021-2021 IEEE international conference on acoustics, speech and signal processing (ICASSP),
IEEE, pp 1310-1314

Hou L, Luo X-Y, Wang Z-Y, Liang J (2020) Representation learning via a semi-supervised stacked distance
autoencoder for image classification. Front Inform Technol Electron Eng 21(7):1005-1018

Hou Z, Liu X, Cen Y, Dong Y, Yang H, Wang C, Tang J (2022) Graphmae: Self-supervised masked graph
autoencoders. In: Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and
data mining, pp 594-604

Huang G, Jafari AH (2023) Enhanced balancing GAN: minority-class image generation. Neural Comput
Appl 35(7):5145-5154

Huang Z, Jin X, Lu C, Hou Q, Cheng M-M, Fu D, Shen X, Feng J (2022) Contrastive masked autoencoders
are stronger vision learners. arXiv preprint arXiv:2207.13532

Ieracitano C, Adeel A, Morabito FC, Hussain A (2020) A novel statistical analysis and autoencoder driven
intelligent intrusion detection approach. Neurocomputing 387:51-62

Jain R, Kasturi R, Schunck BG et al (1995) Machine vision, vol 5. McGraw-hill New York, New York

Jaiswal G, Rani R, Mangotra H, Sharma A (2023) Integration of hyperspectral imaging and autoencoders:
benefits, applications, hyperparameter tunning and challenges. Comput Sci Rev 50:100584

Jha S, Shah S, Ghamsani R, Sanghavi P, Shekokar NM (2023) Analysis of RNNs and different ML and
DL classifiers on speech-based emotion recognition system using linear and nonlinear features. CRC
Press, Boca Raton, pp 109-126

Jia K, Sun L, Gao S, Song Z, Shi BE (2015) Laplacian auto-encoders: an explicit learning of nonlinear data
manifold. Neurocomputing 160:250-260

@ Springer


http://arxiv.org/abs/2008.12595
http://arxiv.org/abs/2207.13532

28 Page 48 0f 52 K. Berahmand et al.

Jiang S, Dong R, Wang J, Xia M (2023) Credit card fraud detection based on unsupervised attentional
anomaly detection network. Systems 11(6):305

Kennedy RK, Salekshahrezaee Z, Villanustre F, Khoshgoftaar TM (2023) Iterative cleaning and learning of
big highly-imbalanced fraud data using unsupervised learning. J Big Data 10(1):106

Kim S, Jang H, Hong S, Hong YS, Bae WC, Kim S, Hwang D (2021) Fat-saturated image generation from
multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder
regularization. Med Image Anal 73:102198

Kipf TN, Welling M (2016) Variational graph auto-encoders. arXiv preprint arXiv:1611.07308

Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D (2019) Text classification
algorithms: a survey. Information 10(4):150

Ksiazek K, Glomb P, Romaszewski M, Cholewa M, Grabowski B, Biiza K (2022) Improving autoencoder
training performance for hyperspectral unmixing with network reinitialisation. In: International
Conference on Image Analysis and Processing, pp. 391-403. Springer

Kumar S, Rath SP, Pandey A (2022) Improved far-field speech recognition using joint variational
autoencoder. arXiv preprint arXiv:2204.11286

Kunang YN, Nurmaini S, Stiawan D, Zarkasi A, et al (2018) Automatic features extraction using
autoencoder in intrusion detection system. In: 2018 international conference on electrical engineering
and computer science (ICECOS), IEEE, pp 219-224

Le T-D, Noumeir R, Rambaud J, Sans G, Jouvet P (2023) Adaptation of autoencoder for sparsity reduction
from clinical notes representation learning. IEEE J Trans Eng Health Med

Lee J-w, Lee J (2017) Idae: Imputation-boosted denoising autoencoder for collaborative filtering.
In: Proceedings of the 2017 ACM on conference on information and knowledge management,
pp2143-2146

Lee D, Seung HS (2000) Algorithms for non-negative matrix factorization. Adv Neural Inform Process Syst
13

Lei Y, Yang B, Jiang X, Jia F, Li N, Nandi AK (2020) Applications of machine learning to machine fault
diagnosis: a review and roadmap. Mech Syst Signal Process 138:106587

Lewandowski B, Paffenroth R (2022) Autoencoder feature residuals for network intrusion detection:
Unsupervised pre-training for improved performance. In: 2022 21st IEEE international conference on
machine learning and applications ICMLA), IEEE, pp 1334-1341

Li Y-J, Wang S-S, Tsao Y, Su B (2021) Mimo speech compression and enhancement based on convolutional
denoising autoencoder. In: 2021 Asia-pacific signal and information processing association annual
summit and conference (APSIPA ASC), IEEE, pp 1245-1250

Li F, Zuraday J, Wu W (2018) Sparse representation learning of data by autoencoders with 1~ sub 1/2°
regularization. Neural Netw World 28(2):133-147

Li H, Zhang L, Huang B, Zhou X (2020) Cost-sensitive dual-bidirectional linear discriminant analysis. Inf
Sci 510:283-303

Li Z, Huang H, Zhang Z, Shi G (2022) Manifold-based multi-deep belief network for feature extraction of
hyperspectral image. Remote Sens 14(6):1484

Li X, Li C, Rahaman MM, Sun H, Li X, Wu J, Yao Y, Grzegorzek M (2022) A comprehensive review
of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation,
classification and detection approaches. Artif Intell Rev 55(6):4809-4878. https://doi.org/10.1007/
$10462-021-10121-0

Liang D, Krishnan RG, Hoffman MD, Jebara T (2018) Variational autoencoders for collaborative filtering.
In: Proceedings of the 2018 World Wide Web Conference, pp 689-698

Liao L, Cheng G, Ruan H, Chen K, Lu J (2022) Multichannel variational autoencoder-based speech
separation in designated speaker order. Symmetry 14(12):2514

Lin C-C, Hung Y, Feris R, He L (2020) Video instance segmentation tracking with a modified vae
architecture. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp 13147-13157

Li P, Pei Y, Li J (2023) A comprehensive survey on design and application of autoencoder in deep learning.
Appl Soft Comput 110176

Liu Y, Ponce C, Brunton SL, Kutz JN (2023) Multiresolution convolutional autoencoders. J Comput Phys
474:111801

Lopes 10, Zou D, Abdulgadder TH, Ruambo FA, Yuan B, Jin H (2022) Effective network intrusion detection
via representation learning: a denoising autoencoder approach. Comput Commun 194:55-65

Luo W, Li J, Yang J, Xu W, Zhang J (2017) Convolutional sparse autoencoders for image classification.
IEEE Trans Neural Netw Learn Syst 29(7):3289-3294

Luo W, Liu W, Gao S (2017) Remembering history with convolutional Istm for anomaly detection. In: 2017
IEEE international conference on multimedia and expo (ICME), IEEE pp 439444

@ Springer


http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/2204.11286
https://doi.org/10.1007/s10462-021-10121-0
https://doi.org/10.1007/s10462-021-10121-0

Autoencoders and their applications in machine learning: a... Page490of52 28

MaM, Sun C, Chen X (2018) Deep coupling autoencoder for fault diagnosis with multimodal sensory data.
IEEE Trans Ind Inf 14(3):1137-1145

Makhzani A, Shlens J, Jaitly N, Goodfellow I, Frey B (2015) Adversarial autoencoders. arXiv preprint
arXiv:1511.05644

Ma S, Li X, Tang J, Guo F (2022) Eaa-net: Rethinking the autoencoder architecture with intra-class features
for medical image segmentation. arXiv preprint arXiv:2208.09197

Marchi E, Vesperini F, Eyben F, Squartini S, Schuller B (2015) A novel approach for automatic acoustic
novelty detection using a denoising autoencoder with bidirectional Istm neural networks. In: 2015
IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 1996-2000.
IEEE

Martinez V, Berzal F, Cubero J-C (2016) A survey of link prediction in complex networks. ACM Comput
Surv 49(4):1-33

McConville R, Santos-Rodriguez R, Piechocki RJ, Craddock I (2021) N2d:(not too) deep clustering via
clustering the local manifold of an autoencoded embedding. In: 2020 25th international conference on
pattern recognition (ICPR), IEEE, pp 5145-5152

McKeown K (1992) Text generation. Cambridge University Press, Cambridge

Medhat W, Hassan A, Korashy H (2014) Sentiment analysis algorithms and applications: a survey. Ain
Shams Eng J 5(4):1093-1113

Medsker LR, Jain L (2001) Recurrent neural networks. Design Appl 5(64-67):2

Meyer BH, Pozo ATR, Zola WMN (2022) Global and local structure preserving GPU t-SNE methods for
large-scale applications. Expert Syst Appl 201:116918

Miao J, Yang T, Sun L, Fei X, Niu L, Shi Y (2022) Graph regularized locally linear embedding for
unsupervised feature selection. Pattern Recogn 122:108299

Minkin A (2021) The application of autoencoders for hyperspectral data compression. In: 2021 international
conference on information technology and nanotechnology (ITNT), IEEE, pp 1-4

Miuccio L, Panno D, Riolo S (2022) A wasserstein GAN autoencoder for SCMA networks. IEEE Wireless
Commun Lett 11(6):1298-1302

Molaei S, Ghorbani N, Dashtiahangar F, Peivandi M, Pourasad Y, Esmaeili M (2022) Fdcnet: presentation
of the fuzzy CNN and fractal feature extraction for detection and classification of tumors. Comput
Intell Neurosci 2022

Myronenko A (2019) 3d mri brain tumor segmentation using autoencoder regularization. In: Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop,
BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018,
Revised Selected Papers, Part II 4, Springer, pp 311-320

Ng A et al (2011) Sparse autoencoder. CS294A Lecture Notes 72(2011):1-19

Nguyen HD, Tran KP, Thomassey S, Hamad M (2021) Forecasting and anomaly detection approaches using
LSTM and LSTM autoencoder techniques with the applications in supply chain management. Int J Inf
Manage 57:102282

Ohgushi T, Horiguchi K, Yamanaka M (2020) Road obstacle detection method based on an autoencoder
with semantic segmentation. In: proceedings of the Asian conference on computer vision

Palaz D, Collobert R (2015) Analysis of CNN-based speech recognition system using raw speech as input.
Report, Idiap

Palsson B, Sveinsson JR, Ulfarsson MO (2022) Blind hyperspectral unmixing using autoencoders: a critical
comparison. IEEE J Sel Topics Appl Earth Observ Remote Sens 15:1340-1372

Pang G, Shen C, Cao L, Hengel AVD (2021) Deep learning for anomaly detection: a review. ACM Comput
Surv 54(2):1-38

Pang G, Shen C, Cao L, Hengel AVD (2021) Deep learning for anomaly detection: a review. ACM Comput
Surv 54(2):1-38

Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for
graph embedding. arXiv preprint arXiv:1802.04407

Pan S, Hu R, Long G, Jiang J, Yao L, Zhang C (2018) Adversarially regularized graph autoencoder for
graph embedding. arXiv preprint arXiv:1802.04407

Papananias M, McLeay TE, Mahfouf M, Kadirkamanathan V (2023) A probabilistic framework for product
health monitoring in multistage manufacturing using unsupervised artificial neural networks and
gaussian processes. Proc Inst Mech Eng Part B: J Eng Manufact 237(9):1295-1310

Paul D, Chakdar D, Saha S, Mathew J (2023) Online research topic modeling and recommendation utilizing
multiview autoencoder-based approach. IEEE Trans Comput Soc Syst

Pereira RC, Santos MS, Rodrigues PP, Abreu PH (2020) Reviewing autoencoders for missing data
imputation: technical trends, applications and outcomes. J Artif Intell Res 69:1255-1285

@ Springer


http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/2208.09197
http://arxiv.org/abs/1802.04407
http://arxiv.org/abs/1802.04407

28 Page 50 0f 52 K. Berahmand et al.

Petersson H, Gustafsson D, Bergstrom D (2016) Hyperspectral image analysis using deep learning-a review.
In: 2016 sixth international conference on image processing theory, tools and applications (IPTA),
IEEE, pp 1-6

Pratella D, Ait-El-Mkadem Saadi S, Bannwarth S, Paquis-Fluckinger V, Bottini S (2021) A survey of
autoencoder algorithms to pave the diagnosis of rare diseases. Int J Mol Sci 22(19):10891

Preechakul K, Chatthee N, Wizadwongsa S, Suwajanakorn S (2022) Diffusion autoencoders: Toward a
meaningful and decodable representation. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp 10619—-10629

Qian J, Song Z, Yao Y, Zhu Z, Zhang X (2022) A review on autoencoder based representation learning for
fault detection and diagnosis in industrial processes. Chemometrics Intell Lab Syst, 104711

Ray P, Reddy SS, Banerjee T (2021) Various dimension reduction techniques for high dimensional data
analysis: a review. Artif Intell Rev 54(5):3473-3515. https://doi.org/10.1007/s10462-020-09928-0

Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: Unified, real-time object detection.
In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 779-788

Rifai S, Vincent P, Muller X, Glorot X, Bengio Y (2011) Contractive auto-encoders: Explicit invariance
during feature extraction. In: Proceedings of the 28th international conference on international
conference on machine learning, pp 833-840

Rituerto-Gonzélez E, Peldez-Moreno C (2021) End-to-end recurrent denoising autoencoder embeddings for
speaker identification. Neural Comput Appl 33(21):14429-14439

Ruff L, Vandermeulen RA, Gornitz N, Binder A, Miiller E, Miiller K-R, Kloft M (2019) Deep semi-
supervised anomaly detection. arXiv preprint arXiv:1906.02694

Rumelhart DE, Hinton GE, Williams RJ, et al (1985) Learning internal representations by error propagation.
Institute for Cognitive Science, University of California, San Diego La

Rusnac A-L, Grigore O (2022) CNN architectures and feature extraction methods for EEG imaginary
speech recognition. Sensors 22(13):4679

Sae-Ang B-I, Kumwilaisak W, Kaewtrakulpong P (2022) Semi-supervised learning for defect segmentation
with autoencoder auxiliary module. Sensors 22(8):2915

Sagha H, Cummins N, Schuller B (2017) Stacked denoising autoencoders for sentiment analysis: a review.
Wiley Interdiscip Rev Data Min Knowl Discov 7(5):1212

Saha S, Minku LL, Yao X, Sendhoff B, Menzel S (2022) Split-ae: An autoencoder-based disentanglement
framework for 3d shape-to-shape feature transfer. In: 2022 international joint conference on neural
networks (IJCNN), IEEE, pp 1-9

Sakurada M, Yairi T (2014) Anomaly detection using autoencoders with nonlinear dimensionality
reduction. In: Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data
analysis, pp. 4-11

Salehi A, Davulcu H (2019) Graph attention auto-encoders. arXiv preprint arXiv:1905.10715

Salha G, Limnios S, Hennequin R, Tran V-A, Vazirgiannis M (2019) Gravity-inspired graph autoencoders
for directed link prediction. In: Proceedings of the 28th ACM international conference on information
and knowledge management, pp 589-598

Sayed HM, ElDeeb HE, Taie SA (2023) Bimodal variational autoencoder for audiovisual speech
recognition. Mach Learn 112(4):1201-1226

Seki S, Kameoka H, Tanaka K, Kaneko T (2023) Jsv-vc: Jointly trained speaker verification and voice
conversion models. In: ICASSP 2023-2023 IEEE international conference on acoustics, speech and
signal processing (ICASSP), IEEE, pp 1-5

Semeniuta S, Severyn A, Barth E (2017) A hybrid convolutional variational autoencoder for text generation.
arXiv preprint arXiv:1702.02390

Seyfioglu MS, Ozbayoglu AM, Giirbiiz SZ (2018) Deep convolutional autoencoder for radar-based
classification of similar aided and unaided human activities. IEEE Trans Aerosp Electron Syst
54(4):1709-1723

Shankar V, Parsana S (2022) An overview and empirical comparison of natural language processing (NLP)
models and an introduction to and empirical application of autoencoder models in marketing. J Acad
Mark Sci 50(6):1324-1350

Shi D, Zhao C, Wang Y, Yang H, Wang G, Jiang H, Xue C, Yang S, Zhang Y (2022) Multi actor hierarchical
attention critic with RNN-based feature extraction. Neurocomputing 471:79-93

Shixin P, Kai C, Tian T, Jingying C (2022) An autoencoder-based feature level fusion for speech emotion
recognition. Digital Commun Netw

Shrestha N (2021) Factor analysis as a tool for survey analysis. Am J Appl Math Stat 9(1):4-11

Singh A, Ogunfunmi T (2022) An overview of variational autoencoders for source separation, finance, and
bio-signal applications. Entropy 24(1):55

@ Springer


https://doi.org/10.1007/s10462-020-09928-0
http://arxiv.org/abs/1906.02694
http://arxiv.org/abs/1905.10715
http://arxiv.org/abs/1702.02390

Autoencoders and their applications in machine learning: a... Page 510f52 28

Smatana M, Butka P (2019) Topicae: a topic modeling autoencoder. Acta Polytechnica Hungarica
16(4):67-86

Solorio-Ferndndez S, Carrasco-Ochoa JA, Martinez-Trinidad JF (2022) A survey on feature
selection methods for mixed data. Artif Intell Rev 55(4):2821-2846. https://doi.org/10.1007/
$10462-021-10072-6

Song Y, Hyun S, Cheong Y-G (2021) Analysis of autoencoders for network intrusion detection. Sensors
21(13):4294

Song C, Liu F, Huang Y, Wang L, Tan T (2013) Auto-encoder based data clustering. In: Progress in Pattern
Recognition, Image Analysis, Computer Vision, and Applications: 18th Iberoamerican Congress,
CIARP 2013, Havana, Cuba, November 20-23, 2013, Proceedings, Part I 18, pp 117-124. Springer

Srikotr T (2022) The improved speech spectral envelope compression based on VQ-VAE with adversarial
technique. Thesis

Strub F, Mary J, Gaudel R (2016) Hybrid collaborative filtering with autoencoders. arXiv preprint arXiv:
1603.00806

Strub F, Mary J, Philippe P (2015) Collaborative filtering with stacked denoising autoencoders and sparse
inputs. In: NIPS workshop on machine learning for ecommerce

Su 'Y, LiJ, Plaza A, Marinoni A, Gamba P, Chakravortty S (2019) DAEN: deep autoencoder networks for
hyperspectral unmixing. IEEE Trans Geosci Remote Sens 57(7):4309-4321

Sudo T, Kanishima Y, Yanagihashi H (2021) A study of anomalous sound detection using autoencoder for
quality determination and condition diagnosis. IEICE Tech. Rep. 121(284):20-25

Talpur N, Abdulkadir SJ, Alhussian H, Hasan MH, Aziz N, Bamhdi A (2023) Deep neuro-fuzzy system
application trends, challenges, and future perspectives: a systematic survey. Artif Intell Rev
56(2):865-913. https://doi.org/10.1007/s10462-022-10188-3

Tanveer M, Rastogi A, Paliwal V, Ganaie M, Malik A, Del Ser J, Lin C-T (2023) Ensemble deep learning in
speech signal tasks: a review. Neurocomputing 126436

Thai HH, Hieu ND, Van Tho N, Do Hoang H, Duy PT, Pham V-H (2022) Adversarial autoencoder and generative
adversarial networks for semi-supervised learning intrusion detection system. In: 2022 RIVF international
conference on computing and communication technologies (RIVF), IEEE, pp 584-589

Tian Y, Xu Y, Zhu Q-X, He Y-L (2022) Novel stacked input-enhanced supervised autoencoder integrated
with gated recurrent unit for soft sensing. IEEE Trans Instrum Meas 71:1-9

Tian H, Zhang L, Li S, Yao M, Pan G (2023) Pyramid-VAE-GAN: transferring hierarchical latent
variables for image inpainting. Comput Visual Med pp 1-15

Todd JT (2004) The visual perception of 3d shape. Trends Cogn Sci 8(3):115-121

Tripathi M (2021) Facial image denoising using autoencoder and UNET. Herit Sustain Dev 3(2):89-96

Vahdat A, Kautz J (2020) Nvae: a deep hierarchical variational autoencoder. Adv Neural Inf Process
Syst 33:19667-19679

Van den Oord A, Dieleman S, Schrauwen B (2013) Deep content-based music recommendation. Adv
Neural Inform Process Syst 26

Van Der Maaten L, Postma EO, van den Herik HJ et al (2009) Dimensionality reduction: a comparative
review. ] Mach Learn Res 10(66-71):13

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010) Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
J Mach Learn Res 11(12)

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010) Stacked denoising
autoencoders: Learning useful representations in a deep network with a local denoising criterion.
J Mach Learn Res 11(12)

Wang W, Yang D, Chen F, Pang Y, Huang S, Ge Y (2019) Clustering with orthogonal autoencoder.
IEEE Access 7:62421-62432

Wang G, Karnan L, Hassan FM (2022) Face feature point detection based on nonlinear high-dimensional
space. Int J Syst Assurance Eng Manag 13(Suppl 1):312-321

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pp 1225-1234

Wang D, Li T, Deng P, Zhang F, Huang W, Zhang P, Liu J (2023) A generalized deep learning clustering
algorithm based on non-negative matrix factorization. ACM Trans Knowledge Discovery Data

Wang C, Pan S, Long G, Zhu X, Jiang J (2017) Mgae: Marginalized graph autoencoder for graph
clustering. In: Proceedings of the 2017 ACM on conference on information and knowledge
management, pp 889-898

Wang H, Wang N, Yeung D-Y (2015) Collaborative deep learning for recommender systems. In:
Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pp1235-1244

@ Springer


https://doi.org/10.1007/s10462-021-10072-6
https://doi.org/10.1007/s10462-021-10072-6
http://arxiv.org/abs/1603.00806
http://arxiv.org/abs/1603.00806
https://doi.org/10.1007/s10462-022-10188-3

28 Page520f52 K. Berahmand et al.

Wu C, Wu F, Wu S, Yuan Z, Liu J, Huang Y (2019) Semi-supervised dimensional sentiment analysis
with variational autoencoder. Knowl-Based Syst 165:30-39

Wubet YA, Lian K-Y (2022) Voice conversion based augmentation and a hybrid CNN-LSTM model
for improving speaker-independent keyword recognition on limited datasets. IEEE Access
10:89170-89180

Wu Y, DuBois C, Zheng AX, Ester M (2016) Collaborative denoising auto-encoders for top-n
recommender systems. In: Proceedings of the Ninth ACM international conference on web search
and data mining, pp 153-162

Xie J, Girshick R, Farhadi A (2016) Unsupervised deep embedding for clustering analysis. In:
International conference on machine learning, PMLR, pp 478—487

Xu W, Keshmiri S, Wang G (2019) Adversarially approximated autoencoder for image generation and
manipulation. IEEE Trans Multimed 21(9):2387-2396

Xu H, Ding S, Zhang X, Xiong H, Tian Q (2022) Masked autoencoders are robust data augmentors.
arXiv preprint arXiv:2206.04846

Xu W, Sun H, Deng C, Tan Y (2017) Variational autoencoder for semi-supervised text classification. In:
Proceedings of the AAAI conference on artificial intelligence, vol. 31

Yan B, Han G (2018) Effective feature extraction via stacked sparse autoencoder to improve intrusion
detection system. IEEE Access 6:41238-41248

Yang B, Fu X, Sidiropoulos ND, Hong M (2017) Towards k-means-friendly spaces: Simultaneous deep
learning and clustering. In: International conference on machine learning, pp 3861-3870. PMLR

Yang X, Song Z, King I, Xu Z (2022) A survey on deep semi-supervised learning. IEEE Trans Knowl
Data Eng

Ye H, Zhang W, Nie M (2022) An improved semi-supervised variational autoencoder with gate
mechanism for text classification. Int J Pattern Recognit Artif Intell 36(10):2253006

Ying LJ, Zainal A, Norazwan MN (2023) Stacked supervised auto-encoder with deep learning
framework for nonlinear process monitoring and fault detection. In: AIP conference proceedings,
vol. 2785. AIP Publishing

Yong BX, Brintrup A (2022) Bayesian autoencoders with uncertainty quantification: Towards trustworthy
anomaly detection. Expert Syst Appl 209:118196

Zabalza J, Ren J, Zheng J, Zhao H, Qing C, Yang Z, Du P, Marshall S (2016) Novel segmented stacked
autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging.
Neurocomputing 185:1-10

Zhang Y, Zhang E, Chen W (2016) Deep neural network for halftone image classification based on sparse
auto-encoder. Eng Appl Artif Intell 50:245-255

Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and new
perspectives. ACM Comput Surv 52(1):1-38

Zhang R, Yu L, Tian S, Lv Y (2019) Unsupervised remote sensing image segmentation based on a dual
autoencoder. J Appl Remote Sens 13(3):038501-038501

Zhang G, Liu Y, Jin X (2020) A survey of autoencoder-based recommender systems. Front Comp Sci
14:430-450

Zhang G, Liu Y, Jin X (2020) A survey of autoencoder-based recommender systems. Front Comp Sci
14:430-450

Zhang S, Yao L, Xu X, Wang S, Zhu L (2017) Hybrid collaborative recommendation via semi-autoencoder.
In: Neural information processing: 24th international conference, ICONIP 2017, Guangzhou, China,
November 14-18, 2017, Proceedings, Part I 24, Springer, pp 185-193

Zhang C, Zhang C, Song J, Yi JSK, Kweon IS (2023) A survey on masked autoencoder for visual self-
supervised learning

Zhang C, Zhang C, Song J, Yi JSK, Zhang K, Kweon IS (2022) A survey on masked autoencoder for self-
supervised learning in vision and beyond. arXiv preprint arXiv:2208.00173

Zhang C, Zhang C, Song J, Yi JSK, Zhang K, Kweon IS (2022) A survey on masked autoencoder for self-
supervised learning in vision and beyond. arXiv preprint arXiv:2208.00173

Zhao K, Ding H, Ye K, Cui X (2021) A transformer-based hierarchical variational autoencoder combined
hidden Markov model for long text generation. Entropy 23(10):1277

Zhou F, Wang G, Zhang K, Liu S, Zhong T (2023) Semi-supervised anomaly detection via neural process.
IEEE Trans Knowl Data Eng

Zhu Z, Wang X, Bai S, Yao C, Bai X (2016) Deep learning representation using autoencoder for 3d shape
retrieval. Neurocomputing 204:41-50

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://arxiv.org/abs/2206.04846
http://arxiv.org/abs/2208.00173
http://arxiv.org/abs/2208.00173

	Autoencoders and their applications in machine learning: a survey
	Abstract
	1 Introduction
	2 Background of autoencoder
	2.1 Vanilla autoencoder
	2.2 Stack autoencoder
	2.3 Hyperparameters in autoencoder

	3 Autoencoder taxonomy
	3.1 Regularized autoencoder
	3.1.1 Sparse autoencoder
	3.1.2 Contractive autoencoder
	3.1.3 Laplacian autoencoder
	3.1.4 Orthogonal autoencoder

	3.2 Robust autoencoder
	3.2.1 Denoising autoencoder
	3.2.2 Marginalized denoising autoencoder
	3.2.3 L2,1 robust autoencoder

	3.3 Generative autoencoder
	3.3.1 Variational autoencoder
	3.3.2 Adversarial autoencoder
	3.3.3 Bayesian autoencoder
	3.3.4 Diffusion autoencoder

	3.4 Convolutional autoencoder
	3.4.1 Convolutional variational autoencoder
	3.4.2 Convolutional LSTM autoencoder
	3.4.3 Convolutional sparse autoencoder

	3.5 Recurrent autoencoder
	3.5.1 Long short term memory autoencoder
	3.5.2 Gated recurrent unit autoencoder
	3.5.3 Bidirectional autoencoder

	3.6 Semi-supervised autoencoder
	3.6.1 Semi-supervised variational autoencoder
	3.6.2 Disentangled variational autoencoder
	3.6.3 Label and sparse regularized autoencoder

	3.7 Graph autoencoder
	3.7.1 Variational graph autoencoder
	3.7.2 Adversarial graph autoencoder
	3.7.3 Graph attention autoencoder

	3.8  Masked autoencoders
	3.8.1 Graph masked autoencoder
	3.8.2 Contrastive masked autoencoder
	3.8.3 Self-distillated masked autoencoder


	4 Application autoencoder
	4.1 Machine vision
	4.2 NLP
	4.3 Complex network
	4.4 Recommender system
	4.5 Anomaly detection
	4.6 Speech processing
	4.7 Other
	4.7.1 Fault diagnosis
	4.7.2 Intrusion detection
	4.7.3 Hyperspectral imaging


	5 Autoencoder libraries and practical applications
	6 Future directions
	6.1  Semi-supervised and self-supervised learning in autoencoder
	6.2 Hypergraph autoencoder
	6.3 Tuning parameter with reinforcement learning
	6.4 Handling multi-modal and heterogeneous data with autoencoders

	7 Conclusion
	References


