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Abstract
The Honey Badger Algorithm (HBA) is a new swarm intelligence optimization algorithm 
by simulating the foraging behavior of honey badgers in nature. To further improve its con-
vergence speed and convergence accuracy, an improved HBA based on the density factors 
with the elementary functions and the mathematical spirals in the polar coordinate sys-
tem was proposed. The algorithm proposes six density factors for attenuation states based 
on elementary functions, and introduces mathematical expressions of the polar diameters 
and angles of seven mathematical spirals (Fibonacci spiral, Butterfly curve, Rose spiral, 
Cycloid, Archimedean spiral, Hypotrochoid and Cardioid) in the polar coordinate sys-
tem based on the density factors with the best synthesized effect to replace the foraging 
strategy of honey badger digging pattern in HBA. By using 23 benchmark test functions, 
the above improvements are sequentially compared with the original HBA, and the opti-
mization algorithm with the best improvement, α4CycρHBA, is selected to be compared 
with SOA, MVO, DOA, CDO, MFO, SCA, BA, GWO and FFA. Finally, four engineering 
design problems (pressure vessel design, three-bar truss design, cantilever beam design and 
slotted bulkhead design) were solved. The simulation experiments results show that the 
proposed improved HBA based on the density factors with the elementary functions and 
the mathematical spirals of the polar coordinate system has the characteristics of balanced 
exploration and expiration, fast convergence and high accuracy, and is able to solve the 
function optimization and engineering optimization problems in a better way.
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1 Introduction

Optimization is the process of finding the optimal solution to a given problem through a 
series of methods and techniques (Jain et al. 2019). Optimization is an extremely impor-
tant task to improve system performance, reduce costs and increase competitiveness. It has 
more complex practical applications in many fields, such as medicine, engineering, busi-
ness and production (Boussaïd et  al. 2013; Devan et  al. 2022; Chou et  al. 2021). Along 
with the development and progress of society, the challenges faced by optimization are 
becoming more and more complex and play a more rapid and reliable role. Traditional 
optimization algorithms excel in the optimization of single-peaked functions, which usu-
ally employ deterministic and gradient-based methods, but most engineering optimization 
problems exhibit nonlinear characteristics that make them unsolvable by traditional opti-
mization algorithms. Meta-heuristic algorithms, as a new computational method, provide 
new ways to solve these practical problems (Dokeroglu et al. 2019). Meta-heuristic algo-
rithm is a kind of optimization algorithm based on meta-heuristic knowledge (Kumar and 
Vohra 2021), its core idea lies in the in-depth analysis and solution of the problem through 
heuristic methods, it extracts the essential features of the problem by analyzing the meta-
features of the problem, so as to design more efficient optimization algorithms. Meta-heu-
ristic algorithms are favored because they maximize the features of the problem, reduce 
the search pressure and the size of the search space, and use empirical data as the basis for 
each iteration, they are able to search for the domain of definition and the objective func-
tion in a more efficient way, and they can take into account the given constraints, capture 
the factors that are present in the environment, and improve the solution to the challenges 
posed by changes in the environment. Meta-heuristic algorithms are more concerned with 
the practical solvability of the problem and emphasize more on the rapidity and real-time 
nature of the solved problems. Because of these aforementioned features, many researchers 
have applied heuristic algorithms in the optimization fields, such as Ant Lion Optimizer 
(ALO) (Abualigah et  al. 2021), Particle Swarm Optimization (PSO) (Gad 2022), Crow 
Search Algorithm (CSA) (Meraihi et  al. 2021), Wild Horse Optimizer (WHO) (Kumar 
et  al. 2023), Artificial Bee Colony (ABC) (Karaboga et  al. 2014). Grey Wolf Optimizer 
(GWO) (Nadimi-Shahraki et  al. 2021), Whale Optimization Algorithm (WOA) (Ghare-
hchopogh and Gholizadeh 2019). Coati Optimization Algorithm (COA) (Dehghani et al. 
2023). Chimp Optimization Algorithm (ChOA) (Khishe and Mosavi 2020). Bat Algorithm 
(BA) (Yang and Hossein 2012). Marine Predators Algorithm (MPA) (Faramarzi et  al. 
2020), Slime Mould Algorithm (SMA) (Gharehchopogh et al. 2023), Harris Hawks Opti-
mization (HHO) (Gharehchopogh 2023), Firefly Algorithm (FA) (Gandomi et  al. 2013), 
Energy Valley Optimizer (EVO) (Azizi et  al. 2023), Nutcracker Optimizer Algorithm 
(NOA) (Abdel-Basset et  al. 2023a), Spider Wasp Optimizer (SWO) (Abdel-Basset et  al. 
2023b), Zebra Optimization Algorithm (ZOA) (Mohapatra and Mohapatra 2023) and Afri-
can Vultures Optimization Algorithm (AVOA) (Gharehchopogh and Ibrikci 2023) etc.

The Honey Badger Algorithm (HBA), which mainly simulates the dynamic searching 
behavior of honey badgers in finding honey and digging process, has great potential in 
various application areas because of its good experimental results and simple structure 
(Hashim et al. 2022). In order to improve the effectiveness of HBA, scholars continue to 
explore new optimization methods, and many researchers have already proposed improve-
ments on the HBA. Dong et al. proposed an HBA incorporating the principle of differen-
tial evolution so as to enhance its performance. Deng et al. combined Levy flight strategy 
as well as operators from GA with HBA to improve the algorithm’s optimization seeking 
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ability (Deng 2022). Xiang et al. proposed a multi-strategy improved HBA, which applies 
the restricted inverse learning mechanism and the starvation search strategy on HBA, and 
introduces an adaptive weighting factor. Han et  al. proposed to introduce reverse learn-
ing and chaos mechanisms into HBA (Han and Ghadimi 2022), which was improved to 
increase the population quality of honey badgers and improve the performance of the origi-
nal algorithm. Yasear et al. added a reverse learning mechanism to the HBA and used the 
improved HBA for solving complex problems in power consumption costs. Nassef et  al. 
introduced a hunting search strategy in HBA thereby improving the algorithm’s optimiza-
tion capability (Nassef et al. 2022), ensure a smooth transition of the algorithm from the 
exploration to the exploitation. Lei et al. proposed a spiral search mechanism to update the 
exploration phase of the HBA and thus improve its global search capability, introduced the 
law of quasi-cosines to update the density factor in the original HBA, and proposed a pin-
hole imaging strategy to improve the population diversity (Lei et al. 2022). Düzenli et al. 
used Gaussian chaotic mapping to deal with key random variables in HBA and incorpo-
rated adversarial learning for solving the PV parameter estimation problem (Düzenli̇ et al.  
2022). Dao improved the HBA by using elite reverse learning and multi-directional strate-
gies (Dao et al. 2023) and applied it to the problem of WSN node coverage.

In the field of mathematics, elementary function is a crucial concept, and its wide appli-
cation value is self-evident. With the continuous development of mathematics, the exten-
sion of elementary functions has become an inevitable trend. Common elementary func-
tions include exponential function, logarithmic function, trigonometric function, inverse 
trigonometric function and constant function. Elementary functions are a kind of math-
ematical tool widely used in mathematics, physics, economy, life science and other fields. 
At the same time, the idea of function also plays a vital role in the field of optimization, 
and many scholars apply elementary functions with different characteristics on different 
optimization problems. Hao et al. added perturbations generated by six primitive functions 
to each of the MOA and MOP parameters in the arithmetic optimization algorithm (AOA) 
and effectively improved the convergence speed of AOA, and improvements were made to 
three ELD problem cases (Hao et al. 2022). Guo et al. improved the Whale Optimization 
Algorithm (WOA) based on the exponential models and logarithmic models in the primi-
tive functions, and the improved WOA demonstrated a more efficient performance in solv-
ing the water resources prediction model problem (Guo et al. 2020a). Kumar et al. added a 
perturbation strategy based on hyperbolic growth functions to the Spider Monkey Optimi-
zation (SMO) algorithm to improve its perturbation. A spiral is a curve with a special form 
that can be found in nature or in artificially constructed objects, and is also commonly used 
as a tool for designing optimization algorithms. In the Moth-Flame Optimization (MFO) 
algorithm, the flight path of a moth produces a spiral approximation of the flame as it flies 
(Mirjalili 2015). In Whale Optimization Algorithm (WOA), humpback whales perform 
hunting behavior with spiral motion. In Bald Eagle Search Algorithm (BES), bald eagle 
predation is divided into three phases (select, search, and swoop). In the search phase, the 
bald eagle searches around the current position in an Archimedean spiral (Alsattar et al. 
2020). There are various forms of solenoids and their properties are different, so many 
scholars have applied solenoids to the improvement of algorithms. Sun et al. proposed an 
improved WOA based on different search paths and perceived disturbances, and experi-
mental comparisons were made to verify the effect of search paths on its performance (Hao 
et  al. 2022). Guo et  al. proposed an ALO based on a spiral complex path search model 
with eight spiral path search strategies to improve population diversity and balance explo-
ration to exploitation (Guo et al. 2020b). Zhang put forward a MRFO algorithm based on 
a mathematical spiral foraging strategy, which enhances its global search capability while 
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increasing its convergence speed, as well as verifying its efficiency in terms of power sys-
tem economics (Zhang et al. 2023).

Table 1 compares the use of solenoids in the related references. All of the above stud-
ies are based on the expression of spirals in right-angled coordinates, this paper proposes 
an improved HBA based on the density factors of the elementary function and the math-
ematical spirals in the polar coordinate system. This algorithm adopts six density factors 
for the decaying states based on the elementary functions, and on the basis of the density 
factor with the best comprehensive effect, the mathematical expressions of seven mathe-
matical spirals (Fibonacci spiral, Butterfly curve, Rose spiral, Cycloid, Archimedean spiral, 
Hypotrochoid, Cardioid) in the polar coordinate system are introduced in terms of polar 
diameters and angles to replace the foraging strategy of the honey badger digging pattern 
in HBA, which will in turn improve the algorithm optimization function’s accuracy and 
the algorithm’s ability to balance exploration and exploitation. The above improvements 
are sequentially compared with the original HBA by using 23 benchmark functions. Then 
the optimization algorithm α4CycρHBA, which has the best performance, is selected to 
compare its performance with SOA (Dhiman and Kumar 2019), MVO (Sayed et al. 2019), 
DOA (Singh 2021), CDO (Shehadeh 2023), MFO (Mirjalili 2015), SCA (Abualigah and 
Diabat 2021), BA, GWO (Kumar et  al. 2017) and FFA (Shayanfar and Gharehchopogh 
2018). Finally, the optimized design problems of pressure vessel, three-bar truss, cantile-
ver beam and slotted bulkhead are solved to prove its effectiveness. The results of simula-
tion experiments show that the proposed improved HBA based on the density factors with 
elementary functions and the mathematical spirals in the polar coordinate system has the 
characteristics of balanced exploration and exploitation, fast convergence and high accu-
racy, and it can solve the function optimization and engineering optimization problems 
better. This paper includes the following contents. Section 2 introduces the HBA; Sect. 3 
introduces the improved HBA based on the elementary function density factors and the 
mathematical spirals of the polar coordinate system; Sect. 4 carries out a series of simula-
tion experiments and engineering optimization; Sect. 5 draws relevant conclusions.

2  Fundamentals of honey badger optimization algorithm

The honey badger is a furry mammal found in Africa, West Asia, and South Asia that 
requires burrows, rock crevices, or other sheltered areas for shelter, and is known as "the 
world’s most fearless animal". The honey badger has a stout body with strong claws that 
can destroy bee nests, and thick skin and rough hair that can defend against swarms of 
bees. Despite its love of honey, the honey badger does not have the skills to accurately 
identify hives. A bird that acts as a honey mentor for honey badgers is able to discover bee 
nests but is unable to access the honey. Observational experiments in the field revealed that 
this series of phenomena led to cooperation: the guide bird would bring the honey badger 
to the hive after discovering it, while the honey badger would use its front paws to open 
the hive, and ultimately, the guide bird and the honey badger worked together to obtain the 
honey together. In general, honey badgers are able to use their olfactory system to continu-
ously track the location of their prey. In order to find a hive, the honey badger has to adopt 
two different strategies. One is to search by smell and the other is to follow a guide bird. 
In both cases, one is dominated by the digging phase, while the other is dominated by the 
honey phase. The honey badger switches between these two phases, but each is unique. In 
digging phase, the honey badger uses its keen sense of smell to pinpoint the location of the 
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hive, and once it is close it quickly searches for the best place to dig. In honey phase, honey 
badgers use guide birds directly to pinpoint the location of the hive.

2.1  Initialization phase

Honey Badger Algorithm (HBA) is proposed based on the honey badger population. 
Assuming that N is the population size of honey badgers in the algorithm, D represents 
the dimension of the problem to be optimized, and X is a population of N individual honey 
badgers, the matrix X can be represented as follows:

In the quest space, the population initialization of HBA is achieved by randomly gener-
ating a number of individuals, is described mathematically as below:

where xi represents the location information of the honey badger; r1 is a random number 
uniformly distributed in the range [0,1]; ubi and lbi are the upper and lower bounds of the 
solved problem space.

2.2  Definition of smell intensity

Honey badgers locate hives and dig for food based on scent, so the scent strength of prey is 
a very important factor. Scent strength I was not only related to the source strength of the 
prey, but also showed a close correlation with the distance between the prey and the honey 
badger, which moved by tracking the intensity of the prey’s scent. As the intensity of the 
prey’s scent increases and its distance from the honey badger decreases, the honey badger 
can locate the prey more accurately and approach the prey faster. The effect of odor inten-
sity I on honey badger behavior is shown in Fig. 1.

(1)X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 ... x1D

x21 x22 x23 ... x2D

x31 x32 x33 ... x3D

... ... ... ... ...

xn1 xn2 xn3 ... xnD

⎤⎥⎥⎥⎥⎥⎥⎦

(2)xi = lbi + r1 × (ubi − lbi)

S

1
1/4

1/9

r

2r

3r

Honey
badger

sphere

S
(Prey)

Fig. 1  Honey badger movements based on prey odor intensity
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Following the principle of the inverse square law, the smell intensity I of HBA is defined 
as below:

where S denotes the source intensity (concentration intensity) of the prey, di denotes the 
distance between both the prey and the honey badger, and r2 is a random number uniformly 
distributed over the range [0,1]. The optimal individual in the honey badger population is 
defined as the prey, and xprey denotes the location of the prey.

2.3  Density factor

In HBA, the density factor � controls some random factor that varies over time and it is 
defined as follows:

where, t denotes the current number of iterations, tmax denotes the maximum number of 
iterations, and C is a constant value of ≥ 1 . Set C = 2.

At the beginning of the iteration, the density factor is very large, and with the increase 
of iteration, the density factor tends to decay, thus reducing the randomness with the num-
ber of iterations while making the algorithm more stable, which ensures that the HBA can 
be a smooth transition in the process of the exploration phase to the exploitation phase. The 
image of the HBA density factor � is shown in Fig. 2.

(3)
I
i
= r

2
×

S

4�d
2

i

S = (xi − xi+1)
2

di = xprey − xi

(4)� = C × exp

(
−t

tmax

)

Fig. 2  Trend of density factor with number of iterations
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2.4  Position update

Based on the two distinct foraging strategies possessed by honey badgers in nature, the 
location update of the search agent in HBA can be divided into two phases, namely 
"digging phase" and "honey phase", which have different movement trajectories.

2.4.1  Digging phase

During this phase, the honey badger autonomously searches for hives by smell and 
destroys them for food. Its trajectory follows the shape of the Cardioid and its position 
is updated with the following Eq.  (5).

where xnew represents the new position of the honey badger individual and xprey represents 
the optimal position of the prey.β indicates the ability of the individual honey badger to 
acquire food and is a constant value greater than 1, which is set as 6 . di , I and � are deter-
mined by Eq.  (2) and Eq.  (4), r3 , r4 and r5 are three different uniformly distributed random 
numbers, and the search direction of the honey badger is changed by using the flag F. The 
expression of F is defined as:

where r6 is a random number between [0,1].
During the digging phase of honey badger foraging, factors that influence the search 

path of the honey badger include the smell intensity I of the globally optimal prey xprey , 
the distance between the honey badger and the prey di , and the density factor � . At the 
same time, the search direction flag F may also influence the search path, with honey 
badgers redirecting their digging appropriately when better quality prey is present.

2.4.2  Honey phase

In this phase, the honey badger needs to follow the lead of the honey guiding bird to 
find the hive for food. When a guiding bird finds a hive, it calls out the honey badger to 
follow it, which then uses its strong claws to break through the hive, and the two work 
together for mutual benefit to obtain food. Equation   (7) describes the location update 
strategy for the honey phase.

where xnew represents the new position of the honey badger individual and xprey represents 
the optimal position of the prey. F is determined by Eq. (6), � is determined by Eq. (4), di is 
determined by Eq.  (2), and r7 is a random number between 0 and 1.

In the honey phase, the honey badger’s search path is influenced by the global opti-
mal prey xprey , the distance between the honey badger and the prey di , and the den-
sity factor � . Meanwhile, due to the perturbing effect of the search direction flag F, the 

(5)xnew = xprey + F × � × I × xprey + F × r3 × � × di × | cos(2�r4) × [1 − cos(2�r5)]|

(6)F =

{
1 if r

6
≤ 0.5

−1 else

(7)xnew = xprey + F ⋅ r7 ⋅ � ⋅ di
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honey badger will explore near the global optimal position xprey . The following descrip-
tion shows the operation flowchart of HBA.

Step 1: Initialize the parameters such as population size, number of iterations, � and C, 
etc. Individual fitness values were evaluated using an objective function to save the optimal 
position as the prey position;

Step 2: Update the density factor and calculate the smell intensity I.
Step 3: Depending on the value of the random rate r to decide to execute the corre-
sponding search strategy, Eq.  (5) or Eq.  (7) is executed to update the location of the 
honey badger individual.
Step 4: Calculate the fitness value by using the objective function and update the 
global optimal solution.
Step 5: Repeat Step 2~4 to calculate the optimal position and optimal fitness value 
when the stopping condition is satisfied.

3  Improved honey badger algorithm

3.1  Improved HBA based on elementary functional density factors

Honey badger’s foraging behavior in nature can be summarized in two distinct phases: dig-
ging phase and honey phase, but no matter which foraging phase, the search path of honey 
badgers is heavily dependent on the density factor � . Therefore, choosing the appropri-
ate density factor can maintain the balance between the global and local search capabili-
ties of the algorithm, thus improving its search efficiency and accuracy. The mathematical 
description of the density factor � in the original HBA is shown in Eq.  (4), and the graph 
of its change with the number of iterations is shown in Fig. 2. According to Fig. 2, it can 
be seen that the density factor does not converge to 0 at the end of the iteration, this will 
lead to algorithms that are prone to local optimal solutions. In order to overcome this nega-
tive situation and to improve the searching ability of HBA, this paper designs six elemen-
tary function based density factors to improve HBA, which include linear function based 
density factor �1 , cubic function based density factor �2 , cubic root function based density 
factor �3 , logarithmic function based density factor �4 , cosine function based density factor 
�5 and sinusoidal function based density factor �6 . The mathematical expressions for these 
six elementary function density factors are shown in Eqs.  (8)- (13), and their visualization 
graphs are shown in Fig. 3. According to the images presented by the six elementary func-
tion-based density factors in Fig. 3, it can be seen that the improved density factors show a 
gradual decay from 2 to 0 with the increase in the number of iterations, and this trend sig-
nificantly improves the capability of the HBA. It can be visualized through Fig. 3 that the 
density factor �4 designed based on the logarithmic function converges significantly faster 
at the beginning and the end of the iteration, with higher convergence accuracy as well as 
faster convergence, compared to the other five elementary function density factors.

(8)�1 = C ×

(
1 −

t

tmax

)

(9)�2 = −

(
C ×

t

tmax

)
− 13 + 1



 S.-W. Zhang et al.

1 3

55 Page 10 of 58

Fig. 3  Six elementary function density factors
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3.2  Improved HBA based on mathematical spirals in polar coordinate system

3.2.1  Mathematical spirals

In this paper, seven mathematical spirals are used to replace the foraging strategy of the honey 
badger digging phase in the HBA by applying the mathematical expressions of the polar diam-
eters and polar angles in their polar coordinate systems. These 7 types of mathematical spirals 
are Fibonacci spiral, Butterfly curve, Rose spiral, Cycloid, Archimedean spiral, Hypotrochoid 
and Cardioid. The search area covered by each type of spirals is unique, which leads to vari-
ations in the optimization effect of the algorithm, further highlighting the excellence of the 
improved HBA. The definitions of the seven mathematical spirals and the parametric equa-
tions of the right-angled coordinate system are as follows, and the images of the seven spirals 
are shown in Fig. 4.

(1) Fibonacci spiral. The Fibonacci spiral (Fib) also known as the golden spiral, is a loga-
rithmic spiral with a unique spiral structure. The rate of change of curvature at each point of 
the Fibonacci spiral is equal, consisting of n 1/4 circles of radius size in a golden ratio. How-
ever, the curvature is discontinuous at the point where each 1/4 circle meets, which means that 
the curvature of the entire spiral is not continuous.

(2) Butterfly Curve. Butterfly curve (But) is a very beautiful algebraic curve on the plane, 
by changing the variable θ in the Eq.  (15) you can get different shapes and directions of the 
butterfly curves.

(10)�3 = −3

√
C ×

t

tmax

− 1 + 1

(11)�4 =
log

(
t

tmax

)

log
(

1

C

) ×
2

9

(12)�5 = C × cos

(
�

2
×

t

tmax

)

(13)�6 = C × sin

(
−�

2
×

t

tmax

)
+ 2

(14)

{
x = a × e(k�) × cos(�)

y = a × e(k�) × sin(�)

(15)

⎧⎪⎨⎪⎩

x = sin(�) × (ecos(�) − 2 × cos(4�) − sin5
�
�

12
)
�

y = cos(�) ×
�
ecos(�) − 2 × cos(4�) − sin5

�
�

12

��



 S.-W. Zhang et al.

1 3

55 Page 12 of 58

Fig. 4  Two-dimensional images of mathematical spirals
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(3) Rose spiral. The geometry of the Rose spiral (Ros) depends on the values of the 
parameters of the Eq.  (16). The length of the leaves is controlled by parameter a , and the 
number of leaves, leaves size and the length of the period are controlled by parameter n.

(4) Cycloid. Cycloid (Cyc) is the trajectory formed by a fixed point on the circumfer-
ence of a circle when the circle rolls on a fixed straight line, and can also be called a circu-
lar roll line or spinning wheel line.

(5) Archimedean spiral. Archimedean spiral (Arc) is a trace formed when a point is 
detached from a fixed point at uniform speed and rotates around the fixed point at a fixed 
angular velocity, hence the name isochronous spiral.

(6) Hypotrochoid. The trajectory formed by a point on a circle of radius b that rolls 
along the inside of a fixed circle of radius a is known as Hypotrochoid (Hyp), and the dis-
tance from this point to the center of the circle that rolls internally is c.

(7) Cardioid: Cardioid (Car), also known as the heart-shaped line, is a kind of pendulum 
line, also a kind of ark line. It is the orbit formed when a fixed point on a circle rolls around 
the circumference of another circle that is tangent to it and of the same radius, and is so 
called because it is shaped like a heart.

3.2.2  Improved HBA based on mathematical spirals in polar coordinate system

In the original HBA, the trajectory of the honey badger in the digging phase is the 
parametric equation corresponding to the x-axis in the Cardioid in right-angle coordi-
nates, and the density factor � and the flag F for changing the search direction are mul-
tiplied with the Cardioid, and the trajectory image corresponding to the two is shown 
in Fig. 5. According to Fig. 5, as the number of iterations progressively increases, the 
honey badger population performs a motion similar to the shape of the Cardioid, whose 
range is between [0, 2] . When multiplied in front of the heart line by the attenuated den-
sity factor � and the flag F that changes the search direction, it ranges from [-4,4]. In 

(16)
{

x = a × sin(n�) × cos(�)

y = a × sin(n�) × sin(�)

(17)
{

x = r × (� − sin(�))

y = r × (1 − cos(�))

(18)
{

x = a + b × � × cos(�)

y = a + b × � × sin(�)

(19)

⎧⎪⎪⎨⎪⎪⎩

x = (a − b) × cos(�) + c × cos

�
(a − b)

b
× �

�

y = (a − b) × sin(�) − c × sin

�
(a − b)

b
× �

�

(20)
{

x = a × cos(�) × (1 − cos(�))

y = a × sin(�) × (1 − cos(�))
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this paper, the different spiral threads are multiplied by the corresponding coefficients, 
which in turn ensures the uniformity of the range of motion. From Fig. 5 (b), it can be 
seen that the image of the Cardioid does not converge to 0 after multiplying the density 
factor � and changing the sign F of the search direction, which is due to the fact that the 
density factor in the original HBA does not converge to 0 (see Fig. 3). Therefore, the 
density factors used in this paper in replacing the Cardioid in the original HBA with 
a different spiral is the logarithmic function design based density factor �4 proposed 
above with the best synthesized results.

3.3  (1) Mathematical spirals based on polar diameter � in polar coordinate system

Calculations for replacing the original HBA Cardioid based on the polar diameter 
ρ in the polar coordinate system for Fibonacci spiral, Butterfly curve, Rose spiral, 
Cycloid, Archimedean spiral, Hypotrochoid, and Cardioid are shown in Table 2, where 
l = 0.05π ∙ t . Two-dimensional images of different spirals with different polar diameter ρ 
are shown in Fig. 6, and two-dimensional images of spirals multiplied by a density fac-
tor �4 and a sign F that changes the search direction are illustrated by Fig. 7.

3.4  8) Mathematical spirals based on polar angle � in polar coordinate system

Calculations for replacing the original HBA Cardioid based on the polar angle θ 
in the polar coordinate system for Fibonacci spiral, Butterfly curve, Rose spiral, 
Cycloid, Archimedean spiral, Hypotrochoid, and Cardioid are shown in Table 3, where 
l = 0.05π ∙ t . Two-dimensional images of different spirals with different polar angle θ 
are shown in Fig. 8, and two-dimensional images of spirals multiplied by a density fac-
tor �4 and a sign F that changes the search direction are illustrated by Fig. 9.

The algorithm flowchart of the improved HBA based on the density factors with 
the elementary function and the mathematical spirals in the polar coordinate system is 
shown in Fig. 10.

Fig. 5  Images of Cardioid trajectory
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3.5  Complexity of the improved algorithm

Theoretically, HBA is considered as a global optimization algorithm during the explora-
tion and exploitation phase. The computational complexity depends on three processes: 
initialization, fitness evaluation and algorithm update. The overall complexity of the 
original HBA consists of the objective function defined in the position update, which 
has a computational complexity of Otmax × N × D) . The computational complexity is 
related to the size of the population N, the maximum number of iterations T, and the 
dimension D of the problem. The complexity of an algorithm is generally calculated 
based on the number of executions of statements. The improved algorithm α4CycρHBA 
proposed in this paper only changes the density factor and the foraging path of the 
honey badger individuals, and does not change the number of executions of the original 

Table 2  Formulas for 7 improved methods

Method Formula

α4FibρHBA ⎧⎪⎪⎨⎪⎪⎩

x
1
= 2 × e

(
−l

20
) × cos(l)

y
1
= 2 × e

(
−l

20
) × sin(l)

xnew = xprey + F × � × I × xprey + F × �
4
× di × sqrt(x2

1
+ y2

1
)

α4ButρHBA ⎧⎪⎪⎨⎪⎪⎩

x
2
= sin(l) × (ecos(l) − 2 × cos(4l) − sin

5(
l

12
))

y
2
= cos(l) × (ecos(l) − 2 × cos(4l) − sin

5(
l

12
))

xnew = xprey + F × � × I × xprey + F × �
4
× di × (sqtr(x2

2
+ y2

2
)∕2.6) × 1.7

α4RosρHBA ⎧⎪⎨⎪⎩

x
3
= 4 × sin(2l) × cos(l)

y
3
= 4 × sin(2l) × sin(l)

xnew = xprey + F × � × I × xprey + F × �
4
× di × (sqrt(x2

3
+ y2

3
∕2) × 1.3

α4CycρHBA ⎧⎪⎨⎪⎩

x
4
= 10 × (l − sin(l))∕160

y
4
= 10 × (1 − cos(l))∕10

xnew = xprey + F × � × I × xprey + F × �
4
× di × (sqrt(x2

4
+ y2

4
)∕2.65) × 5

α4ArcρHBA ⎧⎪⎨⎪⎩

x
5
= 10 × l × cos(l)∕400

y
5
= 10 × l × sin(l)∕400

xnew = xprey + F × � × I × xprey + F × �
4
× di × sqrt(x2

5
+ y2

5
) × 17

α4HypρHBA ⎧⎪⎪⎨⎪⎪⎩

x
6
= (10 − 7) × cos(l) + 9 × cos(

(10 − 7)

7
× l)

y
6
= (10 − 7) × sin(l) − 9 × sin(

(10 − 7)

7
× l)

xnew = xprey + F × � × I × xprey + F × �
4
× di × sqrt(x2

6
+ y2

6
)∕3 − 2)

α4CarρHBA ⎧⎪⎨⎪⎩

x
7
= cos(l) × (1 − cos(l))

y
7
= sin(l) × (1 − cos(l))

xnew = xprey + F × � × I × xprey + F × �
4
× di × sqrt(x2

7
+ y2

7
) × 1.8
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Fig. 6  Two-dimensional images of different spirals polar diameters �
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Fig. 7  Different spirals polar diameters �*�
4
*F
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Table 3  Formulas for 7 improved methods

Method Formula

α4FibθHBA ⎧⎪⎪⎨⎪⎪⎩

x
1
= 2 × e

(
−l

20
) × cos(l)

y
1
= 2 × e

(
−l

20
) × sin(l)

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y1

x
1

)∕1.58� × 1.9

α4ButθHBA ⎧⎪⎪⎨⎪⎪⎩

x
2
= sin(l) × (ecos(l) − 2 × cos(4l) − sin

5(
l

12
))

y
2
= cos(l) × (ecos(l) − 2 × cos(4l) − sin

5(
l

12
))

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y2

x
2

)∕1.58� × 1.58

α4RosθHBA ⎧⎪⎪⎨⎪⎪⎩

x
3
= 4 × sin(2l) × cos(l)

y
3
= 4 × sin(2l) × sin(l)

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y3

x
3

)∕1.6� × 2

α4CycθHBA ⎧⎪⎪⎨⎪⎪⎩

x
4
= 10 × (l − sin(l))∕160

y
4
= 10 × (1 − cos(l))∕10

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y4

x
4

) × 1.27�

α4ArcθHBA ⎧⎪⎪⎨⎪⎪⎩

x
5
= 10 × l × cos(l)∕400

y
5
= 10 × l × sin(l)∕400

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y5

x
5

)∕1.58� × 1.9

α4HypθHBA ⎧⎪⎪⎪⎨⎪⎪⎪⎩

x
6
= (10 − 7) × cos(l) + 9 × cos(

(10 − 7)

7
× l)

y
6
= (10 − 7) × sin(l) − 9 × sin(

(10 − 7)

7
× l)

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y6

x
6

)∕1.58� × 2.5

α4CarθHBA ⎧⎪⎪⎨⎪⎪⎩

x
7
= cos(l) × (1 − cos(l))

y
7
= sin(l) × (1 − cos(l))

xnew = xprey + F × � × I × xprey + F × �
4
× di × � arctan( y7

x
7

)∕1.58� × 1.8
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Fig. 8  Two-dimensional images of different spirals polar angle �
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Fig. 9  Different spirals polar angle �*�
4
*F
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Fig. 10  Flowchart of the improved HBA based on elementary function density factors and mathematical 
spirals in polar coordinate system
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HBA, so the overall complexity of the improved algorithm α4CycρHBA, which includes 
the position updating formulas defined in Table 1 and Table 2, is Otmax × N × D).

4  Simulation experiment and result analysis

4.1  Function optimization

Twenty-three benchmark  test functions were selected, in which the test functions were cat-
egorized into three types: single-peak test functions, multi-peak test functions, and fixed-
dimensional multi-peak test functions. The optimization results of these three kinds of test 
functions are used to demonstrate the superiority of the improved HBA in all aspects. In 
order to achieve the fairness of the test experiment, the maximum number of iterations 
of the HBA and the improved HBA based on the density factors of the elementary func-
tion and the mathematical spirals of the polar coordinate system were set to 500, and the 
number of honey badger populations was set to 50. To ensure the authenticity and fairness 
of the experiments, each group of experiments was chosen to run independently 30 times. 
Finally, its optimization performance is verified by using four real engineering optimiza-
tion problems.

4.1.1  Test functions

To demonstrate the superiority of the improved algorithm, 23 test functions were selected, 
all of which are the minimized problems. The test functions include three types: single-
peak test functions F1 ~ F7, multi-peak test functions F8 ~ F13, and fixed-dimensional 
multi-peak test functions F14 ~ F23. The dimensionality of both the single-front and mul-
tiple-front test functions is 30 dimensions, the dimensionality of F14 and F16 ~ 18 is 2 
dimensions, the dimensionality of F15 and F21 ~ 23 is 4 dimensions, the dimensionality of 
F19 is 3 dimensions, and the dimensionality of F20 is 6 dimensions.

4.1.2  Function optimization for improved HBA based on elementary function density 
factors

In order to demonstrate the superiority of the improved HBA based on the elementary 
function density factors compared to the original HBA, 23 test functions were selected. 
The maximum number of iterations for each algorithm was set to 500. To ensure the reli-
ability of the experimental results, each algorithm was experimented with 30 times and the 
optimal solutions from the results of these 30 runs were recorded. In order to facilitate the 
comparison of the performance of the algorithms and the analysis of the results, mathemat-
ical statistics of the experimental results were carried out, and Table 4 shows the statistics 
of the optimum, mean and standard deviation of the runs of the improved HBA as well as 
the original HBA. The average comparative convergence curves of the improved HBA and 
the original HBA for 30 runs is shown in Fig. 11.

Based on the results of the optimal values obtained from 23 test functions shown in 
Table 4, the following conclusions can be drawn:The optimal value obtained by α2-HBA 
is the smallest in F5, the optimal value obtained by α4-HBA is the smallest in F1 ~ F4 
and F7,the optimal value obtained by α5-HBA is the smallest in F8, and the optimal val-
ues obtained by α1-HBA, α2-HBA, α3-HBA, α4-HBA, α5-HBA and α6-HBA are the 
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Fig. 11  Convergence curves 
for function optimization of the 
improved HBA based on the den-
sity factors with the elementary 
function
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Fig. 11  (continued)
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smallest in F9 ~ F11 and F14 ~ F23. Based on the results of the average values obtained 
from the 23 test functions in Table 4, the following conclusions can be drawn: The aver-
age value obtained by α2-HBA is the smallest in F14 and F18, the average value obtained 
by α3-HBA is the smallest in F10, F18 and F19, the average value obtained by α4-HBA is 
the smallest in F1 ~ F4, F7, F10, F15, F21 and F22, the average value obtained by α5-HBA 
is the smallest in F6, F8, F10, F13, F18 and F20, the average value obtained by α6-HBA 
is the smallest in F10, F18 and F21. The average values obtained by α1-HBA, α2-HBA, 
α3-HBA, α4-HBA, α5-HBA and α6-HBA are the smallest in F9, F11, F16 and F17. Based 
on the standard deviation results obtained from the 23 test functions in Table 4, the follow-
ing conclusions can be drawn. The standard deviation obtained by α1-HBA is the smallest 
in F1 and F5, the standard deviation obtained by α2-HBA is the smallest in F1, F7 and F14, 
the standard deviation obtained by α3-HBA is the smallest in F10, the standard deviation 
obtained by α4-HBA is the smallest in F1 ~ F4, F8, F10, F15, F16, F19, F21 and F22, the 
standard deviation obtained by α5-HBA is the smallest in F6, F10, F13, F18 and F20, the 
standard deviation obtained by α6-HBA is the smallest in F1, F3, F10 and F21, the stand-
ard deviation obtained by α1-HBA, α2-HBA, α3-HBA, α4-HBA, α5-HBA and α6-HBA 
are the smallest in F9, F11 and F17.

By analyzing the convergence curves of different optimization strategies in the simula-
tion graphs and comparing the data in the table, the following conclusions can be drawn. 
The proposed six improved algorithms have better optimization performance than the HBA 
for most of the test functions, which in turn verifies that the proposed improvement scheme 
is effective. The improved density factor based on the elementary function is not only capa-
ble of high-speed optimization search, but also more accurate in the optimization search 
process. Among them, the α4-HBA optimization algorithm outperforms the original HBA 
and other schemes for improving the density factor in terms of convergence speed, optimal 
value, mean and standard deviation. This shows that the proposed α4-HBA optimization 
algorithm based on the logarithmic function is the most effective, so α4-HBA is chosen for 
further algorithmic improvement in the following.

4.1.3  Improved HBA for solving test functions based on mathematical spirals 
with polar diameter � in polar coordinate system

In order to demonstrate the more superior performance of the improved HBA based on the 
mathematical spiral of the polar coordinate system polar diameter ρ compared to the origi-
nal algorithm, 23 test functions were selected. The maximum number of iterations for each 
algorithm was set to 500. To ensure the reliability of the experimental results, each algo-
rithm was experimented with 30 times and the optimal solutions from the results of these 
30 runs were recorded. In this paper, the mathematical statistics of the experimental results 
are carried out for subsequent comparison and analysis, and the statistics of the optimal 
value, mean and standard deviation of the runs of the improved algorithm as well as the 
original algorithm are shown in Table 5. Figure 12 shows the trend of the average conver-
gence curve of the improved HBA based on the mathematical spiral of the polar coordinate 
system polar diameter ρ compared with the original HBA after 30 runs.

Based on the results of the optimal values obtained from the 23 test functions in Table 5, 
the following conclusions can be drawn:The optimal value obtained by α4FibρHBA is the 
smallest in F9 ~ F11 and F15, the optimal value obtained by α4ButρHBA is the smallest 
in F9 ~ F11 and F15, the optimal value obtained by α4RosρHBA is the smallest in F8, 
F9 ~ F11 and F15, the optimal value obtained by α4CycρHBA is the smallest in F1 ~ 4, F7, 
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Fig. 12  Convergence curves for 
function optimization  of the  
improved HBA based on the 
mathematical spirals of polar 
diameter � in the polar coordi-
nate system
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F9 ~ F11 and F15, the optimal value obtained by α4ArcρHBA is the smallest in F9 ~ F11 
and F15, the optimal value obtained by α4CarρHBA is the smallest in F9 ~ F11 and F15, 
and the optimal values obtained by α4FibρHBA, α4ButρHBA, α4RosρHBA, α4CycρHBA, 
α4ArcρHBA, α4HypρHBA and α4CarρHBA are the smallest in F14, F16 ~ F23. Based on 
the results of the average values obtained from the 23 test functions in Table 5, the follow-
ing conclusions can be drawn. The average values obtained by α4FibρHBA, α4ButρHBA, 
and α4RosρHBA are the smallest in F9 ~ F11 and F16 ~ F18, the average value obtained by 
α4CycρHBA is the smallest in F1 ~ 4, F7, F9 ~ F11, F15 ~ F17 and F19 ~ F23, the average 
value obtained by α4ArcρHBA is the smallest in F9 ~ F11, F16 and F17, the average value 
obtained by α4HypρHBA is the smallest in 16 and F17, and the average value obtained by 
α4CarρHBA is the smallest in F9 ~ F11, F16, F17 and F19. Based on the standard devia-
tion results obtained from the 23 test functions in Table 5, the following conclusions can 
be drawn. The standard deviation obtained by α4FibρHBA is the smallest in F1, F3, F5, 
F9 ~ F11 and F17, the standard deviation obtained by α4ButρHBA is the smallest in F1, 
F3, F9 ~ F11, F17 and F18, the standard deviation obtained by α4RosρHBA is the small-
est in F1, F3, F9 ~ F11 and F17,the standard deviation obtained by α4CycρHBA is the 
smallest in F1 ~ F4, F7, F9 ~ F11, F15 ~ F17 and F19 ~ F23, the standard deviation obtained 
by α4ArcρHBA is the smallest in F9 ~ F11 and F17, the standard deviation obtained by 
α4HypρHBA is the smallest in F8 and F17, and the standard deviation obtained by 
α4CarρHBA is the smallest in F1, F3, F9 ~ F11, F17 and F19.

By analyzing the convergence curves of different optimization strategies in the simu-
lation graphs and comparing the data in the table. the following conclusions can be 
drawn. The mathematical spirals based on the polar coordinate system polar diameter ρ 
of the improved HBA outperforms the original HBA for most of the test functions, and it 
has a strong advantage in terms of searching performance. The data and image informa-
tion generated from the experiments clearly show that the improved algorithm based on 
α4HypρHBA is ineffective and has a large gap compared to the other optimization strate-
gies, so it is not recommended to use this optimization strategy. Among them, α4CycρHBA 
optimization algorithm outperforms the original algorithm and other improved schemes 
in terms of convergence speed, optimal value, mean and standard deviation. Thus the 
α4CycρHBA optimization algorithm is the most effective, showing its obvious superiority 
and better search capability.

4.1.4  Improved HBA for solving test functions based on mathematical spirals 
with polar angle � in polar coordinate system

In order to demonstrate the advantages of the improved HBA based on mathematical spi-
rals of polar angle θ in polar coordinate system compared to the original HBA, 23  test 
functions were selected. The maximum number of iterations for each algorithm was set to 
500. To ensure the reliability of the experimental results, each algorithm was experimented 
with 30 times and the optimal solutions from the results of these 30 runs were recorded. 
Mathematical statistics of the experimental results were performed to better assess their 
reliability. Table  6 shows the statistics of the optimum, mean and standard deviation of 
the runs of the improved HBA as well as the original HBA. Figure 13 represents the trend 
in the average convergence curves of the improved HBA with mathematical spirals based 
on the polar angle θ in the polar coordinate system compared to the original HBA after 30 
runs.



Improved honey badger algorithm based on elementary function…

1 3

Page 35 of 58 55

Ta
bl

e 
6 

 P
er

fo
rm

an
ce

 c
om

pa
ris

on
 re

su
lts

 fo
r f

un
ct

io
n 

op
tim

iz
at

io
n

F
H

BA
α4

Fi
bθ

H
BA

α4
B

ut
θH

BA
α4

Ro
sθ

H
BA

α4
C

yc
θH

BA
α4

A
rc

θH
BA

α4
H

yp
θH

BA
α4

C
ar

θH
BA

B
es

t
9.

14
29

E−
15

4
1.

00
63

E−
18

5
4.

29
36

E−
20

6
1.

44
13

E−
19

6
1.

34
55

E−
21

2
5.

79
37

E−
18

9
1.

77
26

E+
03

5.
67

39
E−

18
7

F1
A

ve
4.

98
89

E−
14

5
7.

75
94

E−
17

8
8.

53
60

E−
19

6
2.

46
27

E−
18

7
2.

45
42

E−
20

6
7.

15
57

E−
17

7
3.

68
34

E+
03

1.
19

87
E−

17
8

St
d

2.
62

80
E−

14
4

0
0

0
0

0
1.

22
80

E+
03

0
B

es
t

5.
48

76
E−

81
3.

63
07

E−
93

1.
98

92
E−

10
4

1.
27

71
E−

10
0

5.
89

50
E−

10
7

1.
28

35
E−

93
1.

49
10

E+
01

6.
56

13
E−

93
F2

A
ve

5.
17

32
E−

78
1.

58
92

E−
89

1.
49

25
E−

96
3.

32
42

E−
93

2.
34

06
E−

10
4

2.
22

83
E−

90
2.

78
10

E+
01

1.
55

80
E−

89
St

d
1.

29
08

E−
77

5.
47

63
E−

89
8.

16
31

E−
96

1.
55

24
E−

92
3.

87
06

E−
10

4
4.

86
85

E−
90

8.
95

29
E+

00
5.

88
19

E−
89

B
es

t
1.

38
89

E−
11

4
2.

30
34

E−
18

0
1.

28
26

E−
20

1
2.

57
31

E−
19

0
1.

38
98

E−
21

0
1.

49
16

E−
18

3
7.

79
74

E+
03

1.
84

40
E−

18
2

F3
A

ve
2.

50
90

E−
10

3
3.

40
55

E−
17

1
6.

96
60

E−
18

9
1.

99
34

E−
18

0
5.

16
11

E−
20

4
1.

54
31

E−
17

3
1.

84
64

E+
04

9.
25

97
E−

17
4

St
d

1.
37

37
E−

10
2

0
0

0
0

0
7.

75
16

E+
03

0
B

es
t

3.
24

37
E−

65
5.

86
11

E−
93

1.
59

98
E−

10
3

7.
94

95
E−

96
3.

89
24

E−
10

7
9.

00
71

E−
95

1.
95

87
E+

01
1.

53
54

E−
94

F4
A

ve
1.

62
12

E−
61

1.
45

88
E−

88
1.

83
67

E−
98

3.
42

31
E−

93
5.

50
71

E−
10

4
5.

40
08

E−
89

2.
85

02
E+

01
1.

28
32

E−
89

St
d

6.
68

05
E−

61
5.

82
45

E−
88

4.
73

89
E−

98
8.

65
86

E−
93

1.
24

17
E−

10
3

1.
84

68
E−

88
4.

56
31

E+
00

3.
29

87
E−

89
B

es
t

2.
12

88
E+

01
2.

64
50

E+
01

2.
64

82
E+

01
2.

64
11

E+
01

2.
72

84
E+

01
2.

70
19

E+
01

2.
32

06
E+

05
2.

68
01

E+
01

F5
A

ve
2.

28
59

E+
01

2.
77

58
E+

01
2.

77
61

E+
01

2.
74

90
E+

01
2.

85
05

E+
01

2.
78

90
E+

01
1.

12
50

E+
06

2.
80

18
E+

01
St

d
7.

09
97

E−
01

6.
35

38
E−

01
5.

66
56

E−
01

6.
13

68
E−

01
4.

49
58

E−
01

6.
29

10
E−

01
8.

62
95

E+
05

6.
30

38
E−

01
B

es
t

1.
25

70
E−

07
1.

05
56

E+
00

1.
02

37
E+

00
3.

97
10

E−
01

1.
79

15
E+

00
2.

98
09

E−
01

1.
63

65
E+

03
8.

35
96

E−
01

F6
A

ve
1.

83
77

E−
06

1.
92

13
E+

00
1.

65
75

E+
00

1.
18

46
E+

00
2.

77
74

E+
00

1.
63

30
E+

00
3.

76
48

E+
03

2.
08

02
E+

00
St

d
2.

60
55

E−
06

5.
38

64
E−

01
4.

56
26

E−
01

3.
93

50
E−

01
6.

47
36

E−
01

5.
58

51
E−

01
1.

48
47

E+
03

5.
11

92
E−

01
B

es
t

1.
54

11
E−

05
6.

96
69

E−
07

3.
72

86
E−

05
2.

62
05

E−
06

6.
70

31
E−

06
1.

69
83

E−
05

2.
50

48
E−

01
4.

96
83

E−
06

F7
A

ve
2.

34
30

E−
04

2.
00

46
E−

04
2.

30
85

E−
04

2.
02

01
E−

04
1.

70
29

E−
04

2.
09

86
E−

04
1.

31
92

E+
00

1.
93

58
E−

04
St

d
1.

58
72

E−
04

2.
33

78
E−

04
1.

85
21

E−
04

1.
53

05
E−

04
1.

80
28

E−
04

1.
78

94
E−

04
8.

33
04

E−
01

2.
25

08
E−

04
B

es
t

−
 1

.0
77

0E
+

04
−

 9
.8

93
1E

+
03

−
 1

.0
44

8E
+

04
−

 1
.0

01
1E

+
04

−
 1

.0
95

2E
+

04
−

 9
.8

20
5E

+
03

−
 8

.9
02

2E
+

03
-1

.1
14

1E
+

04
F8

A
ve

-9
.0

57
4E

+
03

−
 7

.8
03

6E
+

03
−

 7
.9

69
6E

+
03

−
 7

.6
04

5E
+

03
−

 7
.6

77
2E

+
03

−
 7

.6
73

1E
+

03
−

 7
.1

24
3E

+
03

−
 7

.5
37

0E
+

03
St

d
1.

33
63

E+
03

1.
04

60
E+

03
1.

26
84

E+
03

1.
16

22
E+

03
1.

45
92

E+
03

8.
55

62
E+

02
8.

84
47

E+
02

1.
28

80
E+

03
B

es
t

0
0

0
0

0
0

6.
50

40
E+

01
0



 S.-W. Zhang et al.

1 3

55 Page 36 of 58

Ta
bl

e 
6 

 (c
on

tin
ue

d)

F
H

BA
α4

Fi
bθ

H
BA

α4
B

ut
θH

BA
α4

Ro
sθ

H
BA

α4
C

yc
θH

BA
α4

A
rc

θH
BA

α4
H

yp
θH

BA
α4

C
ar

θH
BA

F9
A

ve
0

0
0

0
0

0
1.

18
29

E+
02

0
St

d
0

0
0

0
0

0
2.

58
16

E+
01

0
B

es
t

8.
88

18
E−

16
8.

88
18

E−
16

8.
88

18
E−

16
8.

88
18

E−
16

8.
88

18
E−

16
8.

88
18

E−
16

1.
15

61
E+

01
8.

88
18

E−
16

F1
0

A
ve

8.
88

18
E−

16
8.

88
18

E−
16

8.
88

18
E−

16
8.

88
18

E−
16

8.
88

18
E−

16
8.

88
18

E−
16

1.
54

41
E+

01
8.

88
18

E−
16

St
d

0
0

0
0

0
0

2.
97

73
E+

00
0

B
es

t
0

0
0

0
0

0
1.

41
05

E+
01

0
F1

11
A

ve
0

0
0

0
0

0
2.

81
53

E+
01

0
St

d
0

0
0

0
0

0
8.

89
47

E+
00

0
B

es
t

8.
36

87
E−

09
3.

02
87

E−
02

1.
59

15
E−

02
2.

17
70

E−
02

9.
07

26
E−

02
2.

08
31

E−
02

1.
62

63
E+

01
4.

51
60

E−
02

F1
2

A
ve

3.
84

77
E−

07
1.

40
24

E−
01

1.
18

71
E−

01
5.

80
80

E−
02

2.
15

31
E−

01
9.

75
38

E−
02

1.
29

03
E+

04
1.

30
23

E−
01

St
d

9.
65

23
E−

07
9.

26
38

E−
02

1.
09

03
E−

01
2.

44
23

E−
02

1.
16

42
E−

01
8.

97
27

E−
02

2.
50

70
E+

04
7.

70
68

E−
02

B
es

t
2.

09
65

E−
06

8.
64

41
E−

01
9.

89
66

E−
01

9.
57

32
E−

01
8.

05
70

E−
01

8.
04

56
E−

01
3.

73
10

E+
04

8.
31

71
E−

01
F1

3
A

ve
1.

34
02

E−
01

1.
77

57
E+

00
1.

84
46

E+
00

2.
05

04
E+

00
1.

78
28

E+
00

1.
71

51
E+

00
5.

85
10

E+
05

1.
79

09
E+

00
St

d
1.

62
66

E−
01

4.
92

33
E−

01
4.

48
50

E−
01

6.
43

24
E−

01
4.

79
62

E−
01

4.
21

71
E−

01
5.

82
72

E+
05

4.
30

98
E−

01
B

es
t

9.
98

00
E−

01
9.

98
00

E−
01

9.
98

00
E−

01
9.

98
00

E−
01

9.
98

00
E−

01
9.

98
00

E−
01

9.
98

00
E−

01
9.

98
00

E−
01

F1
4

A
ve

1.
19

64
E+

00
1.

19
65

E+
00

1.
36

14
E+

00
1.

16
35

E+
00

1.
48

89
E+

00
1.

36
14

E+
00

1.
16

24
E+

00
1.

22
90

E+
00

St
d

6.
05

41
E−

01
5.

46
68

E−
01

8.
81

69
E−

01
4.

57
84

E−
01

1.
82

88
E+

00
8.

81
69

E−
01

9.
00

24
E−

01
8.

08
27

E−
01

B
es

t
3.

07
49

E−
04

3.
07

49
E−

04
3.

07
49

E−
04

3.
07

49
E−

04
3.

07
49

E−
04

3.
07

49
E−

04
3.

07
49

E−
04

3.
07

49
E−

04
F1

5
A

ve
4.

63
81

E−
03

5.
57

39
E−

03
4.

96
48

E−
03

5.
73

07
E−

03
4.

31
46

E−
03

5.
04

52
E−

03
6.

06
88

E−
03

4.
74

63
E−

03
St

d
8.

57
38

E−
03

9.
03

15
E−

03
8.

43
08

E−
03

9.
11

92
E−

03
7.

93
67

E−
03

8.
11

83
E−

03
8.

05
27

E−
03

8.
15

86
E−

03
B

es
t

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

F1
6

A
ve

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

−
 1

.0
31

6E
+

00
−

 1
.0

31
6E

+
00

St
d

6.
38

77
E−

16
5.

68
35

E−
16

5.
63

85
E−

16
5.

29
64

E−
16

4.
87

87
E−

16
5.

68
35

E−
16

5.
32

84
E−

16
5.

53
19

E−
16

B
es

t
3.

97
89

E−
01

3.
97

89
E−

01
3.

97
89

E−
01

3.
97

89
E−

01
3.

97
89

E−
01

3.
97

89
E−

01
3.

97
89

E−
01

3.
97

89
E−

01
F1

7
A

ve
3.

97
89

E−
01

3.
97

89
E−

01
3.

97
89

E−
01

3.
97

89
E−

01
3.

97
89

E−
01

3.
97

89
E−

01
3.

97
89

E−
01

3.
97

89
E−

01



Improved honey badger algorithm based on elementary function…

1 3

Page 37 of 58 55

Ta
bl

e 
6 

 (c
on

tin
ue

d)

F
H

BA
α4

Fi
bθ

H
BA

α4
B

ut
θH

BA
α4

Ro
sθ

H
BA

α4
C

yc
θH

BA
α4

A
rc

θH
BA

α4
H

yp
θH

BA
α4

C
ar

θH
BA

St
d

0
0

0
0

0
0

0
0

B
es

t
3.

00
00

E+
00

3.
00

00
E+

00
3.

00
00

E+
00

3.
00

00
E+

00
3.

00
00

E+
00

3.
00

00
E+

00
3.

00
00

E+
00

3.
00

00
E+

00
F1

8
A

ve
3.

90
00

E+
00

3.
00

00
E+

00
3.

90
00

E+
00

3.
00

00
E+

00
3.

00
00

E+
00

3.
00

00
E+

00
3.

90
00

E+
00

3.
00

00
E+

00
St

d
4.

92
95

E+
00

8.
10

01
E−

15
4.

92
95

E+
00

4.
97

87
E−

15
3.

02
88

E−
15

8.
29

14
E−

15
4.

92
95

E+
00

3.
70

82
E−

15
B

es
t

−
 3

.8
62

8E
+

00
−

 3
.8

62
8E

+
00

−
 3

.8
62

8E
+

00
−

 3
.8

62
8E

+
00

−
 3

.8
62

8E
+

00
−

 3
.8

62
8E

+
00

−
 3

.8
62

8E
+

00
−

 3
.8

62
8E

+
00

F1
9

A
ve

−
 3

.8
61

5E
+

00
−

 3
.8

62
3E

+
00

−
 3

.8
62

5E
+

00
-3

.8
62

8E
+

00
-3

.8
62

8E
+

00
-3

.8
62

8E
+

00
−

 3
.8

61
7E

+
00

-3
.8

62
8E

+
00

St
d

2.
98

75
E−

03
1.

99
96

E−
03

1.
43

90
E−

03
2.

39
58

E−
15

2.
38

01
E−

15
2.

41
41

E−
15

2.
72

50
E−

03
2.

47
26

E−
15

B
es

t
−

 3
.3

22
0E

+
00

−
 3

.3
22

0E
+

00
−

 3
.3

22
0E

+
00

−
 3

.3
22

0E
+

00
−

 3
.3

22
0E

+
00

−
 3

.3
22

0E
+

00
−

 3
.3

22
0E

+
00

−
 3

.3
22

0E
+

00
F2

0
A

ve
−

 3
.2

47
5E

+
00

-3
.2

80
2E

+
00

−
 3

.2
36

9E
+

00
−

 3
.2

61
6E

+
00

−
 3

.2
54

0E
+

00
−

 3
.2

57
8E

+
00

−
 3

.2
59

8E
+

00
−

 3
.2

66
5E

+
00

St
d

8.
19

70
E−

02
6.

12
39

E−
02

8.
43

11
E−

02
6.

75
33

E−
02

6.
66

15
E−

02
6.

10
79

E−
02

7.
15

25
E−

02
6.

03
29

E−
02

B
es

t
−

 1
.0

15
3E

+
01

−
 1

.0
15

3E
+

01
−

 1
.0

15
3E

+
01

−
 1

.0
15

3E
+

01
−

 1
.0

15
3E

+
01

−
 1

.0
15

3E
+

01
−

 1
.0

15
3E

+
01

−
 1

.0
15

3E
+

01
F2

1
A

ve
−

 9
.4

00
9E

+
00

−
 9

.4
00

9E
+

00
−

 9
.9

02
4E

+
00

−
 9

.4
00

9E
+

00
−

 9
.5

93
4E

+
00

-1
.0

15
3E

+
01

−
 6

.3
07

5E
+

00
-1

.0
15

3E
+

01
St

d
2.

29
54

E+
00

2.
29

54
E+

00
1.

37
35

E+
00

2.
29

54
E+

00
2.

14
27

E+
00

6.
35

79
E−

06
3.

33
15

E+
00

1.
99

32
E−

07
B

es
t

−
 1

.0
40

3E
+

01
−

 1
.0

40
3E

+
01

−
 1

.0
40

3E
+

01
−

 1
.0

40
3E

+
01

−
 1

.0
40

3E
+

01
−

 1
.0

40
3E

+
01

−
 1

.0
40

3E
+

01
−

 1
.0

40
3E

+
01

F2
2

A
ve

−
 7

.8
27

3E
+

00
−

 9
.0

35
3E

+
00

−
 8

.9
72

4E
+

00
-9

.1
63

1E
+

00
−

 9
.0

03
3E

+
00

−
 8

.8
76

5E
+

00
−

 4
.6

02
0E

+
00

−
 9

.1
31

1E
+

00
St

d
3.

46
33

E+
00

2.
78

68
E+

00
2.

92
85

E+
00

2.
83

51
E+

00
2.

85
45

E+
00

3.
11

49
E+

00
2.

52
79

E+
00

2.
90

31
E+

00
B

es
t

−
 1

.0
53

6E
+

01
−

 1
.0

53
6E

+
01

−
 1

.0
53

6E
+

01
−

 1
.0

53
6E

+
01

−
 1

.0
53

6E
+

01
−

 1
.0

53
6E

+
01

−
 1

.0
53

6E
+

01
−

 1
.0

53
6E

+
01

F2
3

A
ve

−
 8

.0
67

7E
+

00
−

 8
.3

84
9E

+
00

-9
.3

16
7E

+
00

−
 8

.7
02

4E
+

00
−

 8
.7

50
2E

+
00

−
 8

.7
50

4E
+

00
−

 4
.5

84
2E

+
00

−
 8

.7
96

3E
+

00
St

d
3.

57
50

E+
00

3.
36

31
E+

00
2.

78
19

E+
00

3.
10

32
E+

00
3.

30
70

E+
00

3.
30

66
E+

00
2.

89
41

E+
00

3.
22

21
E+

00

B
ol

d 
re

pr
es

en
t t

he
 m

in
im

um
 v

al
ue

s o
f t

he
 o

pt
im

um
, m

ea
n,

 a
nd

 st
an

da
rd

 d
ev

ia
tio

n 
ac

hi
ev

ed
 w

he
n 

op
tim

iz
in

g 
th

e 
te

st 
fu

nc
tio

n 
us

in
g 

di
ffe

re
nt

 a
lg

or
ith

m
s



 S.-W. Zhang et al.

1 3

55 Page 38 of 58

Fig. 13  Convergence curves 
for function optimization of the  
improved HBA based on the  
mathematical spirals of polar 
angle � in the polar coordinate 
system
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Fig. 13  (continued)
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Based on the results of the optimal values obtained from the 23 test functions in Table 6, 
the following conclusions can be drawn: The optimal value obtained by α4FibθHBA is 
the smallest in F7, F9 ~ F11 and F14 ~ F23,the optimal values obtained by α4ButθHBA, 
α4RosθHBA and α4ArcθHBA are the smallest in F9 ~ F11 and F14 ~ F23, the optimal 
value obtained by α4CycθHBA is the smallest in F1 ~ 4, F9 ~ F11 and F14 ~ F23, the opti-
mal value obtained by α4HypθHBA is the smallest in F14 ~ F23, and the he optimal value 
obtained by α4CarθHBA is the smallest in F8, F9 ~ F11 and F14 ~ F23. Based on the results 
of the average values obtained from the 23 test functions in Table 6, the following conclu-
sions can be drawn: The average value obtained by α4FibθHBA is the smallest in F9 ~ F11, 
F16 ~ F18 and F20, the average value obtained by α4ButθHBA is the smallest in F9 ~ F11, 
F16, F17 and F23, the average value obtained by α4RosθHBA is the smallest in F9 ~ F11, 
F16 ~ F19 and F22, the average value obtained by α4CycθHBA is the smallest in F1 ~ 4, 
F7, F9 ~ F11 and F15 ~ F19, the average value obtained by α4ArcθHBA is the smallest 
in F9 ~ F11, F16 ~ F19 and F21, the average value obtained by α4HypθHBA is the small-
est in F14, F16 and F17, and the average value obtained by α4CarθHBA is the smallest 
in F9 ~ F11 and F16 ~ F21. Based on the standard deviation results obtained from the 23 
test functions in Table 6, the following conclusions can be drawn: The standard deviation 
obtained by α4FibθHBA is the smallest in F1, F3, F9 ~ F11 and F17, the standard devia-
tion obtained by α4ButθHBA is the smallest in F1, F3, F9 ~ F11, F17 and F23,the stand-
ard deviation obtained by α4RosθHBA is the smallest in F1, F3, F7, F9 ~ F11, F14 and 
F17,the standard deviation obtained by α4CycθHBA is the smallest in F1 ~ F5, F9 ~ F11 
and F15 ~ F19, the standard deviation obtained by α4ArcθHBA is the smallest in F1, F3, 
F8 ~ F11 and F17, the standard deviation obtained by α4HypθHBA is the smallest in F17 
and F22, and the standard deviation obtained by α4CarθHBA is the smallest in F1, F3, 
F9 ~ F11, F17 and F21.

By analyzing the convergence curves of different optimization strategies in the simula-
tion graphs and comparing the data in the table the following conclusions can be drawn. 
The improved HBA based on the mathematical spirals in the polar coordinate system with 
polar angle θ outperforms the original HBA for most of the test functions, and has a strong 
edge in search performance. From the data and images, it is obvious that the improvement 
of the HBA based on the α4HypθHBA scheme is not effective, and the gap with other 
optimization algorithms is large, so it is not recommended. Among them, the α4CycρHBA 
outperforms the original HBA and other improved schemes in terms of convergence speed, 
optimal value, mean and standard deviation. Thus the α4CycθHBA is the most effective, 
showing its obvious superiority and better search ability.

4.1.5  Performance comparison of α4CycρHBA with other algorithms

Based on the experimental data above, it can be determined that α4CycρHBA has the best 
optimization performance among all the improved schemes. In order to better prove that 
the optimization algorithm α4CycρHBA has superiority and feasibility, it is compared with 
nine algorithms, namely, SOA, MVO, DOA, CDO, MFO, SCA, BA, GWO and FFA. In 
order to improve the experiment accuracy and avoid the randomness interference on the 
experimental data, the maximum number of iterations was set to 500 and each algorithm 
was run 30 times. The average comparative convergence curves of the improved algorithm 
α4CycρHBA and the other optimized algorithms for 30 runs is shown in Fig. 14. Table 7 
lists the statistics of the optimal values, mean and standard deviation of the improved algo-
rithm α4CycρHBA and the other algorithms.
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Fig. 14  Convergence curves of 
function optimization under dif-
ferent algorithms
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Fig. 14  (continued)
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Based on the analysis of the optimal value data in Table  7, it can be concluded 
that the optimal value obtained by the improved algorithm α4CycρHBA is the small-
est in F7, F9 ~ F11 and F14 ~ F23, the optimal value obtained by SOA is the small-
est in F14, F16 and F18, the optimal value obtained by MVO is the smallest in F13, 
F14, F16 ~ F20, F22 and F23, the optimal value obtained by DOA is the smallest in 
F1 ~ F4, F9 ~ F11 and F14 ~ F23, the optimal value obtained by CDO is the smallest in 
F9, F11, F16 and F18, the optimal value obtained by MFO is the smallest in F14 and 
F16 ~ F23, the optimal value obtained by SCA is the smallest in F14, F16 and F18, 
the optimal value obtained by BA is the smallest in F8 and F16, the optimal value 
obtained by GWO is the smallest in F5, F9, F11, F12 and F14 ~ F20, and the optimal 
value obtained by FFA is the smallest in F6, F14 and F16 ~ F23. Based on the analysis 
of the mean data in Table 7, it can be concluded that the mean value obtained by the 
improved algorithm α4CycρHBA is the smallest in F1 ~ F4, F9 ~ F11, F16, F17 and 
F19, the mean value obtained by SOA is the smallest in F16 and F18, the mean value 
obtained by MVO is the smallest in F13, F14 and F16 ~ F19, the mean value obtained 
by DOA is the smallest in F9, F11 and F16 ~ F18, the mean value obtained by CDO is 
the smallest in F5, F7 and F15, the mean value obtained by MFO is the smallest in F8 
and F16 ~ F19, the mean value obtained by SCA is the smallest in F16 and F18, the 
mean value obtained by GWO is the smallest in F12 and F16 ~ F18, and the mean value 
obtained by FFA is the smallest in F6, F14 and F16 ~ F23. Based on the analysis of 
the standard deviation data in Table 7, it can be concluded that the standard deviation 
obtained by the improved algorithm α4CycρHBA is the smallest in F1 ~ F4, F9 ~ F11, 
F16, F17 and F19, the standard deviation obtained by DOA is the smallest in F5, F9, 
F11 and F17, the standard deviation obtained by CDO is the smallest in F6, F7, F10, 
F13 and F15, the standard deviation obtained by MFO is the smallest in F17,the stand-
ard deviation obtained by SCA is the smallest in F8, the standard deviation obtained by 
GWO is the smallest in F12, and the standard deviation obtained by FFA is the small-
est in F14, F18, F20 ~ F23.

By organizing and analyzing the simulation diagrams and experimental data, the 
following conclusions can be drawn. The α4CycρHBA optimization algorithm has a 
strong advantage in search performance, and it is better than several other algorithms 
in many aspects such as convergence speed, optimal value, mean and standard devia-
tion, which shows that the α4CycρHBA optimization algorithm is the most effective, 
demonstrating a very obvious superiority and a better search ability, and proving that 
the proposed improvement of HBA algorithm based on the logarithmic function and 
the polar diameter coordinates is feasible.

4.2  Engineering optimization design

To further validate the applicability of the algorithms proposed in this paper in real life, 
four engineering design issues are solved using the improved algorithm α4CycρHBA. 
All four problems are derived from the summary of mathematical models in the real 
production process, all of which have a single objective function and constraints with 
multiple inequalities. For the fairness, credibility and better analysis of the experimen-
tal results, each engineering problem was run 30 times, and then α4CycρHBA was 
analyzed in comparison with other algorithms.
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4.2.1  Pressure vessel problem

With the continuous improvement of China’s industrial level, the demand for pressure ves-
sels is also increasing, so the quality of pressure vessels put forward higher requirements. 
In view of the complex manufacturing process and potential hazards of pressure vessels, 
optimizing their design has become a crucial task. The design objective of a pressure vessel 
is to minimize its total cost f (X) , including but not limited to the cost of materials, forming 
and welding, while meeting the production requirements. The following objective function 
and corresponding constraints are set for the optimal pressure vessel design problem.

Objective function:

f (X) = 0.6224X1X3X4 + 1.7781X2X
2
3
+ 3.1661X2

1
X4 + 19.84X2

1
X3

Fig. 15  Model of pressure vessel design problem

Fig. 16  Convergence curves of 
α4CycρHBA with other algo-
rithms for optimizing pressure 
vessel design problem
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Restrictive condition:

g2(X) = 0.00954X3 − X2 ≤ 0

g4(X) = X4 − 240 ≤ 0

where X1 denotes the wall thickness of the cylinder head of the pressure vessel and takes 
the value in the range of 0.0625 ≤ X1,X2 denotes the wall thickness of the cylinder of the 
pressure vessel and takes the value in the range of X2 ≤ 6.1875, where X1 and X2 are uni-
formly varying discrete variables with an interval of 0.0625 between them,X3 and X4 are 
two variables for which continuity exists, denoting the radius of the cylinder and cylinder 
head and the length of the cylinder, respectively, and the mathematical model developed 
for the pressure vessel design problem is presented in Fig. 15.

The convergence plot of the α4CycρHBA optimization algorithm with the other algo-
rithms on the problem of optimizing the pressure vessel design is shown in Fig. 16, dem-
onstrating their performance and effectiveness in the optimization process. The statisti-
cal results of the experimental data for the optimization of the problem are presented in 
Table 8. Thirty experiments were conducted for each of these algorithms, and the maxi-
mum number of iterations was 1000 for all of them. According to the convergence dia-
gram and Table 8, it can be seen that the improved algorithm α4CycρHBA shows obvious 
superiority in terms of mean value, optimal value and standard deviation, etc. Moreover, in 
solving the pressure vessel design problem, the optimization algorithm α4CycρHBA shows 
excellent comprehensive performance, surpassing the other optimization algorithms, which 
proves its significant practical application value.

4.2.2  Three‑bar truss design problem

The design objective of the three-bar truss is to minimize its volume by adjusting its cross-
sectional area. The objective function and constraints of the problem are described as 
follows.

g1(X) = 0.0193X3 − X1 ≤ 0

g3(X) = 1296000 − �X2
3
X4 − 4∕3�X3

3
≤ 0

Table 8  Data comparison of α4CycρHBA with other algorithms for optimizing pressure vessel design prob-
lem

Bold represent the minimum values of the optimum, mean, and standard deviation achieved when optimiz-
ing the test function using different algorithms

Algorithm Optimal values of variables Optimal cost Average value Standard deviation

X1 X2 X3 X4

α4CycρHBA 0.9400 0.4559 50.1265 97.3449 5.7349E+03 6.7198E+03 2.2577E+03
MVO 0.7524 0.0000 40.4756 200.0000 5.9139E+03 3.4221E+04 2.9276E+04
AOA 0.0265 0.0265 47.4805 153.1479 7.0505E+03 2.2938E+04 2.0311E+04
BA 4.5371 11.0715 46.2491 131.1972 1.9509E+04 3.6733E+05 3.1997E+05
COA 1.1006 1.3608 58.1211 44.6281 8.2609E+03 2.0811E+04 1.3717E+04
RSO 0.0000 0.0000 58.7121 41.6306 1.4646E+04 1.5425E+05 1.3343E+05
SOA 0.0000 0.0000 40.3232 200.0000 1.9440E+04 6.2319E+04 2.4051E+04
WOA 1.1021 0.5120 58.2342 44.0005 6.0728E+03 1.1712E+04 1.4615E+04
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Objective function:

Restrictive condition:

f (X) =
�
2
√
2X1 + X2

�
⋅ l

g1(X) =

√
2X1 + X2√

2X1 + 2X1X2

P − � ≤ 0

g2(X) =
X2√

2X1 + 2X1X2

P − � ≤ 0

Fig. 17  Model of three-bar truss design problem

Fig. 18  Convergence curves of 
α4CycρHBA with the original 
HBA and other algorithms for 
optimizing the three-bar truss 
design problem
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where variable X1 represents the cross-sectional area of bar 1, which takes the value of 
0 ≤ X1 ≤ 1 , and variable X2 represents the cross-sectional area of bar 2, which takes the 
value of 0 ≤ X2 ≤ 1 . The other parameters are defined below:l = 100 cm, P = 2 KN/cm2 , 
� = 2 KN/cm2.

The mathematical model developed for this problem is presented in Fig. 17. Figure 18 rep-
resents the convergence curves of the α4CycρHBA with the original HBA and other algo-
rithms for optimizing the three-bar truss design problem. Table 9 demonstrates the experi-
mental results of the optimal solution of the optimized three-bar truss design problem. The 
maximum number of iterations is 1000 generations.

To avoid randomness, each algorithm was subjected to 30 experiments respectively, the 
optimum, mean and standard deviation of the 30 experiments are recorded in Table 9 and 
the best experimental data obtained from the experiments are bolded. The experimental 
results show that α4CycρHBA, HBA and DOA achieve the optimal values in the optimal 
cost, and the improved algorithm α4CycρHBA is obviously better than the original HBA 
and other algorithms in both the mean value and the standard deviation,the convergence 
plots of the combined experiments clearly show that α4CycρHBA has a significant advan-
tage in solving the three-bar truss design problem.

4.2.3  Cantilever beam design problem

The design problem of cantilever beams involves in the design of structural engineering 
and requires weight optimization of its square section. The cantilever beam is rigidly sup-
ported at one end and vertical forces act on the free nodes of the cantilever. The objective 
function as well as the constraints of the cantilever beam design problem are as follows:

Objective function:

g3(X) =
1√

2X2 + X1

P − � ≤ 0

f (X) = 0.0624 × (X1 + X2 + X3 + X4 + X5)

Table 9  Data comparison of α4CycρHBA with the original HBA and other algorithms for optimizing the 
three-bar truss design problem

Bold represent the minimum values of the optimum, mean, and standard deviation achieved when optimiz-
ing the test function using different algorithms

Algorithm Optimal values of vari-
ables

Optimal cost Average value Standard deviation

X1 X2

α4CycρHBA 0.7888 0.4079 263.89540812 263.89729385 0.00685914
HBA 0.7887 0.4082 263.89540812 265.79013860 5.78136399
AOA 0.7988 0.3911 263.92173009 265.60079994 1.65137456
BA 0.7503 0.5294 263.89546166 270.71326167 8.00339653
SOA 0.7892 0.4069 263.89565314 274.65790018 9.51973696
RSO 0.7185 0.6739 263.94449705 272.77002638 7.84939670
WOA 0.7512 0.5262 263.89553047 265.25216989 3.48130605
DOA 0.7887 0.4082 263.89540812 264.57157392 3.45362234
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Restrictive condition:

where, 0.01 ≤ Xi ≤ 100, i = 1, 2, 3, 4, 5 . The mathematical model developed for this prob-
lem is presented in Fig. 19.

g(X) =
61

X3
1

+
37

X3
2

+
19

X3
3

+
7

X3
4

+
1

X3
5

− 1 ≤ 0

Fig. 19  Model of cantilever beam design problem

Fig. 20  Convergence curves 
of α4CycρHBA with other 
algorithms for optimizing the 
cantilever beam design problem
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Figure  20 presents the convergence plot of the α4CycρHBA optimization algorithm 
with the other algorithms on the cantilever beam design problem, demonstrating the results 
achieved in their optimization process. The statistical results of the experimental data for 
optimizing this design problem are presented in Table 10. For each algorithm the maxi-
mum number of iterations was 1000 and 30 experiments were performed. According to the 
experimental results, the improved algorithm α4CycρHBA shows obvious superiority in all 
aspects.

4.2.4  Slotted bulkhead design problem

The design problem of slotted bulkheads is a difficult problem in the pursuit of weight 
minimization, and its core objective is to seek the optimal solution for the weight of slotted 
bulkheads by solving the extreme values of the objective function. In engineering practice, 
multiple constraints often need to be satisfied at the same time, so it is important to study 
this optimization model. The objective function and a series of constraints for this design 
issue are summarized as follows.

Objective function:

Restrictive condition:

f (X) =
5.885X4(X1 + X3)

X1 +
√

|X2
3
− X2

2
|

g1(X) = −X4X2

(
0.4X1 +

X3

6

)
+ 8.94

(
X1 +

√
|||X2

3
− X2

2

|||
)

≤ 0

g2(X) = −X4X
2
2

(
0.2X1 +

X3

12

)
+ 2.2

(
8.94

(
X1 +

√
|||X2

3
− X2

2

|||
))4∕3

≤ 0

Table 10  Data comparison of α4CycρHBA with other algorithms for optimizing cantilever beam design 
problems

Bold represent the minimum values of the optimum, mean, and standard deviation achieved when optimiz-
ing the test function using different algorithms

Algorithm Optimal values of variables Optimal cost Average 
value

Standard 
deviation

X1 X2 X3 X4 X5

α4CycρHBA 4.9864 5.5445 6.4642 3.6413 2.3650 1.34027395 1.36432440 0.03017856
WSO 4.7500 4.9697 7.2466 4.6721 4.5086 1.39782557 1.51564332 0.05181390
AOA 4.3006 8.3216 5.2469 21.4810 3.6815 1.38239591 2.28615911 0.95776861
BA 53.6831 22.7254 17.2579 11.4292 1.0040 2.69897801 6.31132425 2.03330102
COA 5.3768 5.5374 5.0053 3.2634 3.0151 1.37527282 1.45182390 0.05211259
RSO 6.7876 5.7271 9.8250 2.3926 2.3638 1.51855757 2.91084730 1.58536546
WOA 6.9939 7.9242 3.4510 3.0074 3.3056 1.36687083 1.52576068 0.13722195
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Fig. 21  Model of slotted bulkhead design problem

Fig. 22  Convergence curves of 
α4CycρHBA with other algo-
rithms for optimizing the slotted 
bulkhead design problem
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where, X1 denotes width, whose range is 0 ≤ X1 ≤ 100 ; X2 denotes depth, whose range is 
0 ≤ X2 ≤ 100 ; X3 denotes length, whose range is 0 ≤ X3 ≤ 100 ; X4 denotes plate thick-
ness, whose range is 0 ≤ X4 ≤ 5.

The mathematical model of the slotted bulkhead design problem is shown in Fig. 21. 
Figure 22 represents the convergence curves of the α4CycρHBA with other algorithms 
for optimizing the slotted bulkhead design problem. Table  11 shows the statistical 
results of the experimental data for the optimum solution to this problem. The maxi-
mum number of iterations is 1000 generations and to avoid randomness each algorithm 
was subjected to 30 experiments respectively. The experimental results show that the 
improved algorithm α4CycρHBA is outstanding in terms of optimal value, mean value 
and standard deviation, and the convergence diagram of the comprehensive experiments 
clearly shows that α4CycρHBA has a significant advantage over other algorithms in 
solving the slotted bulkhead design problem. It accurately illustrates that the improved 
algorithm α4CycρHBA has strong practical applicability in the slotted bulkhead design 
problem.

5  Conclusions and future works

Aiming at the problems of the HBA algorithm in terms of convergence accuracy, solu-
tion speed and global optimization search ability, an improved HBA based on the density 
factors of the elementary functions and the mathematical spirals of the polar coordinate 
system is proposed. By comparing the optimization effects of the 23 test functions, it can 
be found that the improved algorithm α4CycρHBA is able to better balance the global and 
local searching abilities while avoiding falling into local optimum, which significantly 
improves the overall optimization performance of HBA. To further validate the optimiza-
tion capability of the α4CycρHBA, nine optimization algorithms, including α4CycρHBA 
with SOA, MOV, DOA, CDO, MFO, SCA, BA, GWO and FFA, were used to optimize 
the test functions. The following conclusions can be drawn from the analysis of the overall 
convergence curves of the simulation plots as well as the experimental data obtained. In 
the vast majority of the test functions, α4CycρHBA achieves the best experimental results 
among the optimized functions.α4CycρHBA shows the best optimization solution that is 
more efficient and superior than the other algorithms in solving the four engineering design 
problems of pressure vessel, three-bar truss, cantilever beam, and slotted bulkhead.

In the work done, the improved algorithm uses the expression of the polar diameter 
and polar angle of a spiral in a polar coordinate system to replace the foraging strategy of 
the original HBA, and the seven spirals used are all simpler. In the future work, we will 
continue to try to apply two-dimensional or higher-dimensional spirals into the foraging 
strategy so as to further enhance its stability. In this paper, only the function optimization 
and simple engineering optimization problems with the improved HBA are solved, and it 
will be applied to practical applications in the future research, such as image segmentation, 
job-shop scheduling, pattern recognition and fault diagnosis, and other fields.

g3(X) = −X4 + 0.0156X1 + 0.15 ≤ 0

g4(X) = −X4 + 0.0156X3 + 0.15 ≤ 0

g5(X) = −X4 + 0.15 ≤ 0

g6(X) = −X3 + X2 ≤ 0
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