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Abstract
Despite recent advancements in super-resolution neural network optimization, a fundamen-
tal challenge remains unresolved: as the number of parameters is reduced, the network’s 
performance significantly deteriorates. This paper presents a novel framework called the 
Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) 
for optimizing super-resolution neural network architectures. The depthwise separable con-
volutions are introduced to reduce the number of parameters and minimize the impact on 
the performance of the super-resolution neural network. The proposed framework uses the 
RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is 
a multi-objective binary version of RUN, which balances multiple objectives when opti-
mizing the neural network architecture. Experimental results on publicly available datasets 
indicate that the DWSR framework can reduce the number of parameters of the Residual 
Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 
in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of param-
eters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. 
Additionally, the framework can reduce the number of parameters of the HAT model by 
5.38% while losing only 0.02 PSNR.

Keywords  Neural architecture search · Super-resolution · Swarm intelligence · Multi-
objective · Runge Kutta optimizer

1  Introduction

Super-resolution reconstruction of images is the technique of restoring a low-resolution 
image to a high-resolution image that is true, clear, and with as few human traces as pos-
sible Hou and Andrews (1978). Compared with low-resolution images, high-resolution 
images usually contain greater pixel density, richer texture details, and higher trustworthi-
ness. However, we usually cannot directly obtain high-resolution images with sharpened 
edges and no block blur due to the limitations of recording devices and image degradation 
models Bulat et al. (2018). There are many image super-resolution methods, such as inter-
polation-based, degradation model-based, and deep learning-based methods Keys (1981); 
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Schermelleh et al. (2019). Dong et al. first proposed using convolutional neural networks 
to deal with the image super-resolution problem in 2014 Dong et al. (2014). A three-layer 
convolutional neural network (SRCNN) is designed to learn the mapping relationship 
between low-resolution and high-resolution images directly in this paper. In 2016, Shi et al. 
considered the Efficient Sub-Pixel Convolutional Neural Network (ESPCN) from a low-
resolution image and learned how to scale the image from a sample Shi et al. (2016). In 
2017, Christian Ledig et al. proposed a super-resolution image reconstruction by adversar-
ial networks from a photo-aware perspective Ledig et al. (2017). In recent years, research-
ers have been committed to getting higher accuracy of the network and enhancing the cred-
ibility of the generated images Liu et al. (2022). At the same time, they also hope to reduce 
the number of network parameters and improve the confidence of image generation.

Most of the network architectures currently in use have been carefully designed by 
researchers. The number of parameters usually increases when designing to improve net-
work performance, increasing the generation time of super-resolution images Zhang et al. 
(2018); Lim et al. (2017); Wang et al. (2018). There is a pressing requirement to design 
lightweight networks based on how to reduce the number of network parameters effectively. 
Neural Architecture Search (NAS) Elsken et al. (2019) has made breakthroughs in various 
applications in recent years. Examples include image recognition, image segmentation, and 
super-resolution. In the super-resolution domain, chu et al. were the earliest to suggest the 
NAS technique with the Multi-objective reinforced evolution in mobile neural architecture 
search (MoreMNAS) to search for super-resolution neural network architecture Chu et al. 
(2019). Song et al. proposed using different super-resolution network sub-block combina-
tions to enhance the network performance and reduce the network parameters Song et al. 
(2020). However, these methods are also just a mix-and-match combination of previous 
methods with limited optimization of the number of parameters. Depthwise separable con-
volution (DW Conv) has made notable achievements in the research of lightweight neural 
networks. However, using DW Conv fully in super-resolution neural networks leads to sig-
nificant performance degradation. In this paper, we propose a framework that aims to be 
able to automatically insert DW Conv at appropriate locations in the network while mini-
mizing the impact on performance.

Since the search space is enormous, finding a method with high searchability is neces-
sary to improve the search speed and quickly find a better network architecture Morales-
Hernández et al. (2022); Mishra and Kane (2022). Metaheuristic algorithms do not require 
problem-specific knowledge or information, which makes them suitable for complex prob-
lems where the problem structure and properties may not be easily understood or modeled. 
The meta-heuristic algorithm can perform a global search to find the approximate solution 
of the optimal solution Rodríguez-Molina et al. (2020); Akhand et al. (2020). During the 
meta-heuristic algorithm search, the exploration phase explores the search space as much 
as possible to find the areas where the optimal solution may exist Chu et al. (2006); Meng 
et al. (2019). Since the optimal solution may exist at any location throughout the search 
space, a detailed search of the areas near the current optimal solution is performed in the 
development phase. In most cases, there are some correlations between solutions. The 
meta-heuristic algorithm uses these correlations to adjust the solution process Chu et al. 
(2005); Wang et  al. (2022). The mathematically based RUNge Kutta optimizer (RUN) 
algorithm Ahmadianfar et  al. (2021) is a typical example. The RUN Optimizer balances 
the exploration and development phases by designing the Runge Kutta Search Mechanism 
(RKM) for exploration and the Enhanced Solution Quality (ESQ) mechanism for exploi-
tation. However, the RUN optimizer is designed for continuous optimization problems 
and cannot be applied to combinatorial optimization problems. In this paper, we propose 
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a transfer function that maps the continuous solution space to the discrete solution space, 
enabling it to solve combinatorial optimization problems. In addition, in order to avoid per-
formance degradation due to excessive use of DW Conv (or excessive number of param-
eters due to excessive use of DW Conv) during the optimization process, we also propose a 
multi-objective optimization strategy for balancing the relationship between PSNR and the 
number of parameters during the search process.

In this paper, an efficient and straightforward method for super-resolution network opti-
mization is proposed. The search advantage of the meta-heuristic algorithm is implemented 
for NAS. The main contributions of this study are as follows:

•	 MoBRUN is employed to balance the PSNR and the number of parameters.
•	 A grid mechanism is established for the non-dominated solution in archives.
•	 New leader selection schemes are presented to improve the position updating method 

of population individuals in the binary multi-objective meta-heuristic algorithm.
•	 A novel framework is proposed to apply the MoBRUN algorithm to NAS to optimize 

super-resolution neural networks.

The remaining sections of this manuscript are organized as follows: Sect.  2 briefly 
describes the development of the meta-heuristic algorithm and its application in NAS. Sec-
tion 3 introduces the original RUNge algorithm in detail. Section 4 presents the improved 
MoBRUN algorithm. Section 5 provides the proposed framework. Section 6 discussed the 
experiment and its results. Section 7 is the conclusion of this paper.

2 � Related works

Research into meta-heuristics has a long history. In the past, most research on meta-heuris-
tic algorithms has emphasized their use in problems such as engineering optimization. An 
example is the Particle Swarm Optimization (PSO) algorithm Marini and Walczak (2015), 
initially based on the stochastic optimization technique of populations. Simulated Anneal-
ing (SA) algorithm Delahaye et al. (2019) for simulated metal annealing design. The Ant 
Colony Optimization (ACO) Zhou et  al. (2022) algorithm is designed to abstract ants 
searching for food and record their paths. Meta-heuristic algorithms have demonstrated 
their usefulness in several fields Wang et al. (2014); Chu et al. (2022).

In recent years, some researchers have tried to apply meta-heuristic algorithms to solve 
NAS problems. Wang et al. combined the PSO algorithm with Convolutional Neural Net-
work (CNN) and proposed the cPSO-CNN algorithm Wang et al. (2019), which can auto-
matically search the CNN architecture. Lu et al. explored a multi-objective genetic algo-
rithm for neural network search Lu et al. (2020), which is better in terms of interactivity 
and structural design.

Together, these studies outline the critical role of meta-heuristics in NAS. However, 
the focus of such studies remains narrow and only deals with applying meta-heuristics to 
NAS. Once the meta-heuristic algorithm is converted to the binary version, the position 
is only selected between 0 and 1 Beheshti (2020); Akay et  al. (2021). When the binary 
meta-heuristic optimization algorithm performs multi-objective optimization, the leader 
selection mechanism enables individuals to converge to the current Pareto frontier. This 
phenomenon reduces the diversity of individuals, and the algorithm is likely to fall into the 
optimal local solution Tian et al. (2021); Liu et al. (2020); Zhang et al. (2020). Therefore, 
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the MoBRUN algorithm is proposed for solving the problem and finding the best solution 
for the multi-objective NAS problem.

3 � RUNge Kutta optimizer

The RUN algorithm proposed by Iman et  al. is based on the specific slope calculation 
of the Runge Kutta method Butcher (1987). It is an effective global optimization search 
strategy. RUN consists of two main parts: RKM for exploration and ESQ mechanism for 
exploitation.

3.1 � Initialization step

The meta-heuristic algorithm is a method that uses N individuals to optimize D dimen-
sions. For the enhancement of increase the randomness and diversity of individuals in the 
initial stage, the initial positions of individuals in the RUN optimizer are generated using 
Eq.(1).

where xn,d in Eq.(1) is the location of the individual and the solution of the optimization 
problem of dimension D. Ld and Ul are the upper and lower bounds of the d-th variable of 
the problem to be optimized (d = 1, 2, ...,D) . The rand is a random number within [0, 1].

The dominant search mechanism in RUN is an RK4 based approach. This method 
searches the decision space with the aid of three randomly selected solutions. The mecha-
nism can be modeled as:

in which

RUN performs random global (exploration) and local ( exploitation) searches in each itera-
tion. When rand < 0.5 , perform the global search method; otherwise, perform the local 
search method. The search method is designed using the RK method. The new solution is 
determined by Eq.(4).

in which

where r is used to change the search direction and add diversity, and is an integer taking the 
value of 1 or -1. SF is an adaptive factor. Parameter � is a random number, and randn is a 
normally distributed random number. Parameter h is a random number taking values in the 
range [0,2]. Parameters xm and xc are calculated by the following equation:

(1)xn,d = Ld + rand.(Ud − Ld)

(2)SM =
1

6
(xRK)Δx

(3)xRK = k1 + 2 × k2 + 2 × k3 + k4

(4)xn+1 =

{

(xc + SF × Xc × h × r) + SM × SF + � × randn.(xm − xc) if rand < 0.5

(xm + SF × Xm × h × r) + SM × SF + � × randn.(xr1 − xr2) else

(5)� = 0.5 + 0.1 × randn
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where xbest is the optimal solution achieved, the xlbet is the best solution obtained for cur-
rent iteration, and xr1 is the position of an individual randomly selected in the population.

3.2 � Enhanced solution quality mechanism

The ESQ mechanism is used to improve the quality of the solution and avoid getting 
trapped in a local optimum in each iteration. When rand > 0.5 , the ESQ mechanism per-
forms the following scheme to create the solution:

where w is a random number that decreases as the algorithm progresses, and parameter xavg 
is the average of three randomly selected solutions. The xnew1 is the best solution, and xavg 
is the random number determined.

The solution calculated in Eq.(8) may not be better than the current one. In order 
to obtain a better solution, When rand < w , take the following steps to generate a new 
solution.

where v is a random number taking values in the range [0,2].
The pseudo-code of the RUN algorithm is given in Algorithm 1.

Algorithm 1   The pseudo-code of RUN algorithm

(6)xc = xn × rand + (1 − rand) × xr1

(7)xm = xbest × rand + (1 − rand) × xlbest

(8)xnew2 =

{

xnew1+ ∣ (randn − xavg + xnew1) ∣ ×w.r. if w < 1

(xnew1 − xavg)+ ∣ randn − xavg + u.xnew1 ∣ ×w.r if w > 1

(9)xnew3 = xnew2 × (1 − rand) + SF.(v.xb + rand.xRK − xnew2)
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4 � The proposed MoBRUN method

Because the RUN algorithm was initially designed for solving problems with continuous 
space, we proposed MoBRUN to solve the NAS problem of super-resolution networks.

4.1 � Binary conversion

The original RUN algorithm is designed to solve continuous problems, so it is required 
to convert to a binary version to solve the NAS problem. Numerous studies show that the 
values in continuous space can be converted into binary space after normalization by trans-
fer function. The common transfer functions are S-, V-, and U-shaped transfer functions 
Mirjalili and Lewis (2013); Mirjalili et al. (2020); He et al. (2022), and here we choose to 
use the V-shaped transfer function to convert the RUN algorithm. The V-shaped transfer 
function is shown in Eq.(10).

where xn,d is the position of the n-th individual in the d-th dimension, and erf is the Gauss-
ian error function. The V-shaped transfer function converts the individual solution space 
from continuous to 0-1 space by Eq.(11) after normalization.

The image of the V-shaped function is shown in Fig. 1.

(10)Vxn,d
=∣ erf (

�

2
× xn,d) ∣

(11)xt+1
n,d

=

{

¬xt
n,d

if rand < Vxn,d

xt
n,d

if rand ≥ Vxn,d

Fig. 1   V-shaped transfer function
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4.2 � Multi‑objective strategy

This subsection applies two components to improve the RUN algorithm so that it is able to 
execute multi-objective optimization. One is the archive component responsible for storing 
the Pareto optimal solution, and another one is the leader selection component that selects 
leaders from the archive. The leader selection component assists the RUN algorithm in 
selecting the optimal solution for position updating.

An archive is a storage unit with a fixed size for storing Pareto optimal solutions. In an 
optimization problem with m objective functions, the solution vector x = (x1, x2, ..., xn) is 
assumed to minimize each objective function fi(x) . In this context, a non-dominated solu-
tion is defined as follows:

The non-dominated solutions fi(xnew) obtained during the iterative process are compared 
with all solutions in the archive. Since the archive has a fixed size, new solutions enter-
ing the archive need to run the grid mechanism to redistribute the archive when it is full: 
the most crowded part of the current archive is found, and one of the solutions is omitted. 
The new solution is then inserted into the most sparse part to multiply the diversity of the 
Pareto optimal frontier of the final approximation. It should be noted that in the process of 
using a binary meta-heuristic optimization algorithm to solve problems, a large number of 
identical solution spaces will be generated in the archive. Therefore, it is necessary to pri-
oritize removing identical solutions when deciding the dominance relation.

When the RUN algorithm conducts a search work, we hope to find an optimal solution 
to guide the next step. Therefore, a leader selection mechanism is introduced to handle this 
problem. The leader selection mechanism in which the best solution is selected from the 
archive using a roulette wheel method. The advantage of this mechanism is expressed as 
follows:

where q is a constant greater than 1 and Ns is the best solutions number in the archive for 
the current iteration.

However, in the RUN algorithm, using the Pareto dominance relation for location 
update will lead to the problem of a slow location update. Therefore, to increase location 
diversity and speed up searches, we use the replacement strategy shown in Algorithm 2 to 
update the location.

(12)∀i ∈ 1, 2, ...,m, fi(xnew) ≤ fi(x)

(13)Pt =
q

Ns
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Algorithm 2   The pseudo-code of replacement strategy

5 � DWSR Framework

Super-resolution neural networks usually have three phases: feature extraction, nonlinear 
mapping, and reconstruction. Compared with neural networks dealing with classification 
problems, super-resolution networks require more computational resources and are unsuit-
able for mobile devices. Researchers have recently preferred to design lightweight super-
resolution neural networks Kim et  al. (2021). However, designing new neural network 
architectures is time-consuming and laborious. So we can optimize based on previous neu-
ral network architectures to reduce the cost.

Andrew et al. proposed using a depthwise separable filter to reduce the number of neu-
ral network parameters for operation on mobile devices in 2017 Howard et al. (2017). For 
example, in a standard convolution operation, the number of parameters required is propor-
tional to the product of the input and output channels and the kernel size. Specifically, if 
there are CI input channels, CO output channels, and a convolution kernel of size DK × DK , 
then CI × CO × DK

2 parameters are needed. By contrast, using a depthwise separable con-
volution reduces the computational cost by the following equation.

where DF is the input feature map resolution.
First, as shown in Fig. 2, the deep convolution operation uses only a single convolu-

tion kernel for each input channel, which reduces the number of convolution kernels to 
CI × DK

2 . Second, as shown in Fig. 3, point-by-point convolution uses a 1 × 1 convolution 
kernel to map the result of deep convolution from CI channels to CO channels, requiring 
only CI × CO parameters. Deeply separable convolution reduces the computational com-
plexity of the convolution operation by splitting it into two steps and using fewer parame-
ters, which results in a lightweight and efficient model. In addition, it also works better with 
fewer data because the depth-separable convolution reduces the possibility of overfitting.

However, it should be noted that the performance of the super resolution neural network 
will decline sharply if all convolutions are replaced by depth separable filters. Therefore, 
we propose the DWSR framework: the MoBRUN algorithm combined with a depthwise 
separable filter is used to optimize the super-resolution neural network, and the number of 

(14)
DF × DF × CO × CI × DK × DK + CI × DF × DF

DF × DF × CI × DK × DK × CO

=
1

CO

+
1

DK
2
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parameters and PSNR are evaluated to obtain the optimized super-resolution neural net-
work architecture. Figure 4 shows the architecture of the DWSR framework.

The DWSR uses the MoBRUN algorithm to determine the position corresponding 
to the DW convolution in the neural network. MoBRUN uses 0 to indicate the corre-
sponding position using regular convolution and 1 to indicate the corresponding posi-
tion using the depthwise separable filter. This approach allows adaptive solution space 

Fig. 2   The depthwise convolution operation

Fig. 3   The pointwise convolution operation

Fig. 4   The proposed DWSR framework
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exploration to obtain the best neural network architecture. The DWSR framework flow-
chart is shown in Fig. 5.

6 � Experiments

In this section, RDN Zhang et al. (2018), ESRGAN Wang et al. (2018), and HAT Chen 
et al. (2023) are selected to test the effectiveness of the DWSR framework. When the 
DWSR framework is used for network architecture search, the PSNR and the number 
of parameters are used as decision indicators. Finally, we select three levels of network 
architectures for each network based on the number of parameters and compare the 
results with the actual model results.

Fig. 5   The proposed DWSR framework flowchart
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6.1 � Network choice

For the purpose of proving the effectiveness of DWSR, three typical neural networks 
are used for verification: RDN, ESRGAN, and HAT. RDN combines the advantages of 
ResNet and DenseNet to maximize the extraction of all feature information at the LR 
level. It can create a deeper super-resolution network through the GFF module. On the 
other hand, ESRGAN employs the GAN method to generate super-resolution images 
with more realistic details. ESRGAN also introduces the Residual-in-Residual Dense 
Block (RRDB) to construct generators that use perceptual loss to enrich the texture 
features of the generated images. HAT not only enhances the representation capabil-
ity of the network by introducing a Hybrid Attention Block (HAB) but also establishes 
cross-window connections to activate more pixels by Overlapping the Cross-Attention 
Block (OCAB). The selected network architectures are verified using a baseline network 
structure: the RDN network uses 16 RDB blocks, the ESRGAN network uses 23 RRDB 
blocks and the HAT uses 6 residual hybrid attention groups (RHAG) with 6 HABs in 
each RHAG.

6.2 � DWSR training details

When using DWSR framework to search network architecture, the initial training time of 
the network accounts for the majority. In order to reduce time consumption, the DWSR 
framework uses a smaller patch size for training. In the architecture search phase of ESR-
GAN, the PSNR-oriented model (RRDB Net) is used to initialize of the generator. Table 1 
shows the hyperparameter settings for DWSR-RDN, DWSR-RRDB, and DWSR-HAT.

Table 2 shows the hyperparameter settings in the MoBRUN algorithm, where � , � and 
ArchiveSize are the parameters used to control the multi-objective strategy.

Table 1   Parameter settings of RDN, RRDB, and HAT in DWSR framework

DWSR-RDN DWSR-RRDB DWSR-HAT

Dataset DIV2K Agustsson and 
Timofte (2017)

DIV2K Agustsson and 
Timofte (2017)

DF2K Agustsson and 
Timofte (2017), Timofte 
et al. (2017)

Patchsize 16 × 16 64 × 64 32 × 32
Number of 

iterations
2500 2500 2500

Scale × 4 × 4 × 4
Validation 

Dataset
Set5 Bevilacqua et al. (2012) Set5 Bevilacqua et al. (2012) Set5 Bevilacqua et al. (2012)

Downsam-
pling 
method

bicubic(BI) bicubic(BI) bicubic(BI)

Learning rate 2 × 10−4 1 × 10−4 2 × 10−4

Loss L1 loss L1 loss L1 loss
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6.3 � Implementation details

The archives obtained by RDN are shown in Table 3, the archives obtained by RRDB are 
shown in Table 4, and the archives obtained by HAT are shown in Table 5. Three mod-
els of different levels of models are selected from three archives according to the size of 

Table 2   Parameter values of the 
MoBRUN algorithm

Parameter Value

� 0.1
� 4
Archive size 15
Population size 10
Number of iterations 40

Fig. 6   Training curves for different network architectures (PSNR is evaluated on Set5 with Y channels)

Table 3   The archive for DWSR-RDN

Achieve DWSR-RDN

Parameters(M) Madds(G) Flops(G) PSNR DW blocks

NO.1 7.55 16.39 8.22 29.85 97
NO.2 8.58 18.50 9.27 29.93 97
NO.3 8.97 19.29 9.67 30.06 88
NO.4 9.48 20.35 10.20 30.09 87
NO.5 9.93 21.27 10.66 30.12 83
NO.6 10.38 22.20 11.13 30.13 81
NO.7 10.71 22.86 11.45 30.17 80
NO.8 11.06 23.59 11.82 30.23 73
NO.9 12.45 26.43 13.24 30.30 63
NO.10 13.67 28.93 14.49 30.34 62
NO.11 15.15 31.97 16.01 30.36 45
NO.12 15.25 32.17 16.11 30.42 42
NO.13 17.31 36.39 18.22 30.47 30
NO.14 19.15 40.16 20.10 30.48 22
NO.15 20.05 42.00 21.02 30.49 19
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parameters: (DWSR-RDN-S: NO.4, DWSR-RDN-M: No.10, and DWSR-RDN-L: No.13. 
DWSR-RRDB-S: NO.3, DWSR-RRDB-M: NO.4, DWSR-RRDB-L: NO.6. DWSR-HAT-S: 
NO.2, DWSR-HAT-M: NO.6, DWSR-HAT-L: NO.10). Moreover, the three obtained net-
work models were compared with the original network model and the fully used DW con-
volutional model. This paper trained three types of networks using the parameters shown 
in Table 6. The learning rate in RDN is halved at every 50K iterations. To obtain more 
realistic texture effects, the RRDB is also trained using GAN loss with the learning rate set 
to 1 × 10−4 and halved at [50k, 100k, 200k, 300k] iterations.

Furthermore, the convergence process of the different networks is visualized in Fig. 6. 
The convergence curves show that the network performance will be significantly affected 
when DW convolution is used exclusively instead of standard convolution. Not only does 
the DWSR further guarantee the training process, but also it will not compromise the effect 
markedly. These visual and quantitative analyses demonstrate the advantages and effective-
ness of our proposed framework.

Table 4   The archive for DWSR-RRDB

Achieve DWSR-RRDB

Parameters(M) Madds(G) Flops(G) PSNR DW blocks

NO.1 3.95 169.76 85.34 26.76 246
NO.2 4.01 171.58 86.25 27.06 244
NO.3 4.20 177.81 89.36 27.13 238
NO.4 5.58 223.06 111.94 27.17 166
NO.5 5.64 225.16 112.99 27.36 168
NO.6 6.30 246.70 123.74 27.44 140
NO.7 6.05 238.66 119.73 27.40 155

Table 5   The archive for DWSR-HAT

Achieve DWSR-HAT

Parameters(M) Madds(G) Flops(G) PSNR DW blocks

NO.1 15.68 62.10 441.44 31.85 64
NO.2 16.16 66.00 443.36 31.89 58
NO.3 16.24 66.65 443.68 31.91 57
NO.4 16.48 68.60 444.64 31.92 54
NO.5 16.88 71.85 446.24 31.94 49
NO.6 17.12 73.80 447.20 31.94 46
NO.7 18.08 81.60 451.04 31.96 34
NO.8 18.64 86.15 453.28 31.99 27
NO.9 18.88 88.10 454.24 32.00 24
NO.10 19.68 94.60 457.44 32.03 14
NO.11 19.84 95.90 458.08 32.03 12



	 S.-C. Chu et al.

1 3

23  Page 14 of 21

6.4 � Results with BI degradation model

The paper used a common BI degradation model in SR to generate LR images. The opti-
mized networks were compared with six state-of-the-art image SR methods: SRCNN Dong 
et al. (2014), SRDenseNet Tong et al. (2017), LapSRN Lai et al. (2017), CARN Ahn et al. 
(2018), DRRN Tai et al. (2017), VDSR Kim et al. (2015), SwinIR Liang et al. (2021), and 
EDT Li et al. (2021) on five standard benchmark datasets. These datasets are Set5 Bevil-
acqua et al. (2012), Set14 Zeyde et al. (2012), BSD100 Martin et al. (2001), and Urban100 
Huang et al. (2015). SR results were evaluated using PSNR and SSIM on the Y channel 
(i.e., luminance) of the transformed YCbCr space.

Table 7 ( ×4 scale) provides a quantitative comparison of the performance of the bench-
mark dataset. The best performance of DWSR-RDN, DWSR-ESRGAN, and DWSR-HAT 
optimization are bolded. The table shows that the proposed methods (DWSR-RDN-L, 
DWSR-ESRGAN-L, and DWSR-HAT-L) achieve better performance on the ×4 scale than 
other prominent methods on all benchmark datasets with essentially no loss of perfor-
mance. DWSR-RDN-L lost 0.018 PSNR on average over the five datasets, DWSR-RRDB-
L lost 0.08 PSNR on average over the five datasets, and DWSR-HAT-L lost 0.02 PSNR on 
average over the five datasets.

Figure 7 intuitively illustrates the qualitative comparison of the ×4 scale on different 
images. It is clear that the images reconstructed by other methods contain significant 
artefacts and blurred edges. In contrast, optimized super-resolution network provides 
equally more realistic images with sharp edges. Optimized network architecture is able 
to recover images better than other prominent models while substantially reducing the 
number of parameters. DWSR-RDN-L has a 22.17% reduction in the number of param-
eters compared to the original architecture, DWSR-ESRGAN-L reduces the number 
of parameters by 31.45% compared to the original architecture, and the DWSR-HAT-
L reduces the number of parameters by 5.76% compared to the original architecture. 
However, they obtains comparable performance to the original network in terms of 
artifact removal and texture reconstruction.

Table 6   Parameter setting of RDN, ESRGAN, and HAT in training

DWSR-RDN DWSR-ESRGAN DWSR-HAT

Dataset DIV2K Agustsson and 
Timofte (2017)

DIV2K Agustsson and 
Timofte (2017)

DF2K Agustsson and 
Timofte (2017); Timofte 
et al. (2017)

Patchsize 32 × 32 192 × 192 64 × 64
Iterations 200000 1000000 500000
Scale × 4 × 4 × 4
Validation 

Dataset
Set5 Bevilacqua et al. (2012) Set5 Bevilacqua et al. (2012) Set5 Bevilacqua et al. (2012)

Downsam-
pling 
method

bicubic(BI) bicubic(BI) bicubic(BI)

Learning rate 2 × 10−4 1 × 10−4 2 × 10−4

Loss L1 loss L1 loss L1 loss
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6.5 � Ablation atudy

For ablation experiments, we train our framework for image super-resolution ( × 4) 
based on DIV2K Agustsson and Timofte (2017) datasets and RDN Zhang et al. (2018) 
model. The results are evaluated on Set5 benchmark dataset.

6.5.1 � Design choices for grid size

We conducted an ablation study to demonstrate the importance of different archive 
sizes. Specifically, we evaluated three different archive sizes: 5, 15, and 30, while keep-
ing all other experimental settings constant. The results of these experiments are pre-
sented in Table 8.

Table 8 shows the effect of different archive sizes on the results. It is apparent that there 
is a strong correlation between archive size and the resulting network structure. When the 
archive size is set to 5, the obtained network structure scheme has a low PSNR and dense 
distribution. Conversely, when the archive size is set to 30, the archive cannot be fully 

Table 7   Comparison with state-of-the-art methods based on ×4 super-resolution tasks

Method Set5 Set14 Urban100 Manga109 B100
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 28.42/0.8104 26.00/0.7027 23.14/0.6577 24.89/0.7866 25.96/0.6675
SRCNN Dong et al. (2014) 30.48/0.8628 27.50/0.7513 24.52/0.7221 27.58/0.8555 26.90/0.7101
SRDenseNet Tong et al. (2017) 32.02/0.8934 28.50/0.7782 26.05/0.7819 -/- 27.53/0.7337
LapSRN Lai et al. (2017) 31.54/0.8855 28.19/0.7720 25.21/0.7553 29.09/0.8893 27.32/0.7280
CARN Ahn et al. (2018) 32.13/0.8937 28.60/0.7806 26.07/0.7837 -/- 27.58/0.7349
DRRN Tai et al. (2017) 31.68/0.8888 28.21/0.7721 25.44/0.7638 29.18/0.8914 27.38/0.7284
VDSR Kim et al. (2015) 31.35/0.8838 28.01/0.7674 25.18/0.7524 -/- 27.29/0.7251
SwinIR Liang et al. (2021) 32.92/0.9044 29.09/0.7950 27.92/0.7489 32.03/0.9260 27.45/0.8254
EDT Li et al. (2021) 32.82/0.9031 29.09/0.7939 27.91/0.7483 32.05/0.9254 27.46/0.8246
RDN-O 32.34/0.8973 28.74/0.7855 26.38/0.7958 30.82/0.9125 27.65/0.7391
RDN-F 32.10/0.8940 28.55/0.7807 25.97/0.7828 30.38/0.9070 27.54/0.7353
DWSR-RDN-S 32.23/0.8960 28.69/0.7841 26.23/0.7911 30.69/0.9108 27.61/0.7377
DWSR-RDN-M 32.29/0.8964 28.68/0.7838 26.28/0.7928 30.79/0.9122 27.63/0.7383
DWSR-RDN-L 32.30/0.8971 28.71/0.7850 26.37/0.7951 30.82/0.9128 27.64/0.7388
RRDB-O 32.24/0.8962 28.66/0.7838 26.20/0.7904 30.55/0.9098 27.60/0.7386
RRDB-F 31.84/0.8916 28.39/0.7782 25.67/0.7728 29.75/0.9006 27.44/0.7334
DWSR-RRDB-S 32.10/0.8949 28.54/0.7811 25.97/0.7825 30.23/0.9063 27.54/0.7364
DWSR-RRDB-M 32.15/0.8955 28.58/0.7819 26.08/0.7863 30.38/0.9080 27.57/0.7374
DWSR-RRDB-L 32.11/0.8952 28.59/0.7823 26.13/0.7879 30.44/0.9088 27.58/0.7375
HAT-O 33.04/0.9056 29.23/0.7973 28.00/0.7517 32.48/0.9292 27.97/0.8368
HAT-F 32.84/0.9032 29.08/0.7947 27.94/0.7493 32.18/0.9280 27.76/0.8326
DWSR-HAT-S 32.94/0.9049 29.14/0.7958 27.97/0.7509 32.38/0.9287 27.90/0.8352
DWSR-HAT-M 32.96/0.9052 29.17/0.7958 27.98/0.7513 32.41/0.9289 27.92/0.8356
DWSR-HAT-L 33.00/0.9055 29.21/0.7958 27.98/0.7514 32.47/0.9290 27.95/0.8367
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utilized. When the archive size is set to 15, the distribution scheme is more even and has a 
richer PSNR distribution than when the archive size is set to 30. In order to strike a balance 
between performance and efficiency, we select an archive size of 15 for the remainder of 
the experiments.

Fig. 7   Visual results of the BI degradation model using a scale factor of ×4

Table 8   Ablation study on Archive size design

Archive Size Number of archives 
retained

Max PSNR Min PSNR Average PSNR

5 5 30.11 29.92 29.98
15 15 30.49 29.85 30.23
30 18 30.50 29.91 30.25
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6.5.2 � Design choices for iteration number

Table 9 presents the impact of the number of iterative searches on the final performance of 
the prediction model. There is a positive correlation between the number of iterations and 
the model’s final performance. When the number of iterations is small, the final perfor-
mance of the model cannot be accurately evaluated, even though the search time is reduced 
accordingly. As the number of iterations increases beyond 2500, the improvement in evalu-
ation gain gradually becomes saturated. To strike a balance between search time and evalu-
ation accuracy, we set the number of search iterations to 2500 for the remainder of the 
experiments to obtain an accurate evaluation within a relatively short search time.

6.5.3 � Design choices for meta‑heuristic algorithm

To ensure a fair comparison, we evaluated the MoBRUN algorithm against several clas-
sical meta-heuristics over 40 iterations. The results of this comparison, in terms of PSNR 
and the number of archives, are presented in Table 10. It is evident that MoBPSO produces 
only 9 archives, with a resulting network architecture that has a low PSNR. MoBDE expe-
riences similar difficulties. While MoBMPA, MoBGWO, and MoBSMA select a larger 
number of archives, they suffer from a lack of diversity and tend to be densely concentrated 
in certain ranges. By contrast, the MoBRUN algorithm is able to deliver better solutions.

7 � Conclusion

Fine-tuning DW convolution has always been a challenge for obtaining satisfactory CNN 
network architectures. This is primarily due to the high cost of trial and error involved 
in the process. To overcome this obstacle, it is necessary to speed up the network search 
and reduce the cost required to evaluate the network. In this paper, we propose the DWSR 
framework, which introduces a meta-heuristic algorithm to accelerate the network architec-
ture search. The multi-objective mechanism provides multiple network structure choices, 
and the network architecture search is accelerated by changing the patch size rather than 
reducing the number of iterations. The DWSR framework with these mechanisms mini-
mizes the impact on the network performance while obtaining fewer parameters, and there 
is a substantial improvement in network search speed. Our work suggests: Developing suit-
able variants of meta-heuristic algorithms is a potential direction for optimizing super-res-
olution networks.

Table 9   Ablation study on 
iteration number design

DW Blocks Iterations

500 1000 1500 2000 2500 3000 200k

97 7.86 18.09 20.87 23.55 23.99 24.95 29.85
87 7.01 18.56 21.56 23.15 24.35 25.04 30.09
80 9.23 18.58 21.42 23.98 24.36 25.28 30.17
62 8.15 18.02 22.41 23.66 24.5 25.34 30.34
30 8.16 19.31 22.38 24.47 24.62 25.4 30.47
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