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Abstract
Autoencoders have become a hot researched topic in unsupervised learning due to their 
ability to learn data features and act as a dimensionality reduction method. With rapid 
evolution of autoencoder methods, there has yet to be a complete study that provides a 
full autoencoders roadmap for both stimulating technical improvements and orienting 
research newbies to autoencoders. In this paper, we present a comprehensive survey of 
autoencoders, starting with an explanation of the principle of conventional autoencoder and 
their primary development process. We then provide a taxonomy of autoencoders based 
on their structures and principles and thoroughly analyze and discuss the related models. 
Furthermore, we review the applications of autoencoders in various fields, including 
machine vision, natural language processing, complex network, recommender system, 
speech process, anomaly detection, and others. Lastly, we summarize the limitations of 
current autoencoder algorithms and discuss the future directions of the field.
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List of symbols
X	� The input
X
′	� The reconstructed output

X̂′	� The noisy input
Z	� The hidden representation of the input data
L	� The graph Laplacian matrix
W	� Non-negative matrices (basis vectors)
H	� Non-negative matrices (coefficients or activations)
W

e
	� The encoder weight matrix

W
d
	� The decoder weight matrix

D	� The distances matrix between neighbors
N	� The number of data points
E	� The expectation operator
�	� The regularization parameter
KL(.||.)	� The Kullback–Leibler divergence
p(.)	� The probability distribution
q(.)	� The approximate probability distribution of p(.)
f(.)	� The encoder function
g(.)	� The decoder function
tr(.)	� The trace of the matrix
D(.)	� The discriminator’s output for a real data point
G(.)	� The generator’s output for the latent variable
‖.‖	� The 2-norm of a vector
‖.‖

F
	� The Frobenius norm

‖X − X
�‖2

F
	� The reconstruction loss

Abbreviations
AA	� Adversarial Autoencoder
AAE	� Adversarial Autoencoder
AE	� Autoencoder
AGAE	� Adversarial Graph Autoencoder
BAE	� Bayesian Autoencoder
BCE	� Binary Cross-Entropy
BiRNNAE	� Bidirectional Autoencoder
CAE	� Convolutional Autoencoder
CAE	� Convolutional Autoencoder
CNN	� Convolutional Neural Network
CVAE	� Convolutional Variational Autoencoder
CSAE	� Convolutional Sparse Autoencoder
DAE	� Denoising Autoencoder
DVAE	� Disentangled Variational Autoencoder
GAE	� Graph Autoencoder
GAAE	� Graph Attentional Autoencoder
GCN	� Graph Convolution Network
GMAE	� Graph Masked Autoencoder
GPU	� Graphics Processing Unit
GRUAE	� GRU Autoencoder
ISOMAP	� Isometric Feature Mapping
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LAE	� Laplacian Autoencoder
L2,1-RAE	� L2,1 Robust Autoencoder
LDA	� Linear Discriminant Analysis
LSTM	� Long Short-Term Memory
LSTMAE	� LSTM Autoencoder
LSRAE	� Label and Sparse Regularized Autoencoder
MAE	� Masked Autoencoder
MLP	� Multi-Layer Perceptron
M-DAE	� Marginalized Denoising Autoencoder
NLP	� Natural Language Processing
NMF	� Non-Negative Matrix Factorization
NN	� Neural Network
OAE	� Orthogonal Autoencoder
PCA	� Principal Component Analysis
RAE	� Robust Autoencoder
ReLU	� Rectified Linear Unit
SAE	� Stacked Autoencoder
SDMAE	� Self-Distilled Masked AutoEncoder
SGD	� Stochastic Gradient Descent
SSVAE	� Semi-supervised Variational Autoencoder
SSAE	� Semi-supervised Autoencoders
t-SNE	� T-Distributed Stochastic Neighbor Embedding
VAE	� Variational Autoencoder
VGAE	� Variational Graph Autoencoder

1  Introduction

Dimension reduction is crucial in machine learning for simplifying complex data sets 
(Van Der Maaten et  al. 2009), reducing computational complexity (Ray et  al. 2021), 
and mitigating the curse of dimensionality (Talpur et  al. 2023), ultimately improving 
model performance and interpretability. Dimension reduction encompasses two primary 
approaches: feature selection (Solorio-Fernández et al. 2022), which involves choosing a 
subset of the most informative features from the original data-set to reduce dimensionality 
while maintaining interpretability; and feature extraction (Li et al. 2022), a method where 
new, lower-dimensional features are derived from the original data to capture essential 
patterns and relationships.

Feature extraction comprises both linear and nonlinear techniques that transform the 
original data into a lower-dimensional representation. Linear feature extraction such as 
Factor Analysis (FA) (Garson 2022), Linear Discriminant Analysis (LDA) (Balakrishnama 
and Ganapathiraju 1998), Principal Component Analysis (PCA) (Abdi and Williams 
2010) and Non-negative Matrix Factorization (NMF) (Lee and Seung 2000) involves 
transforming the input data into a new set of features using linear combinations of the 
original input features (Wang et al. 2023).

Linear methods are relatively straightforward and computationally efficient. They 
often provide interpretable results, making it easier to understand the importance 
of each feature, and are effective when the underlying relationships in the data 
are approximately linear. However, they capture global correlations, and result in 

28Page 3 of 52 



	 K. Berahmand et al.

1 3

information loss, particularly when the data contains non-linear relationships or 
interactions between features (Wang et  al. 2023). They are also sensitive to outliers, 
can be computationally expensive, particularly when dealing with high-dimensional 
data. Their linear projections can be difficult to interpret, and they can be prone to 
overfitting when the number of input features is significantly greater than the number of 
observations available (Jha et al. 2023).

In contrast, nonlinear feature extraction utilizes nonlinear transformations of the input 
features to generate a new feature set that can more effectively capture the underlying 
patterns present in the data (Wang et  al. 2022). By mapping the data into a higher-
dimensional feature space, nonlinear methods can find patterns that are not apparent in the 
original feature space, even when the number of features significantly exceeds the number 
of samples.

Nonlinear methods also can capture complex relationships between the input features 
and output variables without the need for domain knowledge or prior assumptions about 
the data and often leads to better predictive performance (Wang et al. 2022). Manifold-
based feature extraction is a nonlinear technique, that relies on the assumption that high-
dimensional data can be embedded in a low-dimensional space without losing important 
information. This is achieved by finding a non-linear mapping that preserves the 
structure of the data (Li et al. 2022). Some common manifold-based techniques include, 
ISOMAP (Ding et  al. 2022), Locally Linear Embedding (LLE) (Miao et  al. 2022) 
and t-SNE (t-distributed Stochastic Neighbor Embedding) (Meyer et  al. 2022). These 
techniques may not always capture the global structure of the data and its performance 
is highly dependent on hyperparameter settings.

Another effective method to extract complex, hierarchical, and high-level features from 
nonlinear data is deep learning. Deep learning models can automatically learn abstract and 
high-level features, enabling better data representation from raw data and reducing the need 
for handcrafted feature engineering. They can be used for end-to-end feature extraction and 
task-specific modelling including image classification, object detection, Natural language 
Processing (NLP), and speech recognition. In this context, there are several deep learning-
based nonlinear feature extraction techniques, some of which are: Convolutional Neural 
Networks (CNNs) (Molaei et  al. 2022), Recurrent Neural Networks (RNNs) (Shi et  al. 
2022), and Autoencoders (AEs) (Bank et  al. 2023). Deep learning models like CNNs 
and RNNs often require large amounts of labelled data for training and its training can 

Fig. 1   Categorization of feature extraction methods into linear and non-linear approaches
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be computationally expensive, requiring powerful hardware. Figure 1 and Table 1 shows 
various feature extraction methods and their loss functions.

AEs are neural networks that use back propagation algorithm for feature learning. 
They are primarily used for unsupervised learning tasks, which means they do not require 
labelled data during training. In contrast, CNNs and RNNs are often used for supervised or 
semi-supervised tasks, which rely on labelled data. This makes AEs suitable for situations 
where labelled data is scarce or expensive to obtain (Bank et al. 2020). Furthermore, AEs 
automatically learn relevant features from the data without the need for manual feature 
engineering which can save significant time and effort in pre-processing. This encourages 
the AEs to capture the crucial characteristics of the input data in its encoding, thereby 
learning a meaningful representation of the data in the latent code (Liu et al. 2023).

AEs also provide a multitude of benefits additionally to dimensionality reduction across 
various machine learning and data analysis applications mainly used in complex high-
dimensional data. They are equally valuable in the context of data compression, where they 
can efficiently encode information for storage or transmission, making them particularly 
beneficial for resource-constrained applications. Furthermore, they excel in anomaly 
detection by quantifying the reconstruction error; instances with elevated reconstruction 
errors are flagged as anomalies, aiding in the identification of outliers or irregularities 
within the data (Bank et  al. 2020). Data denoising is another strength of AEs. AEs can 
be trained to eliminate noise or irrelevant information from input data, enhancing data 
quality. Beyond these applications feature learning, AEs foster a deeper understanding of 
data through the creation of meaningful representations. They also find practical utility in 
semantic embedding for NLP and information retrieval tasks and effectively reducing file 
sizes without compromising quality in image and signal compression (Liu et  al. 2023). 
Furthermore, AEs contribute to privacy preservation techniques, such as differential 
privacy, by protecting sensitive data while enabling analysis and insights. In addition to 
these applications, AEs are instrumental in reducing data storage requirements, enhancing 
interpretability by revealing essential data features, and demonstrating robustness by 
generalizing well to new data and effectively handling noisy or incomplete data-sets (Liu 
et al. 2023). Overall, AEs stand as versatile and indispensable tools, offering an extensive 
array of applications across diverse domains and problem types in machine learning and 
data analysis.

Fig. 2   All published papers in gScholar, Web of Science and arxiv since 2012 with keywords 
"Autoencoders" and "Machine Learning"
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However, AEs offer a powerful set of capabilities but also come with certain drawbacks 
that should be considered. One of the main drawbacks of using AEs is that they are sensitive 
to the choice of hyperparameters, such as the number and size of layers, the learning rate, 
the loss function, and the regularization. These hyperparameters can affect the performance 
and the quality of the autoencoder, and may require trial and error or grid search to find 
the optimal values (Bank et al. 2020). Another common concern with AEs is their lack of 
robustness. They can be sensitive to noisy data, outliers, and variations in input, which can 
lead to suboptimal representations and reconstructions (Singh and Ogunfunmi 2022). AEs 
can be prone to overfitting, especially when trained on limited data. Additionally, they may 
not inherently preserve the spatial or temporal locality of data during training. This can 
be problematic for tasks where preserving the local structure is essential, such as image 
segmentation or sequence modeling (Liu et  al. 2023). Furthermore, AEs tend to capture 
lower-order features and may struggle to represent complex, higher-order relationships in 
the data. This limitation can impact their performance on tasks that require understanding 
intricate dependencies (Miuccio et al. 2022).

In recent years, substantial research efforts have been dedicated to addressing these 
drawbacks through advancements in deep learning and AE techniques. Some of the 
presented architectures in this area include regularization AEs, robust AE, generative 
AE, convolutional AE, recurrent AE, semi-supervised AE, graph AE and masked AE. 
These improvements, as demonstrated in Fig. 2, have caused that the use of autoencoder 
algorithms in machine learning has gained increasing interest over the years. The 
graph shows the trend of papers published in the field of "autoencoder" and “machine 
learning” since 2012, revealing that over 90% of all indexed papers were published 
between 2018 and 2023.

Despite being an important area of research, there is currently a lack of 
comprehensive studies exploring the applications of AE algorithms in machine learning 
on a wide scale. While existing review papers have examined specific themes, there has 
been no comprehensive review conducted. In Table 2, we compare our contribution in 
this paper to the descriptions of existing review papers in the field.

To this knowledge gap, our review will focus on addressing three key research 
questions:

•	 What are the different types of AE algorithms that have been developed and utilized 
in machine learning applications?

•	 What are the main methodological frameworks and the latest achievements in the 
application of AE algorithms?

•	 What are the gaps and future directions in this field, and how can they be addressed 
to enhance the effectiveness of AE algorithms in machine learning applications?

This review paper represents a significant endeavor to systematically categorize 
the diverse array of applications of AEs within the domain of machine learning. 
Furthermore, it embarks on the crucial endeavor of not only elucidating the advantages 
and challenges associated with these applications but also unraveling the existing 
frameworks that underpin this evolving field. In this pioneering exploration, we offer 
the following noteworthy contributions:

•	 New taxonomy. In this paper, we propose a comprehensive new taxonomy that 
categorizes major and modern AE methods within the realm of machine learning 
into distinct categories in recent years.
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•	 Comprehensive overview. We not only provide an exhaustive review of the variations 
within each AE category but also offer detailed descriptions and unified schematic 
representations. Our in-depth exploration of each approach includes elucidating key 
equations and presenting pertinent performance comparisons.

•	 Abundant resources. We curate and present a valuable collection of AE resources, 
encompassing open-source code repositories for select reviewed methods, widely 
recognized benchmark datasets, and performance assessments across datasets with 
varying label rates.

•	 Future trends. we pinpoint unresolved challenges and explore potential directions for 
future research, drawing insights from recent seminal studies in this field.

This paper is organized as follows. Section 2 provides a concise overview of the structure 
and hyperparameter in AEs. Section  3 discusses various taxonomies of AEs that have 
been proposed in the literature. In Sect. 4, we review previous applications of AEs in the 
machine learning domain, categorizing them according to the task they were used for. In 
Sect. 5, we review explore publicly available software and platforms that can be used to 
construct and develop AEs the performance of various autoencoders. Section 6 is dedicated 
to discussing future directions in the field. Finally, in Sect. 7, we present our conclusions 
based on the insights gathered from our analysis.

2 � Background of autoencoder

AE is a fundamental building block that can be used hierarchically to create deep models. 
They organize, compress, and extract high-level features, allowing unsupervised learning 
and the extraction of non-linear features (Chen and Guo 2023). Autoencoders have 
advantages over Restricted Boltzmann Machines (RBMs) as they can learn more complex 
data representations. RBMs are widely used for generating various data types, including 
images (Hinton et al. 2006). RBMs are a type of Boltzmann Machine (BM) that learns a 
probability distribution from inputs (Chen and Guo 2023). The main difference between 
Autoencoders, RBMs, and BMs lies in their architectures. AEs have an encoder and a 
decoder, while RBMs consist of visible and hidden layers. Boltzmann Machines (BMs) 
are more general and fully connected, making them less tractable compared to RBMs. 
AEs are feed-forward neural networks, allowing information to flow in one direction. In 
contrast, RBMs and BMs are generative models capable of generating new samples from 
the learned distribution.

2.1 � Vanilla autoencoder

The concept of AE was initially introduced in a research paper by Rumelhart (1985). 
AEs are a type of neural network designed for learning and reconstructing input data. In 
unsupervised learning, the primary goal is to obtain an "informative" data representation. 
AEs encode input data into a compressed and semantically meaningful form and then 
decode it to faithfully reconstruct the original input data (Bank et  al. 2023). The term 
"vanilla" is used to describe the simplest form of autoencoder, which has no additional 
complexities or architectural variations. A vanilla autoencoder typically consists of an 
input layer, one or more hidden layers, and an output layer (Zhang et al. 2016). You can 
visualize the structure of a vanilla autoencoder in Fig. 3.
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During the encoding step, an AE maps an input vector X to a code vector Z using an 
encoding function f

�
 . In the decoding step, it maps the code vector Z back to the output 

vector X′ , aiming to reconstruct the input data using a decoding function g
�
 . AEs adjust 

the network’s weights ( W ) through fine-tuning, achieved by minimizing the reconstruction 
error L between X and the reconstructed data X′ . This reconstruction error acts as a loss 
function used to optimize the network’s parameters (Chai et  al. 2019). The objective 
function of an AE can be written as:

where xi represents the i th dimension of the training sample, x′
i
 represents the i th dimension 

of the output data, and n is the total amount of training data. The term "l" refers to the 
reconstruction error between the input and output, defined as:

The encoder and decoder mapping functions are Z = f
�
(X) = s(WX + b) and 

X�
= g

�
(Z) = s(W �Z + b�) , where "s" is a non-linear activation function like sigmoid 

or ReLU. W and W ′ are weight matrices, and b and b′ are bias vectors. During training, 
the weights and biases of the autoencoder are adjusted to minimize the reconstruction 
error using an optimization algorithm like stochastic gradient descent. Once trained, the 
encoding function can create low-dimensional representations of new input data ( Z ), 
while the decoding function can reconstruct the original data from the low-dimensional 
representation ( X′).

2.2 � Stack autoencoder

Traditional AE typically employs a single-layer encoder, making it challenging to extract 
deep features. To enhance feature extraction, one effective strategy is to deepen the 
neural network structure. By employing a layer-wise learning approach, multiple basic 
autoencoders can be stacked together to form a Stacked Autoencoder (SAE), allowing 
for the extraction of complex data features. The training process of each individual 
autoencoder involves learning a condensed data representation, with the final output 
obtained by combining the outputs of these individual autoencoders. Typically, training a 

(1)min
�

JAE(�) = min
�

n∑

i=1

l(xi, x
�

i
) = min

�

n∑

i=1

l(xi, g�(f�(xi)))

(2)L(X,X�
) =

n�

i=1

‖Xi − X�

i
‖2

Fig. 3   illustrates the structure 
of an autoencoder, where X 
represents the input data of the 
input layer, Z represents the 
data in the hidden layer, and 
X
′ represents the reconstructed 

output data in the output layer
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Stacked Autoencoder follows a layer-wise approach (Hoang and Kang 2019; Hinton et al. 
2006). After training layer 1, it serves as the input for training layer 2. When evaluating 
the reconstruction loss, it is assessed relative to layer 1 rather than the input layer. The 
encoding process can be mathematically represented as follows:

in which k represents the k-th autoencoder, ak represents the encoding outcome of the k-th 
autoencoder, and when k = 1 , a0 = x denotes the input data. The decoding process can be 
mathematically represented as follows:

when k = 1 , c0 = an , and when k = n , cn = x̂ represents the reconstructed data of the input 
variable x (Hoang and Kang 2019).

2.3 � Hyperparameters in autoencoder

Autoencoders come with various hyperparameters that must be defined prior to training, 
and their values can significantly influence the model’s performance. It’s crucial to 
understand that certain hyperparameters are usually set before training and remain 
constant, while others can be dynamically tuned during training to optimize the model’s 
performance. Selecting and adjusting hyperparameters often involves experimentation 
and validation to achieve the best results for a particular task. The following outlines the 
most common hyperparameters in autoencoders:

•	 Number of Hidden Layers: The quantity of hidden layers within the autoencoder 
defines its network depth and its capacity to capture intricate data patterns. This 
parameter is configured before training. While adding more hidden layers can 
enhance the model’s representational power, it may also introduce optimization 
challenges and elevate the risk of overfitting.

•	 Number of Neurons in Each Layer: The number of neurons in each layer governs 
the network’s data representation capacity and is typically set before training. A 
higher count of neurons can amplify the network’s capacity but might also elevate 
the risk of overfitting and complicate the optimization process.

•	 Size of Latent Space: Adjusting the size of the bottleneck layer permits fine-tuning 
the balance between model complexity and performance. This parameter is set prior 
to training.

•	 Activation Function: The activation function utilized in the bottleneck layer plays 
a pivotal role in the autoencoder’s performance. To optimize the autoencoder’s 
performance, the bottleneck layer activation function should be tailored before 
training. These functions determine the network’s nonlinearity and its ability to 
learn intricate data patterns. Common activation functions employed in bottleneck 
layers encompass sigmoid, tanh, ReLU, and SELU. Further details, including their 
equations, outputs, and output curves, are outlined in Table 3.

•	 Objective Function: The objective function, also known as the loss function, is a 
critical element of an autoencoder, serving to train the network by minimizing the 
distinction between input and output data. It gauges the dissimilarity between the 

(3)ak = f (Wk
e
ak−1 + bk

e
), k = 1 ∶ n

(9)ck = f (Wn−(k−1)ck−1 + bn−(k−1)), k = 1 ∶ n
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input and output data, and the autoencoder is trained to diminish this dissimilarity. 
The selection of the objective function hinges on the data type and the specific 
application and is generally determined before training. Common objective functions 
used in autoencoders include:

–	 Mean Squared Error (MSE): This is the predominant objective function in 
autoencoders, measuring the average squared difference between input and output 
data. MSE is defined by formulas (1): 

–	 Binary Cross-Entropy(BCE): BCE employed when the input data is binary (0 
or 1), this function measures the difference between predicted and actual output 
in terms of binary cross-entropy loss. Cross-entropy is defined in formulas (2): 

	   When choosing an autoencoder loss function, consider the problem’s unique needs. 
MSE suits regression tasks, offering robustness against outliers but sensitivity to data 
scaling. BCE is for binary classification but can be numerically unstable near 0 or 1 
probabilities. The choice depends on the problem and task requirements. MSE is the 

(4)LAE(X,X
�
) = min

�
‖X − X�‖2

F

�

(5)LAE(X,X
�
) = −

n∑

i=1

(
xi log(x

�

i
) + (1 − xi) log(1 − x�

i
)

)

Table 3   Activation functions

Activation Function Equation Output Output Curve

Sigmoid f (x) =
1

1+e−x
[0,1]

Tanh f (x) =
ex−e−x

ex+e−x
[−1,1]

ReLU f (x) = max(0, x) [0, ∞]

SELU
f (x) = 𝜆

{
x if x > 0

𝛼ex − 𝛼 if x ≤ 0

[−2, ∞]

28 Page 14 of 52



Autoencoders and their applications in machine learning: a…

1 3

most prevalent autoencoder loss function, quantifying input–output discrepancies in the 
latent space.

•	 Optimization Algorithm: Autoencoders utilize optimization algorithms to minimize 
the objective function during training. These algorithms adjust network weights and 
biases to train the autoencoder effectively. The choice of the optimization algorithm 
is made prior to training but may involve hyperparameter tuning during training. 
Several optimization techniques can be employed to train autoencoders, with the most 
notable ones being Stochastic Gradient Descent (SGD), Adam, and Adagrad. Further 
elaboration on each of these methods is provided below.

–	 Stochastic Gradient Descent (SGD): A widely used algorithm that updates 
network parameters after processing small batches of data. While computationally 
efficient, it may converge slowly for complex models and datasets. Careful tuning of 
initial learning rates is often needed.

–	 Adam: Combines features of SGD with adaptive learning rates and momentum 
to accelerate convergence and reduce the risk of getting stuck in local minima. 
Requires tuning of hyperparameters like beta1 and beta2 and is suitable for non-
stationary and noisy objectives.

–	 Adagrad: An adaptive algorithm adjusting learning rates based on parameter 
update frequency. Effective for sparse data, it can lead to quick convergence but may 
also converge prematurely and face challenges with non-convex optimization.

	   The choice of optimization algorithm depends on dataset size, model complexity, 
loss function type, and computational resources. Each has its advantages and 
disadvantages, so selecting the right one is crucial for optimal performance.

•	 Learning Rate: The learning rate, a hyperparameter, dictates the step size during 
optimization. It influences weight and bias updates and the convergence speed of the 
objective function. High values can cause overshooting, while low ones may lead to 
local minima trapping. The learning rate is preset but may be adjusted with schedules 
during training for better convergence.

•	 Number of Epochs: Epochs are training iterations, representing full dataset passes. 
More epochs can enhance model accuracy but risk overfitting. The ideal count depends 
on dataset size and problem complexity. Learning rate initially set may require 
modification if convergence isn’t reached or early stopping is used to curb overfitting.

•	 Batch Size: Batch size, in each optimization iteration, affects gradient noise and 
optimization efficiency. Smaller sizes yield noisier gradients but faster, memory-
efficient optimization. Larger sizes offer stable gradients but slower, memory-intensive 
optimization. Batch size is determined beforehand but can be adjusted during training 
for optimization and memory use.

	   These interconnected hyperparameters necessitate careful selection for optimal 
performance, often requiring experimentation despite the time investment, crucial for 
building an effective autoencoder model.
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3 � Autoencoder taxonomy

Autoencoders, frequently employed in unsupervised learning, excel in dimensionality 
reduction tasks. They adeptly capture intricate, non-linear data relationships, enabling 
a hierarchical transformation of high-dimensional input into a lower-dimensional latent 
space. Autoencoders exhibit remarkable flexibility, allowing for customization across 
diverse data types and tasks by adjusting their architecture or objective functions. Over 
the past decade, a myriad of autoencoder variants has emerged, as illustrated in Fig. 4.

Autoencoder enhances feature discrimination through the incorporation of 
regularization techniques. Robust autoencoder aims to fortify the encoded data against 
noise or outliers, enhancing its ability to handle noisy or corrupted input data. The 
generative autoencoder specializes in learning a generative model using the extracted 
encoded representations, enabling the generation of new data samples closely 
resembling the distribution of the training data. Convolutional autoencoders replace 
fully connected layers with convolutional layers in both the encoder and decoder, 
making them particularly well-suited for image data by excelling at capturing spatial 
relationships within the data. Recurrent autoencoders leverage recurrent layers, such 
as LSTM or GRU, in both the encoder and decoder, proving invaluable for sequence 
data by capturing temporal dependencies within the information. Semi-supervised 
autoencoders harness the power of both labeled and unlabeled data to enhance model 
performance and generalization, demonstrating their value in scenarios with limited 
labeled data or resource constraints. Graph autoencoder leverages graph structures to 
learn data representations by processing graph-structured inputs and utilizing graph 
convolutional layers, allowing for the effective modeling of complex data dependencies. 
Masked autoencoders represent a straightforward autoencoding technique designed to 
reconstruct the original signal from its partially observed form.

The breadth of autoencoder models and their specialization options empowers 
fine-tuning for various applications. The adaptability of the autoencoder architecture 
and objective functions underscores their ability to be tailored to specific use cases, 
establishing them as indispensable tools for machine learning researchers and 
developers. In the following sections, we provide detailed explanations for each 
category.

3.1 � Regularized autoencoder

Regularized Autoencoder (RAE) is a neural network architecture that extracts a 
compressed representation of input data while enforcing regularization constraints. These 
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Fig. 4   Taxonomy of Autoencoder architectures categorized by network structure
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constraints encourage the formation of a discriminative, low-dimensional feature space. By 
incorporating different regularization techniques into the autoencoder, it becomes possible 
to create specialized models with desired properties, such as sparsity, manifold structure, 
or orthogonality.

3.1.1 � Sparse autoencoder

Sparse Autoencoder (SAE) (Ng 2011) is characterized by having a limited number of 
simultaneously active neural nodes, as it aims to learn a sparse representation of input data 
by incorporating a sparsity constraint into the loss function. Its objective is to minimize 
the disparity between input data and reconstructed data while adhering to constraints on 
the sparsity of the latent representation. The loss function in a Sparse Autoencoder (SAE) 
comprises two components: the reconstruction loss and the sparsity loss, represented as 
follows:

where KL(p ∥ q) calculates the Kullback–Leibler divergence between a target sparsity 
parameter (p) and the estimated average activation of each neuron (q) during training, 
defined as

This combined penalty term encourages the model to acquire a sparse representation, 
wherein only a limited number of neurons are active for each input.

3.1.2 � Contractive autoencoder

Contractive Autoencoder (CAE) (Rifai et al. 2011) is an autoencoder that aims to produce 
similar representations for similar input data by adding a penalty term to the loss function. 
This penalty term, based on the Frobenius norm of the Jacobian matrix of the encoder 
concerning the input data, encourages local stability in the learned representation. The 
primary objective of the CAE is to minimize the difference between the input data and 
the reconstructed data while taking the penalty term into account, promoting similarity 
in representations for similar input data. The overall loss function of CAE includes the 
reconstruction loss and a penalty term as follows:

where ‖JF(X)‖2F represents the squared Frobenius norm of the Jacobian matrix of the 
encoded representation concerning the input data. This norm measures the sensitivity of 
the encoded representation to small variations, calculated as:
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3.1.3 � Laplacian autoencoder

The standard Autoencoder may not emphasize the relationships between nearby data 
points during its learning process, which can lead to extracted features lacking crucial 
information about the data’s internal structure. In contrast, the Laplacian Autoencoder 
prioritizes preserving the distances between neighboring data points, effectively capturing 
the significant internal structure within the data. Inspired by this concept, the Laplacian 
Autoencoder (LAE) (Jia et al. 2015) was introduced to facilitate the generation of lower-
dimensional representations for Autoencoders. This approach ensures that the learned 
representations incorporate essential local structural information, enhancing their 
suitability for specific data analysis tasks. The loss function for the Laplacian Autoencoder 
is defined as follows:

where matrix L, known as the graph Laplacian, is calculated based on how similar pairwise 
are in the latent space. This calculation typically involves techniques like using k-nearest 
neighbor graphs or Gaussian kernels.

3.1.4 � Orthogonal autoencoder

Orthogonal Autoencoder (OAE) (Wang et  al. 2019) is designed to enhance the 
orthogonality of learned embeddings, leading to more discriminative and diverse feature 
representations. Unlike the standard Autoencoder, OAE introduces a regularization 
term known as the orthogonal reconstruction error into the reconstruction loss function. 
This term promotes orthogonality among latent features, thereby improving class 
discriminability. The OAE loss function can be expressed as follows:

where I is the identity matrix, ZT represents the transpose of the compressed representation 
Z , and � is a penalization parameter. Notably, setting � to zero yields a conventional 
autoencoder.

3.2 � Robust autoencoder

Robust Autoencoder (RAE) is utilized to enhance the robustness of autoencoders when 
dealing with noisy or corrupted input data. They prove especially valuable in  situations 
where the input data exhibits noise, outliers, or imperfections. These issues are 
commonplace in real-world datasets, including those found in healthcare, finance, and 
sensor networks, where RAEs can effectively handle the data’s imperfections while 
retaining its valuable information. Three primary variants of robust autoencoders include 
Denoising Autoencoder, Marginalized Denoising Autoencoder, and L2,1 Autoencoder.

(10)LLAE(X,X
�
) = min

�
‖X − X�‖2

F
+ �tr(Z�LZ)

�

(11)LOAE(X,X
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) = min
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3.2.1 � Denoising autoencoder

Denoising Autoencoder (DAE) (Vincent et  al. 2010) is designed to reconstruct clean 
data from noisy input by introducing noise during training. The primary objective is 
to minimize the dissimilarity between the clean data and the reconstructed output. 
DAE training involves intentionally corrupting input data with various forms of noise 
and then minimizing the difference between the original clean input data and the 
reconstructed clean data. This process allows the DAE to discern valuable features 
within the input data while disregarding noise and irrelevant aspects. The DAE loss 
function is expressed as follows:

where X represents the clean input data, and X̂′ denotes the noisy input data.

3.2.2 � Marginalized denoising autoencoder

Marginalized Denoising Autoencoder (M-DAE) (Chen et  al. 2012) is a specialized 
version of the Denoising Autoencoder (DAE) designed to handle datasets with missing 
or incomplete features. Like the standard DAE, the M-DAE is a neural network crafted 
to reconstruct clean input data from noisy versions. It achieves this by restoring clean 
data from corrupted counterparts, where input data X is intentionally subjected to 
random corruption. Each feature has a probability p of being set to 0, creating these 
corrupted versions referred to as X̂i . The primary goal of the M-DAE is to minimize a 
specific loss function represented as:

where W signifies the learned transformation matrix, and m represents the total number of 
input examples.

The M-DAE seeks the best solution for W, which can be expressed mathematically 
as:

this equation calculates E[Q−1
] based on the inverse of the expected Q and E[P] using 

the expected P. These expectations are calculated using specific formulas involving the 
covariance matrix of the uncorrupted data X.

3.2.3 � L2,1 robust autoencoder

L2,1 Robust Autoencoder ( L2,1-RAE) (Li et al. 2018) is a modified version of the Robust 
Autoencoder (RAE) designed to enhance the autoencoder’s resilience when dealing 
with noisy or corrupted input data. This enhancement is achieved through the use of 
a specific type of regularization known as L2,1 regularization. L2,1 regularization 
encourages the learned features to possess specific properties. Notably, it promotes 
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feature sparsity, meaning that most features consist of zeros, and robustness, enabling 
them to handle scenarios with data outliers or noise. The mathematical expression of 
the L2,1-RAE loss function is given as follows:

where ‖Z‖2,1 represents the L2,1-norm of the latent representations, which emphasizes both 
sparsity and robustness in these learned features.

3.3 � Generative autoencoder

Generative Aautoencoder (GAE) differs from traditional autoencoders by focusing on 
learning the underlying probability distribution of data rather than just dimensionality 
reduction. This enables GAE to generate new data samples that resemble the training data, 
making them valuable for tasks like image or text generation. Examples of GAE include 
Variational Autoencoders, Adversarial Autoencoders, Bayesian Autoencoder and Diffusion 
Autoencoder.

3.3.1 � Variational autoencoder

Variational Autoencoder (VAE) (An and Cho 2015) is a type of autoencoder that learns 
to represent data in a lower-dimensional latent space and generate new data samples that 
resemble the input. Unlike traditional autoencoders, VAEs are generative models that 
can capture the underlying distribution of input data. In a VAE, the encoder maps input 
data to a posterior distribution q(Z|X) instead of a fixed latent representation Z. During 
reconstruction, Z is sampled from this distribution and passed through a decoder. The 
regularization loss in VAE encourages q(Z|X) to match a specific distribution, often a 
standard Gaussian. The VAE loss function is defined as:

 the first term measures the difference between the original input data ( p(X|Z) ) and the data 
reconstructed by the decoder. The second term, a regularization component, quantifies the 
KL divergence between q(Z|X) and p(Z), typically a standard Gaussian distribution. This 
loss function guides VAE training to balance accurate data reconstruction with a structured 
latent space for generative purposes.

3.3.2 � Adversarial autoencoder

Adversarial Autoencoder (AAE) (Makhzani et  al. 2015) is a specialized type of 
autoencoder designed to align its learned latent representations with a desired prior 
distribution. It consists of three main parts: an encoder, a decoder, and a discriminator. The 
encoder and decoder work together to create data that can deceive the discriminator, which 
is trained to distinguish between real input data and fake data produced by the decoder. 
The adversarial loss in AAE assesses its ability to generate data that resembles the original 
input data distribution. The discriminator aims to maximize its accuracy in telling real and 
generated data apart, while the decoder aims to minimize the discriminator’s accuracy. The 
overall loss function for AAE is expressed as:

(15)L2,1RAE(X,X
�
) = min
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F
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(16)LVAE = − E(q(Z|X))
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]
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where G(z) is the decoder function that converts the latent representation back to the 
original input data, and D(X) represents the discriminator’s output for the original input 
data. The term log(1 − D(G(Z))) reflects the discriminator’s output for data generated by 
the decoder.

3.3.3 � Bayesian autoencoder

Bayesian Autoencoder (BAE) (Yong and Brintrup 2022) is a probabilistic AE that models 
all parameters, in contrast to the Variational Autoencoder (VAE) that mainly models the 
latent layer. BAE combines a Gaussian likelihood for data reconstruction with an isotropic 
Gaussian prior for parameter uncertainty. The loss function maximizes data likelihood and 
minimizes model complexity. The BAE loss function is defined as:

where �2
i
 is the variance of the Gaussian distribution, and log p(x|�) represents the log-

likelihood of observing the original data x given the model parameters � . It quantifies data 
reconstruction through squared errors and variances while promoting model simplicity. 
The training objective is to maximize this log-likelihood while minimizing regularization 
to find optimal parameters � for effective data pattern and uncertainty capture.

3.3.4 � Diffusion autoencoder

Diffusion Autoencoder (DiffusionAE) (Preechakul et  al. 2022) is a specialized type of 
autoencoder designed for generative modeling tasks. It draws inspiration from diffusion 
models and is engineered to capture intricate data distributions. In this framework, data 
is subjected to a progressive denoising process, allowing the model to grasp complex 
data patterns effectively. A fundamental element of DiffusionAE is its employment of a 
unique loss function known as the Diffusion Probabilistic Loss. This loss function guides 
the training by modeling how data evolves over time. Mathematically, the loss function is 
represented as:

in which P(X|X�
) signifies the conditional probability of observing the original data X when 

given the reconstructed data X′ . During training, the primary objective is to minimize this 
loss, driving the Diffusion Autoencoder to generate X′ that closely resembles the original 
data X.

3.4 � Convolutional autoencoder

Convolutional Autoencoder (CAE) (Seyfioğlu et  al. 2018) employs convolutional layers 
instead of fully connected layers in both the encoder and decoder. The encoder uses these 
layers to create a compact representation from input images, while the decoder employs 
deconvolution layers for image reconstruction. CAEs are particularly effective for image 
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data, as they excel at capturing spatial dependencies, which refer to the patterns and 
relationships among pixels or locations within individual images or data frames. They find 
wide-ranging applications in tasks such as image denoising, inpainting, segmentation, and 
super-resolution.

3.4.1 � Convolutional variational autoencoder

convolutional variational autoencoder (CVAE) (Semeniuta et  al. 2017) is a significant 
variant of Convolutional Autoencoders (CAEs) that incorporates probabilistic modeling, 
allowing for the generation of new data samples. In a CVAE, input images undergo 
a reconstruction process where a latent variable, denoted as Z, is sampled from a 
Gaussian distribution, and subsequently passed through a decoder. This decoder employs 
convolutional and upsampling layers to reconstruct the original image. The loss function in 
CVAE, similar to Variational Autoencoder (VAE), is defined as:

the first term measures the difference between the original image and its reconstruction by 
the decoder, while the second term encourages the latent representation q(Z|X) to follow a 
standard Gaussian distribution through KL divergence regularization, ensuring a structured 
latent space for effective generative capabilities.

3.4.2 � Convolutional LSTM autoencoder

Convolutional LSTM (ConvLSTM) (Luo et  al. 2017) is an advanced neural network 
architecture specialized in spatiotemporal data analysis. It combines convolutional 
structures with recurrent operations, allowing it to capture both spatial dependencies 
and temporal relationships in data. This design employs 3D tensors, with the last two 
dimensions representing spatial dimensions (e.g., rows and columns). ConvLSTM excels 
in tasks involving both spatial and temporal patterns, such as precipitation nowcasting and 
video analysis. It utilizes a unique loss function to make predictions based on neighboring 
cells, consistently outperforming traditional RNNs and contemporary algorithms in various 
spatiotemporal forecasting applications. The overall loss function for a ConvLSTM can be 
defined as follows:

where N is the number of spatial rows in the data, M is the number of spatial columns in 
the data, T is the number of time steps in the sequence, Xtij represents the ground truth 
value at spatial location (i, j) at time step t, and X′

tij
 represents the predicted value at spatial 

location (i, j) at time step t.

3.4.3 � Convolutional sparse autoencoder

Convolutional Sparse Autoencoder (CSAE) (Luo et  al. 2017) is a neural network 
architecture that combines convolutional autoencoder principles with techniques to induce 
sparsity, such as max-pooling and feature channel competition. This integration simplifies 
the training process by eliminating the need for complex optimization procedures. CSAE 
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includes a sparsifying module designed to create sparse feature maps. This module retains 
the highest value and its corresponding position within each local subregion before 
performing unpooling, primarily through max pooling. The loss function used in CSAE, 
which quantifies the disparities between the original input and the reconstructed output, 
relies on the Frobenius norm and is defined as follows:

where l is the number of layers, X(l) represents the original input at layer l, X�(l) represents 
the reconstructed output at layer l, d is the number of feature channels, Zl

i
 is the ith 

sparsified feature map, and Gp,s(X) represents the sparsifying operator, involving max-
pooling and unpooling operations to create sparse feature maps.

3.5 � Recurrent autoencoder

RNNs (Medsker and Jain 2001) are designed for processing sequential data, like time 
series where the current state ( ht ) relies on the previous state ( ht−1 ). Vanilla RNNs have 
a limitation of short-term memory, leading to gradient problems in long sequences. To 
address this, LSTM equipped with three gates (forget gate, input gate, and output gate), 
and GRU networks consist of two gates (update gate and reset gate) were introduced. 
These architectures incorporate self-loops to effectively manage gradients over extended 
sequences, addressing the vanishing or exploding gradient issue. Recurrent Autoencoder is 
an autoencoder that incorporates recurrent layers, such as LSTM or GRU, within both the 
encoder and decoder components.

3.5.1 � Long short term memory autoencoder

LSTM Autoencoder (LSTMAE) (Nguyen et  al. 2021) is an advanced variation of the 
recurrent autoencoder, specifically designed to capture representations from sequential 
data. In this architecture, both the encoder and decoder components are built using LSTM 
units, a type of recurrent layer. The encoder LSTM takes in a sequence of vectors, which 
can represent images or features. In contrast, the decoder LSTM reconstructs the original 
input sequence, often in reverse order. The MSE loss function computes the average 
squared differences between the input and the reconstructed output at each time step. The 
formula for MSE loss is as follows:

where X represents the clean input sequence and X′ represents the reconstructed output 
sequence.
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3.5.2 � Gated recurrent unit autoencoder

GRU Autoencoder (GRUAE) (Dehghan et  al. 2014) employs GRU units in both the 
encoder and decoder parts. Unlike LSTM, GRU has a simpler architecture with only two 
gates: the update and reset gates. This architectural simplicity can lead to easier training 
and faster processing while still capturing long-term dependencies in input sequences. 
The formulation of a GRU Autoencoder is similar to that of an LSTM Autoencoder, 
making it flexible and effective for modeling sequential data,

where X represents the clean input sequence and X′ represents the reconstructed output 
sequence.

3.5.3 � Bidirectional autoencoder

Bidirectional Autoencoder (BiRNNAE) (Marchi et  al. 2015) is a neural network 
designed for unsupervised learning from sequential data. It utilizes bidirectional RNNs 
like LSTM or GRU in both the encoder and decoder parts. While traditional RNNs only 
consider information in one direction, bidirectional RNNs incorporate knowledge from 
both forward and backward directions, improving their grasp of temporal relationships. 
The BiRNN-AE aims to minimize the squared reconstruction error between the original 
input sequence and the generated sequence during training. To represent the input data 
efficiently, it combines the final hidden states from all encoder layers. This compact 
representation can be valuable for various downstream tasks involving sequential data. 
The loss function for BiRNN-AE is the Mean Squared Error (MSE) loss, which can be 
mathematically expressed as:

where T is the sequence length, Xt represents the input at time step t, and X′

t
 represents the 

reconstructed output at time step t.

3.6 � Semi‑supervised autoencoder

Semi-supervised Autoencoders (SSAE) is autoencoder model that utilize both labeled 
and unlabeled data to enhance feature learning, especially in scenarios with limited 
labeled data. The primary objective of SSAE is to leverage the available labeled data to 
facilitate the extraction of crucial latent features, which can subsequently be applied to 
tasks such as clustering or classification (Yang et al. 2022). This approach proves highly 
advantageous when dealing with a scarcity of labeled data, as it enables the exploitation 
of abundant unlabeled data, a common occurrence in real-world applications. In the 
following section, we delve into an explanation of the three methods of semi-supervised 
Autoencoder.
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3.6.1 � Semi‑supervised variational autoencoder

Semi-supervised Variational Autoencoder (SSVAE) (Xu et  al. 2017) is a category 
of generative models employed in semi-supervised learning scenarios. In SSVAE, 
the encoder responsible for generating the latent variable, denoted as z, is defined as 
q
�
(z|x, y) . This implies that the latent variable z is parameterized by both input data x 

and label y. The decoder, on the other hand, generates samples from the distribution 
p
�
(x|y, z) . The label predictive distribution q

�
(y|x) is determined by a classification 

network. Notably, the label y is also considered a latent variable and plays a role 
in generating a sample x in conjunction with z. The loss function for SSVAE is 
mathematically expressed as follows:

in which the first term represents the expectation of the conditional log-likelihood of the 
latent variable z, the second term denotes the log-likelihood associated with y, and the third 
term quantifies the Kullback–Leibler divergence between the prior distribution p(z) and the 
posterior distribution q

�
(z|x, y).

3.6.2 � Disentangled variational autoencoder

Disentangled Variational Autoencoder (DVAE) (Higgins et al. 2016) is a sophisticated 
generative model designed to untangle complex data representations. By incorporating 
specific graphical model structures and distinct encoding factors, it can effectively 
separate and capture meaningful information. This model leverages neural networks 
within a graphical framework to capture relationships among observed and unobserved 
variables. To optimize its performance, it employs a conditional probability 
factorization, q(y, z|x) , which is different from traditional approaches. This change 
requires advanced variational inference methods. In essence, Disentangled VAEs are 
adept at modeling intricate data patterns, making them valuable for various machine 
learning tasks. Mathematically, they use a loss function expressed as:

 In simpler terms, this loss function guides the model to generate data resembling real-
world data while considering the relationships between observed and latent variables.

3.6.3 � Label and sparse regularized autoencoder

Label and Sparse Regularized Autoencoder (LSRAE) (Chai et  al. 2019) is a novel 
approach that combines label and sparse regularizations with autoencoders to create a 
semi-supervised learning method. This method effectively leverages the strengths of 
both unsupervised and supervised learning processes. On one hand, sparse regularization 
selectively activates a subset of neurons, enhancing the extraction of localized and 
informative features. This unsupervised learning process helps uncover underlying data 
concepts, improving generalization. On the other hand, label regularization enforces the 
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extraction of features aligned with category rules, leading to improved categorization 
accuracy. The objective function of LSRAE is defined as follows:

where the first term ensures precise data reconstruction, the second term promotes sparsity 
within the hidden layer, facilitating efficient feature extraction. The third term acts as a 
safeguard against overfitting by penalizing excessive weights. Lastly, the fourth term 
enhances classification accuracy by quantifying the label error. Here, L denotes the actual 
label, and T represents the desired label.

3.7 � Graph autoencoder

Graph Autoencoder (GAE) (Pan et  al. 2018) is a power method for reducing the 
dimensionality of graph data, enhancing efficiency in graph analytics. It takes a graph 
as input and outputs a condensed vector representation that captures its essential feature. 
Within GAE, the encoder converts the input graph into a lower-dimensional vector, 
which the decoder uses to recreate the original graph. The model aims to minimize the 
dissimilarity between input and output graphs while capturing essential graph features. The 
loss function for GAE is defined as:

where X′ is computed from the inner product of the hidden representation Z and its 
transpose ZT using the logistic sigmoid function �(ZZT

) . Z = GCN(F,X) , obtained through 
the Graph Convolutional Network (GCN) applied to the node features matrix F , is based 
on the input data X.

3.7.1 � Variational graph autoencoder

Variational Graph Autoencoder (VGAE) (Kipf and Welling 2016) is a framework for 
learning interpretable latent representations of graph-structured data. It employs a 
probabilistic approach to encode graph information effectively. VGAE consists of two 
essential components: an encoder and a decoder. The encoder utilizes a Graph Convolution 
Network (GCN) to transform graph nodes into a lower-dimensional latent space. It 
generates latent variables zi for each node by sampling from Gaussian distributions. These 
latent variables capture crucial structural information of the graph. The decoder functions 
as a generative model, aiming to reconstruct the original graph structure using the latent 
variables zi . It estimates the likelihood of connections (edges) between nodes based on 
their corresponding latent vectors.The VGAE loss function combines a reconstruction term 
and a regularization term to guide the learning process effectively:

where q(Z|F,X) represents the encoding distribution, p(X|Z) models the likelihood of 
the adjacency matrix given the latent variables, and KL(q(Z|F,X)||p(Z)) quantifies the 
divergence between the encoding distribution and the prior distribution governing the 
latent variables Z.
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�
) = min

�
‖X − X�‖2

F

�

(32)LVGAE = −E(q(Z|F,X))[log[p(X|Z)]] + KL(q(Z|F,X)||p(Z))
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3.7.2 � Adversarial graph autoencoder

Adversarial Graph Autoencoder (AGAE) (Pan et  al. 2018) leverages adversarial training 
to acquire a lower-dimensional representation of the input graph. It employs an encoder to 
map graph nodes to this lower-dimensional space and a decoder to reconstruct the original 
graph. AGAE integrates an adversarial component, akin to a discriminator, to ensure the 
learned embeddings preserve the graph structure. This unsupervised model combines 
autoencoder-based reconstruction with adversarial training to generate high-quality graph 
representations. The AGAE loss function is defined as follows:

where G(⋅) represents the generator, and D(⋅) signifies the discriminator. The 
discriminator’s role is to distinguish between the real input graph, pz , and the reconstructed 
graph generated by the generator G(F, X).

3.7.3 � Graph attention autoencoder

Graph Attentional Autoencoder (GAAE) (Salehi and Davulcu 2019) is a variant of graph 
autoencoders that combines Graph Attention Network (GAT) with GAE. It employs 
attention mechanisms to weigh the importance of neighboring nodes and edges during the 
reconstruction process. In essence, GAAE aims to learn a low-dimensional representation 
of a graph while preserving its structural information using attention mechanisms. The 
GAAE loss function is defined as follows:

in which Z represents the hidden layer representation of node v. The calculation of Z(l)

i
 is 

based on the formula:

where Ni denotes the set of neighbors of node vi , and W (l−1) represents the learnable 
parameter matrix. The attention coefficient aij is computed using the following formula:

where M represents topological weights, and � is the LeakyReLU activation function.

3.8 �  Masked autoencoders

Masked AE (MAE) is a variant of autoencoder used for sequence modeling, particularly in 
vision and NLP. It operates by taking a sequence of data and randomly masking or hiding 
some of the elements. The model’s task is to predict the masked or missing elements based 
on the context provided by the unmasked portions. This training approach enables MAE to 

(33)LAGAE = E
(H∼pz)

[logD(Z)] + EX[log(1 − D(G(F,X)))]

(34)LGAAE = min
�
‖X − Sigmoid(ZZT

))‖2
F

�

(35)Z
(l)

i
= �

(
∑

j∈Ni

aijW
(l−1)Z

(l−1)

j

)

(36)aij =
exp(�Mij(a

T
[Wxi‖Wxj]))

∑
r∈Ni

exp(�Mira
T ([Wxi‖Wxr]))
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generate coherent and contextually appropriate text or videos, making them valuable for 
tasks like text completion (Zhang et al. 2022), text generation (Zhang et al. 2023,) language 
modeling, image captioning (Alzu’bi et al. 2021) and data augmentation (Xu et al. 2022).

3.8.1 � Graph masked autoencoder

Graph Masked Autoencoder (GMAE) (Hou et al. 2022) is a simplified and cost-effective 
approach for self-supervised graph representation learning. Unlike most GAEs that focus 
on reconstructing graph structures, GMAE’s core emphasis is on feature reconstruction 
through masking. Additionally, GMAE departs from using MSE, opting for the cosine 
error, which benefits cases where feature magnitudes vary, common in graph node 
attributes. The primary objective of GMAE is to reconstruct the masked features of nodes, 
V ′

⊂ V  , given the partially observed node signals. Formally, for GMAE, the Loss function 
is as follow, where it is averaged over all masked nodes,

3.8.2 � Contrastive masked autoencoder

Contrastive Masked Autoencoders (CMAE) (Huang et al. 2022) is a novel self-supervised 
pre-training method designed to enhance the learning of comprehensive and versatile 
vision representations. CMAE comprises two distinct branches: the online branch, 
characterized by an asymmetric encoder-decoder configuration, and the target branch, 
featuring a momentum-updated encoder. During the training process, the online encoder 
is tasked with reconstructing original images from latent representations of masked images 
with positional embeddings added. The loss uses cosine similarity � between ( yps and zpt  ) 
and negative �−

j
 pairs. The final objective function is as follow,

3.8.3 � Self‑distillated masked autoencoder

Self-Distilled Masked AutoEncoder (SDMAE) (Chen et  al. 2022) is composed of two 
branches: a student branch equipped tasked with reconstructing missing information, and 
a teacher branch responsible for generating latent representations of masked tokens. In this 
approach, a student network f

�
 trained through gradient descent using x̂ as inputs and a 

teacher network f
�
 . Based on the MAE method, a value normalization function is proposed 

for the teacher outputs as f
�
(xi) . This function calculates the mean and standard deviation 

of feature values within a patch. Subsequently, the optimization objective involves 
minimizing the normalized teacher features with the output features of the student decoder, 
utilizing feature cosine similarity as follow,

(37)LGMAE = min
1

�V ��

�

vi∈V
�

�

1 −
xT
i
zi

‖xi‖ ⋅ ‖zi‖

��

, � ≥ 1

(38)LCMAE = min

⎛
⎜
⎜
⎜
⎝

‖Ym − Y �

m
‖2
F
+ � log

�

− exp(
�
j
−

�
)

�

exp(
�
−

j

�
) +

∑K

j=1
exp(

�
−

j

�
)

⎞
⎟
⎟
⎟
⎠
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Table  4 presents a comprehensive summary of different autoencoder methods, offering 
insights into the specific enhancements each method brings to the table as well as the loss 
functions they employ for optimization.

4 � Application autoencoder

AEs have been widely used in various domains, including computer vision, natural 
language processing, complex network analysis, recommenders, anomaly detection, 
speech recognition, and more. Different types of autoencoder architectures have been 
proposed to address specific challenges and improve performance in these domains. 
For example, convolutional autoencoders are commonly used in image processing 
tasks, while recurrent autoencoders are well-suited for sequential data processing. In 
addition, variational autoencoders have been developed for generating new data samples 
and improving model generalization. Although each architecture has its own advantages 
and limitations, it is important to consider the specific requirements of the application 
domain when selecting an appropriate architecture. Figure  5 provides an overview of 
the applications of autoencoders in various domains, which can be used as a starting 
point for selecting an appropriate architecture. However, further research is needed to 
investigate which architectures are more suitable for which application categories and 
which architectures are more popular in specific domains.

(39)LSDMAE = min(log q
𝜓
(x̂�x̃)) ≈ min

∑n

i=1
mif

𝜙
(xi)f𝜃(x̂)

�
∑n

i=1
mi(f

𝜙
(xi))

2

�
∑n

i=1
mi(f

𝜃
(x̂))2

Application of 
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Fig. 5   The process of creating the consensus matrix, including the generation of random walks of different 
lengths and their combination
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4.1 � Machine vision

Machine vision utilizes computer algorithms and software to analyze and interpret 
images or video data, aiming to enable machines to understand and interact with 
the visual world (Jain et  al. 1995). AEs play a vital role in various machine vision 
applications by learning to extract meaningful image features and reducing data 
dimensionality. These applications encompass tasks such as image classification 
(Vincent et  al. 2010), image clustering (Guo et  al. 2017), image segmentation 
(Myronenko 2019), image inpainting (Bertalmio et al. 2000), image generation (Vahdat 
and Kautz 2020), object detection (Liang et  al. 2018), and 3D shape analysis (Todd 
2004).

AEs are instrumental in image classification. Methods like Semi-supervised stacked 
distance autoencoder (Hou et al. 2020) enhance feature representation by incorporating 
semi-supervised learning, utilizing both labeled and unlabeled data to learn inter-data 
point distances. Deep Convolutional Autoencoders (DCAE) aid in semi-supervised 
classification, as seen in Geng et al. (2015), where they pre-train on unlabeled Synthetic 
Aperture Radar (SAR) images and fine-tune using labeled data for high-resolution SAR 
images classification.

AEs are also valuable in image clustering, where they learn compressed image 
representations for grouping similar images in the latent space. This technique involves 
training a clustering algorithm like K-means on the latent space, as described in 
references Song et al. (2013) and Yang et al. (2017). Additionally, AEs can be used for 
unsupervised image clustering, making them suitable for scenarios with limited labeled 
data.

AEs are instrumental in image segmentation, with a wide array of applications that 
enhance the precision and efficiency of this critical computer vision task. By learning 
meaningful feature representations from image data, AEs provide a valuable foundation 
for distinguishing objects and boundaries in images. Their capability for dimensionality 
reduction streamlines the processing of high-resolution images, making segmentation 
algorithms computationally more tractable (Zhang et al. 2019). AEs also excel in noise 
reduction, eliminating unwanted artifacts from images, which is pivotal for accurate 
segmentation (Tripathi 2021). They are integral in semantic segmentation (Ohgushi 
et al. 2020), where they classify each pixel in an image, and instance segmentation (Lin 
et  al. 2020), distinguishing individual object instances. Furthermore, AEs contribute 
to medical image segmentation (Ma et  al. 2022), aiding in the precise identification 
of structures and anomalies in healthcare images. Overall, AEs substantially elevate 
the accuracy and efficiency of image segmentation tasks, encompassing a range of 
applications that extend from object recognition to medical diagnosis.

AEs find significant applications in the domain of image inpainting, a process 
of reconstructing missing or corrupted parts of an image. They excel at capturing 
complex patterns and textures within images, making them invaluable for this task. 
AEs, particularly VAEs and GANs, offer high-quality inpainting results by learning to 
generate realistic and coherent content to fill in the gaps (Tian et  al. 2023; Han and 
Wang 2021). They effectively model the underlying structures and features of images, 
ensuring that the inpainted regions seamlessly blend with the surrounding content.

AEs find versatile applications in image generation tasks, contributing to the creation 
of high-quality and diverse visual content. They serve as a foundational component 
in generative models, VAEs and GANs, enabling the synthesis of realistic and novel 
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images (Huang and Jafari 2023). AEs are essential in encoding and decoding operations, 
effectively generating images with specific features, styles, and content (Xu et al. 2019). 
They also play a vital role in style transfer, where they transform images to adopt the 
artistic characteristics of other images or styles (Kim et al. 2021).

AEs play a role in object detection by extracting valuable features from images or video 
frames, improving detection accuracy. Convolutional AEs are used to learn compressed 
image representations that enhance the performance of object detection algorithms, such 
as Region-based Convolutional Neural Networks (R-CNN) (Ding et al. 2019). VAE further 
enhanes object detection accuracy, as seen in the integration of VAE with You Only Look 
Once (YOLO) (Redmon et al. 2016).

In the domain of 3D shape analysis, AEs learn compressed representations for tasks like 
shape generation, completion, and retrieval. Achieving a disentangled latent representation 
that separates various factors of variation is a challenge. Recent research introduces 
methods like Split-AE (Saha et  al. 2022) and 3D Shape Variational Autoencoder Latent 
Disentanglement (Foti et  al. 2022), addressing this challenge. Other approaches employ 
deep learning features for 3D shape retrieval by projecting 3D shapes into 2D space and 
utilizing AEs for feature learning (Zhu et al. 2016). Additionally, architectures like point-
cloud AEs combined with VAEs are explored to partition the latent space and enhance 3D 
shape analysis (Aumentado-Armstrong et al. 2019).

While AEs offer valuable capabilities in various machine vision applications, their 
effectiveness often depends on the specific task and dataset characteristics, and they may 
be complemented by specialized models in certain scenarios.

4.2 � NLP

NLP is a field that explores how computers can understand and work with human 
language in speech or text form to perform useful tasks (Chowdhary and Chowdhary 
2020). This area mainly concentrates on methods for handling text data, including tasks 
like categorizing text (text classification) (Kowsari et  al. 2019), grouping similar texts 
together (text clustering) (Aggarwal and Zhai 2012), generating new text (text generation) 
(McKeown 1992), and assessing the sentiment expressed in text (sentiment analysis) 
(Medhat et al. 2014). To tackle the complexities of working with textual data, researchers 
have developed advanced models, often incorporating AEs. These models have proven 
effective in addressing the challenges associated with processing text data (Li et al. 2023).

AEs play a versatile role in text classification tasks, offering feature learning to capture 
crucial patterns in text data (Guo et  al. 2023; Ye et  al. 2022), dimensionality reduction 
for efficient processing of high-dimensional text features (Le et al. 2023; Che et al. 2020), 
noise reduction to clean and enhance noisy text (García-Mendoza et al. 2022; Che et al. 
2020), and semi-supervised learning for improved classification using limited labeled 
data (Wu et  al. 2019; Xu et  al. 2017). They also excel in topic modeling by uncovering 
underlying themes within text documents (Paul et  al. 2023; Smatana and Butka 2019), 
aid in anomaly detection to identify unusual patterns (Gorokhov et  al. 2023; Bursic 
et  al. 2019), and enable coherent text generation (Semeniuta et  al. 2017; Zhao et  al. 
2021). Their adaptability and versatility make them indispensable tools in NLP and text 
analysis, enhancing various aspects of text classification. Another application of AE in 
the field of NLP is text clustering. In this context, AEs have been applied to organize text 
documents into meaningful groups. One approach utilizes stacked AEs, combining them 
with k-means clustering to effectively group text documents into meaningful clusters 
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(Hosseini and Varzaneh 2022). In Deep Embedded Clustering (DEC), AEs play a pivotal 
role by initializing feature representations of data points and serving as the foundation for 
similarity computations during the clustering process. The embeddings learned by AEs 
are jointly optimized with cluster assignments, thereby enhancing the overall quality of 
clustering results (Xie et  al. 2016; Daneshfar et  al. 2023). AEs also provide a solution 
to the challenges of short text clustering. They address the sparsity problem in short text 
representations by employing low-dimensional continuous representations or embeddings 
like Smooth Inverse Frequency (SIF) embeddings. Here, the encoder maps the input 
short texts to a lower-dimensional continuous representation, and the decoder strives to 
reconstruct the input from this representation. AEs are used to encode and reconstruct 
these SIF embeddings, resulting in improved short text clustering quality (Hadifar et  al. 
2019).

4.3 � Complex network

Autoencoders have emerged as valuable tools in complex network analysis, playing a 
pivotal role in transforming and enhancing network data for various tasks, including 
network embedding (Cui et al. 2018), deep clustering (Berahmand et al. 2023), and link 
prediction (Martínez et al. 2016). These applications harness the capability of autoencoders 
to capture complex, non-linear relationships within network data, enabling more effective 
and insightful analyses.

Network embedding involves learning compact representations of nodes and edges 
in a network. Autoencoders excel in this task by seeking optimal non-linear functions to 
preserve intricate graph structures. For instance, the Structural Deep Network Embedding 
(SDNE) method (Wang et  al. 2016) employs a deep autoencoder approach to address 
challenges such as high non-linearity, structure preservation, and sparsity. It utilizes 
multiple non-linear layers to preserve neighbor structures of nodes, enhancing the depth 
of representation learning. Another method, DNGR (Cao et  al. 2016), captures both the 
weighted graph structure and nodes’ non-linear characteristics by employing a random 
surfing model inspired by PageRank. This approach constructs node representations 
through a weighted transition probability matrix and employs stacked denoising 
autoencoders for latent representation learning. Additionally, the adversarial framework 
ARGA (Pan et  al. 2018) aims to balance graph structure reconstruction and enforcing 
latent code adherence to a prior distribution, producing robust graph representations.

Deep clustering focuses on dividing a network into meaningful clusters of nodes with 
similar attributes or behaviors. The Marginalized Graph Autoencoder (MGAE) augments 
autoencoder-based representation learning with GCN to achieve deep node representations 
(Wang et al. 2017). Shaohua Fan et al. introduce the One2Multi graph autoencoder (Fan 
et  al. 2020), which learns node embeddings by reconstructing multiple graph views 
using one informative graph view and content data. This approach effectively captures 
shared feature representations and optimizes cluster label assignments and embeddings 
through self-training and autoencoder-based reconstruction. In contrast, the N2D method 
(McConville et al. 2021) simplifies deep clustering by replacing the clustering network with 
an alternative framework, reducing the complexity of typical deep clustering algorithms.

Link prediction aims to predict missing or future connections in a network based on 
observed data. In this context, the Heterogeneous Hypergraph Variational Autoencoder 
(HeteHG-VAE) transforms Heterogeneous Information Networks (HINs) into 
heterogeneous hypergraphs, capturing both high-order semantics and complex relationships 
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while preserving pairwise topology (Fan et  al. 2021). Bayesian deep generative 
frameworks are used to learn deep latent representations, improving link prediction in 
HINs. Another method (Salha et al. 2019) inspired by Newtonian gravity extends the graph 
autoencoder and VAE frameworks to address link prediction in directed graphs, effectively 
reconstructing directed graphs from node embeddings. Lastly, the Multi-Scale Variational 
Graph Autoencoder (MSVGAE) introduces a novel graph embedding framework that 
leverages graph attribute information through self-supervised learning (Guo et al. 2022).

In conclusion, autoencoders are versatile tools for intricate network analysis, 
contributing significantly to tasks such as network embedding, deep clustering, and link 
prediction by capturing complex patterns, enhancing representations, and enabling precise 
predictions.

4.4 � Recommender system

Autoencoders find valuable applications in recommendation systems, which aim to suggest 
items to users based on their historical behavior or preferences. Recommender systems 
play a pivotal role in various domains, including e-commerce, social media, and online 
content platforms, offering personalized recommendations to users (Zhang et  al. 2019). 
However, traditional recommender systems grapple with the challenges posed by the 
immense volume, complexity, and dynamic nature of information (Zhang et al. 2020).

The concept behind autoencoder-based recommender systems involves using AEs to 
acquire a lower-dimensional representation of both items and users. This representation 
can subsequently predict a user’s preferences for items they haven’t yet interacted with. 
Autoencoder-based recommender systems fall into two categories: pure autoencoder 
models and integrated autoencoder models, depending on the model architecture employed 
(Zhang et al. 2020).

In pure autoencoder models, the autoencoder serves as the sole architecture for 
recommendation. These models rely exclusively on user-item interaction data and/
or item features to learn a compressed representation of the data, enabling personalized 
recommendations. Examples of pure autoencoder models include the Collaborative 
Denoising Autoencoder (CDAE) (Wu et al. 2016) and Deep Content-based Autoencoder 
(DCAE) (Van den Oord et al. 2013). CDAE is tailored for collaborative filtering data, where 
user-item interactions form a sparse matrix. It learns low-dimensional representations 
of users and items by reconstructing missing entries in the matrix. In contrast, DCAE 
handles content-based data, representing items as feature vectors. This model learns low-
dimensional representations of items by reconstructing the original feature vectors (Wang 
et al. 2015). Additional examples include Collaborative Filtering Neural Network (CFN) 
(Strub et  al. 2016, 2015), Hybrid Collaborative Recommendation via Semi-Autoencoder 
(HCRSAE) (Zhang et al. 2017), and Imputation-boosted Denoising Autoencoder (IDAE) 
(Lee and Lee 2017). Each model has its specific strengths and limitations, rendering them 
suitable for distinct recommendation scenarios.

In integrated autoencoder models, the autoencoder collaborates with other 
recommendation models, such as matrix factorization or neural network-based models, 
to enhance recommendation accuracy. These models use the autoencoder to learn a 
compressed representation of the data, which is then integrated with other models to 
generate recommendations (Strub et al. 2016). Examples of integrated autoencoder models 
include the Hybrid Collaborative Content-based Autoencoder (HCCAE) (Zhang et  al. 
2017), Variational Autoencoders for Collaborative Filtering (VAE-CFs) (Liang et al. 2018), 
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and Neural Collaborative Autoencoder (NCAE) (He et  al. 2017). HCCAE combines the 
learned representations with other recommendation models, while NCAE utilizes a neural 
network to generate recommendations directly from the learned representations. These 
models leverage additional information such as content features, social relationships, or 
visual data to enhance their recommendations. Each model possesses unique characteristics 
and objectives, making them suitable for addressing various challenges like cold start 
problems, sequential data, semantic information, or visual styles.

4.5 � Anomaly detection

While AEs have the ability to learn complex patterns in data and detect anomalies that are 
not easily identifiable, it has been widely used in the field of anomaly detection (Pang et al. 
2021). An anomaly detection model can be used to detect a fraudulent transaction or any 
highly imbalanced supervised tasks (Chandola et al. 2009). AEs can be used in supervised 
(Alsadhan 2023), unsupervised (Lopes et  al. 2022), and semi-supervised (Akcay et  al. 
2018; Ruff et al. 2019) anomaly detection tasks.

In supervised anomaly detection, AEs are trained on both normal and anomalous 
data. The AE is first trained on normal data to learn the underlying patterns and features 
of normal data. Then, the AE is fine-tuned on the combined normal and anomalous 
data to capture the difference between normal and anomalous data. During training, the 
objective is to minimize the reconstruction error between the input and the output of the 
AE. After training, the reconstruction error of the test data is compared to a threshold. If 
the reconstruction error is above the threshold, the input data is classified as anomalous 
(Pang et al. 2021). This approach combines the feature learning capabilities of AEs with 
the discriminative power of supervised classifiers, enhancing the accuracy of anomaly 
detection in real-world applications, including fraud detection (Alsadhan 2023; Debener 
et  al. 2023; Fanai and Abbasimehr 2023), network security (Ghorbani and Fakhrahmad 
2022; Lopes et  al. 2022), and fault detection (Ding et  al. 2022; Ying et  al. 2023) in 
industrial processes.

In unsupervised tasks, the idea is to train AEs on only sample data of one class 
(majority class). This way the network is capable of re-constructing the input with good 
or less reconstruction loss. Now, if a sample data of another target class is passed through 
the AE network, it results in comparatively larger reconstruction loss, a threshold value 
of reconstruction loss (anomaly score) can be decided, larger than that can be considered 
an anomaly (Sakurada and Yairi 2014). This inherent ability to capture complex data 
representations without labeled anomalies makes AEs effective in detecting anomalies, 
whether in cyber-security for identifying network intrusions (Lopes et  al. 2022; An 
et  al. 2022; Lewandowski and Paffenroth 2022), in manufacturing for spotting defects 
(Papananias et al. 2023; Sudo et al. 2021), or in finance for fraud detection (Du et al. 2022; 
Jiang et al. 2023; Kennedy et al. 2023). The versatility of AEs and their capacity to adapt 
to diverse data types contribute to their widespread use in unsupervised anomaly detection 
scenarios, enhancing system security and reliability.

AEs have been employed effectively in semi-supervised anomaly detection by 
capitalizing on their capacity to learn rich data representations (Zhou et al. 2023). In this 
context, a portion of the training data is labeled as normal, while the majority remains 
unlabeled. The AE is trained to reconstruct the normal data accurately, and during this 
process, it learns to capture the underlying structure and features of the normal class. 
When presented with new, unlabeled data, the AE endeavors to reconstruct it (Ruff et al. 
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2019). Anomalies, which deviate significantly from the learned normal patterns, result 
in high reconstruction errors. By setting a suitable threshold on the reconstruction error, 
anomalies can be effectively detected. This semi-supervised approach minimizes the need 
for extensive labeled anomaly data and has proven effective in various domains, including 
fraud detection (Charitou et  al. 2020; DeLise 2023; Dzakiyullah et  al. 2021), network 
security (Dong et  al. 2022; Hara and Shiomoto 2020; Hoang and Kim 2022; Thai et  al. 
2022), and quality control (Cacciarelli et  al. 2022; Sae-Ang et  al. 2022), where labeled 
anomalies are often scarce.

4.6 � Speech processing

Speech processing is focused on enabling machines to understand and interpret human 
speech with the ultimate objective of creating systems that facilitate natural and intuitive 
interaction between humans and machines (Hickok and Poeppel 2007). AEs have found 
numerous applications in speech processing, especially in speech denoising (Bhangale 
and Kothandaraman 2022; Tanveer et  al. 2023), speech recognition (Kumar et  al. 2022; 
Sayed et al. 2023), speech representation (Alex and Mary 2023; Seki et al. 2023), speech 
compression (Li et al. 2021; Srikotr 2022), feature representation (Shixin et al. 2022; Tian 
et al. 2022), and speech emotion recognition (Dutt and Gader 2023; Gao et al. 2023).

Speech denoising is a vital process aimed at eliminating unwanted noise from speech 
signals (Azarang and Kehtarnavaz 2020). AEs have emerged as a powerful tool for this 
task, where the objective is to enhance the quality of speech by removing noise (Hosseini 
et  al. 2021). In the denoising AE framework, the model is trained using noisy speech 
samples, with the noisy speech serving as the input and the corresponding clean speech 
as the target. Through this training, the AE becomes adept at reconstructing noise-free 
speech from noisy inputs, enabling it to effectively denoise unseen speech signals. The 
encoder component of the AE extracts informative features from the noisy speech, while 
the decoder component reconstructs the clean speech based on these extracted features. 
Denoising AEs have demonstrated remarkable efficacy in mitigating various types of noise 
in speech signals, including background noise, reverberation, and distortion.

Speech recognition is the process of converting spoken words into text or commands 
that a computer can understand and execute (Gaikwad et  al. 2010). AEs can be used in 
speech recognition as a pre-processing step for feature extraction. The AE can learn to 
encode the raw audio signals into a more compact and meaningful representation of the 
speech signal, which can then be used as input to a speech recognition model. This can 
improve the accuracy and efficiency of speech recognition systems, especially in noisy or 
variable acoustic environments (Sayed et  al. 2023; Wubet and Lian 2022). Additionally, 
AEs can be used for speaker identification, where the AE can learn to distinguish between 
different speakers based on their speech patterns (Liao et  al. 2022; Rituerto-González 
and Peláez-Moreno 2021). A popular approach is using a CNN as the encoder to extract 
local features from the audio signal, and a RNN as the decoder to capture the temporal 
dependencies in the speech signal, with the output of the RNN decoder able to transcribe 
the speech signal (Palaz and Collobert 2015; Rusnac and Grigore 2022).
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4.7 � Other

Autoencoders have diverse applications in fault diagnosis, intrusion detection, and 
hyperspectral imaging. They help detect faults in systems, identify network intrusions, and 
enhance the analysis of hyperspectral data for applications like remote sensing. Different 
autoencoder versions are tailored to meet specific challenges in these domains.

4.7.1 � Fault diagnosis

Fault diagnosis is the process of identifying, isolating, and characterizing faults or 
anomalies in a system or machine. It involves analyzing the behavior of the system 
or machine and identifying any deviations from normal or expected behavior. Fault 
diagnosis is critical in various fields, including manufacturing, automotive, aerospace, 
and healthcare, as it can help prevent failures, reduce downtime, and improve safety 
and reliability (Gao et al. 2015). Autoencoders have demonstrated significant potential 
in fault diagnosis applications. By training an autoencoder on normal data, it can 
detect deviations from the norm, indicating the presence of a fault or anomaly. To use 
an autoencoder for fault diagnosis, the initial step is to collect a dataset of normal 
operating conditions for the system or equipment. This dataset is then employed to 
train the autoencoder to learn the normal data patterns. Subsequently, it can be applied 
to new data for fault diagnosis by identifying deviations from these learned patterns 
citeyang2022autoencoder.

One crucial aspect of using autoencoders for fault diagnosis is selecting an 
appropriate anomaly detection threshold. Typically, this threshold is determined based 
on the distribution of the reconstruction error for normal data. Any data that produces a 
reconstruction error exceeding the threshold is flagged as an anomaly (Ma et al. 2018). 
Autoencoders are effective for fault diagnosis because they can autonomously learn 
intricate patterns and recognize deviations from those patterns, eliminating the need 
for explicit feature engineering. This capability makes them well-suited for detecting 
subtle anomalies that might be challenging to identify using traditional fault diagnosis 
methods (Lei et al. 2020).

4.7.2 � Intrusion detection

The process of intrusion detection involves continuous monitoring of a system or 
network to identify and respond to instances of malicious activity or breaches of 
established policies. Its purpose is to detect anomalous behavior or indicators of 
potential attacks to prevent or mitigate any potential damage (Farahnakian and 
Heikkonen 2018). Al-Qatf et  al. (2018) have proposed a deep autoencoder-based 
intrusion detection system that utilizes enhanced representative features to enhance 
intrusion detection accuracy. The autoencoder extracts representative features from 
network traffic data, which are subsequently employed to train a classification model 
for intrusion detection. Another technique to improve intrusion detection systems is 
the use of Stacked Sparse Autoencoders (SSAE). Yan and Han (2018) utilize SSAE, 
which is trained on a combination of normal and attack traffic to uncover underlying 
patterns in network traffic data. These extracted features serve as the basis for training 
a classifier to detect attacks.
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Autoencoders can play a significant role in automatic feature extraction for intrusion 
detection systems. Kunang et al. (2018) propose a method in which an autoencoder is 
employed to extract relevant features from raw network traffic data. These extracted 
features are then used as input for a classifier, such as a Support Vector Machine 
(SVM), to distinguish between normal and malicious traffic. Compared to traditional 
rule-based or signature-based methods, autoencoders have the potential to enhance the 
accuracy and efficiency of intrusion detection systems (Ieracitano et al. 2020).

4.7.3 � Hyperspectral imaging

AEs find wide-ranging applications in hyperspectral image analysis due to their ability 
to learn concise representations of high-dimensional data. Hyperspectral imaging is a 
potent technique for capturing detailed spectral information about objects or scenes. It 
involves multi-dimensional data where each pixel contains a spectrum of reflectance 
or radiance values across numerous narrow, contiguous spectral bands (Jaiswal et  al. 
2023).

AEs are employed for various tasks in managing hyperspectral data, including 
hyperspectral data compression (Minkin et  al. 2021), hyperspectral unmixing (Książek 
et  al. 2022), blind hyperspectral unmixing (Palsson et  al. 2022), and dimensionality 
reduction (Zabalza et  al. 2016). In data compression, AEs condense hyperspectral data 
while retaining crucial information, facilitating subsequent analysis and processing. 
Hyperspectral unmixing entails decomposing a hyperspectral image into its constituent 
parts, referred to as endmembers. AEs play a pivotal role in reconstructing the spectral 
profiles of these identified components (endmembers) and determining their proportional 
mixing amounts (abundances). This is indispensable for enhancing the efficiency of 
hyperspectral analysis and classification tasks (Su et  al. 2019). Blind hyperspectral 
unmixing involves deconstructing the recorded spectrum of a pixel into a mixture of 
endmembers while simultaneously discerning the proportions or fractions of these 
endmembers within the pixel. Training an AE on hyperspectral images results in a lower-
dimensional representation of the data, rendering it more manageable for subsequent 
analysis (Petersson et al. 2016).

5 � Autoencoder libraries and practical applications

The development and availability of open-source libraries for various versions of AEs 
have greatly facilitated research in this field. Three popular libraries that are widely 
used for building and training autoencoder models are TensorFlow, PyTorch, and 
Keras. Each of these libraries has its strengths and is preferred by different segments of 
the machine learning and deep learning community. Table  5 presented in this section 
provides a comprehensive overview of the source code for our proposed category of AE 
variants. Researchers can access these code repositories to implement and test different 
versions of AEs, and to compare their performance on various tasks. For instance, one 
could use the available code to train a variational AE for image reconstruction or a graph 
attention AE for node embedding. These libraries are not only useful for research but 
also for practical applications, as they enable practitioners to easily deploy pre-trained 
models on their own datasets. Table 6 presents a comprehensive overview of various AE 

28Page 39 of 52 



	 K. Berahmand et al.

1 3

models and their diverse applications in machine learning. Each model is associated with 
specific applications, datasets, methodology, evaluation metrics, and performance results. 
Notable applications include feature learning, dimensionality reduction, graph-based data 
representation, generative modeling, anomaly detection, and sequential data analysis. The 
evaluation metrics vary depending on the application but commonly include error rates, 
accuracy, precision, recall, F1 score, Area Under the Curve (AUC), and more. These AEs 
demonstrate their effectiveness in tasks ranging from image classification and sentiment 
analysis to graph representation learning and acoustic novelty detection, showcasing 
their versatility in addressing a wide array of machine learning challenges across various 
domains.

Table 5   AE Models and their corresponding years of publication, programming languages, and code 
repositories

Subsection Model Year Language Code Repository

ReAE SAE 2011 Python https://​github.​com/​siddh​arth-​agraw​al/​Sparse-​Autoe​ncoder
CAE 2011 Python https://​github.​com/​aviji​t9/​Contr​active_​Autoe​ncoder_​in_​

Pytor​ch
LAE 2015 Python https://​github.​com/​IlMio​Frizz​antin​oAmab​ile/​Lapla​cian_​

Autoe​ncoder
OAE 2019 Python https://​github.​com/​Ghost​−−−Shadow/​ortho​gonal-​autoe​

ncoder
RoAE DAE 2010 Python https://​github.​com/​jatin​shah/​ufldl-​ utori​al/​tree/​master/​assig​

nment2
M-DAE 2012 Python https://​github.​com/​douxu​896/​mSDA
L_2,1-RAE 2018 Python –

GAE VAE 2015 Python https://​github.​com/​keras-​team/​keras/​blob/​master/​examp​les/
AAE 2015 Python https://​github.​com/​Nares​h1318/​Adver​sarial_​Autoe​ncoder
BAE 2021 Python https://​github.​com/​bangx​iangy​ong/​bae-​anoma​ly-​uncer​tainty
DiffusionAE 2022 Python https://​github.​com/​phizaz/​diffae

CAE CVAE 2015 Python https://​github.​com/o-​tawab/​Varia​tional-​Autoe​ncoder-​pytor​ch
ConvLSTM 2016 Python https://​github.​com/​Antho​nySMa​ida/​convL​STM-​autoe​ncoder
CSAE 2017 Python https://​github.​com/​Cypri​enGil​le/​Sparse-​Convo​lutio​nal-​

AutoE​ncoder
RAE LSTMAE 2016 Python https://​github.​com/​iwyoo/​LSTM-​autoe​ncoder

GRUAE 2014 Python https://​github.​com/​satol​ab12/​GRU-​Autoe​ncoder
BiRNNAE 2015 Python https://​github.​com/​ecdra​ayer/​Bidir​ectio​nal_​Autoe​ncoder

SSAE SSVAE 2017 Python https://​github.​com/​gcolm​enare​jo/​asva
DVAE 2016 Python https://​github.​com/​Andre​wSpano/​Disen​tangl​ed-​Varia​tional-​

Autoe​ncoder
LSRAE 2019 Python –

GaAE VGAE 2016 Python https://​github.​com/​tkipf/​gae
AGAE 2018 Python https://​github.​com/​GRAND-​Lab/​ARGA
GAAE 2019 Python https://​github.​com/​sktoyo/​cance​rGATE

MAE GMAE 2022 Python https://​github.​com/​THUDM/​Graph​MAE.
CMAE 2022 Python https://​github.​com/​Zhich​engHu​ang/​CMAE
SDMAE 2022 Python https://​github.​com/​Abrah​amYabo/​SdAE
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6 � Future directions

Despite in-depth research on autoencoders and their improved algorithms in recent years, 
the following issues still need to be addressed.

6.1 �  Semi‑supervised and self‑supervised learning in autoencoder

Autoencoders, a prominent tool in unsupervised learning, primarily function without the 
need for labeled data. However, a significant research gap lies in exploring their adaptability 
to semi-supervised learning paradigms. This entails investigating methodologies for 
integrating labeled information into the training process, potentially enhancing their 
performance when only limited labeled data is available. Additionally, another intriguing 
avenue for exploration is the incorporation of self-supervised learning techniques within 
autoencoder frameworks. Such an endeavor aims to allow autoencoders to autonomously 
learn meaningful representations from unlabeled data, reducing their reliance on extensive 
labeled datasets. Addressing these aspects could significantly expand the applicability and 
effectiveness of autoencoders across various real-world scenarios with limited labeled data 
resources.

6.2 � Hypergraph autoencoder

Autoencoders have proven effective in preserving the non-linear structure of data due to 
their deep learning capabilities. However, they face a challenge in preserving higher-order 
neighbors in complex datasets. While autoencoders can address the former concern, they 
may not inherently handle the latter. To bridge this gap, integrating hypergraph-based 
representations of data into the autoencoder framework emerges as a potential solution. By 
transforming the data into a hypergraph and feeding it as input to the autoencoder, it may 
be possible to preserve the critical high-order neighbor relationships. This approach holds 
promise for enhancing the utility of autoencoders in scenarios where preserving intricate 
data dependencies is crucial, potentially leading to improved performance across various 
applications.

6.3 � Tuning parameter with reinforcement learning

Constructing an autoencoder involves crucial decisions about parameters like the number 
of hidden layers and nodes, which significantly influence the model’s final performance. 
While parameter selection is essential, the process of identifying the most suitable 
configuration can be challenging. In current research efforts, some have explored leveraging 
reinforcement learning techniques in conjunction with autoencoder construction. This 
novel approach aims to optimize autoencoder parameters efficiently, potentially enhancing 
model performance. The integration of reinforcement learning into parameter tuning 
represents an evolving research gap that holds promise for automating and improving the 
autoencoder design process.
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6.4 � Handling multi‑modal and heterogeneous data with autoencoders

Autoencoders are proficient at capturing patterns in data, especially in scenarios involving 
different types of data sources or modalities, like text, images, and numerical features, 
which make data structures more complex. The current challenge lies in effectively 
handling such multi-modal and heterogeneous datasets. Existing autoencoder models 
may struggle to efficiently capture and integrate the information present in these intricate 
datasets. As a result, there is a research gap in developing autoencoder variants or 
techniques that can adeptly manage multi-modal and heterogeneous data, leading to more 
comprehensive and valuable data representations. Addressing this gap has the potential to 
significantly enhance the applicability of autoencoders in various real-world applications.

7 � Conclusion

Autoencoders have become a focal point in unsupervised learning due to their remarkable abil-
ity to uncover data features and serve as a valuable dimensionality reduction tool. This paper has 
conducted a thorough examination of autoencoders, covering their fundamental principles and a 
detailed classification of models based on unique characteristics. We have also explored their use 
in various areas, from computer vision to natural language processing, highlighting their adapt-
ability. During this study, we’ve recognized both the advantages and occasional drawbacks of 
autoencoders. By classifying and summarizing these models based on their unique traits, we’ve 
revealed possible directions for future enhancements and innovations. This insight paves the way 
for further progress in the field.

In summary, autoencoders have an important role in the field of machine learning, 
and their significance is continuously growing. They have the remarkable ability to 
find valuable insights in data and create smart results, which can greatly impact vari-
ous areas. We expect an ongoing journey of progress and important developments in 
the field of autoencoders, ultimately leading to the creation of even more powerful and 
intelligent solutions that benefit society as a whole. Autoencoders are positioned to fos-
ter innovation and shape the future of machine learning.
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