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Abstract
Temporal Action Detection (TAD) aims to accurately capture each action interval in an 
untrimmed video and to understand human actions. This paper comprehensively surveys 
the state-of-the-art techniques and models used for TAD task. Firstly, it conducts compre-
hensive research on this field through Citespace and comprehensively introduce relevant 
dataset. Secondly, it summarizes three types of methods, i.e., anchor-based, boundary-
based, and query-based, from the design method level. Thirdly, it summarizes three types 
of supervised learning methods from the level of learning methods, i.e., fully supervised, 
weakly supervised, and unsupervised. Finally, this paper explores the current problems, 
and proposes prospects in TAD task.

Keywords Temporal action detection · Video localization · Proposal generation · 
CiteSpace
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CW  Class-wise foreground classification branch
DCNN  Dilated convolution neural network
DT  Dense trajectories
FGD  Fine-grained detection
GTAN  Gaussian temporal awareness networks
GTE  Global temporal encoder
HOG  Histogram of oriented gradient
I3D  Inflated 3D ConvNet
IMU  Inertial measurement units
LGTE  Local–global temporal encoder
LRCN  Long-term recurrent convolutional network
LSTA  Long short-term attention
LSTM  Long short-term memory
LTE  Local temporal encoder
MAP  Mean average precision
MIL  Multi-instance learning
NCE  Noise contrastive estimation
NMS  Non maximum suppression
OIC  Outer-Inner-Contrastive
P3D  Pseudo-3D
PAL  Pseudo action localization
PFGCN  Proposal features graph convolutional network
RCL  Recurrent continuous localization
R-CNN  Region-based convolutional neural networks
RNN  Recurrent neural network
RPD  Refined pyramidal detection
RPN  RegionProposal network
SFTP  SuperFrame-based temporal proposal
SSAD  Single shot action detector
SSD  Single shot multiBox detector
STIP  Space-time interest points
TAD  Temporal action detection
TAL  Temporal action localization
TBR  Temporal boundary regressor
TSCN  Two-stream consensus network
TSN  Temporal segment network
UGPT  Uncertainty-guided probabilistic transformer
ViT  Vision transformer

1 Introduction

In recent years, with the development of multimedia technology and the rapid populari-
zation of digital equipment (Graziani et al. 2022), the amount of Internet video data has 
grown significantly. Therefore, how to deal with these multimedia data efficiently and 
accurately has become a hot research topic (Le et al. 2021). The purpose of video under-
standing is to automatically identify and parse the content of a video using intelligent anal-
ysis technology. Given the success of deep learning in image processing and detection, 
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researchers have introduced deep learning methods to the field of video understanding 
(Hutchinson and Gadepally 2021).

Computer vision tasks relating to human action mainly include action recognition (Tran 
et al. 2015; Hu et al. 2022b; Wang et al. 2022b), action prediction (Kong and Fu 2022), 
and temporal action detection (Xia and Zhan 2020). Important achievements have been 
made in the field of action recognition in respect of facial recognition (Li et  al. 2022b) 
and video surveillance. Researchers typically use edited videos for action recognition with 
only one action. Therefore, action recognition only needs to classify the action without 
detecting the duration of the action. However, most videos in real life are untrimmed and 
may contain multiple instances of actions in different categories, each with an unknowable 
time boundary and duration. In 2017, during the ActivityNet Big Action Recognition Chal-
lenge organized by CVPR (Ghanem et al. 2017), video understanding was divided into five 
branch tasks: untrimmed video classification, trimmed action recognition, temporal action 
proposals, temporal action localization (temporal action detection), and dense-captioning 
events in videos. Temporal action detection refers to locating action instances and iden-
tifying action categories in untrimmed videos, which are more complex tasks than action 
recognition. Therefore, in this paper we focus on temporal action detection. Figure 1 shows 
an example of long-jump temporal action detection, where the start and end times of the 
movement are obtained by localization. The target of detection is a predefined action cat-
egory, and the time interval of other activities that do not belong to this group of actions is 
called the time background.

Standardization efforts in temporal action detection date back to 2007, when Ke et al. 
(2007) used handcrafted feature methods to detect specific actions in fixed-camera kitchen 
cooking videos. With the emergence of the THUMOS-14 dataset, the temporal action 
detection task has been further developed. In 2014, Oneata et al. (2014a) and Wang et al. 
(2014) used DT features and single-frame CNN features respectively to generate candidate 
segments of specific sizes through sliding windows, and built a framework for temporal 
action detection.Later, Yuan et al. (2016) proposed a temporal action detection algorithm 
using iDT features, which uses iDT features to extract pyramid score distribution features 
(PSDF) to describe actions in videos.

However, traditional feature extraction methods have time and storage overhead in 
sequential action detection. In order to solve this problem, Shou et al. (2016) introduced 
the anchor mechanism in 2016 and proposed a multi-stage SCNN, which combines the 
sliding window and the proposal generation network to effectively perform action detec-
tion. However, it still requires a lot of computation when processing action instances of 

Fig. 1  Example of temporal action detection’s execution of the long jump
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different durations. Therefore, researchers have also proposed some improved methods 
based on the anchor mechanism, such as boundary-based temporal action detection algo-
rithms TAG (Xiong et al. 2017) and SSN (Lin et al. 2018), and methods that use action 
probability distribution curves to improve the confidence of candidate segments, which 
can provide flexible temporal boundaries make up for the shortcomings of anchor-based 
methods in terms of precise action boundaries, but may generate proposals with relatively 
low confidence.Moreover, query-based temporal action detection methods have garnered 
significant interest. These approaches model action instances as a collection of learnable 
action queries, eliminating the constraints of manually designing anchor points and bound-
aries, and offering the benefit of simplifying the computational pipeline.

All in all, multiple algorithms have made significant progress in the domain of temporal 
action detection. From the earliest hand-engineered feature techniques to deep learning-
based methods, researchers have persistently introduced innovative algorithms and mod-
els to tackle numerous challenges in temporal action detection. These methods not only 
improve the accuracy and robustness of the technology, but also bring a lot of value to 
practical applications. Especially in the areas of anomaly detection, teaching video anal-
ysis, and sports video analysis, sequential action detection has achieved good practical 
results. For example, it can automatically identify and locate abnormal events in videos, 
which greatly guarantees safety monitoring; in teaching video analysis, it can automatically 
segment and locate key actions in videos, which greatly facilitates learners’ learning pro-
cess. In the future, this field will continue to flourish, further expanding its influence across 
a wide range of application scenarios.

However, in real-world situations, temporal action detection encounters a multitude of 
obstacles and unresolved matters, the key hurdles being as follows: 

(1) Time information. Because of the one-dimensional time series information, static image 
information cannot be used for temporal action detection. It must be combined with 
time series information;

(2) The boundary is unclear. Unlike in object detection, the boundary of the target is usu-
ally very clear, and a clearer boundary box can be drawn for the target. However, there 
may be no reasonable definition of the exact timeframe for the operation. Therefore, it 
is impossible to provide exact boundaries at the beginning and end of an action;

(3) The time span is large. The span of time action segments can be very large. For exam-
ple, waving a hand takes only a few seconds, while rock climbing or cycling can last 
several minutes. The task spans differ in length, making it extremely difficult to extract 
schemes from them. In addition, in an open environment, there are problems of mul-
tiscale, multi-target, camera action, etc.

In the previous review by Xia and Zhan (2020) in 2020, time series action detection 
was divided into single-stage and two-stage types. The one-stage method was briefly 
described as the generation of candidate proposals and the classification of move-
ments simultaneously. The two-stage approach was described as processing the can-
didate proposals first, then classifying and regressing the actions. This classification 
method is simple, ignores the internal design ideas and characteristics of the model, 
and only works around the process to perform a simple induction, which makes it suit-
able for beginners to learn. In addition, most of the learning materials focus on fully 
supervised learning. Although the current performance of weakly supervised learning 
is weak, weakly supervised learning will be closer to reality, and its development over 



Overview of temporal action detection based on deep learning  

1 3

Page 5 of 77 26

the past two years has been relatively rapid; it is a method that cannot be ignored and 
should be introduced in detail. In 2022, Baraka and Mohd Noor (2022) published a 
review on weak supervision, which introduced concepts, strategies, and technologies 
related to weak supervision in detail. Weak supervision was divided into two methods, 
bottom-up and top-down, which were not comprehensively classified or detailed in the 
introduction to their paper.

In this review we use a new classification method, namely multi-instance learning 
and direct localization, to introduce weak supervision and the development of unsu-
pervised learning. Full and limited supervision methods are equally important, and we 
consider them in this paper. The contributions of this review are as follows: 

(1) The literature in recent years is summarized and updated comprehensively in respect 
of each stage of temporal action detection;

(2) Video feature extraction methods are summarized in detail using three learning meth-
ods;

(3) The system model is horizontally divided into three categories (anchor-based, bound-
ary-based, and query-based) according to the implementation method, and vertically 
divided into full-supervision and limited-supervision learning methods. This review 
may help scholars to understand the task of temporal action detection comprehensively.

The structure of the review is as follows. Section  2 introduces the relevant back-
ground, which can assist beginners in understanding the basic concept of temporal 
action detection tasks, including the form of the dataset and the explanation of com-
mon nouns. Section 3 also presents a CiteSpace analysis. With the help of CiteSpace 
software, the research hotspots and research areas of this task are presented visually, 
and the topic of this paper is objectively and comprehensively explained using key-
word co-occurrence, topic clustering, and other methods. Section 4 introduces research 
in respect of video feature extraction, which is divided into traditional methods and 
deep learning methods. Video feature extraction must be introduced as a public step of 
video task processing. In this review we introduce feature extraction by means of CNN, 
RNN, and transformers. Section 5 introduces algorithms based on algorithm structure; 
these can be divided into three types according to the design methods: anchor-based, 
boundary-based and query-based. Section 6 introduces algorithms based on the super-
vision mode, focusing on weak supervision, and provides a general introduction to full 
supervision and no supervision. To enable readers to obtain a deeper and more com-
prehensive understanding of temporal action detection, Sects. 5 and 6 introduce tem-
poral action detection in horizontal and vertical ways, from the design method to the 
learning method, using two different research routes to make the structure of the paper 
more rigorous. Sections 7 and 8 present conclusions and prospects. Figure 2 shows the 
structure diagram of the article.

2  Background

This section introduces some relevant information in respect of temporal action detection. 
Section  2.1 introduces the basic concepts and commonly used evaluation methods, and 
Sect. 2.2 reviews the video datasets widely used in temporal action detection tasks.
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2.1  Basic concepts and evaluation metrics

Definition 1 Temporal action detection: Temporal action detection can be regarded as 
image target detection with a time sequence channel, aiming at dividing and identifying the 
action intervals in untrimmed video, then outputting the start and end time of each action 
and the action category. It can be expressed as:

where �a is a group of action examples; N indicates the number of actions in this group of 
action instances; Ψa the A-th action instance; ts,te,la indicate the start time, end time, and 
corresponding label of the action instance, respectively; labels la belong to {1, 2, 3, ...,C} ; 
and C is the category in the dataset. One can select different annotation information in the 
action instance when dealing with different learning methods, as shown in Fig. 3.

Definition 2 Temporal proposals: Temporal proposal P is a segment that may contain or 
partially contain an action; the comment information for each P includes ts,te,la and the 

(1)Wx =
{

Ψa = (ts, te, la)
}N

a=1

Fig. 2  Overall block diagram
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confidence score c; the confidence score is the probability of predicting that P contains an 
instance of the action. Therefore, P can be represented as (ts, te, la, c) , as shown in Fig. 3.

Definition 3 Action classification: After the generation of the temporal proposal, the 
proposal needs to be fed into the action classifier for action classification. Most temporal 
action detection models use existing action classifiers for classification.

Definition 4 Video feature extraction: For untrimmed video, it is difficult to input the 
whole video into the encoder for feature extraction; therefore, the video needs to be seg-
mented and input into the pre-trained video encoder for feature extraction. Each video can 
be represented by a series of visual features that are further processed for action detection. 
Common visual encoders are two-stream (Simonyan and Zisserman 2014), I3D (Carreira 
and Zisserman 2017), C3D (Tran et al. 2015), TSN (Wang et al. 2016b), R(2 + 1)D (Tran 
et al. 2018), and P3D (Qiu et al. 2017). These are explained in Sect. 4.

Definition 5 Evaluation metrics for temporal action proposal: The commonly used evalu-
ation criterion for this task is average recall (AR). Intersection over union (IOU ) thresh-
olds are also set. For the two most widely used public datasets, ActivityNet−1.3 and THU-
MOS14, the thresholds of IOU are generally set as [0.5,0.05,0.95] and [0.5,0.05,1]. To 
more accurately evaluate the relationship between the recall rate and the average number 
of proposals, the relationship curve AR@AN between the average recall rate (AR) and the 
average number of proposals (AN) is generally adopted.

Definition 6 Evaluation metrics for temporal action detection(TAD): For TAD tasks, mean 
average precision (MAP) is used as the average standard, and average accuracy (AP) is 
calculated in respect of the class of pairs of actions. For the two most widely used pub-
lic datasets, ActivityNet−1.3 and THUMOS14, the thresholds of IOU are generally set as 
[0.5,0.75,0.95] and [0.3,0.4,0.5,0.6,0.7]. The higher the IOU threshold, the more difficult 
an object is to detect. IOU with different threshold values is usually selected in experi-
ments to comprehensively test the model’s performance.

Fig. 3  Examples of temporal action detection and temporal proposals, proposals(instances of actions) con-
taining information such as start time, end time, label category, and confidence
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Definition 7 Dataset Preprocessing: Dataset preprocessing consists of two main steps: 
data collection and data segmentation. In order to collect data, researchers can use publicly 
available datasets, like UCF101(Soomro et al. 2012) and AVA (Gu et al. 2018) mentioned 
in Sect. 2.2, or they can obtain data through specialized video and sensor collection equip-
ment. Moreover, data segmentation is a vital aspect of temporal action detection dataset 
preprocessing. This process involves splitting lengthy videos or continuous time series data 
into shorter segments or time windows so that action instances can be processed individu-
ally. Popular segmentation methods encompass: fixed-time interval segmentation, motion 
boundary detection-based segmentation, and motion event-based segmentation. Figure  4 
shows the flow chart of dataset preprocessing, drawn with Definition8, Definition9 and 
Definition10.

Definition 8 Labeling and Annotation of Datasets: Accurate labeling and annotation are 
essential for providing vital information needed for model training and evaluation. Dataset 
labeling and annotation involve time annotation, category annotation, and bounding box 
annotation: 

(1) Time annotation is utilized to mark the start and end timestamps of an action, enabling 
the chronological identification of events within a video or time series.

(2) Category annotation entails assigning a specific category or group of categories to each 
action instance, indicating the action’s type or class.

(3) Bounding box annotation indicates the spatial location of an action within the video or 
image. Bounding boxes can be rectangles or polygons that encompass the area where 
the action takes place.

Fig. 4  Flow chart of dataset 
preprocessing
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For efficient and effective annotation, professional annotation tools are available. These 
tools offer visual interfaces and interactive features, allowing researchers to effortlessly 
annotate time, category, and bounding boxes. Widely used labeling tools include Labelbox, 
OpenLabeling, and others.
Definition 9 Temporal sliding window: The temporal sliding window technique is often 
used in action segmentation during dataset preprocessing for temporal action detection. Its 
purpose is to detect actions within video sequences. The fundamental idea is to slide a 
fixed-size window along the timeline, carrying out feature extraction and action detection 
on the data within the window at each position. By moving the window across the timeline, 
continuous action detection can be performed on actions at different locations in the video 
sequence,Regarding the settings of the temporal sliding window, the following description 
can be given:

Among them, X represents the original video sequence, windowsize represents the window 
size, and Stride represents the step size of the sliding window. On the time series X, start-
ing from an index position i, slide the window with a step size of Stride to obtain a series 
of fixed-size subsequences. Figure 5 shows a schematic of the temporal sliding window, 
where windowsize = 3 , Stride = 3.The window slides along the video frames at a rate of 
overlapping 1 frame each time.

Definition 10 Overlap rate setting:In temporal action detection, the sliding window setup 
is usually configured according to Definition 9. In order to capture as much information 
from the video as possible, the sliding window moves across the entire video, thereby gen-
erating a certain overlap rate. This refers to the ratio of frames shared between two con-
secutive windows.

Typically, the stride (or moving speed) of a sliding window determines the overlap rate 
between windows. Establishing an optimal stride size is crucial, as it assists researchers in 
capturing vital actions without compromising on the efficacy of action detection. Generally 
speaking, if the stride size is set small, the overlap rate will be large, and there will be a 
large number of shared video frames between two adjacent windows. As a result, although 
the accuracy of action detection is increased, it also increases processing requirements 
and computational costs. If the stride size is set larger, the overlap rate will be lower and 
fewer video frames will be shared between two adjacent windows. However, the accuracy 

(2)
(X,windowsize, stride) = X[i, i + windowsize] ∣ i

= 0, stride, 2stride,… , len(X) − windowsize

Fig. 5  Flow chart of dataset preprocessing
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of action detection may be reduced because some important short-term actions may be 
missed.

In temporal action detection, the overlap rate of the sliding window is generally set at 
50%-75%. The specific settings depend on various factors, including the availability of 
computing resources, the specific characteristics of the actions that need to be detected, 
and the characteristics of the dataset. This requires a lot of experimentation and optimiza-
tion work.

2.2  Datasets

There are many common datasets in the field of video understanding (Pareek and Thakkar 
2021). Comparison of the performance of different models requires datasets as the carrier. 
There are two problems with most datasets in use today: first, compared with the rich types 
of actions in human life, the number of categories in most datasets is very small, such as 
in KTH (Schuldt et al. 2004), UCF sports (Rodriguez et al. 2008), Weizmann (Weinland 
et  al. 2007), etc.; second, the source of many datasets is not real enough and lacks the 
unique interference that occurs in the real environment. For example, HOHA (Marszalek 
et al. 2009) and UCF Sports are composed of professionally photographed teams or non-
real scenes taken from movie clips. However, as action-capture systems mature and crowd-
sourced tagging services improve, these problems will become easier to mitigate. Next, we 
introduce some mainstream temporal action detection datasets, as listed in Table 1.

(1) UCF101 (Soomro et al. 2012)

UCF101, an action recognition dataset of realistic action videos, contains 101 action 
categories and a total of 13,320 videos, with a total duration of 27 h. As an extension of 
the UCF50 dataset, UCF101 has enriched the categories of movements, including five cat-
egories: human-object interaction, simple body movements, human-person interaction, 
playing musical instruments, and sports. As the first large-scale action recognition dataset, 
UCF101 has a representative position in video datasets. THUMOS ’14, MEXaction2, and 
other datasets all refer to some of the videos in UCF101. In addition, UCF Sports, UCF11 
(Liu et  al. 2009), UCF50 (Reddy and Shah 2013), and UCF101 are four action datasets 
produced by UCF in chronological order. In this order, each dataset contains data from the 
previous dataset (Fig. 6).

(2) HMDB51 (Kuehne et al. 2011)

Previously, researchers had been working on databases of still images collected on the 
Internet, but the action-recognition datasets were far below average. Like the previously 
popular KTH, Weizmann, and IXMAS (Weinland et al. 2007) datasets, a common feature 
of these datasets is that there are only a small number of occlusion objects and a limited 
number of complex actors in the video clip environment, meaning they do not adequately 
represent the complexity and richness of the real world. Moreover, the recognition rate 
of such datasets is often very high. Therefore, to promote the sustainable development 
of action recognition and improve the richness and complexity of datasets, Kuehne et al. 
proposed HMDB51. The HMDB51 dataset is a small and easy-to-use human movement 
dataset, containing 51 action categories and a total of 6849 clips including manual annota-
tion. There are five action categories: general facial action, facial action and object action, 
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general body action, human interaction, and human action. Videos were obtained from a 
variety of sources, from digitized movies to YouTube (Fig. 7).

(3) THUMOS’14 (Jiang et al. 2014)

THUMOS’14 originated from the THUMOS Challenge 2014. This dataset contains 
many untrimmed videos of human behaviour in real-world environments, and the ability to 
predict activity in untrimmed video sequences can be evaluated. The main tasks are action 
recognition and sequential action detection. Currently, most papers use this dataset for test-
ing and evaluation. In the action recognition task, the training set contains 13,320 trimmed 
videos, covering 101 action categories. The validation set contains 1010 untrimmed vid-
eos, while the test set contains 1574 untrimmed videos. For the temporal action detection 
task, the training set contains 213 trimmed videos, which contain 20 action categories. 
The validation set contains 200 untrimmed videos, while the test set also contains 1574 
untrimmed videos. In addition, THUMOS-14 has been further developed in 2015’s THU-
MOS-15, containing more than 430 h of video data, which is about 70% larger than THU-
MOS-14. This makes it a more challenging video action dataset.

(4) ActivityNet (Caba Heilbron et al. 2015)

While there has been an explosion in video data, with more than 300 h of video uploaded 
to YouTube every minute, there have been no corresponding advances in recognizing and 

Fig. 6  UCF101 dataset
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understanding human action tasks. Most datasets ignore the vast variability in execution 
styles; the complexity of visual stimuli in terms of camera movement, background clut-
ter, and changes in viewpoint; and the level of detail and amount of activity that can be 
identified. For example, UCF Sports (Rodriguez et al. 2008) and Olympic Sports (Niebles 
et al. 2010) increase the complexity of movements by focusing on highly defined physi-
cal activities. Another significant limitation is that most computer vision algorithms for 
understanding human activity are based on datasets covering a limited number of activity 
types. In fact, existing databases tend to be specific and focus on certain types of activities. 
To address the limitations of this dataset, Heilbron et al. proposed a flexible framework for 
capturing, annotating, and segmenting online video, also known as ActivityNet. The Activ-
ityNet dataset is also used for a large-scale behavior recognition contest; the dataset con-
sists of 27,801 videos, including 13,900 training videos, 6950 validation videos, and 6950 
test videos. ActivityNet offers 203 activity categories in the current release, with an aver-
age of 137 untrimmed videos per category and 1.41 activity instances per video for 849 h.

(5) AVA (Gu et al. 2018)

The AVA dataset is a spatiotemporal detection dataset containing 430 15-minute videos 
tagged with 80 action categories, 1.58 million action labels, and 81,000 action tracks. To 
increase the diversity of the dataset, the producers cut 15-minute clips into 897 overlapping 
3-second movie clips in one-second steps. The 430 videos were divided into 235 training 
videos, 64 verification videos, and 131 test videos. The AVA dataset is a new annotated 

Fig. 7  HMDB51 dataset



Overview of temporal action detection based on deep learning  

1 3

Page 13 of 77 26

Ta
bl

e 
1 

 In
tro

du
ct

io
n 

to
 c

om
m

on
 d

at
ab

as
es

D
at

as
et

Ye
ar

B
eh

av
io

r 
ca

te
go

ry
N

um
be

r o
f v

id
eo

s
D

at
as

et
 

du
ra

tio
n(

ho
ur

s)
Re

so
ur

ce
s

U
C

F1
01

 S
oo

m
ro

 e
t a

l. 
(2

01
2)

20
12

10
1

13
32

0
27

ht
tp

s:
// w

w
w.

 cr
cv

. u
cf

. e
du

/ re
se

a r
ch

/ d
at

a-
 se

ts
/ u

cf
10

1/
H

M
D

B
51

 K
ue

hn
e 

et
 a

l. 
(2

01
1)

20
11

51
68

49
–

ht
tp

s:
// w

w
w.

 se
rr

e l
ab

. c
lp

s. b
ro

w
n.

 ed
u/

 re
so

u r
ce

/ h
m

db
-

a-
 la

rg
e-

 hu
m

an
- m

ot
io

n-
 da

ta
b a

se
/ d

at
as

 et
TH

U
M

O
S’

20
14

10
1

18
39

4
–

ht
tp

s:
// w

w
w.

 cr
cv

. u
cf

. e
du

/ T
H

U
M

O
 S1

4/
 do

w
nl

 oa
d.

 ht
m

l
A

ct
iv

ity
N

et
 (C

ab
a 

H
ei

lb
ro

n 
et

 a
l. 

20
15

)
20

15
20

3
27

80
1

84
9

ht
tp

://
 ac

tiv
 ity

- n
et

. o
rg

/
C

ha
ra

de
s S

ig
ur

ds
so

n 
et

 a
l. 

(2
01

6)
20

16
15

7
27

84
7

–
ht

tp
s:

// p
rio

r. a
lle

n a
i. o

rg
/ p

ro
je

 ct
s/

 ch
ar

a d
es

AV
A

 G
u 

et
 a

l. 
(2

01
8)

20
18

80
43

0
10

8
ht

tp
s:

// r
es

ea
 rc

h.
 go

og
le

. c
om

/ a
va

/
M

EV
A

 C
or

on
a 

et
 a

l. 
(2

02
1)

20
20

37
–

93
00

ht
tp

s:
// m

ev
ad

 at
a.

 or
g/

M
oV

i G
ho

rb
an

i e
t a

l. 
(2

02
0)

20
20

20
–

32
.6

ht
tp

s:
// w

w
w.

 bi
om

o t
io

nl
 ab

. c
a/

 m
ov

i/
Fi

ne
A

ct
io

n 
Li

u 
et

 a
l. 

(2
02

2b
)

20
21

10
6

16
73

2
–

ht
tp

s:
// d

ee
pe

 ra
ct

i o
n.

 gi
th

ub
. io

/ d
at

as
 et

s/
 fin

ea
 ct

io
n.

 ht
m

l

https://www.crcv.ucf.edu/research/data-sets/ucf101/
https://www.serrelab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/dataset
https://www.serrelab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/dataset
https://www.crcv.ucf.edu/THUMOS14/download.html
http://activity-net.org/
https://prior.allenai.org/projects/charades
https://research.google.com/ava/
https://mevadata.org/
https://www.biomotionlab.ca/movi/
https://deeperaction.github.io/datasets/fineaction.html


 K. Hu et al.

1 3

26 Page 14 of 77

video dataset that is human-centric, sampled at a frequency of 1Hz, and framed for each 
person. The side label of the boundary box is the actor’s action, and the interaction between 
the objects is generated. In the AVA dataset, the actions of all persons are marked in the 
keyframe, but the result is an uneven class of actions of the Zipf law type. The action rec-
ognition model should be based on the real long-tail action distribution (Horn and Perona 
2017) rather than on an artificially balanced dataset.

(6) MEVA (Corona et al. 2021)

Datasets used for action recognition often fail to meet public safety community require-
ments, for example AVA, moments in time (Monfort et al. 2019), and YouTube-8 M (Abu-
El-Haija et  al. 2016). These datasets present short, high-resolution video specificities 
centered on the activity of interest in both time and space. In real life, more datasets are 
required with an actual spatial scope. Multiview extended video with activities (MEVA) is 
a new dataset for human action recognition. MEVA comprises more than 9300 h of contin-
uous uncut video that contains spontaneous background activity. In this dataset, there are 
37 kinds of actions, spanning 144 h in total, and actors and props are framed with borders. 
In addition, about 100 actors were gathered to perform scripted scenes and spontaneous 
background activities in a gated and controlled venue over three weeks, and video was col-
lected in various ways so that indoor and outdoor views overlapped or did not overlap.

(7) MoVi (Ghorbani et al. 2020)

Ghorbani et  al. introduced a new human action and video dataset, MoVi, which will 
soon be publicly available. It comprises data from 60 female and 30 male actors perform-
ing 20 predefined daily and motor movements and one optional move. During the five-
round capture process, the same actors and actions were recorded using different hardware 
systems, including optical action capture systems, cameras, and inertial measurement units 
(IMUs). In some capture rounds, the actors were recorded in their natural clothing, while 
in other rounds, they wore very little. The dataset contains 9 h of action capture data, 17 h 
of video data from four different angles, including a handheld camera, and 6.6 h of IMU 
data. Ghorbani et al. describe how the dataset was collected and post-processed and discuss 
examples of potential research that could be achieved with the dataset.

(8) Charades (Sigurdsson et al. 2016)

Computer vision technology can help people in their daily lives by finding lost keys, 
watering plants, or reminding people to take their medicine. To accomplish these tasks, 
researchers need to train computer vision methods from real and diverse examples of eve-
ryday dynamic scenarios. Sigurdsson et al. proposed a novel Hollywood family approach 
to collecting such data. Instead of shooting videos in a lab, Sigurdsson et al. ensured diver-
sity by distributing and crowdsourcing the entire video creation process, from scripting to 
video recording and annotation. Following this process, the authors collated a new data-
set, i.e., Charades. Hundreds of people recorded videos and went about their daily leisure 
activities at home. The dataset consists of 9848 annotated videos, with an average length 
of 30 s, showing the activities of 267 people across three continents, with more than 15 
percent featuring more than one person. Multiple free text descriptions, action labels, 
action intervals, and interaction object classes annotate each video in the dataset. Users 
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can employ this wealth of data to evaluate and provide baseline results for multiple tasks, 
including action recognition and automatic description generation. The dataset’s authentic-
ity, diversity, and randomness will present unique challenges and new opportunities to the 
computer vision community.

(9) FineAction (Liu et al. 2022b)

Temporal action detection is an important and challenging problem in video compre-
hension. However, most existing TAD benchmarks are based on the coarse-grained nature 
of the action class. This presents two major limitations for this task. First, the rough action 
level causes the location model to over-adapt to high-level contextual information while 
ignoring the atomic action details in the video. Secondly, the rough action class usually 
leads to the fuzzy annotation of the time boundary, which is unsuitable for temporal action 
detection. To address these issues, Liu et al. developed a new large-scale fine-grained video 
dataset called FineAction for temporal action detection. FineAction contains 103K time 
instances of 106 action categories, annotated in 17K untrimmed videos. Due to the rich 
diversity of the fine motor class, the intensive annotation of multiple instances, and the 
concurrent actions of different classes, the fine motor class provides new opportunities and 
challenges for temporal action detection. In order to benchmark FineAction, Liu et al. sys-
tematically examined the performance of several popular TAD methods and analyzed in 
depth the impact of short-time and fine-grained instances of TAD.

3  Citespace analysis

Visualization of scientific knowledge based on social networks and graph theory comprises 
a new field of bibliometric methods. CiteSpace (Chen 2004, 2006, 2013; Chen et al. 2010) 
has received extensive attention worldwide due to its advanced and powerful functions. 
Therefore, CiteSpace was used in this study to analyze TAD tasks visually. We used Cit-
eSpace (5.3.R11) to visualize the data. We established parameters, including time slices 
(annual slices were used for co-author analysis and keyword co-occurrence), keyword 
sources (title, abstract, author keywords, and keyword plus), and node types (author, insti-
tution, country, cited reference, cited author). Literature analysis based on CiteSpace can 
identify the research content and hotspots in a certain field more conveniently and quickly.

Since deep learning technology was introduced into the field of video understanding, 
the task of TAD has developed rapidly. In this study, 1326 articles relating to TAD from 
the past 12 years were retrieved via a Web of Science search for temporal action detection 
(TAD) and temporal action localization (TAL). As shown in Fig. 8, a keyword heatmap 
was created. The larger the circle, the more times the keyword appears. The round layer 
from the inside out represents the past to the present, and the redder the layer, the more 
attractive popular it is. The figure shows that keywords with more frequency have larger 
circles, while keywords with less frequency have smaller circles and are not displayed. 
From the cluster graph, it can be seen that "action recognition", "feature extraction", and 
"temporal action localization" are prominent. This indicates that TAD is always active in 
these research fields. In the figure, "location awareness" and "proposal network" are darker 
keywords, indicating that they appeared later; researchers need to pay more attention to 
these. In addition, with the development of TAD, tasks such as action prediction and sound 
localization have been further developed.
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Figure 9 shows the time sequence diagram of the occurrence of high-frequency key-
words. The first 11 keywords with high frequency from 2014 to 2022 were counted. 
“Strength” represents the strength of keywords. The higher the value, the more times 

Fig. 8  Hot words in the field of temporal action detection

Fig. 9  Time sequence diagram of high-frequency keywords
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the keyword has been cited. The line on the right is the timeline from 2014 to 2022. 
“Begin” indicates the time when the keyword first appears. “Begin” and “End” show the 
activity of the keyword during the year. It can be seen from the figure that words such as 
"localization" and "recognition" are hot topics for temporal action detection. Keywords 
such as "human action recognition" and "temporal action proposal generation" are also 
the focus of this paper. The keywords in Fig. 8 complement each other and make up for 
the ambiguity of the time information in Fig. 8. Through these keywords, readers can 
better understand the hotspot direction in respect of TAD.

With the development of deep learning, increasing numbers of scholars and teams 
have begun to study TAD, and they jointly promote the progress and development 
of TAD algorithms. In this study we analyzed 1326 articles from 2010 to 2022 (data 
obtained from Web of Science); the author contribution graph, as shown in Fig.  10, 
was obtained, in which the larger the font, the more papers have been published by the 
author, and the greater their influence. WANG L designed the first video-level frame-
work to learn video representation and created the most classic TSN (Wang et al. 2016b) 
model. WANG L was also the first to apply action detection to weak supervision and 
designed UntrimmedNet (Wang et  al. 2017), making remarkable contributions to the 
field. Zhao Y introduced the idea of image detection into time sequence action detec-
tion for the first time and designed an SSN (Zhao et al. 2017) network with an obvious 
improvement effect. Liu J mainly studied action recognition in TAD, involving the field 
of action prediction.

We retrieved 1418 articles in respect of TAD and their citation frequency through a 
Web of Science search for TAD and TAL. In Fig. 11, the blue bar chart shows the num-
ber of posts, and the red line shows the frequency of citations. As shown in Fig. 11, the 
number of papers published in the field of TAD is rising, and the frequency of citations 
is increasing rapidly. The drop in the 2022 figures is because the 2022 figures are only 
available through August. In 2012, the number of papers was relatively small, the field 
had not been fully developed, and there were fewer researchers. After 2013, there was 

Fig. 10  Main contributors of papers in the field of temporal action detection
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rapid development, but the number of papers was still low. Compared with the field of 
action recognition, temporal action detection has great prospects in respect of develop-
ment and application.

We also identified scholars from different regions and summarized them by country. 
As shown in Fig. 12, a global map is used to show the contributions of different countries 

Fig. 11  Number of papers and citations for temporal action detection

Fig. 12  Contributions of different countries to temporal action detection
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through different shades of color. According to the color in the lower-left corner, we ranked 
the contribution degree from the highest to the lowest. The color red indicates that the 
number of papers contributed is more than 300; orange indicates that the number of papers 
contributed is between 200 and 300; gold indicates that the number of papers contributed is 
between 100 to 200; green indicates that the number of papers contributed is less than 100; 
white indicates that the relevant areas have not contributed to TAD research. It can be seen 
that China and the United States, followed by Japan, Canada, and some European coun-
tries, have made great contributions to temporal action detection research. More countries 
have begun to pay attention to research in respect of temporal action detection tasks.

4  Video feature extraction

Due to limited computer resources, a video cannot be directly applied to TAD as the input. 
Generally, the video needs to be input into a visual encoder. After processing by a vis-
ual encoder, the video can be represented by a series of visual features that are further 
processed for subsequent tasks. According to the history of video feature extraction, this 
section is divided into feature extraction via traditional methods and feature extraction via 
deep learning methods.

4.1  The traditional methods

Some early methods used manual features or local space-time descriptor operators as rep-
resentations of videos to classify and detect video actions. Laptev (2005) proposed the 
space-time interest point (STIP) in 2003 by extending the Harris corner detector to 3D. 
SIFT and HOG were extended to SIFT 3D and HOG3D for action recognition by Scovan-
ner et al. (2007) and Klaser et al. (2008), and others. Ke et al. proposed a cuboid feature 
(Ke et al. 2007) for behavior recognition in 2007. Sadanand and Corso established Action-
Bank (Sadanand and Corso 2012) for action recognition in 2012. The most representative 
algorithm is the dense trajectories (DT) algorithm proposed by Wang et al. in 2011. Firstly, 
the feature trajectories in the video frame sequence are obtained by the optical flow field, 
and then feature extraction is carried out based on the feature trajectories. However, fea-
ture extraction via the DT algorithm is often subject to environmental constraints. For this 
reason, Wang et al. (2013) proposed an improved dense trajectory (IDT) method in 2013. 
This is a more advanced video feature extraction method. The IDT descriptor shows how 
spatial and temporal signals can be processed differently. Instead of extending the Harris 
corner detector to 3D, it starts with densely sampled feature points in the video frame and 
uses the optical flow to track them. For each tracker corner, a different manual feature is 
extracted along the track. This method can weaken the influence of camera motion on fea-
ture extraction, making the IDT algorithm the best method with the best effect and stability 
before deep learning entered the field. However, this method requires much computation 
and has difficulty in dealing with large-scale datasets. Moreover, its features lack flexibility 
and extensibility.

4.2  Deep learning methods

Deep learning technology solves the problem of the feature extraction of large-scale 
datasets, enabling many datasets to be trained to extract the spatial and temporal features 
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of videos and generate a good model. At present, deep learning of human behavior rec-
ognition can be divided into three categories: CNN, RNN, and transformers (Hu et al. 
2022c). Next, relevant work will be introduced in these three categories.

4.2.1  CNN feature extraction

Inspired by deep learning breakthroughs in the image field (Krizhevsky et  al. 2017), 
various pre-trained convolutional networks (Jia et al. 2014) can be used to extract image 
features. Feature extraction methods based on convolutional neural networks can be 
divided into the two-stream CNN and the 3D CNN. In this section we review the two 
schemes.

(1) Two-stream 2D CNN

The progress of image recognition methods promotes two-stream convolutional net-
works (Hu et al. 2022a) for action recognition. Before this, many video action recogni-
tion methods were based on local spatiotemporal features of shallow high-dimensional 
coding. Simonyan and Zisserman (2014) first proposed a two-stream convolutional net-
work containing space-time and optical flow in 2014. As shown in Fig. 13, the network 
consists of two parts that process data in both time and space dimensions; each network 
is made up of a CNN and the last layer is Softmax. Since two-stream convolutional net-
works only operate one frame (spatial network) or a single heap frame in short segments 
(temporal network), they have poor modeling ability for the time structure in a long 
time-range and limited ability to capture contextual relations.

In view of the shortcomings of the two-stream convolutional network, Wang et  al. 
(Wang et al. 2016b) summarized two problems that need to be solved in 2016:

(a) How to design an effective video-level framework for learning video representation 
that captures long time structures;

(b) How to train a neural convolutional network model with limited samples.

Fig. 13  Two-stream architecture for video classification. (Simonyan and Zisserman 2014)
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Therefore, Wang et al. proposed the classical TSN network and introduced a very deep 
neural convolutional network structure. The model can be combined with complete video 
information by using sparse time sampling and video-level supervision. As shown in 
Fig. 14, the TSN model framework is divided into spatial stream convolutional networks 
and optical stream convolutional networks. The processing objects are no longer single 
frames or single heap frames but sparsely sampled snippets. TSN then fuses the category 
scores of different segments through temporal segment networks. TSN enables end-to-
end learning of long video sequences within a reasonable budget of time and computer 
resources.

In 2019, Feichtenhofer et al. (2019) proposed a slow-fast network inspired by the two-
stream idea and biological research in respect of retinal ganglion cells in primate visual 
systems (Hubel and Wiesel 1965; Livingstone and Hubel 1988; Derrington and Lennie 
1984; Felleman and Van Essen 1991; Van Essen and Gallant 1994), and achieved excel-
lent performance. This model uses a slow path running at a low frame rate, which can be 
any convolution model (Tran et al. 2015; Feichtenhofer et al. 2017; Carreira and Zisser-
man 2017; Wang et al. 2018; Hu et al. 2023) and resolves static content in the video by 
capturing spatial semantics. There is also a fast path that runs at a high frame rate, captur-
ing motion with good temporal resolution to analyze the dynamic content in the video. As 

Fig. 14  TSN Module. (Wang et al. 2016b)

Fig. 15  SlowFast Model. (Feichtenhofer et al. 2019)
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shown in Fig. 15, the two paths are the low frame rate and the high frame rate. T and C 
of the slow path are the benchmarks of the fast path. For video, the slow path samples T 
frames as the input. At the same time, the fast path needs to process high-frequency infor-
mation; the whole process does not use the time domain downsampling layer, so the input 
is always -framed. The two paths are fused by a transverse connection and finally fed into 
a full connection layer for classification. The validity of the model has been proven using 6 
datasets.

Video feature extraction based on deep learning has obvious performance advantages 
compared with traditional manual feature extraction methods. The two-stream network 
divides video sequences into time and space in a pioneering way, providing a research 
space for subsequent researchers. However, the speed of the two-stream convolutional net-
work is slow, making it unsuitable for use with large-scale real-time video; 3DCNN can 
make up for this deficiency.

(2) 3DCNN

Another idea for video feature extraction is to expand the 2D convolution kernel used 
for image feature extraction into a 3D convolution kernel to train a new feature extraction 
network. The general approach of feature extraction algorithms based on 3D convolutional 
networks is to take a spatiotemporal cube formed by stacking a small number of continuous 
video frames as the model input. Then, the spatial and temporal representation of the video 
information is adaptively learned through the hierarchical training mechanism under the 
supervision of the given action category label.

In 2015, Tran et  al. (2015) proposed a simple and effective spatiotemporal feature-
learning method called C3D. Experiments show that 3D convolutional networks are more 
suitable for spatiotemporal feature learning than 2D convolutional networks and have sig-
nificantly improved efficiency compared with two-stream methods. However, C3D is not 
learned from a full video. Therefore, the modeling ability for long-range spatiotemporal 
dependence is not strong. Diba et al. (2017) proposed time 3DCNN (T3D) in 2017, which 
strengthened the modeling of long-range spatiotemporal dependence. The time transi-
tion layer can model the depth of the time convolution kernel. T3D can efficiently capture 
short-, medium-, and long-term time information. Varol et al. (2017) proposed a long-term 
time convolution (LTC) network in 2017, which increased the time range of the 3D con-
volution layer at the cost of reducing spatial resolution and enhanced the modeling of the 
long-term time structure.

Due to the introduction of the time dimension, the network parameters become larger, 
and the training cost becomes increasingly higher. Some researchers aim to decompose 3D 
convolution. Qiu et al. (2017) proposed a pseudo-3D residual network in 2017. Pseudo-3D 
decomposes 3D convolution into a two-dimensional spatial convolution with a convolu-
tion kernel of 1 ×3× 3 and a one-dimensional time convolution with a convolution kernel 
of 3 ×1× 1 to simulate 3D convolution. Carreira et  al. (2017) proposed the I3D model in 
2017 using the same refinement idea. The main idea was to extend Inception’s 2D model 
into a 3D model. I3D can achieve excellent performance after full pre-training in kinetics. 
Similarly, Tran et  al. proposed a new spatiotemporal convolution module called R(2+1)
D in 2018, which approximates the complete three-dimensional convolution with a two-
dimensional convolution kernel and a one-dimensional convolution, thus separating the 
processing of space and time. Lin et  al. (2019a) proposed the temporal shift module 
(TSM) network in 2019. TSM moves some features forward and backwards along the time 
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dimension, allowing the network to achieve the performance of a 3D CNN but maintain the 
complexity of a 2D CNN. As shown in Fig. 16, for the image input of a single frame, only 
the first 1/8 feature graphs of each residual block are saved and cached in memory during 
feature processing. The red box in the figure is the 1/8th feature of the cache. The author 
uses the cache feature map for the next frame to replace the first 1/8 of the current feature 
and 7/8 of the current feature map to create the next layer. As a result, TSM gives an inter-
frame predictive delay that is almost identical to the 2D CNN baseline.

Compared with two-stream convolution, 3D convolution is faster and more efficient. 
However, the existing network cannot make full use of video temporal and spatial charac-
teristics, and the recognition rate is low. Therefore, feature extraction methods for human 
action recognition still need to be optimized.

4.2.2  RNN feature extraction

RNNs can be used to analyze temporal data due to recursive joins in its hidden layer. How-
ever, traditional RNNs have the problem of disappearing gradients, and cannot effectively 
model long time series. Therefore, most current approaches adopt gated RNN architec-
tures, such as LSTM (Hu et al. 2021), which can effectively model video-level temporal 
information.

Donahue et al. (2015) proposed the long-term recurrent convolutional network (LRCN) 
model in 2014. This model uses 2D-CNN as a feature extractor to extract frame-level RGB 
features and connects LSTM for prediction. In 2015, Yue-Hei Ng et al. (2015) proposed 
two methods for processing long videos. The first method explores various convolution 
time feature pool architectures, including conv pooling, late pooling, and slow pooling, 
and using the aggregation technology characterized by maximum pooling, frames can be 
extracted at a higher frame rate while still being able to extract the full video in the capture 
context. The second method uses a recursive neural network composed of LSTM units to 
model the video explicitly as an ordered sequence of frames. As shown in Fig. 17, the input 

Fig. 16  TSM Model. (Lin et al. 2019a)
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original frame and optical flow enter the feature aggregation after CNN feature computa-
tion. LSTM networks run on frame-level CNN activations and can learn how to aggregate 
feature information over time. The network can share parameters over time, and both archi-
tectures are able to maintain a constant number of parameters while capturing a global 
description of the video’s temporal evolution.

In the same year, Srivastava et al. (2015) proposed a recursive neural network based on 
LSTM, namely the encoder LSTM and the decoder LSTM. An encoder LSTM is used to 
map the input video to a fixed-length representation, and then the decoder LSTM decodes 

Fig. 17  Overview of NG’S approach. (Yue-Hei Ng et al. 2015)

Fig. 18  Overview of the LITEEVAL approach. (Wu et al. 2019)
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it to obtain the processed video features. In 2019, Wu et al. (2019) proposed a LITEEVAL 
framework based on rough and fine LSTM. As shown in Fig. 18, rough LSTM (cLSTM) 
is used to process the features extracted by lightweight CNN from the video and obtain 
rough features. It determines whether to calculate the fine features based on the rough fea-
tures and historical information. If further checks are required, fine features are exported to 
update the fine LSTM (Flstm); otherwise, the two LSTMS are synchronized. Fine LSTM 
can obtain all the feature information it sees. Majd and Safabakhsh (2020) proposed a 
novel C2 LSTM in 2020, which uses convolution and cross-correlation operators to learn 
the spatial and action features of videos and extract time dependence.

With the introduction of spatial and temporal attention, LSTM has undergone new 
development. Sharma et al. (Sharma et al. 2015) added spatial attention to the LSTM unit 
for the first time. The model recursively outputs the attention diagram and pays more atten-
tion to the spatial information of features. In 2019, Sudhakara et  al. (Sudhakaran et  al. 
2019) introduced a recurrent unit with built-in spatial attention called long short-term 
attention (LSTA), which can spatially localize discriminative information on video input 
sequences. As shown in Fig. 19, LSTA extends the LSTM with two new components, the 
circular attention and the output pool. The first part (red) tracks the weight plot to focus on 
relevant features, while the second part (green) introduces high-capacity output gates. At 
the core of both is a pool operation � that enables smooth attention tracking and flexible 
output gating. To make full use of spatial features in the video, Li et al. (2018b) proposed 
the VideoLSTM model in 2016. VideoLSTM uses convolution and action-based attention 
mechanisms to obtain spatial correlation and action-based attention graphs in video frames. 
In 2021, Muhammad et  al. (2021) proposed an attentional mechanism based on bidirec-
tional long- and short-term memory, which includes a dilated convolution neural network 
(DCNN). DCNN extracts CNN features from input data, and the network can selectively 
focus on valid features in video input frames.

Video feature extraction methods based on 3D CNN usually perform spatiotemporal 
processing at limited intervals through window-based 3D convolution operations, in which 
each convolution operation only pays attention to the relatively short-term context of the 
video. At the same time, RNN-based methods recursively process video sequence ele-
ments, so they cannot model relatively long-term spatiotemporal dependence. However, 
transformers can be directly involved (Sun et al. 2022b).

Fig. 19  Overview of the LSTA approach (Sudhakaran et al. 2019)
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4.2.3  Transformer feature extraction

Transformer networks (Vaswani et al. 2017; Acheampong et al. 2021) have significant 
performance advantages and are becoming popular in deep learning. Compared with 
traditional deep learning networks such as convolutional neural networks and cyclic 
neural networks, transformers are more suitable for feature extraction because their net-
work structure is easy to deepen and the model deviation is small (Ruan and Jin 2022); 
they perform well in long-term dependence modeling.

Given the success of transformers in natural language processing, more researchers 
are using transformers in video processing. Girdhar et  al. (2019) proposed an action-
based transformer model in 2019. This model uses the initial layer of space-time I3D to 
generate the basic features and then generates the boundary proposal using the regional 
proposal network (RPN). The basic feature map and each proposal are obtained through 
the action transformer to obtain the proposed features. An action transformer treats the 
feature graph for each particular topic as a query and the features from adjacent frames 
as keys and values. As shown in Fig. 20, the video footage is taken as the input, and the 
backbone network (usually the initial layer of I3D) is used to generate the spatiotempo-
ral feature representation. The central frame of the feature map generates the bounding 
box proposal through the RPN, the feature map (filled with positional embedding) and 
each proposal obtains the proposal’s characteristics through the "head" network. The 
head network is made up of action transformer units (Tx units) to generate the features 
to be categorized. QPr and FFN refer to the query preprocessor and feedforward net-
work, respectively.

Bertasius et al. (2021) proposed the TimeSformer in 2021. TimeSformer is an adapta-
tion of the standard transformer structure to video through learning spatiotemporal fea-
tures directly from a series of frame-level patches (Dosovitskiy et al. 2020). TimeSformer 
removes the CNN entirely for the first time and applies temporal and spatial attention to 
each piece. Inspired by the vision transformer (ViT), Arnab et al. (2021) proposed a pure 
transformer model called ViViT in the same year. By degenerating different components of 
the transformer encoder in spatial and temporal dimensions, a large number of spatial-tem-
poral markers encountered in the video can be effectively handled. As shown in Fig. 21, 
the model extracts space-time tokens from the input video and then encodes the space-tem-
poral tokens through a series of transformation layers. Three effective model components 
are also shown in the figure, which handle the long sequence of tokens encountered in the 
video: factorized encoder, factorized self-attention, and factorized dot-product.

Fig. 20  Overview of action transformer (Girdhar et al. 2019)



Overview of temporal action detection based on deep learning  

1 3

Page 27 of 77 26

Only after pre-training a large amount of data can a pure transformer achieve better 
performance than a CNN, but it will inevitably require substantial memory and comput-
ing consumption. Zha et al. (2021) proposed a shifted chunk transformer with a pure self-
attention block in 2021. In processing video frames, a pure transformer divides each frame 
into several local windows called image blocks and builds a layered image block converter. 
The converter uses locally sensitive hashing to enhance dot-product attention in each block 
(Hu et al. 2022c), thereby significantly reducing memory and computing consumption. In 
addition, to fully consider the action effect of the object, Zha et al. also designed a power-
ful self-attention module, namely the shifted self-attention module:the module explicitly 
extracts correlations from nearby frames. Furthermore, a frame-by-frame attention module 
clip encoder based on a pure transformer was designed to model the complex inter-frame 
relationship with minimal additional computational cost.

In addition,a series of Transformer-based models have recently emerged. For example, 
MotionFormer proposed by Patrick et  al. (Patrick et  al. 2021) in 2021 is used for video 
action recognition of people. This model proposes a new video Transformer framework 
called Trajectory Attention for modeling temporal correlation in dynamic scenes. As 
shown in Fig.  22, the figure shows the trajectory attention flow chart, which consists of 
two stages: the first step forms a set of ST trajectory markers for each space-time location 
st, and the second step utilizes 1D temporal attention operations Converge along these tra-
jectories. In this way, trajectory attention can effectively accumulate information about the 
motion paths of objects in videos. In addition, MotionFormer also proposes a new method 
to calculate the quadratic dependence between memory and input size, which is especially 
important for high-resolution and long videos. However, MotionFormer has large calcu-
lation and memory overhead. Liu et  al. (2021) introduced the Swin Transformer in the 
same year, addressing the challenges related to applying the Transformer from the lan-
guage domain to the visual domain, such as the significant difference in the scale of visual 
entities and the high pixel resolution of images compared to words in text. As shown in 
Fig. 23, this illustration presents two consecutive Swin Transformer blocks, where W-MSA 
and SW-MSA have multi-head attention modules with regular and shifted window config-
urations, respectively. Swin Transformer introduces a hierarchical Transformer structure, 
utilizing shifted windows for computing representations. In various tasks, the experimen-
tal results have significantly surpassed previous state-of-the-art models, demonstrating the 
potential of Transformer-based models as visual backbone networks.

Fig. 21  Overview of ViViT (Arnab et al. 2021)
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Although Swin Transformer has linear computational complexity,it may face issues 
such as memory limitations for particularly large image inputs. In 2021, Fan et  al. (Fan 
et  al. 2021) introduced the Multiscale Vision Transformers (MViT), a multi-scale visual 
Transformer model designed for video and image recognition that combines the concept 

Fig. 22  Overview of motion-
former (Patrick et al. 2021)

Fig. 23  Overview of swim trans-
former (Liu et al. 2021)
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of multi-scale feature hierarchies with the Transformer model.MViT is better able to 
model the dense nature of visual signals through feature hierarchies at multiple scales. The 
MM-ViT proposed by Chen et al. (2022) in 2022 has been expanded and improved on the 
basis of MViT. MM-ViT incorporates multi-modal processing and cross-modal attention 
mechanisms,which handle data including motion vectors, residuals, and audio waveforms, 
and features three distinct cross-modal attention mechanisms.These cross-modal attention 
mechanisms can be seamlessly integrated into the Transformer architecture.

However,when a set of video frames is mixed in random order and is different from the 
original frame, it may be classified with the same label as the original recognition result; 
if this is the case, these models have clearly been over-fitted or biased toward other fac-
tors than the semantic information learned in respect of the actions. To solve this problem. 
Truong et al. (2022) proposed the DirecFormer model in 2022. The model learns the cor-
rect frame order in action videos by taking advantage of the direction of attention and the 
amount of attention between frames. Furthermore,to address the inability of conventional 
transformers to effectively quantify their forecast inaccuracies. Guo et al. (2022) proposed 
the uncertain guidance transformer (UGPT) in 2022, which treats the attention score of the 
transformer as a random variable to capture random dependencies and uncertainties in the 
input. The features extracted from the CNN are input into the UGPT after location encod-
ing, and advanced embedding is the output.

Due to the large memory footprint of untrimmed video, the current advanced TAD is 
on top of the features of precomputed clip videos. These features may not be suitable for 
TAD. Specifically, the video encoder is trained to map different short films within an action 
sequence to similar outputs, thus predicting insensitivity to the time boundary of the action. 
As shown in Fig. 24, the image and video classification models can be fine-tuned to work 
with pre-training, thanks to the availability of large relevant datasets (such as ImageNet 
and UCF101 in the figure). However, the existing datasets for TAD tasks are too small for 
model pre-training or lack time boundaries, leading to low efficiency. Therefore, we believe 

Fig. 24  Pre-training datasets for different tasks
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that solving the limitations of the training design of TAD has great potential to improve the 
model’s performance.

In 2021, Alwassel et  al. (2021) proposed a novel supervised pre-training paradigm 
for editing. This paradigm not only trains the classification of foreground activities, but 
also considers background clips and global video information to improve time sensitivity. 
As large video datasets with time boundary annotations are difficult to collect, Xu et al. 
(2021a) designed the boundary-sensitive pretext (BSP) in 2021. They propose to transform 
the existing action classification dataset of clip videos to synthesize large-scale untrimmed 
videos with time boundary annotations. Specifically, they generate artificial time bounda-
ries that are relatively consistent with changes in video content by splicing clips contain-
ing different classes, splicing two video lines of the same class, or manipulating the speed 
of different parts of the video instance. Xu et al. (2021b) proposed a simple and limited 
low-fidelity (LoFi) video encoder optimization method in the same year. They did this by 
introducing a strategy characterized by a new intermediate training phase, in which both 
the video encoder and the TAD head use lower temporal and spatial resolution (i.e., low-
fidelity) for end-to-end optimization in small batch constructs. In 2022, Zhang et al. (2022) 
proposed a new unsupervised pretext learning method called pseudo action localization 
(PAL). PAL first builds training sets by cheaply converting existing large-scale TAD data-
sets. Then, two-time regions with random time lengths and proportions are randomly 
clipped from a video as pseudo actions. The model can align the pseudo-action features of 
the two synthesized videos.

Transformer addresses the problem that CNN- and RNN-based approaches cannot 
model relatively long-term spatial-temporal dependencies. The transformer can participate 
directly in the completion of video sequences through its extensible self-attention mecha-
nism, thus effectively learning the remote spatiotemporal relationships in the video. The 
Table 2 summarizes the video feature extraction networks based on deep learning methods.

5  TAD according to the design method

Natural language processing and video understanding are different branches of artificial 
intelligence. The two are different in terms of application objects. The application object 
of natural language processing is two-dimensional text data, while the application object of 
TAD is three-dimensional action data. From the perspective of practical application, both 
are more in line with the characteristics of unknown information and rich information in 
real scenes, so there is a certain correlation in processing ideas and methods. Natural lan-
guage processing can be seen everywhere in the design of TAD.

Natural language processing presents complex and challenging tasks related to lan-
guages, such as machine translation, questions and answers, and summaries. Nonlinear pro-
gramming involves designing and implementing models, systems, and algorithms to solve 
the practical problems of understanding human language (Lauriola et al. 2022). Thanks to 
recent advances in deep learning, the performance of natural language processing appli-
cations has been improved in an unprecedented way, attracting increasing interest from 
the machine learning community (Kotsiantis et  al. 2006). For example, the most (Wang 
et al. 2021a) advanced phrase-based statistical methods in machine translation have been 
gradually replaced by neural machine translation (Yadav and Vishwakarma 2020). Neural 
machine translation involves large deep neural networks that achieve better performance 
(Bahdanau et al. 2014). After the advent of text vectors and unsupervised pre-training, the 
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last real boost in NPL was the transformer model (Vaswani et al. 2017). The most popular 
pre-trained transformer model is BERT (Devlin et al. 2018). BERT aims to pre-train deep 
bidirectional representations in the unlabeled text by jointly moderating left and right con-
texts in all layers. Inspired by BERT, several pre-training models followed, such as RoB-
ERTa (Liu et al. 2019b), ALBERT (Lan et al. 2019) and DistilBERT (Sanh et al. 2019). 
Other related approaches based on the same concept are generation pre-training (GPT) 
(Radford et al. 2018, 2019), Transformer XL (Dai et al. 2019), and its extension XLNet. 
Today, these methods continue to achieve excellent performance for a wide range of natu-
ral language processing tasks, such as question and answer (Garg et al. 2020; Shao et al. 
2019; Kumar et al. 2019), text classification (Sun et al. 2019), sentiment analysis (Abdel-
gwad 2021), biomedical text mining (Lee et al. 2020a), and named entity recognition (Yu 
et al. 2019).

Temporal action detection can be regarded as the time version of image detection. The 
research in respect of TAD relies heavily on the timing proposal effect of the target action, 
and the video data have a complicated structure and different durations of action. In 2017, 
ActivityNet, a video understanding competition, proposed the concept of the TAD task, 
which introduced the problems of locating multiple target action video surveillance anal-
yses, network video retrieval, and other tasks. According to the design method, TAD is 
divided into three categories: anchor-based, boundary-based, and query-based. Anchor-
based TAD (5.1) generates a time proposal by assigning dense and multiscale intervals 
with predefined lengths to evenly distributed time positions in the input video. Boundary-
based TAD (5.2) does not set predefined proposals, so proposals with precise boundaries 
and flexible durations can be generated. Query-based TAD (5.3) proposes to map a set of 
learnable embeddings to action instances to generate action proposals directly. In this sec-
tion we follow the three design methods (Fig. 25).

5.1  Anchor‑based methods

Anchor-based approaches are also known as top-down approaches. The designer first 
designs multiscale anchoring on each network of the feature sequence. Then, action classi-
fication and boundary regression are carried out according to the candidate proposals. The 
methods are mainly based on using sliding windows or anchor kernels to generate temporal 
action proposals. This section introduces anchor-based models in detail, from the earliest 
to the latest.

Most previous methods have relied on hand-selected features with significant perfor-
mance improvements. Some researchers have attempted to combine IDT (Wang and 
Schmid 2013) with the appearance features self-extracted by frame-level deep networks 
(Oneata et al. 2014b). Due to the great success of deep learning in object detection, Shou 

Fig. 25  The three design methods are Anchor-based,Boundary-based,Query-based (Vahdani and Tian 2022)
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et al. (Shou et al. 2016) first proposed the S-CNN model in 2016 by means of region-based 
convolutional neural networks (R-CNNs) (Girshick et  al. 2014) and their modifiers. The 
S-CNN method uses fixed windows of multiple sizes to process video clips and then uses 
a three-stage S-CNN for processing. As shown in Fig. 26, the overall framework is divided 
into three parts: 

(a) Step 1 is called the proposal network. The proposal generation network is used to 
calculate the probability of action in all video clips;

(b) Step 2 is called the classification network. Classification networks are used to classify 
different actions and backgrounds;

(c) Step 3 is called the localization network. The similar output of the location and clas-
sification networks is still the probability of each action.

In training, overlap loss based on the IOU score is increased to make better use of the over-
lap rate. In theory, this method only has a high degree of overlap, the better the effect, but 
it produces a lot of redundancy. In addition, the convolution kernel of standard C3D used 
by SCNN is 3, and the receptive field is too small, so only short time-sequence information 
can be used.

Considering the limitations of the sliding window method, Gao et al. (2017a) proposed 
in 2017 that the TURN model could reduce the amount of computation and improve accu-
racy. The main idea of this model is to draw on the boundary regression in Faster-RCNN 
(Ren et  al. 2015). As shown in Fig. 27, the video should first be divided into fixed-size 
units, such as 16 video frames, and each group should learn one feature (using C3D). Then, 
each group or multiple groups will be used as the central anchor unit (referring to Faster-
RCNN) and expand to both ends to create a fragment pyramid. Next, coordinate regression 
is performed at the unit level, and the regression model has two sibling outputs. The first 
output is the trustworthiness score, which is used to determine whether the action is pre-
sent in the fragment. The second output is the time coordinate regression offset. Compared 
with frame-level coordinate regression, unit-level coordinate regression is easier to learn 
and more efficient. An innovative new architecture based on time-coordinate regression 
and capable of running at over 800fps is proposed.

Fig. 26  Segment-CNN Model (Shou et al. 2016)
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DAPs (Escorcia et al. 2016) and sparse prop (Heilbron et al. 2016) use average recall 
and the average number of search proposals (AR-AN) to evaluate TAP performance. There 
are two problems with the AR-AN metric: 

(a) the correlation between the AR-AN of TAP and the mean average precision (mAP) of 
action positioning has not been discussed

(b) the average number of proposals retrieved correlates with the average video length of 
the test dataset, which makes AR-AN less reliable for evaluation across different data-
sets. Spatiotemporal action detection (Yu and Yuan 2015; Wang et al. 2016a) uses the 
recall and proposal number (R-N), but this index does not consider the video length.

The TURN method adopts the brand-new temporal action proposal (TAP) indicator AR-F 
to solve the above two problems. However, it does not fundamentally solve the problem of 
inaccurate division of the action boundary.

Because most current models obtain good results through predetermined anchor points, 
they are susceptible to the interference of a large number of outputs and different anchor 
sizes. Lin et al. (2021) proposed a completely anchor-free temporal positioning method in 
2021, which is more portable. The overall framework is divided into three parts: 

(a) In the video feature extraction part, an I3D network is used to extract features and 
finally transform them into a 1D feature pyramid;

(b) Rough prediction, which is the first part of the anchoring, predicts the length of each 
video segment for each pyramid layer and classifies that segment;

(c) In fine prediction, significant boundary features are found for proposals generated in 
rough prediction. Then, in turn, the proposed boundary is optimized with the boundary 
features to obtain fine prediction results and output the confidence of the proposal.

As shown in Fig. 28, given a video as input, the I3D model is used to extract features and 
construct 1D time pyramid features. Next, each pyramid feature is fed into two basic pre-
diction modules: a regressor generating a rough boundary score and a classifier generating 
a rough category score. Finally, the saliency-based refinement module adjusts class scores 
and the start and end boundaries, and predicts the corresponding quality scores for each 

Fig. 27  Architecture of TURN (Gao et al. 2017a)
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rough proposal. The main contribution of this method is its use of fewer parameters and 
outputs and obtaining a good performance. The influence of boundary features is explained 
by making full use of an unanchored frame. Finally, the method proposes a new consist-
ent learning strategy for a better learning boundary control model. Yang et al. (Yang et al. 
2020) showed that although the results of anchor-free methods are weak, there is evidence 
in the task of target detection (Girshick et al. 2014) that such methods should, in principle, 
be compared with anchor-based methods.

Given the great success of target detection in images, researchers have begun to apply 
Faster R-CNN to video TAD. However, several challenges have arisen in shifting the field, 
and the first is how to deal with the dramatic change in the duration of action, from a still 
image to a moving video; the second is how to use timing information. The moments 
before and after the action instance contain key information for positioning and classifica-
tion, which is to some extent more important than spatial context information. The final 
issue is how to fuse multi-stream features. To address these challenges, Chao et al. (2018) 
proposed the TAL-Net network in 2018. TAL-Net uses a multi-tower network and dila-
tation time convolution to strengthen alignment between the receptive field and the span 
of the anchor. It uses a multiscale architecture to alter the receptive field so that it can 
adapt to continuous changes in action duration. By expanding the receptive field, TAL-Net 
can make better use of the time background to generate candidate proposals and classifica-
tion. As for the feature fusion method, TAL-Net proposes a two-stream frame late-fusion 
scheme. Conceptually, this is equivalent to performing traditional late fusion in the pro-
posal generation and action classification phases. The experimental results prove the feasi-
bility of feature fusion in the later stage.

The above method can also be called the two-stage method. The two-stage method first 
generates the action candidate proposal, and then the generated candidate proposal is clas-
sified in the second stage. Most of the current models are inspired by R-CNN. The model 
shown in (a) in Fig. 29 comprises a time candidate window with a high recall rate pro-
vided by the anchor core introduced above, and then the candidate proposal is passed to the 
later classification stage. The two-stage approach treats the proposal and classification as 
two separate sequential processing stages, which inhibits collaboration between them and 
leads to double counting between the two stages. Figure 29b shows an end-to-end trainable 

Fig. 28  Architecture of AFSD (Lin et al. 2021)
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approach that tightly integrates proposal generation and classification to provide a more 
efficient architecture for uniform TAD. Currently, most of the one-stage methods are based 
on the predefined anchor core, and the anchor-related hyperparameters need to be set with 
the knowledge of the action distribution in advance.

The single-stage model synchronizes proposal-making and proposal classification. Cur-
rently, most models adopt the two-stage model, which first proposes and then classifies 
the proposal. One inevitable problem with such a framework is that the boundaries of the 
action examples are already defined in the classification step. To solve this problem, in 
2017 Lin et al. (2017) proposed a single-shot temporal action detection network (SSAD) 
based on a one-dimensional time convolution layer. SSAD can directly detect action 
instances in uncut videos and skip the generation of proposals. In SSAD, features of the 
single-lens object detection models SSD (Liu et al. 2016) and YOLO (Redmon et al. 2016) 
are adopted. As shown in Fig. 30, the model includes three modules: 

(a) Base layer: The input video feature sequence is processed, the feature length is short-
ened, and the receptive domain is expanded;

(b) Anchor layer: This uses time convolution to reduce the feature map and output the 
anchored feature map;

(c) Prediction layer: The class, confidence, and position of each action instance are 
obtained by anchoring the feature graph. SSAD’s biggest contribution is to eliminate 
the candidate proposal-generation step and implement an end-to-end framework.

Buch et al. (2019) proposed the single-stream temporal action detection (SS-TAD) net-
work in the same year. Like SSAD, it is a single-emitter detector, and the design inspiration 
came from the single-emitter object detectors YOLO and SSD. The model consists of two 
parts. Input visual coding is used to encode low-level space-time information for the video 
(similar to how SSAD uses the C3D model to extract low-level space-time information). 
The two recurrent memory modules can effectively converge the context information to 
integrate it with the TAD task and output the final action instance’s time boundary and 
confidence score. SS-TAD uses dynamic semantic constraints in the semantic subtasks of 
TAD to improve training and testing performance. Both SSAD and SS-TAD are end-to-
end network models and reduce the number of times required to input video streams. The 

Fig. 29  a two-stage method, b one-stage method
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feature encoding from the two memory modules is used to output the final time bound and 
associated class scores for the final output detection. As shown in Fig.  31, the SS-TAD 
model takes a video stream as input and then represents each non-overlapping "time step" 
t with the visual code in the � frame. This visual coding acts as input to the two recur-
rent memory modules, making both modules semantically constrained to learn proposals 
and classifier-based features. These features are combined before providing the final TAD 
output. In contrast to previous work, the authors’ approach provides end-to-end temporal 
action detection through a single pass of the input video stream.

Currently, most TAD models are designed with reference to image detection. Due to 
the fixed timescale, there may be a problem with robustness. In addition, the ability to 
detect complex actions is weak. Long et al. (2019) proposed Gaussian temporal awareness 
networks (GTAN) in 2019. The core innovation of GTAN is the use of a set of Gauss-
ian kernels to simulate the time structure and optimize each generated action proposal. 
The addition of Gaussian kernels can represent action proposals of different sizes, and 

Fig. 30  The framework of the SSAD network (Lin et al. 2017)

Fig. 31  SS-TAD model architecture (Buch et al. 2019)
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the corresponding Gaussian curves can show the context of the generated action propos-
als. Specifically, a GTAN uses two convolution layers and the maximum pooling layer to 
shorten the feature mapping and increase the receptive field’s time. Then, a series of one-
dimensional time convolution layers (anchor layers) continuously shortens the feature map 
and outputs an anchoring feature map composed of the features of each cell (anchor lay-
ers). At the top of each anchor layer, Gaussian kernels are learned for each cell to dynami-
cally predict a specific interval of action proposals corresponding to that cell. In addition, 
inspired by the idea of time action grouping in (Zhao et  al. 2017), a hybrid convolution 
is included that can mix multiple Gaussian kernels to capture an action proposal of any 
length. GTAN offer improved performance compared to both two-stage and single-stage 
technologies.

Most of the proposed TAD models generate candidate proposals by subdividing them 
into frames or cutting them into video fragments. These methods are limited to local video 
information and cannot take advantage of video context relations. Based on traditional 
detection and linking strategies, in 2020 Li et al. (2020) proposed a single-stage model that 
can be trained end-to-end and a new coarse-to-fine action detector (CFAD). The CFAD 
uses two space-time action tubes, thick and thin. The strategy first estimates the thicker 
action tubes and then selectively refines these action tubes at critical points in time. An 
action tube is generated through the rough module and the refinement module. The rough 
module is designed to solve the problems of a lack of global information and inefficiency 
in previous detection and linking modes. In a global sense, it uses complete tube shape 
information to oversee tube regression. In addition, a parametric modeling scheme is intro-
duced to describe the action tube. Instead of predicting a large number of box positions 
per frame, the rough module predicts only a few trajectory parameters to describe tubes 
of different durability. As a result, the module learns a robust notation that accurately and 
efficiently describes changes in the action tube. The refinement module delves into each 
pipe’s local environment to find critical time locations to improve the estimated action 
pipe further, thereby improving overall inspection performance and efficiency. To correctly 
refine the action tube, CFAD includes a labeling algorithm to generate labels that can guide 
the learning of key timestamp selection. As shown in Fig. 32, the video frame is sent to 
the temporal proposal network (TPN) through a 3D CNN. A rough result is created in the 
rough module, and then pass the key time points in the video clip (the green point in the 
figure) into the fine module for processing so as to find the precise time position. “D Conv 
Head” means cascading NL-3D ("NL" denotes a non-local block (Wang et al. 2018)). The 
2D Conv head block represents a cascading 2D spatial convolution. CFAD can achieve this 
3.3 times faster than its nearest competitor.

The mainstream one-stage methods still rely on anchoring to generate candidate propos-
als; they lack generalization ability and cannot fully reflect the performance in complex, 
changeable action videos. In 2021, Ning et  al. (2021) proposed a TAD called the selec-
tive receptive field network (SRF-Net), which is similar to AFSD’s two-stage model and 
was designed to eliminate the anchoring method. SRF-Net can directly estimate the offsets 
and action categories at each point in time in the feature graph. Inspired by the selection 
mechanism in SKNet (Li et al. 2019), Ning et al. studied the selection mechanism of the 
receptive field in depth and creatively proposed the building block of selective receptive 
field convolution (SRFC), which can automatically adjust the size of the receptive field. 
The SRFC module can adaptively adjust the size of its receptive field according to mul-
tiple scales of the input information of each time position in the feature map. The differ-
ent receptive fields at each time location are more effective on a specific timescale, which 
results in the classification and regression of corresponding action suggestions. FCOS 
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(Tian et al. 2019) was referenced in the design of the prediction head, which uses a similar 
strategy to suppress some low-quality action proposals generated far from the center of the 
action instance. The SRFC block function is implemented in three steps: 

(a) Split: the original feature map is split to generate three extendable time feature maps 
and cover the whole time-range through expansion;

(b) Fusion: this controls the flow of information in the three time-feature graphs through 
the attention mechanism;

(c) Selection: this uses cross-channel soft attention mechanisms to select different infor-
mation scales. SRFC undoubtedly provides a new idea in terms of an anchor-free 
approach.

Time representation is the cornerstone of modern action detection technology. Most of 
the current advanced methods rely on the dense anchoring scheme, in which the anchor-
ing uses a discrete network to sample uniformly in the time domain and then regress the 
exact boundary. In 2022, Wang et  al. (2022a) proposed recurrent continuous localiza-
tion (RCL), which learns a completely continuous anchoring representation and is an 
explicit model conditioned on video embedding and time coordinates. Specifically, the 
model is based on an explicit model conditioned on video embedding and time coor-
dinates, ensuring the ability to detect segments of arbitrary length. The key idea is to 
use deep neural networks to directly regress confidence scores from successive anchor 
points. Thus, precise line segments can be extracted by searching for local maxima in a 
continuous function. This method uses the concept of continuous anchored representa-
tion to achieve high-fidelity action detection. Unlike ordinary anchor-based detection 
techniques, this technique discretizes fragments into regular grids for measurement (Lin 
et al. 2019b), generating estimates in a continuous field. The proposed continuous repre-
sentation can be intuitively understood as a learning location condition classifier whose 
confidence score is determined by video features and time coordinates. As shown in the 

Fig. 32  Overview of the CFAD framework (Li et al. 2020)
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Fig. 33, a feature encoder is first used to extract temporal video features, which are then 
fed to a continuous anchored representation (CAR) for predicting continuous confidence 
graphs with scaled invariant sampling strategies. Finally, a recursive refinement module 
(RRM) is entered to update the confidence graph by iteratively refining the uncertain 
region.

The above is the most representative anchor-based network model. S-CNN (Shou et al. 
2016) has a fixed sliding window. In principle, good results can be achieved as long as the 
overlap rate is high enough, but redundancy will be generated correspondingly. Therefore, 
to improve the accuracy and reduce the number of parameters, TURN (Gao et al. 2017a) 
and TAL-Net (Chao et al. 2018) used the idea of an R-CNN and adopted boundary regres-
sion to generate candidate proposals. However, (Shou et al. 2016; Gao et al. 2017a; Chao 
et al. 2018) are all two-stage models, which inevitably have the following problems: 

(a) Proposal generation and classification are trained separately, but in reality, it is pre-
ferred that they be trained together;

(b) The two-stage approach takes more time;
(c) Using the sliding window method results in similar time boundaries for action instances 

due to finite-sized windows.

Conversely, the single-stage method can generate and classify action candidate proposals 
in one instance, which results in true end-to-end learning. SSAD (Lin et al. 2017) and SS-
TAD (Buch et al. 2019) learn from the single object detectors YOLO and SSD to extract 
low-level space-time information. In addition to using YOLO and SSD, the design inno-
vation of single-stage methods like GTAN (Long et  al. 2019) uses a Gaussian kernel to 
optimize the timescale to simulate action proposals of various sizes. CFAD (Li et al. 2020) 
uses two coarse refinement modules to improve the efficiency of generating accurate action 
tubes and remove traditional detection and linking strategies. However, anchoring repre-
sentations can only provide rough recommendations (Li et al. 2020; Wang et al. 2022a) and 
are all aimed at obtaining a more continuous, fine-grained anchoring representation, and 
providing accurate estimates of the target region. These methods exhibit excellent perfor-
mance and are capable of handling large duration periods. Instead of representing full seg-
ments, (Lin et al. 2021; Ning et al. 2021) employ an anchor-free approach, using a central 
point to represent a direct regression of the start and end times.

Fig. 33  RCL model. (Wang et al. 2022a)
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Anchor-based methods have introduced the idea of R-CNNs in target detection in a 
pioneering way and achieved good results. However, because the duration of live ground 
action instances varies greatly from video to video, these methods require a lot of com-
putation when placing dense candidate proposals. In addition, the internal context of the 
scheme adopted in an anchor-based approach can obtain reliable confidence scores but 
cannot generate accurate boundaries. The Table  3 provides a summary of anchor-based 
methods, in which the feature types used by different network models and corresponding 
improvements and code websites are given.

5.2  Boundary‑based methods

Boundary-based methods deal with imprecise boundary problems and directly evaluate 
each pair of matches in a video sequence. They first predict the boundary confidence of all 
frames and then use a bottom-up grouping strategy to match the start and end pairs. These 
methods extract boundary information from local windows and models using local context. 
They forgo the regression process and directly generate confidence scores for densely dis-
tributed proposals. This section introduces boundary-based models in detail.

Since the length of the untrimmed video is random, a method that relies on sliding win-
dows will encounter difficulties in adapting to actions of different lengths. As a result, a 
large number of windows with different scales and a small sliding step size are needed, 
which causes an increase in computing costs. In addition, the capture of a complete action 
and the fuzzy distinction between actions make it difficult to accurately locate the start and 
end points. Xiong et al. (2017) proposed a model in 2017 that could be applied to uncut 
videos of different lengths and could accurately locate the time boundary of the action. The 
model consists of two parts: the generation of temporal proposal candidates and the clas-
sification of generation candidates. The TAG model is proposed in the temporal proposal 
candidate generation stage. Unlike the sliding window method, the bottom-up method is 
adopted, and more sensitive time boundaries can be generated by learning convolutional 
networks. The model includes three steps: 

(a) A series of videos is sparsely sampled to obtain a video frame and optical stream for 
each segment;

(b) This network generates action scores for video clips to judge whether there is action in 
the video. Here, the binary classifier of the TSN network is used to train two CNNs;

(c) Continuous high-score action fragments are grouped into action groups, and the thresh-
old is set to allow the existence of some outliers. Multiple sets of thresholds are set to 
generate proposals of different granularity. This approach greatly reduces the number of 
proposals, covers more comprehensive actions, and simplifies the process of parameter 
tuning.

Lin et al.(Lin et al. 2018) suggests that the generation of candidate proposals requires pro-
posals with precise time boundaries, and fewer proposals are needed to retrieve proposals. 
In addition, high-quality proposals need to be met that can cover real action areas with high 
recall rates and high time overlap, using fewer proposals to achieve higher recall and over-
lap rates. Therefore, Lin et  al. proposed the boundary-sensitive network (BSN) in 2018, 
which can flexibly extract the action temporal candidate proposal. There are three main 
steps, as shown in Fig. 34: 
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(a) Video feature extraction. The BSN uses a two-stream network to extract features, and 
each video unit is called a snippet;

(b) The boundary-sensitive network is used to generate action proposals and consists of 
three modules. The temporal evaluation module is used to generate the start probability 
sequence of an action, the end probability sequence of an action, and the probability 
sequence of an action. The proposal generation module extracts the action proposal 
by setting a threshold or a probability peak. The proposal evaluation module uses the 
MLP to score the confidence of each proposal;

(c) Non-maximum suppression is applied to overlapping parts to improve accuracy. The 
non-maximum suppression algorithm is Soft-NMS (Bodla et al. 2017), and the frac-
tional attenuation function is used to suppress the redundant results.

This model is a multi-stage model, and is not the same network model. It lacks rich 
timing context information and is inefficient for constructing candidate proposal fea-
tures separately from confidence evaluation. The proposed boundaries and timing are 
very flexible, and anchoring mechanisms are not suitable for bottom-up approaches 
such as BSN. In 2019, Lin et al. (Lin et al. 2019b) also proposed a boundary-matching 
network (BMN) to evaluate the confidence of dense distribution proposals. In the BM 
mechanism, a two-dimensional BM confidence graph represents the start and duration 
of all possible candidate proposals. The BM feature map contains abundant feature and 
context information, which optimizes the problem of insufficient semantic information 
in the temporal evaluation module in BSN. As shown in Fig. 35, an untrimmed video 
is input and is used to generate a boundary probability sequence using the boundary-
matching network; the red line in the sequence predicts the start of the action, and the 
blue dashed line predicts the end. The boundary probability sequence can be matched 

Fig. 34  Overview of BSN (Lin et al. 2018)
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with the boundary-matching confidence graph generated simultaneously, and the confi-
dence of all proposals can be intensively evaluated.

Gong et al. (Gong et al. 2020b) have suggested that the time context is important. How-
ever, the durations of different action instances are different, and it is impossible to find a 
receptive field that fits every time. Similar to TAL-Net’s multiscale receptive field, Gong 
et al. proposed TSA-Net in 2019, which uses a set of parameterized time convolution mod-
ules called multi-dilation temporal convolution blocks (MDCs) to handle all timescales. 
The model design is similar to (Lin et al. 2018; Chao et al. 2018) but is fundamentally dif-
ferent when simultaneously dealing with multiple timescales. To address the low accuracy 
of the boundary-based approach, TSA-Net detects three types of points simultaneously: 
the start point, the endpoint, and the midpoint of the action instance. The midpoint of the 
action instance implicitly encodes the candidate proposal, and a pair of start and end points 
is enabled only at the confident midpoint. TSA-Net outperformed competing methods on 
the large-scale benchmarks THUMOS14 and ActivityNet1.3 and recalibrated state-of-the-
art performance.

While current proposal generation methods can generate precise action boundaries, little 
attention has been paid to the relationship between proposals. In 2021, Chen et al. (2021) 
proposed a unified framework for generating time boundary suggestions for graph convo-
lutional networks based on boundary suggestion features, called boundary graph convolu-
tional networks (BGCNs). BGCNs draw inspiration from boundary methods and use edge 

Fig. 35  Overview of BMN (Lin et al. 2019b)



 K. Hu et al.

1 3

26 Page 46 of 77

graph convolution relays on the boundary proposals’ feature. First, a BGCN uses a base 
layer to fuse the two-stream video features to obtain two branches of base features. The two 
branches of the basic features then enter the same structure of the proposed feature graph 
convolution network (PFGCN). The action PFGCN is used to extract the action classifica-
tion score, and the boundary PFGCN is used to extract the end and start scores. In the pro-
posed feature graph convolutional network, the proposed features are intensively sampled 
from the video features, and a proposed feature graph is constructed. Each proposal feature 
is taken as a node, and the relationship between proposal features is taken as an edge. Next, 
edge convolution is used for graph convolution, to map the relations into a 2D map score. 
As shown in Fig. 36, the method first uses a two-stream network to extract spatiotemporal 
features, after which features are sent to ActionPFGCN and BoundaryPFGCN, and then 
2D map fractions are generated. Finally, the action classification score, the action regres-
sion score, the end score, and the beginning score are fused to produce a dense proposal. 
Soft NMS is then used to obtain the final real proposal, and then the proposed video clips 
are classified. Experimental results show that BGCN is an excellent proposal generator. In 
addition, BGCN has efficient action detection abilities, a model size of less than 2 MB, and 
a fast reasoning time.

As anchor methods lack flexible time boundaries, boundary methods have the problem 
of false positives in boundary prediction. Hsieh et  al. (2022) proposed a contextual pro-
posal network (CPN) centered on an RNN in 2022, encompassing two context-aware net-
works. The first mechanism, called feature enhancement, uses a similar inception module 
to capture multi-scale time contexts to produce robust representations of video footage. 
The second mechanism is the boundary scoring mechanism, which, for the first time, uses 
a bidirectional recursive neural network to capture the time context and formulate the exact 
boundary. This two-way time context helps to retrieve high-quality recommendations with 
low false-positives to override video action instances when generating and scoring propos-
als. Two challenging datasets, ActivityNet−1.3 and THOMAS-14, have demonstrated the 
effectiveness of CPN.

In 2021, Qing et  al. (2021) proposed a temporal context aggregation network (TCA-
Net) for high-quality proposal generation. Firstly, a local–global temporal encoder (LGTE) 
was proposed to capture both local and global time relations by channel grouping. The 
encoder consists of two sub-modules. Specifically, the input features are equally divided 
into N groups along the channel dimension after linear transformation. Then, a local tem-
poral encoder (LTE) is designed to handle the first A groups for local temporal modeling. 
At the same time, the remaining N-A groups are captured by the global temporal encoder 

Fig. 36  Detail of the BGCN Workflow (Chen et al. 2021)
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(GTE) for global information perception. In this way, LGTE is expected to integrate the 
long-term context of proposals using global groups while recovering more structure and 
detailed information from local groups. Second, the temporal boundary regressor (TBR) 
was proposed to exploit both the boundary context and internal context of proposals for 
frame-level and segment-level boundary regressions, respectively. Specifically, frame-level 
boundary regression aims to refine the start and end locations of candidate proposals with 
boundary sensitivity, while segment-level boundary regression aims to refine the center 
location and duration of proposals under the overall perception of proposals. Finally, high-
quality proposals are obtained through complementary fusion and progressive boundary 
refinements. As shown in Fig.  37, given an untrimmed video, TCANet captures "local 
and global" time relationships in parallel through LGTE. In TBR, the inner and boundary 
contexts of the proposal are used for segment-level and frame-level boundary regression, 
respectively. Finally, the two regression outputs are fused to obtain the predicted results. 
Experimental results show that TCA-Net can significantly improve the performance of 
action proposals and action detection.

Liu and Wang (2020) proposed a progressive boundary refinement network (PBRNet) in 
2020 to improve the accuracy and speed of TAD. Unlike most previous efforts, the entire 
network, including the feature extractor, is trained jointly. A three-step cascade regression 
pipeline is proposed to refine the boundary from coarse to fine for the detection process. 
Specifically, PBRNet consists of three main detection modules: coarse pyramid detection 
(CPD), fine pyramid detection (RPD), and fine-grained detection (FGD). CPD and RPD 
are anchoring-based detection systems in which two symmetrical feature pyramids are used 
to detect different action scales. FGD aims to refine the boundaries of action candidates 
by utilizing frame-level characteristics. In addition, three branches with different types of 

Fig. 37  Structure of the TCA network (Qing et al. 2021)
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frame-level monitoring are used to enrich frame-level characteristics and update the clas-
sification score for each action instance. In particular, some learning strategies (such as 
progressive matching and preliminary anchor discarding) are used to cooperate with pro-
gressive learning. As a result, anchors are passed between adjacent modules for cascading 
regression and fusion of confidence scores from different modules for retrieval. The net-
work has been proven to be effective using the ActivityNet-1.3 and THOMAS-14 datasets.

Boundary-based methods first generate the boundary probability sequence and then 
apply the boundary matching mechanism to generate the candidate proposal. TAG (Xiong 
et al. 2017) uses sparse sampling to generate action scores from video clips directly; BSN 
uses the boundary-sensitive network to determine the local time boundary with high prob-
ability and evaluate its global confidence. However, BSN ignores the global context of 
the video. To solve this problem, BMN uses the boundary matching network to aggre-
gate the features of all proposals and simultaneously evaluate all proposals to capture the 
global context of the video. In spite of this, the methods of BSN and BMN do not attach 
importance to the global information of boundary prediction, which makes the location of 
actions with blurred boundaries inaccurate. DBG (Lin et al. 2020) solves this problem by 
using global information to predict the boundary probability. In addition, BGCN (Chen 
et al. 2021) and BCGCN (Bai et al. 2020) use graphs to model the relationship between 
the proposal’s boundaries and content, where the proposal’s boundaries and content are 
treated as nodes and edges, and their characteristics are updated via graph manipulation. 
CPN (Hsieh et al. 2022) and TCA-Net (Qing et al. 2021) use a context-aware network and 
a time context aggregation network to capture the time context. However, boundary-based 
methods usually ignore the scaling problem and use a fixed convolution-accepting field for 
all action instances. TSA-Net (Gong et al. 2020b) uses multi-extended time convolution to 
solve the timescale problem.

Boundary-based methods provide flexible boundaries, making up for the lack of flexible 
time boundaries for various action instance alignments in the anchored methods. Although 
the boundary context of the proposal considered in a boundary-based approach is sensitive 
to boundary changes, the resulting proposal is less reliable. Neither convolution nor global 
fusion can model time relations effectively. One-dimensional convolution operations (Lin 
et  al. 2018, 2019b, 2020) lack flexibility in encoding long-term time relationships con-
strained by kernel size. The global fusion approach (Gao et al. 2020) ignores the various 
global dependencies of each time location and the implicit concern with local details, such 
as the local details of the boundary. The Table 4 is a summary of boundary-based meth-
ods, in which the feature types used by different network models and the corresponding 
improvements and code websites are given.

5.3  Query‑based methods

The above two kinds of methods have been continuously improved and have proved effec-
tive with excellent performance. However, their limitations are difficult to eliminate. As 
a video becomes longer, the computing burden increases. In addition, it is susceptible to 
manual parameter settings, such as artificially designed anchor designs and confidence 
values. Recently, a new query-based approach has attracted the attention of researchers. It 
benefits from DETR (Carion et al. 2020) in the transformer, using a series of object queries 
instead of anchoring as a candidate object and creating a new view of action detection. 
This method uses only a small number of queries, so the network has a simple pipeline. 
The anchor frame and anchor point are removed based on fixed spatial position and the 
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method relies on a learnable vector for prediction instead. Because of their simplicity and 
flexibility, query-based methods have become a new solution for TAD.

Tan et  al. (2021) argue that long-term time-context modeling is critical for proposal 
generation. Viewing the video as a time series and using the transformer architecture to 
model global one-dimensional dependencies can improve location performance. In their 
paper, Tan et al. propose two key problems, namely the feature full degree (Zhang and Tao 
2012) and time boundary ambiguity (Satkin and Hebert 2010). In 2021, following the idea 
of the transformer, Tan et al. proposed RTD-Net, which is similar to the transformer archi-
tecture. There are three main improvements to DETR. To solve the problem of slow video 
processing, an attentive boundary module is used to replace the encoder in the transformer. 
In order to adapt to the problems of blurred time boundaries and sparse annotation and 
to reduce the single, strict evaluation criteria from the ground-truth, the relatively relaxed 
matching scheme is proposed. Finally, a three-branch detection head is designed for train-
ing and testing. As shown in Fig. 38, the entire model consists of three separate designs. 
The first is the boundary concern module for feature extraction, followed by the trans-
former decoder in the middle for querying and parallel decoding, and on the far right is a 
slack matcher for training label allocation. Many experiments have proven the effectiveness 
of RTD-Net. In addition, due to its simple design, RTD-Net is more efficient than the pre-
vious two design methods, eliminating the need for non-maximum suppression processing.

Although traditional methods have made great progress, problems such as multi-stage 
and manual design lead to the models’ lack of efficiency and flexibility. In 2022, Liu et al. 
(2022a) proposed an end-to-end TAD model based on a transformer, called TadTR. TadTR 
adaptively extracts the time context required for each action prediction and updates the ini-
tial embedding with the extracted context. At its core is the time-variable attention module, 
which dynamically focuses on a sparse set of key clips in a video. In addition, a temporal 
deformable attention module is introduced into the model, which does not require NMS 
and can focus on a sparse set of keyframes adaptively. As shown in Fig.  39, using I3D 
encoded video features as input, after passing through a transformer encoder and decoder, 
features are input into the segment matching module for one-to-one ground-truth alloca-
tion. An action regression head is then used to evaluate the confidence of the predicted 

Fig. 38  Pipeline of RTD-Net (Tan et al. 2021)
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fragment and finally output the predicted result of an action. TadTR can capture context 
information adaptively and is the first model used to study the adaptive context of TAD.

To address the problem of query-based methods being unable to build multi-scale fea-
ture maps, Wu et al. (2021) proposed an approach named SP-TAD in 2021, aiming at using 
sparse proposals and hierarchical features to exchange information so as to generate high-
quality candidate proposals. SP-TAD is an end-to-end framework for feature extraction 
using I3D, which is composed of four main parts: 3D backbone network, time feature pyra-
mid network, action detection header, and action classification header. SP-TAD proposes 
a simple, high-quality time sequence candidate generation framework, which removes the 
anchoring design and boundary design of the manual design by learning a small number of 
proposals. Sparse interaction is used to generate high-resolution features to improve model 
performance and put forward an iterative refinement strategy.

Methods such as DETR encounter problems when applied to TAD. Self-attention in the 
decoder does not fully explore interquery relationships because it is performed intensively 
across all queries. In addition, the DETR method may be affected by insufficient train-
ing in action classification. In order to alleviate these two problems, Shi et al. (2022) pro-
posed two training loss functions in ReAct in 2022. The two training loss functions are 
called action classification enhancement (ACE) loss to promote classification learning. The 
first loss (ACE-enc) is applied to the feature input of the encoder. It aims to reduce the 
intra-class variance and inter-class similarity of action instances. This loss improves the 
discriminability of video features related to the performance category, thus benefiting the 
classification. Meanwhile, the second loss (ACE-dec) is proposed as a classification loss in 
the decoder, which considers both predictions and ground truth segments for action clas-
sification. It adds training samples and generates stable learning signals for the classifier.

The emergence of query-based methods introduced the encoder-decoder framework of 
the transformer into temporal action detection. The detected action fragments were mod-
eled as a fixed number of learnable query vectors. In contrast to the above two methods, 
their performance depends largely on elaborate anchor placement or complex boundary-
matching mechanisms that are developed using prior human knowledge and require spe-
cific adjustments. In contrast, query-based approaches use only a small set of queries, have 
simple pipelines, and are free of manual design. The Table 5 is a summary of query-based 
methods, which presents the feature types used by different network models and the corre-
sponding improvements and code websites.

Fig. 39  The architecture of TadTR (Liu et al. 2022a)
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6  TAD according to the learning method

Data annotation in video action localization is mainly performed manually by humans, 
which leads to some difficulties. Due to the high time cost, the difficulty in assigning pre-
cise boundaries to each action, and the inevitable human subjectivity, in order to reduce the 
cost, time, and manpower, some researchers have proposed weak supervision and unsuper-
vised learning. This section introduces learning methods, summarizes the main fully super-
vised learning methods at present, and focuses on weakly supervised learning methods. 
Below are descriptions of the three types of learning methods (Fig. 40).

6.1  Full supervision

Fully supervised learning refers to obtaining the optimal model through the existing train-
ing samples and then mapping the input to the corresponding output label for judgment. 
Research includes the prediction problem, where the input and output variables are both 
continuous, and the classification problem of the output finite discrete variables. In video 
understanding, full supervision uses video-level category tags and time-stamped informa-
tion tags of action clips. There are many methods, which can be divided into the three 
methods described above in terms of design ideas: anchor-based (another derived branch 
can be called anchor-free), boundary-based, and query-based. The idea of an anchor core-
based method is derived from target detection. Early anchor core-based methods mainly 
use a fixed sliding window to generate candidates. The most typical sliding window method 
is the SCNN model proposed by Shou et al. (2016), which adopts multiple frame-rate win-
dows to intercept video clips and uses a three-stage SCNN for processing. However, due 
to excessive overlap, the SCNN model has some problems, such as redundancy and poor 

Fig. 40  Three types of supervised learning and notes (Baraka and Mohd Noor 2022)
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calculation accuracy. In order to solve the accuracy problem, Gao et al. (2017a) proposed 
the TURN model, which uses the idea of boundary regression in Faster-RCNN (Ren et al. 
2015) for reference. By introducing the coordinate regression offset, the boundary error 
caused by the fixed candidate box can be modified to a certain extent, but the problem of 
boundary imprecision is not solved. In addition, Long et  al. (2019) proposed the GTAN 
model in 2019, which uses a Gaussian kernel to simulate the time window and optimize 
each generated action proposal. Adding Gaussian kernels can represent action proposals of 
different sizes, and the corresponding Gaussian curves can show the context relationships 
generated into action proposals.

Another alternative to the generation of an anchor-based candidate proposal is the 
generation of a boundary candidate proposal based on action probability distribution by 
dichotomizing the action and background of the video clip or single frame, and obtaining 
the probability curve of the video area as the action. Xiong et al. (2017) proposed the TAG 
algorithm in 2017. They designed a learning-based bottom-up scheme to generate candi-
date proposals that are more sensitive to time boundaries than the sliding windows gener-
ated by conventional schemes. Zhao et  al. (2017) proposed the SSN algorithm with the 
same design idea as Xiong et al., and both of them adopted the classic "proposal + classifi-
cation" paradigm. A structured time pyramid is introduced to generate a global representa-
tion of the entire scheme, and a decomposed discriminant model is added to combine the 
classification of action categories and determine the completeness of the proposal. These 
proposals work together to output only the complete action instance. In order to improve 
the quality of the generation proposal, Lin et al. proposed BSN (Lin et al. 2018) in 2018, 
which adopts a local-to-global approach, locally combines high-probability boundaries 
into proposals, and uses proposal-level features to retrieve candidate proposals globally. 
However, the steps required to generate the proposal were tedious, the network model was 
complex, and the constructed proposal characteristics were too simple to capture the con-
text information. Therefore, an improved BMN (Lin et  al. 2019b) model based on BSN 
was proposed in 2019. BMN uses a boundary-matching (BM) mechanism to evaluate the 
reliability of the dense distribution proposal. Similarly, Lin et al. (2020) proposed a dense 
boundary generator (DBG) to use global suggestion features to predict boundary graphs 
and explore action perception features for action integrity analysis.

In recent years, new query-based approaches have emerged, which are worthy of atten-
tion as the number of such methods is currently very small. The most representative 
method is the RTD-Net proposed by Tan et  al. (2021) in 2021, which introduces three 
important improvements to DETR; it solves the essential visual difference between time 
and space. Liu et  al. (2022a) proposed TadTR in 2022. TadTR is an end-to-end frame-
work based on the transformer, which maps a set of learned embeddings to parallel action 
examples. Although the TAD algorithm is still in continuous development, its accuracy 
rate has reached 57.1% with an IoU of 0.5; compared with image processing, there is still a 
long way to go. The Table 6 is a summary of fully supervised method in the THUMOS14 
dataset.

6.2  Weak supervision

The TAD of the full supervision method requires action labels and time boundary anno-
tations for all actions. Because of the high cost of data marking in TAD and people’s 
subjectivity when identifying the exact start time and end time of the action, errors can 
easily occur in the annotation. Therefore, fully supervised learning is labor-intensive and 
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subjective. In order to reduce the model’s need for detailed annotation of datasets, research-
ers began to explore weakly supervised learning methods. Weakly supervised learning can 
effectively deal with the problems of missing or inaccurate labels in machine learning and 
can match the TAD task.

In the process of training, the weak supervision model only requires the video-level 
label and autonomously learns the action boundary in the video. The most common way to 
do this is to use the attention mechanism to focus on distinguishing segments and to con-
vert prominent episode-level features into video-level features. Discriminative fragments 
are obtained through the two methods discussed in this section: multi-instance learning and 
direct localization. In addition, two common challenges in weakly supervised learning are 
discussed: complete action modeling and action-context separation.

6.2.1  Multi‑instance learning

Multi-instance learning (MIL) is a form of weakly supervised learning. The training 
instances are arranged in groups, called bags, and provide labels for the entire bag. Super-
vision is provided only for the complete set of products, and no separate labels are provided 
for the instances contained in the bag. This formulation of the problem has attracted a lot 

Table 6  Performance of each fully supervised method in the THUMOS14 dataset

Type Year Method Feature Map@IoU(%)

0.3 0.4 0.5 0.6 0.7

Anchor-based 2016 SCNN Shou et al. (2016) IDT 36.3 28.7 19.0 – –
2016 PSDFYuan et al. (2016) IDT 33.6 26.1 18.8 – –
2017 CBR-TS Gao et al. (2017b) TS 50.1 41.3 31.0 19.1 9.9
2017 TURN Gao et al. (2017a) C3D 44.1 34.9 25.6 – –
2017 R-C3D Xu et al. (2017) C3D 44.8 35.6 28.9 – –
2018 TAL-Net Chao et al. (2018) I3D 53.2 48.5 42.8 33.8 20.8
2021 AFSD Lin et al. 2021) I3D 67.3 62.4 55.5 43.7 31.1
2021 SRF-Net Ning et al. (2021) C3D 56.5 50.7 44.8 33.0 20.9
2022 RCL Wang et al. (2022a) I3D 70.1 62.3 52.9 42.7 30.7

Boundary-based 2017 TAG Xiong et al. (2017) TS 48.7 39.8 28.2 – –
2017 SSN Zhao et al. (2017) TS 51.0 41.0 29.8 – –
2018 BSN Lin et al. (2018) TS 53.5 45.0 36.9 28.4 20.0
2019 TSA-Net Gong et al. (2020b) P3D 61.2 55.9 46.9 36.1 25.2
2019 BMN Lin et al. (2019b) TS 56.0 47.4 38.8 29.7 20.5
2019 DBG Lin et al. (2020) TS 57.8 49.4 42.8 33.8 21.7
2020 PBRNet Liu and Wang (2020) TS 58.5 54.6 51.3 41.4 29.5
2021 BGCN Chen et al. (2021) TS 60.8 53.3 44.8 34.1 23.3
2021 TCA-Net Qing et al. (2021) TS 60.6 53.2 44.6 36.8 26.7
2022 CPN Hsieh et al. (2022) TS 68.2 62.1 54.1 41.5 28.0

Query-based 2021 SP-TAD Wu et al. (2021) I3D 69.2 63.3 55.9 45.7 33.4
2021 RTD-Net Tan et al. (2021) I3D 58.5 53.1 45.1 36.4 25.0
2022 TadTR Liu et al. (2022a) I3D 62.4 57.4 49.2 37.8 26.3
2022 ReAct Shi et al. (2022) I3D 69.2 65.0 57.1 47.8 36.5
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of attention in the research community, especially in recent years, when the amount of data 
needed to solve big problems has increased exponentially. Large amounts of data require 
increasing amounts of tagging work.

In TAD, each complete video is treated as a bag of action instances. A single confidence 
score for each video is obtained by calculating the loss per bag. The confidence score for 
each category is calculated as the average of the first k activation scores for that category in 
the time dimension. The video-level confidence score for class c is defined as sc . The prob-
ability distribution pc is calculated by applying the softmax function to the sc fraction in 
the class dimension. MIL loss is the cross-entropy loss applied to all videos and all action 
classes. For video is i and action type is c, pc

i
 is the class probability fraction and Xc

i
 is the 

binary label of the normalized ground-truth. The numbers of action categories and videos 
are represented by nc and n. Formula 2 gives the loss function for multi-instance learning.

The UntrimmedNet proposed by Wang et al. (2017) in 2017 is a weak supervision network 
that uses a multi-instance learning framework for the first time and does not depend on the 
selection of a video feature extraction network. It is also the first time an action recognition 
model can be learned from untrimmed video without needing time annotations for action 
instances. UntrimmedNet coupling classification and selection modules, implemented 
through feedforward networks, comprise an end-to-end model with even better perfor-
mance than the fully supervised model. The classification module uses linear mapping to a 
multidimensional score vector, which is then passed using softmax. The selection module 
uses two selection mechanisms: hard selection based on multi-example learning and soft 
selection based on attention modeling. In hard selection, inspired by multi-instance learn-
ing, a subset of k clip proposals (instances) is identified for each action class, then the first 
k instances with the highest classification scores are selected, and finally the average is 
taken among these selected instances. In soft selection, for candidate proposals that do not 
need to be action-related, attention can be used to highlight different candidate proposals to 
distinguish (suppress) candidates that are background proposals. As shown in Fig. 41, first, 
sampling is performed from unclipped videos, and then the clipping scheme is fed into the 

(3)LMIL =
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n
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−yC
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i
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Fig. 41  Pipeline of learning from untrimmed videos (Wang et al. 2017)
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pre-trained network for feature extraction. Secondly, UntrimmedNet uses a classification 
module to independently perform action recognition for each clip suggestion and proposes 
a selection module to detect or sort important clip suggestions. Finally, a video-level pre-
diction is obtained by combining the outputs of the classification module and the selection 
module.

Lee et  al. (2020b) proposed a background suppression network based on BaSNet in 
2019 to solve the problem of background classification in multi-instance learning, although 
the background does not belong to any class. However, when the background is consid-
ered a category of action, the loss can be reduced, even though the background does not 
have action characteristics. Further, inconsistencies between action and background can 
lead to errors and performance degradation, and it is clear that multi-instance learning can-
not achieve this process. Through the background suppression network, the background 
is grouped into an auxiliary category and contains an asymmetric two-branch weight-
sharing architecture with filtering modules and comparison targets. The two branches are 
the basic branch and the inhibitory branch (Narkhede et al. 2022). The suppression branch 
begins with the filter module, which is expected to attenuate the input features from the 
background frame. Unlike the basic branch, the goal of the suppression branch is to mini-
mize the background category score of all videos while optimizing the original goal of the 
action category. By sharing their weights, the two branches take a feature map and generate 
CAS to predict video-level scores. Because the two branches share weights, they cannot 
optimize the two comparison targets at the same time with the same input. To address this 
limitation, the filter module learns how to suppress activation from the background. As 
shown in Fig. 42, (a) is the feature extractor, which inputs RGB and optical flow features 
into two branches, namely (b) the basic branch and (c) the suppressed branch. The two 
branches share weights and generate a frame class activation sequence (CAS) to classify 
the video as positive samples of the action and background classes. Experimental results 
show that BasNet is effective for background suppression, and its performance is improved 
in comparison to other methods.

UntrimmedNet (Wang et  al. 2017) suggests learning a selection module for detecting 
important fragments; BasNet (Lee et  al. 2020b) uses a background suppression network 
that regards the background as an action category; W-TALC (Paul et al. 2018) introduces 

Fig. 42  Overview of the BaSNet (Lee et al. 2020b)
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co-active similarity loss and optimizes weakly supervised time action detection together 
with cross-entropy loss. However, the relationship between video interference and move-
ment has not yet attracted attention. STAR, proposed by Xu et al. (2019) in 2018, is another 
end-to-end framework inspired by multi-instance tags. The framework is a generative rep-
resentation of actions called instance patterns aggregated by attentional mechanisms, and 
learns temporal relationships between them through a recursive neural network (Shi et al. 
2015). Actions can be predicted and localized in time by designing a scoring term fused 
with attention weights (ST-GradCAM).

In 2021, Huang et al. (2021) proposed an FAC-Net framework based on the I3D trunk. 
Three branches are attached to the framework: the class foreground classification branch, 
the class-independent attention branch, and the multi-instance learning branch. As shown 
in Fig. 43, the video is processed as RGB and the optical stream is used as input. The first 
branch, CA, was designed to model the relationship between action and foreground. Its 
effect is similar to that of noise contrast estimation (NCE) (Oord et al. 2018; Gutmann and 
Hyvärinen 2010), which maximizes the lower limit of mutual information (MI) between 
foreground features and real ground action features, thus achieving better foreground-back-
ground separation. The second branch, CW, introduces an independent attention mecha-
nism that models the reverse foreground-to-action relationship to complement the first 
branch and establish foreground action consistency. In addition, it is able to learn seman-
tically meaningful foreground features. The third branch is an MIL-like pipeline for fur-
ther improving video classification and facilitating classroom attentional learning in the 
CW branch first. In addition, the class-independent attention branch and the multi-instance 
learning branch are used to regularize the consistency of the front action, which helps the 
model to learn meaningful prospect classifiers. In each branch, a hybrid attention mecha-
nism is introduced. The mechanism calculates multiple attention scores for each segment 
to focus on distinguishing and less distinguishing segments, thus capturing the full action 
boundary.

General MIL learning is based on two characteristic modes, namely RGB frames and 
optical flow, which are fused in two ways. The early fusion approach connects RGB and 
optical flow features before feeding them into the network, while the late fusion approach 
calculates the weighted sum of their respective outputs before generating recommendations 
for action. Although these developments have had some success, there are two unavoid-
able challenges to weakly supervised learning. First of all, it is difficult to exclude the pos-
sibility of a false-positive action proposal. Since there is no frame-level label, it is easy to 

Fig. 43  Overview of the FAC-Net (Huang et al. 2021)
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misjudge non-action instance content in the video as an action instance only by the video-
level label corresponding to the action instance. Therefore, it is necessary to emphasize the 
supervision of fineness. Another problem is in the formulation of action proposals, which 
are generated by thresholding the activation sequence with a fixed threshold that is empiri-
cally preset. This has a significant impact on the quality of recommendations for action: a 
high threshold may lead to incomplete recommendations for action, while a low threshold 
may lead to false positives. To solve the above two problems, Zhai et al. (2020) proposed a 
two-stream consensus network (TSCN) in 2020. The authors designed an iterative refine-
ment training scheme, where a frame-level pseudo-ground truth is generated from the late 
fused attention sequence and used as more accurate frame-level supervision to iteratively 
update both streaming models. In order to improve the quality of the generated proposal, an 
attention-normalized loss function is used. This improves the quality of the proposals gen-
erated by the threshold method by forcing the attention mechanism to make only limited 
choices as in binary methods.

6.2.2  Direct localization

Some methods generate action proposals by directly processing attention scores. As men-
tioned above, UntrimmedNet (Wang et al. 2017) sets a threshold to locate actions. Thresh-
olds handle time segments independently and are not robust to noise in the class activa-
tion diagram. Instead of changing the algorithm (Song et al. 2014) and relying on external 
data (Singh et al. 2016), the hide-and-seek method proposed by Kumar Singh and Jae Lee 
(2017) in 2017 to directly changes the input image. By randomly hiding the image and 
forcing the network to find other relevant parts, it can be easily moved to different neural 
networks and tasks. In the TAD task, the hidden picture part is changed to hide the random 
frame sequence, thus forcing the network to learn the frames associated with the action. 
This is not appropriate for TAD tasks. Figure 44 shows an example of the hide-and-seek 
algorithm randomly hiding an image.

In 2018, Shou et  al. (2018) proposed AutoLoc and conducted direct boundary pre-
diction by predicting each action instance’s central position and duration and obtaining 
the outer boundary by inflating the inner boundary. To solve the problem of training the 
boundary prediction model without real ground boundary annotation, they designed a 

Fig. 44  Main idea of hide and 
seek (Kumar Singh and Jae Lee 
2017)
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novel outer-inner-contrastive (OIC) loss. OIC loss encourages high activation in the inner 
region. It punishes high activation in the outer region, allowing for the ideal positioning of 
significant intervals on the CAS, which can be well aligned with the ground truth segment.

In 2018, Nguyen et al. (2018) proposed a sparse temporal pooling network (STPN) that 
measures the video-level classification error and sparsity of selected segments by using 
the loss function to learn useful video clips from the sparse subset of gesture recognition 
for each video. STPN uses the time class activation graph to produce a one-dimensional 
time proposal of the target action. As shown in Fig. 45, the pre-training network is first 
used to extract the feature representation for a group of uniformly sampled video clips. The 
attention module is then used to calculate the class-independent attention weight for each 
segment, which is used to generate a video-level representation through a weighted time 
average pool. Finally, the representation of the classification module is given, which can be 
trained using the planned cross-entropy loss with a video-level label.

The above WS-TAL method (Wang et al. 2017; Kumar Singh and Jae Lee 2017; Nguyen 
et al. 2018) locates actions by direct thresholding of the classification scores of each seg-
ment. Therefore, these fragments are treated independently, and their temporal relation-
ships are ignored. In fact, true action boundaries often depend heavily on temporal con-
trasts between these segments, such as temporal discontinuities and sudden changes. 
CleanNet, proposed by Liu et  al. (2019c) in 2019, calculates one action score and two 
boundary scores for each action proposal, respectively representing the likelihood that 
an action proposal contains a particular action and the agreement that an action proposal 
begins and ends at the edge of a particular action. By combining action, opening, and clos-
ing scores, the new proposed action evaluator provides a comprehensive "comparison 
score" that measures both the content and the completeness of the proposed action. The 

Fig. 45  Overview of the STPN (Nguyen et al. 2018)
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framework is trained by maximizing the average contrast score of proposals and penalizing 
scattered short proposals, thereby improving the integrity and continuity of proposals.

6.2.3  Complete action modelling

A complete action sequence contains the same sub-action time series. For example, the 
long jump consists of three sub-sequences: run-up, take-off, and landing. In full supervi-
sion, it is easy to learn the complete action from the comments. However, in weak super-
vision, due to the lack of time boundary annotation, the integrity modeling of the action 
needs additional research.

The CMCS proposed by Liu et  al. (2019a) in 2019 uses a multi-branch network and 
diversity loss to ensure dissimilarity between the class activation sequences output by dif-
ferent branches, thus training each branch to locate different parts of the action. Aggregat-
ing activations can retrieve the complete action from multiple branches. Class activations 
are then concentrated over time, resulting in a video-level distribution of categories.

HAM-Net was proposed by Islam et  al. (2021) in 2021, wherein the mixed attention 
mechanism was adopted to solve the problem that when an action contains multiple sub-
actions, the multi-instance learning framework can only detect specific sub-actions. As 
shown in Fig.  46, the entire framework contains a classification branch for predicting 
class activation scores for action instances (including background instances). A branch of 
attention is used to predict the score of a video clip. The mixed attention mechanism feeds 
RGB and optical flow features to the classification and attention branches, respectively. It 
is adjusted by three episode-level attention scores, namely the semi-soft attention score, 
soft attention score, and hard attention score, and is temporarily aggregated to generate 
video-level class scores. HAM-Net trains the network with four types of attention-directed 
losses: base classification loss (BCL), soft attention loss (SAL), semi-soft attention loss 
(SSAL), and hard attention loss (HAL). In an innovative move, using hard attention to cap-
ture complete examples of action reduces the more recognizable parts of the video and 
focuses on the less recognizable parts. This is done by calculating video clips’ semi-soft 
and hard attention scores.

Fig. 46  Overview of the HAM-Net (Islam et al. 2021)
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Huang et al. (2020) proposed a clustering loss function based on the co-occurrence 
GCN of RPN proposed in 2020. Clustering loss can push the features of an action to 
its corresponding prototype, thus generating clustering features, which can help detect 
complete action instances. Since different action instances may exhibit different speeds 
of action, especially slow action, slow action is defined as an action that is slower than 
normal. This is ignored in many papers, in which a common channel is used to extract 
features from video frames sampled at a fixed rate. As a result, the WTAD framework 
following this pipeline is difficult to locate slow action. Therefore, Sun et  al. (2022a) 
proposed the slow-motion enhanced network (SMEN) in 2022, which exploits the 
related functions of slow motion through two modules. A mining module for generat-
ing masks is used to filter out the masks of slow-motion-related features from the entire 
video feature. A positioning module is used to predict the time boundary of an action 
using overall video features and intentional slow-motion features. As shown in Fig. 47, 
the mining module performs sampling operations on the original features and uses the 
CAS generation backbone to generate CASsub, which is then used to generate the mask 
to generate the enhanced slow-motion feature Xslow. The positioning module consists 
of two branches, as shown in the figure, one of which (i.e., the branch centered on nor-
mal motion) takes the raw video feature as input, while the other (i.e., the slow-motion 
branch) takes the enhanced slow-motion feature Xslow as input. The CAS and attention 
weights generated by these two branches are combined via the fusion module to output 
the final prediction.

Existing WSTAL methods usually adopt early fusion or late fusion. This simple cas-
cading or fusion method is indirect and is not allowed, leading to many incorrect detec-
tion results and a failure to make full use of the action information. Therefore, Cao 
et al. (2022) proposed a deep motion prior network (DMP-Net) in 2022 to make full use 
of optical flow modes by learning an effective context-dependent action representation. 
This movement indicates global awareness, focusing on movements of interest regard-
less of background and irrelevant movements. XE losses are designed to measure the 
performance of classification models and are inherently incompatible with positioning 
tasks. Therefore, a plug-and-play loss function is proposed to replace the traditional XE 
loss function under weak supervision.

Fig. 47  Overview of the SMEN (Sun et al. 2022a)
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6.2.4  Action‑context separation

Frames adjacent to the beginning and end of an action cannot be considered part of the 
action. Action-context confusion can arise due to the absence of frame-level labels; context 
frames near an action fragment are often identified as action frames themselves because 
they are closely related to a particular class. To solve this problem, Shi et al. (2020) pro-
posed an attention-generating mechanism in 2020 to focus on framing representations with 
framing attention as the core. In addition, by establishing a graphical model, it was proved 
that the video action location problem is related to the traditional classification and rep-
resentation model. The proposed model consists of two parts: discriminative and genera-
tive attention modeling (DGAM). On one hand, discriminative attention modeling trains 
a classification model on temporally pooled features weighted by the frame attention. On 
the other hand, a generative model, i.e., a variational conditional auto-encoder (VAE), is 
learned to model the class-agnostic frame-wise distribution of representation conditioned 
on attention values. By maximizing the likelihood of the representation, the frame-wise 
attention is optimized accordingly, leading to good separation of action and context frames. 
As shown in Fig. 48, the model is divided into two alternating stages, (a) and (b), for train-
ing. In phase (a), generative models (CVAE) are frozen. The attention module and classi-
fication module are updated with classification-based discriminant loss Ld, representation-
based reconstruction loss Lre, and regularized loss Lguide. In phase (b), the attention and 
classification modules are frozen. CVAE is trained to use losses to reconstruct representa-
tions of frames with different � values.

Nguyen et al. (2018) proposed a new weakly supervised learning method in 2018. The 
model selects a sparse subset of useful video clips so that loss functions can be used for 
action recognition. The loss function measures video-level classification errors and the 
sparsity of the selected footage. The discriminant frame describing the action instance is 
highlighted using the attention weight, and the background frame is deleted. Due to the 
lack of a frame-level framework, the weakly supervised TAD approach is not effective in 
clearly separating action from context. Zhai et al. (2022) improved on the basis of TSCN 
and proposed an adaptive two-stream consensus network (A-TSCN) in 2022. The A-TSCN 
proposes an adaptive normalized loss of attention to better distinguish between action and 
background. Adaptive attention normalization loss automatically distinguishes between 

Fig. 48  Overview of the Shi et al (2020)



 K. Hu et al.

1 3

26 Page 64 of 77

action clips and background clips based on video attention distribution. By maximizing 
the difference between the attention values of the action fragment and the background frag-
ment, the adaptive attention normalization loss facilitates the precise localization of the 
action boundary.

However, the current TAD approach based on weak supervision does not take full 
advantage of the short-term consistency between successive frames and the long-term con-
tinuity within the action, resulting in reduced accuracy in detecting action boundaries in 
the untrimmed video. Li et al. (2022a) introduced a superframe-based temporal proposal 
(SFTP) in 2022. Superframes are used to replace successive frames that change slowly 
at the same stage because they are consistent and their features are redundant. Having a 
superframe as the basic unit of video rather than a single frame avoids the need to catego-
rize consistent frames into different categories. Moreover, because the salient parts of the 
segment are easier to identify, the recognition results tend to be trapped in the recognizable 
action segment rather than the entire instance. Li et al. also devised a scaling normaliza-
tion strategy that isolates the effects of different scaling proposals while detecting various 
actions in a video. As shown in Fig. 49, the obtained superframe is input into the SFTP 
module; the green line is the classification branch in the prediction network, while the 
blue line is the detection branch. Finally, the SFTP scores of the two branches are obtained 
through global normalization for prediction.

The Table 7 is a summary of weakly supervised method in the THUMOS14 dataset.

6.3  Unsupervised

Unsupervised pre-training has attracted considerable attention in recent years for its poten-
tial to mine large amounts of unlabeled data. Contrast learning (Oord et al. 2018; Chen et al. 
2020a, b; Grill et al. 2020; He et al. 2020) focuses on one of the most popular directions in 

Fig. 49  Overview of the SFTP (Li et al. 2022a)
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instance differentiation, drawing closer to instance-level positive pairs in embedded spaces 
while rejecting negative pairs. In order to bridge the gap between upstream pre-training 
and downstream tasks, recent contrastive learning approaches have focused on designing 
excuse tasks specifically for various downstream image tasks, such as object detection 
(Wang et al. 2021b; Xie et al. 2021; Yang et al. 2021), semantic segmentation (Wang et al. 
2021b; Van Gansbeke et al. 2021), etc. In contrast, progress in unsupervised pre-training 
in respect of video has lagged, and most existing methods (Alwassel et al. 2020; Han et al. 
2020; Jenni and Jin 2021; Pan et  al. 2021; Qian et  al. 2021; Wang et  al. 2020) are still 
designed and evaluated for classified tasks.

Since marking instance actions is tedious and error-prone, precisely demarcating the 
time boundary of an action instance is time-consuming and subjective for different annota-
tors. The lack of instance-level annotations has inspired recent research on weakly super-
vised TAD methods. Specifically, there are only rough video-level action categories for 
each training video rather than labeling them by frame. This represents a new and unex-
plored area by which to remove labels. The task of temporal action detection in a com-
pletely unsupervised environment is called action co-localization (ACL). Only the total 
number of unique actions occurring in the video dataset is known. Very few studies have 
attempted this method so far.

Gong et al. (. 2020a) made the first attempt to explore this problem in an unsupervised 
environment. In order to solve ACL, they proposed a two-step "clustering + localiza-
tion" iterative process. The clustering step provides the noise pseudo-label for the location 
step, and the location step provides the time cooperative attention model, thus improving 
the clustering performance. Using this two-step process, weakly supervised TAD can be 
viewed as a direct extension of the ACL model. Technically, the authors’ contribution is 
twofold: (1) inspired by the classical image joint segmentation technique (Li et al. 2018a; 

Table 7  Performance of each weakly supervised method in the THUMOS14 dataset

Type Year Method Feature Map@IoU(%)

0.3 0.4 0.5 0.6 0.7

Weekly 2017 Hide and SeekKumar Singh and 
Jae Lee (2017)

– 19.5 12.7 6.8 – –

2017 UntrimmedNetWang et al. (2017) – 28.2 21.1 13.7 – –
2018 W-TALC Paul et al. (2018) I3D 40.1 31.1 22.8 – 7.6
2018 AutoLoc Shou et al. (2018) UNT 35.8 29.0 21.2 13.4 5.8
2018 STPN Nguyen et al. (2018) I3D 35.5 25.8 16.9 9.9 4.3
2019 3C-Net Narayan et al. (2019) I3D 40.9 32.3 24.6 - 7.7
2019 CMCS Liu et al. (2019a) I3D 41.2 32.1 23.1 15.0 7.0
2019 MAAN Yuan et al. (2019) I3D 41.1 30.6 20.3 12.0 6.9
2019 CleanNet Liu et al. 2019c) UNT 37.0 30.9 23.9 13.9 7.1
2020 DGAM Shi et al. (2020) I3D 46.8 37.5 26.8 17.6 9.0
2020 TSCN Zhai et al. (2020) I3D 47.8 37.7 28.7 19.4 10.2
2021 HAM-Net Islam et al. (2021) I3D 50.3 41.1 31.0 20.7 11.1
2021 FAC-Net Huang et al. (2021) I3D 52.6 44.3 33.4 22.5 12.7
2022 SFTP Li et al. (2022a) UNT 47.1 41.7 32.9 22.3 12.5
2022 A-TSCN Zhai et al. (2022) I3D 52.1 42.5 33.6 23.4 12.7
2022 SMEN Sun et al. (2022a) I3D 60.1 49.4 36.9 23.6 12.9
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Rother et al. 2006), the authors believe that videos of the same action (approximated by the 
action tag) share a common class-specific collaborative attention model. Temporal collabo-
rative attention models, either class-specific or class-agnostic, learn from video-level tags 
or pseudo-tags in an iteratively enhanced manner; (2) new losses are specifically designed 
for ACL, including motion background separation losses and cluster-based triplet losses. 
Comprehensive evaluations were conducted using 20-action THUMOS14 and 100-action 
ActivityNet−1.2. The ACL model reached 30.1% (weakly supervised) and 25.0% (unsuper-
vised) for THUMOS14 with an mAP of 0.5.

In addition to directly trying to solve TAD tasks, Zhang et al. (2022) first tried to con-
duct unsupervised pre-training for TAD tasks. According to their method (Qian et  al. 
2021), the idea of image contrast learning was applied to the field of video. The authors 
introduced a time-isovariable contrast-learning paradigm by designing a new unsupervised 
excuse task, pseudo action localization (PAL). Specifically, the training set was first con-
structed by cheaply transforming the existing large-scale TAC dataset to simulate TAD 
custom data with time boundaries. Two temporal regions with random time lengths and 
proportions were then randomly cropped from one video as pseudo actions. Each region 
included multiple contiguous segments. They were then pasted to other randomly selected 
background videos at different time locations. The model can align the pseudo-action 
features of two synthesised videos with preset time transformations (paste position, clip 
length, sampling ratio).

7  Conclusion

In this paper, we summarized the literature in respect of temporal action detection pub-
lished in recent years. Firstly, the background and implementation steps of the video action 
positioning task were introduced, and then representative and advanced system models 
introduced in recent years were described according to the working steps. The conclusions 
are as follows: 

(1) All tasks in the field of video understanding first require video feature extraction. In this 
paper, we divided video feature extraction methods into traditional and deep learning 
methods and introduced three mainstream deep learning methods;

(2) The second part of the method comprised the core content of this paper: the generation 
of temporal action proposals. This is used to generate the candidate interval of action 
to capture the action in the video. We introduced and compared candidate proposal 
generation for common datasets, including the duration, action type, and the number 
of actions. Then, evaluation criteria for model algorithms were briefly introduced. 
Finally, classification and introduction were performed according to anchor-based, 
boundary-based, and query-based methods;

(3) In terms of learning methods, deep learning can be divided into full supervision, weak 
supervision, and unsupervised learning. We focused on the classification and summary 
of weak supervision and provided a comprehensive and detailed introduction to this 
category.

The goal of video action temporal detection is to detect the action interval and action cat-
egory in untrimmed video with the highest possible accuracy. The main framework of 
this article was developed according to the steps of task implementation. According to the 
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implementation method, the system model was divided into three categories: anchor-based, 
boundary-based, and query-based. The learning style can be divided into full supervision, 
weak supervision, and unsupervised learning methods. In this paper, we summarized the 
performance analyses and development trends; this paper can help scholars to fully under-
stand the temporal action detection task.

8  Prospect

Temporal action detection technology has high application value, and the future develop-
ment prospects are very broad. Through this review, scholars can further understand and 
recognize the current development status and trends in this direction. There are still many 
complicated problems to be solved in the research process. For example, most classifiers 
have multiple kinds or types and many tunable parameters. The accuracy of most classifiers 
reported in the literature is not based on extensive analysis of their parameter adjustments. 
In a paper, one classifier may be misleadingly reported to be less accurate than another, but 
if its tuning parameters are explored, the classifier’s performance may yield better results. 
In addition, whether the network model is lightweight and questions of quality need to be 
further explored by researchers. The outlook for the future is as follows: 

(1) The production of video datasets should be more biased towards untrimmed videos. 
On the one hand, this would increase the complexity and authenticity of the dataset; 
on the other hand, untrimmed video datasets can promote further development of the 
TAD algorithm;

(2) In terms of model design, more attention should be paid to the weak supervision 
method in the future to reduce the workload of calibration objects in datasets and 
improve work efficiency;

(3) The accuracy of most network models has been roughly similar, and the improve-
ment space is small. Despite the high accuracy of models, their multi-module and 
multi-feature extraction fusion design make them complex, difficult to use, and time-
consuming. In order for future models to be more realistic, they should be designed to 
be more lightweight.

To enhance the relevance of our future outlook, it is essential to reference past related 
work. Prior research has demonstrated that temporal action detection technology has 
evolved and made significant progress. For instance, Liu et al. (2022a) proposed an adap-
tive context model to improve temporal action detection in their research. Furthermore, 
Wu et al. (2021) also explored the use of Query to introduce Transformer into temporal 
action detection. These past endeavors offer valuable insights and can guide the trajectory 
of future developments in the field.

To enhance the relevance of our future outlook, it is essential to reference past 
related work. Prior research has demonstrated that temporal action detection technology 
has evolved and made significant progress. For instance,the introduction of the anchor-
based method (Shou et al. 2016; Gao et al. 2017a, b; Xu et al. 2017; Lin et al. 2021)
from R-CNN has initially solved the problem of action instance segmentation in tempo-
ral action detection; and the boundary-based method (Lin et al. 2018; Hsieh et al. 2022; 
Lin et al. 2019b; Gong et al. 2020b) provides a more flexible action boundary definition 
for the algorithm framework, enriching the temporal action detection technology. In this 
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regard, Liu et al. (2022a) proposed a method combining adaptive context modeling to 
further improve the performance of temporal action detection tasks. At the same time, 
(Wu et al. 2021) explored how to combine query-based methods with Transformers, fur-
ther promoting the development of temporal action detection research.

In addition, combining the TAD field with large language models is an interesting 
and potential research direction. Large-scale language models, such as GPT (Genera-
tive Pre-trained Transformer) and Ernie Bot, have achieved great success in the field 
of natural language processing. These models possess formidable language genera-
tion capabilities and can be employed for various natural language processing tasks, 
including machine translation, text summarization, and question-answering systems. 
However, training large language models poses considerable challenges, as it neces-
sitates an abundance of text data and extremely powerful computational resources. 
This makes it difficult for individual users and researchers to train such models from 
scratch. Consequently, the industry typically adopts the practice of fine-tuning pre-
trained large models, which has yielded impressive results in numerous practical 
application scenarios.

Merging large language models with TAD could result in novel advancements and 
breakthroughs. TAD can capitalize on the language understanding competencies of large 
language models to gain a deeper comprehension and interpretation of action content in 
videos. Additionally, large language models can be employed to generate descriptive 
action labels or subtitles, thereby enriching video understanding and applications. The 
TAD area can be meticulously optimized in the following ways: 

(1) Action description generation: Equipped with powerful natural language processing 
capabilities, large language models can create highly accurate, natural, and expressive 
action descriptions. These descriptions convey the actions in videos with greater detail 
and precision, enhancing understanding and interpretation of the content.

(2) Contextual understanding and inference: Large language models can perform contex-
tual reasoning and judgment on actions in long videos. By modeling continuous frames 
or time series, and leveraging the comprehension and reasoning capabilities of the 
language model, they capture the temporal relationships of actions more effectively.

(3) Action understanding and interpretation: Large language models can provide the ability 
to interpret and understand detected actions. By analyzing semantic relationships and 
knowledge bases, combined with action information in videos, more interpretable and 
understandable descriptions can be generated.

In summary, temporal action detection technology holds great potential for a wide range 
of future applications. Despite this, the field still confronts numerous complex chal-
lenges that need to be addressed, including classifier parameter tuning and the develop-
ment of lightweight network models. Future advancements can concentrate on creating 
untrimmed video datasets, implementing weak supervision methods to enhance work 
efficiency, designing more lightweight models, and fostering the integration of TAD 
with large language models. Upcoming researchers can build upon past and present 
accomplishments, exploring innovative avenues to propel the field forward.
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