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Abstract
Symbolic regression is emerging as a promising machine learning method for learning 
succinct underlying interpretable mathematical expressions directly from data. Whereas it 
has been traditionally tackled with genetic programming, it has recently gained a grow-
ing interest in deep learning as a data-driven model discovery tool, achieving significant 
advances in various application domains ranging from fundamental to applied sciences. In 
this survey, we present a structured and comprehensive overview of symbolic regression 
methods, review the adoption of these methods for model discovery in various areas, and 
assess their effectiveness. We have also grouped state-of-the-art symbolic regression appli-
cations in a categorized manner in a living review.

Keywords Symbolic Regression · Automated Scientific Discovery · Interpretable AI

1 Introduction

Symbolic Regression (SR) is a rapidly growing subfield within machine learning (ML) 
to infer symbolic mathematical expressions from data  (Koza 1994; Schmidt and Lipson 
2009). Interest in SR is being driven by the observation that it is not sufficient to only 
have accurate predictive models; however, it is often necessary that the learned models be 
interpretable (Rudin 2019). A model is interpretable if the relationship between the input 
and output of the model can be logically or mathematically traced in a succinct manner. In 
other words, learnable models are interpretable if expressed as mathematical equations. 
As “disciplines” become increasingly data-rich and adopt ML techniques, the demand for 
interpretable models is likely to grow. For example, in the natural sciences (e.g., phys-
ics), mathematical models derived from first principles make it possible to reason about 
the underlying phenomenon in a way that is not possible with predictive models like deep 
neural networks. In critical disciplines like healthcare, non-interpretable models may never 
be allowed to be deployed - however accurate they maybe (Mozaffari-Kermani et al. 2015).
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Example: Consider a data set consisting of samples (q1, q2, r,F) , where q1 and q2 are the 
charges of two particles, r is the distance between them and F is the measured force between 
the particles. Assume q1, q2 , and r are the input variables, and F is the output variable. Sup-
pose we model the input–output relationship as F = �0 + �1q1 + �2q2 + �3r . Then, using the 
data set, we can infer the model’s parameters ( �i ). The model will be interpretable because we 
will know the impact of each variable on the output. For example, if �3 is negative, then that 
implies that as r increases, the force F will decrease. From physics, we know that this form of the 
model is unlikely to be accurate. On the other hand, we could model the input-output relation-
ship using a neural network (NN), i.e., F = NN(q1, q2, r, �) . We expect the model to be highly 
accurate and predictive because neural networks are universal function approximators. However, 
the model is uninterpretable because the input–output relationship is not easily apparent. The 
input feature vector subsequently undergoes several layers of nonlinear transformations, i.e., 
y = �(

∑
i Wi �(

∑
j Wj �(

∑
k Wk �(⋯

∑
𝓁
W𝓁x)))) , where � is a nonlinear activation function, 

and Widx are the learnable parameters of the NN layer of index idx. Such models, called “black-
box”, do not have an internal logic to let users understand how inputs are mathematically mapped 
to outputs. Explainability is the application of other methods to explain model predictions and to 
understand how it is learned. It refers to why the model makes the decision that way. What dis-
tinguishes explainability from interpretability is that interpretable models are transparent (Rudin 
2019). For example, the linear regression model predictions can be interpreted by evaluating the 
relative contribution of individual features to the predictions using their weights. An ideal SR 
model will return the relationship as k q1q2

r2
 , which is the definition of the Coulomb force between 

two charged particles with a constant1 k = 8.98 × 109 . However, learning the SR model is highly 
non-trivial as it involves searching over a large space of mathematical operations and identifying 
the right constant (k) that will fit the data. SR models can be directly inferred from data or can be 
used to “whitebox" a “blackbox" model such as a neural network.

The ultimate goal of SR is to bridge data and observations following the Keplerian trial 
and error approach  (Kepler 1953). Kepler developed a data-driven model for planetary 
motion using the most accurate astronomical measurements of the era, which resulted in 
elliptic orbits described by a power law. In contrast, Newton developed a dynamic relation-
ship between physical variables that described the underlying process at the origin of these 
elliptic orbits. Newton’s approach  (Newton et al. 1729) led to three laws of motion later 
verified by experimental observations. Whereas both methods fit the data well, Newton’s 
approach could be generalized to predict behavior in regimes where no data were available. 
Although SR is regarded as a data-driven model discovery tool, it aims to find a symbolic 
model that simultaneously fits data well and could be generalized to uncovered regimes.

SR is deployed as an interpretable and predictive ML model or a data-driven scientific dis-
covery method. SR was investigated as early as 1970 in research works (Gerwin 1974; Lang-
ley 1981; Falkenhainer and Michalski 1986) aiming to rediscover empirical laws. Such works 
iteratively apply a set of data-driven heuristics to formulate mathematical expressions. The 
first AI system meant to automate scientific discovery is called BACON (PW 1979; Lang-
ley et al. 1987). It was developed by Patrick Langley in the late 1970s and was successful in 
rediscovering versions of various physical laws, such as Coulomb’s law and Galileo’s laws for 
the pendulum and constant acceleration, among many others. SR was later studied by Koza 
(1989, 1990, 1994) who proposed that genetic programming (GP) can be used to discover 
symbolic models by encoding mathematical expressions as computational trees, where GP 
is an evolutionary algorithm that iteratively evolves an initial population of individuals via 

1 k is the electric force (or Coulomb) constant, k = 8.9875517923 × 109 kg m 3s−4A−2 in SI base units.
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biology-inspired operations. SR was since then tackled with GP-based methods (Koza 1994; 
Keijzer 2003; Vladislavleva et al. 2009; Korns 2011; Uy et al. 2010; Jin et al. 2019; Petersen 
2019; McConaghy 2011; Virgolin et al. 2019; de França and Aldeia 2019; Arnaldo et al. 2014; 
Cava et al. 2018). Moreover, it was popularized as a data-driven scientific discovery tool with 
the commercial software Eureqa (Dubcakova 2011) based on a research work (Schmidt and 
Lipson 2009). Whereas GP-based methods achieve high prediction accuracy, they do not scale 
to high dimensional data sets and are sensitive to hyperparameters  (Petersen 2019). More 
recently, SR has been addressed with deep learning-based methods (Udrescu and Tegmark 
2019; Martius and Lampert 2016; Petersen 2019; Mundhenk et  al. 2021; Alaa and Schaar 
2019; Kamienny et al. 2022; Biggio et al. 2021; Champion et al. 2019) which leverage neu-
ral networks (NNs) to learn accurate symbolic models. SR has been applied in fundamental 
and applied sciences such as astrophysics (Lemos et al. 2022), chemistry (Batra et al. 2020; 
Hernandez et  al. 2019), materials science  (Wang et  al. 2019; Weng et  al. 2020), semantic 
similarity measurement (Martinez-Gil and Chaves-Gonzalez 2020), climatology (Abdellaoui 
and Mehrkanoon 2021), medicine (Virgolin et al. 2020), among many others. Many of these 
applications are promising, showing the potential of SR. A recent SR benchmarking platform 
SRBench is introduced by Cava et al. (2021). It comprises 14 SR methods (among which ten 
are GP-based), applied on 252 data sets. The goal of SRBench was to provide a benchmark for 
rigorous evaluation and comparison of SR methods.

This survey aims to help researchers effectively and comprehensively understand the SR 
problem and how it could be solved, as well as to present the current status of the advances 
made in this growing subfield. The survey is structured as follows. First, we define the 
SR problem, present a structured and comprehensive review of methods, and discuss their 
strengths and limitations. Furthermore, we discuss the adoption of these SR methods 
across various application domains and assess their effectiveness. Along with this survey, 
a living review (Makke and Chawla 2022) aims to group state-of-the-art SR methods and 
applications and track advances made in the SR field. The objective is to update this list 
often to incorporate new research works.

This paper is organized as follows. The SR problem definition is presented in Sect. 2. 
We present an overview of methods deployed to solve the SR problem in Sect. 3, and the 
methods are discussed in detail in Sects. 4, 5 and  6. Selected applications are described 
and discussed in Sect. 7. Section 8 presents an overview of existing benchmark data sets. 
Finally, we summarize our conclusions and discuss perspectives in Sects. 9, 10.

2  Problem definition

The problem of symbolic regression can be defined in terms of classical Empirical Risk 
Minimization (ERM) (Vapnik 1991).

Data: Given a data set D = {(xi, yi)}
n
i=1

 , where xi ∈ ℝ
d is the input vector and yi ∈ ℝ is 

a scalar output.
Function Class: Let F  be a function class consisting of mappings f ∶ ℝ

d
→ ℝ.

Loss Function: Define the loss function for every candidate f ∈ F :

A common choice is the squared difference between the output and prediction, i.e. 
l(f ) =

∑
i(yi − f (�i))

2.

(1)l(f ) ∶=

n∑
i=1

l(f (�i), yi)
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Optimization: The optimization task is to find the function (f) over the set of functions 
F  that minimizes the loss function:

As stated below, what distinguishes SR from conventional regression problems is the dis-
crete nature of the function class F  . Different methods for solving the SR problem reduce 
to characterizing the function class.

2.1  Class of function

In SR, to define F  , we specify a library of elementary arithmetic operations and mathe-
matical functions and variables, and an element f ∈ F  is the set of all functions that can be 
obtained by function composition in the library (Virgolin and Pissis 2022). For example, 
consider a library:

Then the set of all of the polynomials (in one variable x) with integer coefficients can be 
derived from L using function composition.

2.2  Expression representation

It is convenient to express symbolic expressions in a sequential form using either a unary-
binary expression tree or the polish notation (Robinson 1958). For example, the expression 
f (x) = x1x2 − 2x3 can be derived using function composition from L (Eq.  3) and repre-
sented as a tree-like structure illustrated in Fig. 1a. By traversing the (binary) tree top to 
bottom and left to right in a depth-first manner, we can represent the same expression as a 
unique sequence called the polish form, as illustrated in Fig. 1b.

In practice, the library L includes many other common elementary mathematical functions, 
including the basic trigonometric functions like sine, cosine, logarithm, exponential, square 
root, power low, etc. A prior domain knowledge is advantageous for library definition because 
it reduces the search space to only include the most relevant mathematical operations to the 
studied problem. Furthermore, a large range of possible numeric constants should be possible 

(2)f ∗ = argmin
f∈F

l(f )

(3)L = {id(⋅), add(⋅, ⋅), sub(⋅, ⋅), mul(⋅, ⋅),+1,−1}

Fig. 1  a Example of a unary-
binary tree that encodes 
f (x) = x1x2 − 2x3 . b Sequence 
representation of the tree-like 
structure of f (x)
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to express. For example, numbers in base-10 floating point notation rounded up to four signifi-
cant digits can be represented as triple of (sign, mantissa, exponent) (Kamienny et al. 2022). 
The function sin(3.456x) , for example, can be represented as [sin, mul, 3456, E − 3, x].

3  Symbolic regression methods overview

In this survey, we categorize SR methods in the following manner: regression-based methods, 
expression tree-based methods, physics-inspired and mathematics-inspired methods, as pre-
sented in Fig. 2. For each category, a summary of the mathematical tool, the expression form, 
the set of unknowns, and the search space, is presented in Table 1.

The linear method defines the functional form as a linear combination of nonlinear func-
tions of x that are comprised in the predefined library L. Linear models are expressed as:

where j spans the base functions of L. The optimization problem reduces to find the set of 
parameters {�} that minimizes the loss function defined over a continuous parameter space 
Θ = ℝ

M as follows:

(4)f (x, �) =
∑
j

�jhj(x)

Fig. 2  Taxonomy based on the type of symbolic regression methods. � denotes a neural network function, 
W denotes the set of learnable parameters in a NN. x denotes the input data, z denotes a reduced representa-
tion of x , and x′ denotes a new representation of x , e.g., by defining new features based on the original ones. 
T  represents the final population of selected expression trees in genetic programming. The lower indices 
(E) and (D) refer to the encoder and the decoder components of a transformer neural network. G denotes the 
Meijer function which will be discussed in the following
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This method is advantageous for being deterministic and disadvantageous because it 
imposes a single model structure which is fixed during training when the model’s param-
eters are learned.

The nonlinear method defines the model structure by a neural network. Nonlinear 
models can thus be expressed as:

where � is a nonlinear activation function, and Widx are the learnable parameters of the NN 
layer of index idx. Similarly to the linear method, the optimization problem reduces to find 
the set of parameters {W, b} of neural network layers, which minimizes the loss function 
over the space of real values.

Expression tree-based methods treat mathematical expressions as unary-binary 
trees whose internal nodes are operators and terminals are operands (variables or 
constants). This category comprises GP-based, deep neural transformers, and rein-
forcement learning-based methods. In GP-based methods, a set of transition rules 
(e.g., mutation, crossover, etc.) is defined over the tree space and applied to an initial 
population of trees throughout many iterations until the loss function is minimized. 
Transformers  (Vaswani et  al. 2017) represent a novel architecture of neural network 
(encoder and decoder) that uses attention mechanism. The latter was primarily used 
to capture long-range dependencies in a sentence. Transformers were designed to 
operate on sequential data and to perform sequence-to-sequence (seq2seq) tasks. For 
their use in SR, input data points (x, y) and symbolic expressions (f) are encoded as 
sequences and transformers perform set-to-sequence tasks. The unknowns are the 
weight parameters of the encoder and the decoder. Reinforcement learning (RL) is 
a machine learning method that seeks to learn a policy �(x|�) by training an agent 
to perform a task by interacting with its environment in discrete time steps. An RL 

(5)�∗ = argmin
�∈Θ

∑
i

l(f (xi, �), yi)

(6)f (x,W) = �

(∑
i

Wi �

(∑
j

Wj �

(
⋯

∑
𝓁

W𝓁x

)))

Table 1  Table summarizing symbolic regression methods

The mathematical tool, the expression form, the set of unknowns, and the search space are specified for 
each method
Set2seq set-to-sequence

Method Tool Expression form Unkown Search space

Linear SR Uni-D linear system y =
∑

i �ifi(x) {�}i ℝ

Multi-D linear system yi =
∑

j �jfj(x) ({�}i)j ℝ

Nonlinear SR Neural Network y = f (W ⋅ x + b) {W, b} ℝ

Expression-tree search Genetic Programming Expression tree trees
Transformers set2seq mapping {Wq,Wk ,Wv} ℝ

Reinforcement learning set2seq mapping �(�) ℝ

Physics-inspired AI-Feynman y = f (x, �) − −
Mathematics-inspired Symbolic metamodels G(x, �) � ℝ
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setting requires four components: state space, action space, state transition probabili-
ties, and reward. The agent selects an action that is sent to the environment. A reward 
and a new state are sent back to the agent from its environment and used by the agent 
to improve its policy at the next time step. In the context of SR, symbolic expres-
sion (sequence) represents a state, predicting an element in a sequence represents an 
action, the parent and sibling represent the environment, and the reward is commonly 
chosen as the mean square error (MSE). RL-based SR methods are commonly hybrid 
and use various ML tools (e.g., NN, RNN, etc.) in a joint manner with RL.

4  Linear symbolic regression

The linear approach assumes, by definition, that the target symbolic expression (f(x)) is a 
linear combination of nonlinear functions of feature attributes:

Here x denotes the input features vector, �j denotes a weight coefficient, and hj(⋅) denotes a 
unary operator of the library L. This approach predefines the model’s structure and reduces 
the SR problem to learn only the model’s parameters by solving a system of linear equations. 
The particular case where f(x) is a linear combination of degree-one monomial reduces to 
a conventional linear regression problem, i.e., f (x) =

∑
j �jx

j = �0 + �1x + �2x
2 +⋯ . There 

exist two cases for this problem: (1) a unidimensional case defined by f ∶ ℝ
d
→ ℝ ; and (2) 

a multidimensional case defined by f ∶ ℝ
d
→ ℝ

m , with d the number of input features and 
m the number of variables required for a complete description of a system; for example, the 
Lorenz system for fluid flow is defined in terms of three physical variables which depend 
on time.

4.1  Unidimensional case

Given a data set D = {(xi, yi)}
n
i=1

 , the mathematical expression could be either univariate 
( xi ∈ ℝ, yi = f (xi) ) or multivariate ( xi ∈ ℝ

d, yi = f (xi) ). The methodology of linear SR is 
presented in detail for the univariate case in Secion 4.1.1 for simplicity and is extended for 
the multivariate case in Sect. 4.1.2.

4.1.1  Univariate function

Data set: D = {xi ∈ ℝ; yi = f (xi)}.

Library: L can include any number of mathematical operators such that the dimension 
of the data set is always greater than the dimension of the library matrix (see discussion 
below).

In this approach, a coefficient �j is assigned to each candidate function ( fj(⋅) ∈ L ) as an 
activeness criterion such that:

(7)f (x) =
∑
j

�jhj(x)
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Applying Eq. 8 to input–output pairs (xi, yi) yields a system of linear equations as follows:

which can be represented in a matrix form as:

Equation 10 can then be presented in a compact form:

where Θ ∈ ℝ
(k+1) is the sparse vector of coefficients, and U ∈ ℝ

n×(k+1) is the library matrix 
which can be represented as a function of the input vector X as follows:

Example: For a library defined as:

The matrix U becomes:

Each row (of index i) in Eq. 12 is a vector of (k + 1) functions of xi . The vector of coeffi-
cients, i.e., the model’s parameters, is obtained by solving Eq. 11 as follows2:

The magnitude of a coefficient �k effectively measures the size of the contribution of the 
associated function fk(⋅) to the final prediction. Finally, the prediction vector Ŷ can be eval-
uated using Eq. 11.

An exemplary schematic is illustrated in Fig.  3 for the univariate function 
f (x) = 1 + �x3 . Only coefficients associated with functions {1, x3} of the library are non-
zero, with values equal to 1 and � , respectively.

(8)y =
∑
j

�jfj(x)

(9)

y1 = �0 + �1f1(x1) + �2f2(x1) + ⋯ + �kfk(x1)

y2 = �0 + �1f1(x2) + �2f2(x2) + ⋯ + �kfk(x2)

⋮

yn = �0 + �1f1(xn) + �2f2(xn) + ⋯ + �kfk(xn)

(10)

⎡⎢⎢⎢⎣

y1
y2
⋮

yn

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

1 f1(x1) f2(x1) ⋯ fk(x1)

1 f1(x2) f2(x2) ⋯ fk(x2)

⋮

1 f1(xn) f2(xn) ⋯ fk(xn)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�0
�1
⋮

�k

⎤⎥⎥⎥⎦

(11)Y = U(X) ⋅ Θ

(12)U(X) =

⎡⎢⎢⎣

∣ ∣ ∣ ∣

1 f1(X) f2(X) ⋯ fk(X)

∣ ∣ ∣ ∣

⎤⎥⎥⎦

(13)L = {1, x, (⋅)2, sin(⋅), cos(⋅), exp(⋅)}

U(X) =

⎡⎢⎢⎣

∣ ∣ ∣ ∣ ∣ ∣

1 X X2 sin(X) cos(X) exp(X)

∣ ∣ ∣ ∣ ∣ ∣

⎤⎥⎥⎦

(14)Θ = (UTU)−1UTY

2 Technically the pseudo-inverse, U+
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In the following, linear SR is tested on synthetic data. In each experiment, train-
ing and test data sets are generated. Each set consists of twenty data points randomly 
sampled from a uniform distribution U(−1, 1) , and y is evaluated using a univariate 

Fig. 3  Schematic of the system of linear equations of Eq. 11 for f (x) = 1 + �x3 . A library matrix U(X) of 
nonlinear functions of the input is constructed, where L = {1, x, x2, x3,⋯} . The marked entries in the Θ vec-
tor denote the non-zero coefficients determining which functions of the library are active

Table 2  Results of linear SR in the case of univariate functions

D = {(xi;yi)} ; xi ∈ U(−1, 1, 20) and yi = f (xi) . L1 = {x, (⋅)2,⋯ , (⋅)9} and 
L2 = L1 ∪ {sin(⋅), cos(⋅), tan(⋅), exp(⋅), sigmoid(⋅)}

T true, F false

Benchmark Expression L
1

L
2

Exp R
2 Exp R

2

Nguyen-2 x4 + x3 + x2 + x T 1.0 F 0.886
Nguyen-3 x5 + x4 + x3 + x2 + x T 1.0 F 0.867
Livermore-21 x8 + x7 + x6 + x5 + x4 + x3 + x2 + x T 1.0 F 0.869
Livermore-9 x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x T 1.0 F 0.882
Livermore-6 x + 2x2 + 3x3 + 4x4 T 1.0 F 0.417
Livermore-19 x + x2 + x4 + x5 T 1.0 F −0.079

Livermore-14∗ x + x2 + x3 + sin(x) F 1.0 F −0.857
Nguyen-5 sin(x2) cos(x) − 1 F 0.999 F −3.97
Nguyen-6 sin(x) + sin(x + x2) F 0.999 F 0.564

Fig. 4  Result of linear SR for 
the Nguyen-1 benchmark, i.e., 
f (x) = x + x2 + x3 . Red points 
represent (test) data set. The 
red curve represents the true 
function. The blue and black 
dashed curves represent the 
learned functions using L1 and 
L2 , respectively
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function, i.e., D = {(xi, f (xi))}
n
i=1

 . Two libraries are considered in these experiments: 
L1 = {x, (⋅)2, (⋅)3,⋯ , (⋅)9} and L2 = L1 ∪ {sin(⋅), cos(⋅), tan(⋅), exp(⋅), sigmoid(⋅)} . The 
results are reported in terms of the output expression (Eq. 7) and the coefficient of deter-
mination R2 . SR problems are grouped into (i) pure polynomial functions and (ii) mixed 
polynomial and trigonometric functions. In each experiment, parameters are learned 
using the training data set, and results are reported for the test data set in Table 2.

For polynomial functions, an exact output is obtained using L1 with an R2 = 1.0 , 
whereas only approximate output is obtained using L2 . In the latter case, the quality of the 
fit depends on the size of the training data set. An exemplary result is shown in Fig. 4 for 
f (x) = x + x2 + x3 . Points represent the (test) data of the input file, i.e., X ; the red curve 
represents f(x) as a function of x, and the blue and black dashed curves represent the pre-
dicted function f̂ (x) obtained using L1 and L2 respectively. An exact match between the 
ground-truth function and the predicted one is found using L1 , whereas a significant dis-
crepancy is obtained using L2 . This discrepancy could be explained by the fact that various 
functions in L2 exhibit the same x-dependence over the covered x-range.

For mixed polynomial and trigonometric expressions, both library choices do not pro-
duce the exact expression. However, a better R2-coefficient is obtained using L1 . In the case 
of Nguyen-5 benchmark for example, i.e., f (x) = sin(x2) cos(x) − 1 , the resulting function 
is the Taylor expansion of f:

In conclusion, this approach can not learn the ground-truth function when the latter is 
a multiplication of two functions (i.e., f (x) = f1(x) ∗ f2(x) ) or when it has a multiplicative 
or an additive factor to the variable (e.g., sin(� + x), exp(� ∗ x) , etc.). In the best case, it 
outputs an approximation of the ground-truth function. Furthermore, this approach fails to 
predict the correct mathematical expression when the library is extended to include a mix-
ture of polynomial, trigonometric, exponential, and logarithmic functions.

4.1.2  Multivariate function

For a given data set D = {xi ∈ ℝ
d; yi = f (x1,⋯ , xd)} , where d is the number of features, 

the same equations presented in Sect. 4.1.1 are applicable. However, the dimension of the 
library matrix U changes to consider the features vector dimension. For example, for the 
same library shown in Eq. 13 and a two dimensional features vector, i.e., X ∈ ℝ

2 , U(X) 
becomes:

Here, XPq denotes polynomials in X of the order q.
Table 3 presents the results of the experiments performed on two-variables dependent 

functions, i.e., f (x1, x2) . Similarly to Sect. 4.1.1, training and test data sets are generated 

ŷ(x) ≈ −1 + 0.9x2 − 0.5x4 − 0.13x6 +O(x8)

(15)

U(X) =

⎡
⎢⎢⎣

∣ ∣ ∣ ∣ ∣ ∣

1 X XP2 sin(X) cos(X) exp(X)

∣ ∣ ∣ ∣ ∣ ∣

⎤
⎥⎥⎦

=

⎡⎢⎢⎣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

1 x1 x2 x2
1
x1x2 x2

2
sin(x1) sin(x2) ⋯

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

⎤⎥⎥⎦
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by randomly sampling twenty pairs of points ( x1, x2 ) from a uniform distribution U(− 1,1) 
such that D = {(x1i, x2i, f (x1i, x2i))}

n
i=1

 . The same choices for the library are considered: 
L1 = {x, (⋅)2,⋯ , (⋅)9} and L2 = L1 ∪ {sin(⋅), cos(⋅), tan(⋅), exp(⋅), sigmoid(⋅)} . An exact 
match between the ground-truth and predicted function is obtained using L1 for any poly-
nomial function, whereas only approximate solutions are obtained for trigonometric func-
tions. The results are approximate of the ground-truth function using L2.

Furthermore, linear SR is tested on a dataset generated using a two-dimensional multi-
variate normal distribution N(�,�) , as shown in Fig. 5. Different analytic expressions for 
f (x1, x2) were tested with different library bases that are summarized in Table 4, includ-
ing pure polynomial basis functions, polynomial and trigonometric basis functions, and a 
mixed library.

Table 3  Results for multivariate 
functions using linear SR

D = {(x1, x2) ∈ U(−1, 1, 20); y = f (x1, x2)} . L1 = {x, (⋅)2,⋯ , (⋅)9} and 
L2 = L1 ∪ {sin(⋅), cos(⋅), tan(⋅), exp(⋅), sigmoid(⋅)}

T and F true and false

Benchmark Expression L
1

L
2

Result R
2 Result R

2

Nguyen-12 x4
1
− x3

1
+

1

2
x2
2
− x2

T 1.0 F ≈ 1

Livermore-5 x4
1
− x3

1
+ x2

1
− x2 T 1.0 F ≈ 1

Nguyen-9 sin(x1) + sin(x2
2
) F ≈ 1 F ≈ 1

Nguyen-10 2 sin(x1) cos(x2) F ≈ 1 F ≈ 1

Fig. 5  Two-dimensional multi-
variate normal distribution used 
in test applications

Table 4  Library bases used in 
test problems of Sect. 4.1.2

Name List of functions

Library U1 1, X,XP2, XP3, XP4

U2 1, X,XP2, cos(X), sin(X)

U3 1, X,XP2, cos(X), sin(X), tan(X), exp(X), sigmoid(X)
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The function y1 = cos(x1) + sin(x2) is explored with all three bases. In the case 
of a pure polynomial basis, the correct terms of the Taylor expansion of both cos(x1) 
and sin(x2) are identified with only approximate values of their coefficients, i.e., 
ŷ1 = (0.88 − 0.3x2

1
+ 0.01x4

1
) + (0.97 − 0.2x3

2
) , which is reflected in the significantly high 

reconstruction error of the order of 30% . In both bases where trigonometric functions are 
enlisted, the correct terms cos(x1) and sin(x2) are identified with an excellent reconstruction 
error, that is ≥ 10−7 . Note that the lowest reconstruction error is obtained for the library 
U 2 , which has the least number of operations and, consequently, the lowest number of 
coefficients.

The function y2 = x2
1
+ cos(x2) is also tested. For the pure polynomial basis, the recon-

structed function ŷ2 = x2
1
+ (0.83 + 0.49x2 − x2

2
) predicts approximate values with a recon-

struction error of ≤ 1% . An excellent prediction is made for both of the other bases, which 
enlist both operations in y2(x1, x2).

In the same exercise, a more complicated function form is tested that includes mixed 
terms, i.e., y3 = x1(1 + x2) + cos(x1) ∗ sin(x2) . The difference between the true and the 
predicted function is illustrated in Fig.  6. The linear approach performs similarly for all 
three library bases. A low reconstruction error is obtained because the operation term 
cos(x1) ∗ sin(x2) in y3 is not enlisted in any of the libraries, showing an important limitation 
of the current approach.

4.2  Multidimensional case

The target mathematical expression comprises m components, i.e., Y =
[
y1,⋯ , ym

]
 , and 

the goal is to learn the coefficients of a system of linear equations rather than one math-
ematical expression. Each component ( yj ) is described by:

(16)yj = fj(x) =
∑
k

�jkhk(x)

Fig. 6  Difference between true (y) and predicted ( ̂y ) values of the function 
y = x1(1 + x2) + cos(x1) ∗ sin(x2) , for the three libraries defined in Table 4: U1 (left), U2 (center), U3 (right)
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In this case, there exist m sparse vectors of coefficients, i.e., Θ =
[
�1 ⋯ �m

]
 . Consider the 

Lorenz system, which is a set of ordinary differential equations that captures nonlinearities 
in the dynamics of fluid convection. It consists of three variables {x1, x2, x3} and their first-
order derivatives with respect to time { dx1

dt
,
dx2

dt
,
dx3

dt
} , which we will refer to as {y1, y2, y3} . 

Using the library of Eq. 13, the system of linear equations is represented in a matrix form 
as follows:

Here, Y ∈ ℝ
n×3 , U(X) ∈ ℝ

n×k and Θ ∈ ℝ
k×3 , where n is the size of the input data and k is 

the number of columns in the library matrix U . The jth-component of the Y vector is given 
by:

Equation 17 can be written in a compact form as:

The application presented in Champion et al. (2019) uses this approach, where the authors 
aim to learn differential equations that govern the dynamics of a given system, such as a 
nonlinear pendulum and the Lorenz system. The approach successfully learned the exact 
weights, allowing them to recover the correct governing equations.

An exemplary schematic is illustrated in Fig.  7 for the Lorenz system defined by 
ẋ = 𝜎(y − x) , ẏ = x(𝜌 − z) − y , ż = xy − 𝛽z . Here x, y, and z are physical variables and ẋ , 
ẏ , and ż are their respective time-derivatives. Only coefficients associated with functions 
{x1, x1x2, } should be non-zero and equal to the factors shown in the Lorenz system’s set of 
equations.

In summary, the linear approach is only successful in particular cases and can not be 
generalized. Its main limitation is in predefining the model’s structure as a linear combina-
tion of nonlinear functions, reducing the SR problem to solve a system of linear equations. 
In contrast, the main mission of SR is to learn the model’s structure and parameters. A 
direct consequence of this limitation is that the linear approach fails to learn expressions 
in many cases: (i) composition of functions (e.g., f (x) = f1(x) ∗ f2(x) ); (ii) multivariate 

(17)
⎡⎢⎢⎣

y1 y2 y3
⋮ ⋮ ⋮

⋮ ⋮ ⋮

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1 x1 x2 x2
1
x1x2 x2

2
exp(x2)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎦

⎡⎢⎢⎣

�1 �2 �3
⋮ ⋮ ⋮

⋮ ⋮ ⋮

⎤⎥⎥⎦

(18)yj = �j,0 + �j,1x1 + �j,2x2 + �j,3x
2
1
+⋯ + �j,k exp(x2)

(19)yk = U(xT )θk

Fig. 7  Schematic of the system of Eq.  11 for the Lorenz system defined by y1 = �(x2 − x1) , 
y2 = x1(� − x3) − x2 , y3 = x1x2 − �x3 . A library U(X) of nonlinear functions of the input is constructed. The 
marked entries in the � s vectors denote the non-zero coefficients determining which library functions are 
active for each of the three variables {y1, y2, y3}
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functions (e.g., exp(x ∗ y), tan(x + y) , etc.); and (iii) functions including multiplicative 
or additive factors to their arguments (e.g., exp(�x) ). Finally the dimension of the library 
matrix can be challenging in computing resources for extended libraries and high-dimen-
sional data sets.

5  Nonlinear symbolic regression

The nonlinear method uses deep neural networks (DNN), known for their great ability to 
detect and learn complex patterns directly from data.

DNN has the advantage of being fully differentiable in its free parameters allowing 
end-to-end training using back-propagation. This approach searches the target expression 
by replacing the standard activation functions in a neural network with elementary math-
ematical operations. Figure 8 shows an NN-based architecture for SR called the Equation 
Learner (EQL) network proposed by Martius and Lampert (2016) in comparison with a 
standard NN. Only two hidden layers are shown for simple visualization, but the network’s 
deepness is controlled as per the case study.

The EQL network uses a multi-layer feed-forward NN with one output node. A linear 
transformation z[l] is applied at every hidden layer (l), followed by a nonlinear transforma-
tion a[l]

i
 using unary (i.e., one argument) and binary (i.e., two arguments) activation func-

tions as follows

where {W, b} denote the weight parameters and fi denotes individual activation function 
from the library L = {identity, (⋅)n, cos, sin, exp, log, sigmoid} . In a standard NN, 

(20)
z[l] = W [l]

⋅ a[l−1] + b[l]

a
[l]

i
= fi(z

[l]

i
)

Fig. 8  Exemplary setup of a standard NN (a) and EQL-NN (b) with input x , output ŷ and two hidden lay-
ers. In a, f denotes the activation function usually chosen among {RELU, tanh, sigmoid} while in EQL each 
node has a specific activation function drawn from the function class F
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the same activation function is applied to all hidden units and is typically chosen among 
{RELU,   tanh,   sigmoid,   softmax, etc.}.

The problem reduces to learn the correct weight parameters {W [l], b[l]} , whereas the 
operators of the target mathematical expression are selected during training. To overcome 
the interpretability limitation of neural network-based architectures and to promote sim-
ple over complex solutions as a typical formula describing a physical process, sparsity is 
enforced by adding a regularization term l1 to the l2 loss function such that,

Where N denotes the number of data entries and L denotes the number of layers. Whereas 
this method is end-to-end differentiable in NN parameters and scales well to high dimen-
sional problems, back-propagation through activation functions such as division or loga-
rithm requires simplifications to the search space, thus limiting its ability to produce sim-
ple expressions involving divisions (e.g., sin (x∕y)

x
 ). An extended version EQL÷ (Sahoo et al. 

2018) includes only the division, whereas exponential and logarithm activation functions 
are not included because of numerical issues.

6  Tree expression

This section discusses SR methods in which a mathematical expression is regarded as a 
unary-binary tree consisting of internal nodes and terminals. Every tree node represents a 
mathematical operation (e.g., +,−,×, sin, log , etc.) that is drawn from a pre-defined library 
and every tree terminal node (or leaf) represents an operand, i.e., variable or constant, as 
illustrated for the example shown in Fig. 9. Expression tree-based methods include genetic 
programming, transformers, and reinforcement learning.

6.1  Genetic programming

Genetic programming (GP) is an evolutionary algorithm in computer science that 
searches the space of computer programs to solve a given problem. Starting with a 

(21)� =
1

N

N�
i=1

‖ŷ(xi) − yi‖2 + 𝜆

L�
l=1

�W [l]�1

Fig. 9  a Expression-tree structure of f (x) = x2 − cos(x) . b f(x) as a function of x (blue curve) and data 
points (red points) generated using f(x)
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“population" (set) of “individuals" (trees) that is randomly generated, GP evolves the 
initial population T(0)

GP
 using a set of evolutionary “transition rules" (operations) 

{ri ∶ f → f | i ∈ ℕ} that is defined over the tree space. GP evolutionary operations 
include mutation, crossover, and selection. The mutation operation introduces random 
variations to an individual by replacing one subtree with another randomly generated 
subtree (Fig. 10, right). The crossover operation involves exchanging content between 
two individuals, for example, by swapping one random subtree of one individual with 
another random subtree of another individual (Fig. 10, left). Finally, the selection opera-
tion is used to select which individuals from the current population persist onto the next 
population. A common selection operator is tournament selection, in which a set of k 
candidate individuals are randomly sampled from the population, and the individual 
with the highest fitness i.e., a minimum loss is selected. In a GP algorithm, a single 
iteration corresponds to one generation. The application of one generation of GP on a 
population T(i)

GP
 produces a new, augmented population T(i+1)

GP
 . In each generation, each 

individual has a probability of undergoing a mutation operation and a probability of 
undergoing a crossover operation. The selection is applied when the dimension of the 
current population is the same as the previous one. Throughout Mk iterations, the fol-
lowing steps are undertaken: (1) transition rules are applied to the function set 
Fk = {f k

1
,⋯ , f k

Mk
} such that f k+1 = ri(f

k) where k denotes the iteration index; (2) the loss 
function �(Fk) is evaluated for the set; and (3) an elite set of individuals is selected for 
the next iteration step. The GP algorithm repeats this procedure until a pre-determined 
accuracy level is achieved.

Whereas GP allows for large variations in the population resulting in improved perfor-
mance for out-of-distribution data, GP-based methods do not scale well to high dimen-
sional data sets and are highly sensitive to hyperparameters (Petersen 2019).

Fig. 10  Crossover (left) and mutation (right) operations on exemplary expression trees in genetic program-
ming
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6.2  Transformers

Transformer neural network (TNN) is a novel NN architecture introduced by Vaswani et al. 
(2017) in natural language processing (NLP) to model sequential data. TNN is based on 
the attention mechanism that aims to model long-range dependencies in a sequence. Con-
sider the English-to-French translation of the two following sentences:

En: The kid did not go to school because it was closed.
Fr: L’enfant n’est pas allé à l’école parce qu’elle était fermée.
En: The kid did not go to school because it was cold.
Fr: L’enfant n’est pas allé à l’école parce qu’il faisait froid.
The two sentences are identical except for the last word, which refers to the school in the 

first sentence (i.e., “closed") and to the weather in the second one (i.e., “cold"). Transform-
ers create a context-dependent word embedding that it pays particular attention to the terms 
(of the sequence) with high weights. In this example, the noun that the adjective of each 
sentence refers to has a significant weight and is therefore considered for translating the 
word “it". Technically, an embedding xi is assigned to each element of the input sequence, 
and a set of m key-value pairs is defined, i.e., S = {(k1, v1),⋯ , (km, vm)} . For each query, 
the attention mechanism computes a linear combination of values 

∑
j �jvj , where the atten-

tion weights ( �j ∝ q ⋅ kj ) are derived using the dot product between the query (q) and all 
keys ( kj ), as follows:

Fig. 11  Evaluation of Attention(q,S ) (Eq. 22) for a query qi , computed using the input vector embedding xi
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Here, q = xWq is a query, ki = xiWk is a key, vi = xiWv is a value, and Wq , Wk , Wv are the 
learnable parameters. The architecture of the self-attention mechanism is illustrated in 
Fig. 11.

In the context of SR, both input data points {(xi, yi) | xi ∈ ℝ
d, yi ∈ ℝ, i ∈ ℕn} and 

mathematical expressions f are encoded as sequences of symbolic representations as dis-
cussed in Sect. 2.2. The role of the transformer is to create the dependencies at two levels, 
first between numerical and symbolic sequences and between tokens of symbolic sequence. 
Consider the mathematical expression f (x, y, z) = sin(x∕y) − sin(z) , which can be written 
as a sequence of tokens following the polish notation:

Each symbol is associated with an embedding such that:

In this particular example, for query ( x7 ∶ z ), the attention mechanism will give a higher 
weight for the binary operator ( x1 ∶ − ) than for the variable ( x5 ∶ y ) or the division opera-
tor ( x3 ∶ ÷).

Transformers consist of an encoder-decoder structure; each block comprises a self-
attention layer and a feed-forward neural network. TNN inputs a sequence of embeddings 
{xi} and outputs a “context-dependent” sequence of embeddings {yi} one at a time, through 
a latent representation zi . TNN is an auto-regressive model, i.e., sampling each symbol is 

(22)Attention(q,S) =
∑
j

�(q ⋅ kj)vj

− sin ÷ x y sin z

x1 ∶ − x2 ∶ sin x3 ∶ ÷ x4 ∶ x x5 ∶ y x6 ∶ sin x7 ∶ z

Fig. 12  Structure of a TNN 
encoder (Vaswani et al. 2017). It 
comprises an attention layer and 
a feed-forward neural network
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conditioned by the previously sampled symbols and the latent sequence. An example of a 
TNN encoder is shown in Fig. 12.

In symbolic regression case, the encoder and the decoder do not share the same 
vocabulary because the decoder has a mixture of symbolic and numeric representa-
tions, while the encoder has only numeric representations. There exist two approaches 
to solving SR problems using transformers. First is the skeleton approach  (Biggio 
et al. 2021; Valipour et al. 2021) where the transformer conducts the two-steps pro-
cedure: (1) the decoder predicts a skeleton fe , a parametric function that defines the 
general shape of the target expression up to a choice of constants, using the function 
class F  and (2) the constants are fitted using optimization techniques such as the 
non-linear optimization solver BFGS. For example, if f = cos(2x1) − 0.1 exp(x2) , then 
the decoder predicts fe = cos(◦ x1) − ◦ exp(x2) where ◦ denotes an unknown constant. 

Fig. 13  Exemplary sketch of a general RL-based SR method. st , at , and rt = R(st, at) denote the state, 
action, and reward at time step t. (t + 1) denotes the next time step

Fig. 14  Strategies for solving SR problem. An SR algorithm has three types of input: data ( x ), a new or 
reduced representation of the data ( x′ or z ), or a model ( f (x) ) learned from the data
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The second is an end-to-end (E2E) approach (Kamienny et al. 2022) where both the 
skeleton and the numerical values of the constants are simultaneously predicted. Both 
approaches are further discussed in Sect. 7.

6.3  Reinforcement learning

Reinforcement learning provides a framework for learning and decision-making by trial 
and error (Sutton and Barto 2018). An RL Setting consists of four components ( S,A,P,R ) 
in a Markov decision process. In this setting, an agent observes a state s ∈ S of the envi-
ronment and, based on that, takes action a ∈ A , which results in a reward r = R(s, a) , and 
the environment then transitions to a new state s� ∈ S . The interaction goes on in time 
steps until a terminal state is reached. The aim of the agent is to learn the policy P (also 
called transition dynamics), which is a mapping from states to actions that maximize the 
expected cumulative reward. An exemplary sketch of an RL-based SR method is illustrated 
in Fig. 13.

SR problem can be framed in RL as follows: the agent (NN) observes the environment 
(parent and sibling in a tree) and, based on the observation, takes an action (predict the 
next token of the sequence) and transitions into a new state. In this view, the NN model 
is like a policy, the parent and sibling are like observations, and sampled symbols are like 
actions.

7  Applications

Most existing algorithms for solving SR are GP-based, whereas many others, and more 
recent, are deep learning (DL)-based. There exist two different strategies to solve SR prob-
lems, as illustrated in the taxonomy of Fig. 14.

The first is a one-step approach, where data points are directly fed into an SR algorithm. 
A second is a two-step approach involving a process which either learns a new represen-
tation of data or learns a “blackbox" model, which will be then fed into SR algorithm as 
described below: 

1. Learn a new representation of the original data set through defining new features (reduc-
ing the number of independent variables) or a reduced representation using specific NN 
architectures such as principal component analysis and autoencoders.

2. Learn a “blackbox" model either using regular NN or using conceptual NN such as 
graph neural network (GNN). In this case, an SR algorithm is applied to the learned 
model or parts of it.

We group the applications based on the categories presented in Sect. 3, and we summarize 
them in Table 5.

GP-based applications will not be reviewed here; they are listed in the living 
review  (Makke and Chawla 2022), along with DL-based applications. State-of-the-art 
GP-based methods are discussed in detail in La Cava et  al. (2016). Among GP-based 
applications is the commercial software Eureqa (Dubcakova 2011), the most well-known 
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GP-based method that uses the algorithm proposed by Schmidt and Lipson (2009). Eureqa 
is used as a baseline SR method in several research works.

SINDY-AE  (Champion et al. 2019) is a hybrid SR method that combines autoencoder 
network (Rumelhart et al. 1986) with linear SR (Brunton et al. 2016). The novelty of this 
approach is in simultaneously learning sparse dynamical models and reduced representa-
tions of coordinates that define the model using snapshot data. Given a data set x(t) ∈ ℝ

n , 
this method seeks to learn coordinate transformations from original to intrinsic coordinates 
z = �(x) (encoder) and back via x = �(z) (decoder), along with the dynamical model asso-
ciated with the set of reduced coordinates z(t) ∈ ℝ

d ( d ≪ n):

through a customized loss function L , defined as a sum of four terms:

Here the derivative of the reduced variables z are computed using the derivatives of the 
original variable x , i.e. �̇� = 𝛁x𝜙(x)ẋ . Predicted coordinates denoted as apred represent NN 
outputs and are expressed in terms of coefficient vector Θ and library matrix U(x) follow-
ing Eq. 19, i.e., zrec = U(zT )Θ = U(�(x)T )Θ . The library is specified before training, and 
the coefficients Θ are learned with the NN parameters as part of the training procedure.

A case study is the nonlinear pendulum motion whose dynamics are governed by a sec-
ond-order differential equation given by ẍ = − sin(x) . The data set is generated as a series 
of snapshot images from a simulated video of a nonlinear pendulum. After training, the 
SINDY autoencoder correctly identified the equation z̈ = −0.99 sin z , which is the dynami-
cal model of a nonlinear pendulum in the reduced representation. This approach is particu-
larly efficient when the dynamical model may be dense in terms of functions of the original 
measurement coordinates x . This method and similar works (Chen et al. 2021) make the 
path to “Gopro physics" where researchers point a camera on an event and get back an 
equation capturing the underlying phenomenon using an algorithm.

Despite successful applications involving partial differential equations, still, one 
main limitation of this method is in its linear SR part. For example, a model expressed 
as f (x) = x1x2 − 2x2 exp(−x3) +

1

2
exp(−2x1x3) is discovered only if each term of this 

(23)
d

dt
z(t) = g(z(t))

(24)
L = ‖x − �(�(x))‖2

2
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
reconstruction error

+ �1 ‖�̇� − �̇�pred‖22
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
encoder loss

+ �2 ‖�̇� − �̇�pred‖22
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

decoder loss

+ �3‖Θ‖1
⏟⏟⏟

regularizer loss

Fig. 15  Example of a Meijer 
G-function G2,2

1,1
(a,a
a,b
|x) for differ-

ent values of a and b (Alaa and 
Schaar 2019)
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expression is comprised in the library, e.g., exp(−2x1x2) . The presence of the exponential 
function, i.e., exp(x) , is not sufficient to discover the second and the third terms.

Symbolic metamodel  (Alaa and Schaar 2019) (SM) is a model-of-a-model method for 
interpreting “blackbox" model predictions. It inputs a learned “blackbox" model and out-
puts a symbolic expression. Available post-hoc methods aim to explain ML model predic-
tions, i.e., they can explain some aspects of the prediction but can not offer a full model 
interpretation. In contrast, SM is interpretable because it uncovers the functional form that 
underlies the learned model. The symbolic metamodel is based on Meijer G-function (Mei-
jer 1946; Beals and Szmigielski 2013), which is a special univariate function characterized 
by a set of indices, i.e., Gm,n

p,q
(ap, bq|x) , where a and b are two sets of real-values param-

eters. An instance of the Meijer G-function is specified by ( a, b ), for example the function 
G

1,2

2,2
(a,a
a,b
|x) takes different forms for different settings of the parameters a and b, as illus-

trated in Fig. 15.
In the context of SR problem solving, the target mathematical expression is defined as 

a parameterization of the Meijer function, i.e., {g(x) = G(�, x) | � = (a, b)} , thus reducing 
the optimization task to a standard parameter optimization problem that can be efficiently 
solved using gradient descent algorithms �k+1 ∶= �k − �

∑
i l(G(xi, �), f (xi))��=�k . The 

parameters a and b are learned during training, and the indices (m, n, p, q) are regarded 
as hyperparameters of the model. SM was tested on both synthetic and real data and was 
deployed in two modes spanning (1) only polynomial expressions (SMp ) and (2) closed-
form expressions (SMc ), in comparison to a GP-based SR method. SMp produces accurate 
polynomial expressions for three out of four tested functions (except the Bessel function), 
whereas SMc produces the correct ground-truth expression for all four functions and sig-
nificantly outperforms GP-based SR.

More generally, consider a problem in a critical discipline such as healthcare. Assum-
ing a feature vector comprising (age, gender, weight, blood pressure, temperature, disease 
history, profession, etc.) with the aim to predict the risk of a given disease. Predictions 
made by a “blackbox" could be highly accurate. However, the learned model does not pro-
vide insights into why the risk is high or low for a patient and what parameter is the most 
critical or weightful in the prediction. Applying the symbolic metamodel to the learned 
model outputs a symbolic expression, e.g., f (x1, x2) = x1

(
1 − exp(−x2)

)
 , where x1 is the 

blood pressure and x2 is the age. Here, we can learn that only two features (out of many 
others) are crucial for the prediction and that the risk increases with high blood pressure 
and decreases with age. This is an ideal example showing the difference between “black-
box" and interpretable models. In addition, it is worth mentioning that methods applied for 
model interpretation only exploit part of the prediction and can not unveil how the model 
captures nonlinearities in the data. Thus model interpretation methods are insufficient to 
provide full insights into why and how model predictions are made and are not by any 
means equivalent to interpretable models.

End-to-end symbolic regression (Kamienny et al. 2022) (E2ESR) is a transformer-based 
method that uses end-to-end learning to solve SR problems. It is made up of three com-
ponents: (1) an embedder that maps each input point (xi, yi) to a single embedding, (2) a 
fully-connected feedforward network, and (3) a transformer that outputs a mathematical 
expression. What distinguishes E2ESR from other transformer-based applications is the 
use of an end-to-end approach without resorting to skeletons, thus using both symbolic 
representations for the operators and the variables and numeric representations for the con-
stants. Both input data points {(xi, yi) | i ∈ ℕn} and mathematical expressions f are encoded 
as sequences of symbolic representations following the description in Sect. 2.2. E2ESR is 
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tested and compared to several GP-based and DL-based applications on SR benchmarks. 
Results are reported in terms of mean accuracy, formula complexity, and inference time, 
and it was shown E2ESR achieves very competitive results for SR and outperforms previ-
ous applications.

AIFeynman  (Udrescu and Tegmark 2019) is a physics-inspired SR method that recur-
sively applies a set of solvers, i.e., dimensional analysis,3 polynomial fit, and brute-force 
search to solve an SR problem. If the problem is not solved, the algorithm searches for sim-
plifying intrinsic properties in data (e.g. invariance, factorization) using NN and deploys 
them to recursively simplify the dataset into simpler sub-problems with fewer independent 
variables. Each sub-problem is then tackled by a symbolic regression method of choice. 
The authors created the Feynman SR database (see Sect. 8) to test their approach. All the 
basic equations and 90% of the bonus equations were solved by their algorithm, outper-
forming Eureqa.

Deep symbolic regression (DSR)  (Petersen 2019) is an RL-based search method for 
symbolic regression that uses a generative recurrent neural network (RNN). RNN defines a 
probability distribution ( p(�) ) over mathematical expressions ( � ), and batches of expres-
sions T = {� (i)}N

i=1
 are stochastically generated. An exemplary sketch of how RNN gener-

ates an expression (e.g., x2 − cos(x) ) is shown in Fig. 16. Starting with the first node fol-
lowing the pre-order traversal (Sect. 2.2) of an expression tree, RNN is initially fed with 
empty placeholders tokens (a parent and a sibling) and produces a categorical distribution, 
i.e., outputs the probability of selecting every token from the defined library 
L = {+,−,×,÷, sin, cos, log, etc.} . The sampled token is fed into the first node, and the 
number of siblings is determined based on whether the operation is unary (one sibling) or 

Fig. 16  Exemplary sketch of RNN generating a mathematical expression x2 − cos(x)

3 Dimensional analysis is a well-known technique in physics that uses set of units of measurements to solve 
an equation and/or to check the correctness of a given equation.
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binary (two siblings). The second node is then selected, and the RNN is fed with internal 
weights along with the first token and outputs a new (and potentially different) categorical 
distribution. This procedure is repeated until the expression is complete. Expressions are 
then evaluated with a reward function R(�) to test the goodness of the fit to the data D for 
each candidate expression (f) using normalized root-mean-square error, 

R(�) = 1∕

�
1 +

1

�y

�
1

n

∑n

i=1
(yi − f ( Xi))

2

�
.

To generate better expressions (f), the probability distribution p(�|�) needs to be 
optimized. Using a gradient-based approach for optimization requires the reward func-
tion R(�) to be differentiable with respect to the RNN parameter � , which is not the case. 
Instead, the learning objective is defined as the expectation of the reward under expres-
sions from the policy, i.e., J(�) = ��∼p(�|�)[R(�)] , and reinforcement learning is used to 
maximize J(�) by means of the “standard policy gradient":

This reinforcement learning trick, called REINFORCE  (Williams 1992), can be derived 
using the definition of the expectation �[⋅] and the derivative of log(⋅) function as follows:

The importance of this result is that it allows estimating the expectation using samples 
from the distribution. More explicitly, the gradient of J(�) is estimated by computing the 
mean over a batch of N sampled expressions as follows:

(25)∇�J(�) = ∇���∼p(�|�)[R(�)] = ��∼p(�|�)[R(�)∇� log p(�|�)]

(26)

∇���∼p(�|�)[R(�)] = ∇� ∫ R(�)p(�|�)d�

= ∫ R(�)∇�p(�|�)d�

= ∫ R(�)
∇�p(�|�)
p(�|�) p(�|�)d�

= ∫ R(�) log(p(�|�)p(�|�)d�
= ��∼p(�|�)[R(�)∇� log p(�|�)]

Fig. 17  Neural-guided genetic 
programming population seeding 
method overview (Mundhenk 
et al. 2021)
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The standard policy gradient (Eq. 25) permits optimizing a policy’s average performance 
over all samples from the distribution. Since SR requires maximizing best-case perfor-
mance, i.e., to optimize the gradient over the top � fraction of samples from the distribution 
found during training, a new learning objective is defined as a conditional expectation of 
rewards above the (1 − �)-quantile of the distribution of rewards, as follows:

where R�(�) represent the samples from the distribution below the �-threshold. The gradi-
ent of the new learning objective is given by:

DSR was essentially evaluated on the Nguyen SR benchmark and several additional vari-
ants of this benchmark. An excellent recovery rate was reported for each set, and DSR 
solved all mysteries except the Nguyen-12 benchmark given by x4 − x3 +

1

2
y2 − y . More 

details on SR data benchmarks can be found in Sect. 8.
Neural-guided genetic programming population seeding  (Mundhenk et  al. 2021) 

(NGPPS) is a hybrid method that combines GP and RNN (Petersen 2019) and leverages 
the strengths of each of the two components. Whereas GP begins with random starting 
populations, the authors in Mundhenk et  al. (2021) propose to use the batch of expres-
sions sampled by RNN as a staring population for GP: T(0)

GP
= TRNN . Each iteration of the 

proposed algorithm consists of 4 steps: (1) The batch of expressions sampled by RNN is 
passed as a starting population to GP, (2) S generations of GP are performed and result in a 
final GP population TS

GP
 , (3) An elite set of top-performing GP samples is selected TE

GP
 and 

passed to the gradient update of RNN (Fig. 17).
Neural symbolic regression that scales  (Biggio et  al. 2021) (NeSymReS) is a 

transformer-based algorithm that emphasizes large-scale pre-training. It comprises 
a pre-training and test phase. Pre-training includes data generation and model train-
ing. Hundreds of millions of training examples are generated for every minibatch in 
pre-training. Each training example consists of a symbolic equation fe and a set of n 
input–output pairs {xi, yi = f (xi)} where n can vary across examples, and the number 
of independent input variables is at most three. In the test phase, a set of input–out-
put pairs {xi, yi} is fed into the encoder that maps it into a latent vector z, and the 

(27)∇�J(�) =
1

N

N∑
i=1

R(� (i))∇� log p(�
(i)|�)

(28)Jrisk(�, �) = ��∼p(�|�)[R(�) | R(�) ≥ R�(�)]

(29)∇�Jrisk(�) = ��∼p(�|�)[(R(�) − R�(�)) ⋅ ∇� log p(�|�) | R(�) ≥ R�(�)]

Fig. 18  Taxonomy based on the type of SR benchmark problems
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decoder iteratively samples candidates’ skeletons. What distinguishes this method is 
the learning task, i.e., it improves over time with experience, and there is no need to 
be retrained from scratch on each new experiment. It was shown that NeSymReS out-
performs selected baselines (including DSR) in time and accuracy by a large margin 
on all datasets (AI-Feynman, Nguyen, and strictly out-of-sample equations (SOOSE) 
with and without constants). NeSymReS is more than three orders of magnitudes 
faster at reaching the same maximum accuracy as GP while only running on CPU.

GNN (Cranmer et al. 2020) is a hybrid scheme performing SR by training a Graph Neu-
ral Network (GNN) and applying SR algorithms on GNN components to find mathematical 
equations.

A case study is Newtonian dynamics which describes the dynamics of particles in 
a system according to Newton’s laws of motion. D consists of an N-body system with 
known interaction (force law F such as electric, gravitation, spring, etc.), where parti-
cles (nodes) are characterized by their attributes (mass, charge, position, velocity, and 
acceleration) and their interaction (edges) are assigned the attribute of dimension 100. 
The GNN functions are trained to predict instantaneous acceleration for each particle 
using the simulated data and then applied to a different data sample. The study shows 
that the most significant edge attributes, say {e1, e2} , fit to a linear combination of the 
true force components, {F1,F2} , which were used in the simulation showing that edge 
attributes can be interpreted as force laws. The most significant edge attributes were 
then passed into Eureqa to uncover analytical expressions that are equivalent to the 
simulated force laws. The proposed approach was also applied to datasets in the field 
of cosmology, and it discovered an equation that fits the data better than the existing 
hand-designed equation.

The same group has recently succeeded in inferring Newton’s law for gravitational force 
using GNN and PySR for symbolic regression task (Lemos et al. 2022). GNN was trained using 
observed trajectories (position) of the Sun, planets, and moons of the solar system collected 
during 30 years. The SR algorithm could correctly infer Newton’s formula that describes the 
interaction between masses, i.e., F = −GM1M2∕r

2 , and the masses and the gravitational con-
stant as well.

Table 6  Table summarizing ground-truth problems for symbolic regression

Type Benchmark Number of 
problems

Year Reference

Physics-related Feynman Database 119 2019  Udrescu and Tegmark 
(2019)

Strogatz Repository 10 2011  La Cava et al. (2016)
Mathematics-related Koza 3 1994  Koza (1994)

Keijzer 15 2003  Keijzer (2003)
Vladislavleva 8 2009  Vladislavleva et al. (2009)
Nguyen 12 2011  Uy et al. (2010)
Korns 15 2011  Korns (2011)
R 3 2013  Krawiec and Pawlak (2013)
Jin 6 2019  Jin et al. (2019)
Livermore 22 2021  Petersen (2019)
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8  Datasets

For symbolic regression purposes, there exist several benchmark data sets that can be cat-
egorized into two main groups: (1) ground-truth problems (or synthetic data) and (2) real-
world problems (or real data), as summarized in Fig. 18. In this section, we describe each 
category and discuss its main strength and limitations.

Ground-truth regression problems are characterized by known mathematical equations, 
they are listed in Table 6. These include (1) physics-inspired equations (Udrescu and Teg-
mark 2019; La Cava et al. 2016) and (2) real-valued symbolic equations (Koza 1994; Kei-
jzer 2003; Vladislavleva et al. 2009; Korns 2011; Uy et al. 2010; Jin et al. 2019; Petersen 
2019; Krawiec and Pawlak 2013).

The Feynman Symbolic Regression Database  (Tegmark 2019) is the largest SR data-
base that originates from Feynman lectures on Physics series (Feynman et al. 2011, 2006) 
and is proposed in Udrescu and Tegmark (2019). It consists of 1194 physics-inspired equa-
tions that describe static physical systems and various physics processes. The proposed 
equations depend on at least one variable and, at most, nine variables. Each benchmark 
(corresponding to one equation) is generated by randomly sampling one million entries. 
Each entry is a row of randomly generated input variables, which are sampled uniformly 
between 1 and 5. This range of sampling was slightly adjusted for some equations to avoid 
unphysical results (e.g., division by zero or the square root of a negative number). The out-
put is evaluated using function f, e.g. D = {xi ∈ ℝ

d, yi = f (x1,⋯ , xd)}.
This benchmark is rich in proposing various theoretical formulae. Still, it suffers a 

few limitations: (1) there is no distinction between variables and constants, i.e., con-
stants are randomly sampled and, in some cases, in domains extremely far from physi-
cal values. For example, the speed of light is sampled from a uniform distribution 
U(1, 20) whereas its physical value is orders of magnitude higher, i.e., c = 2.988 × 108 
m/s, and the gravitational constant is sampled from U(1, 2) whereas its physical value 
is orders of magnitude smaller, G = 6.6743 × 10−11 m 3 kg−1 s −2 , among others (e.g., 
vacuum permittivity � ∼ 10−12 , Boltzmann constant kb ∼ 10−23 , Planck constant 
h ∼ 10−34 ). (2) Some variables are sampled in nonphysical ranges. For example, the 
gravitational force is defined between two masses distant by r as F = Gm1m2∕r

2 . This 
force is weak unless defined between significantly massive objects (e.g., the mass of 
the earth is Me = 5.9722 × 1024 kg) whereas m1 and m2 are sampled in U(1, 5) in the 
Feynman database. (3) Some variables are treated as floats while they are integers, 
and (4) many equations are duplicates of each other (e.g., a multiplicative function of 
two variables f (x, y) = x ∗ y ) or have similar functional forms.

The ODE-Strogatz repository (La Cava et al. 2016) consists of ten physics equations 
that describe the behavior of dynamical systems which can exhibit chaotic and/or non-
linear behavior. Each dataset is one state of a two-state system of ordinary differential 
equations.

Within the same category, there exist several benchmarks  (Koza 1994; Keijzer 2003; 
Vladislavleva et al. 2009; Korns 2011; Uy et al. 2010; Jin et al. 2019; Petersen 2019) con-
sisting of real-valued symbolic functions. The majority of these benchmarks are proposed 
for GP-based methods and grouped into four categories: polynomial, trigonometric, loga-
rithmic, exponential, and square-root functions, and a combination of univariate and bivari-
ate functions. The suggested functions do not have any physical meaning, and most depend 

4 The equation number II.11.17 is missing in the benchmark repository.
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either on one or two independent variables. Datasets are generally generated by randomly 
sampling either 20 or 100 points in narrow ranges. The most commonly known is the so-
called Nguyen benchmark, which consists of 12 symbolic functions taken from Keijzer 
(2003); Hoai et al. (2002); Johnson (2009). Only four equations have the scalars {1,2,1/2} 
as constants therein. Each benchmark is defined by a ground-truth expression, training, and 
test datasets. The equations proposed in these benchmarks can not be found in a single 
repository. Therefore we list them in the Appendix in Tables 7, 8, and 9 and Tables  10 and 
11 for completeness and for easy comparison.

Real-world problems are characterized by an unknown model that underlies data. This 
category comprises two groups: observations and measurements. Data sets in the observa-
tions category can be originating from any domain such as health informatics, environmen-
tal science, business, commerce, etc. Data could be collected online or offline from reports 
or studies. A wide range of problems can be assessed from the following repositories: the 
PMLB (Olson et al. 2017), the OpenML (Vanschoren et al. 2013), and the UCI (Dua and 
Graff 2017). An exemplary application in this category is wind speed forcasting (Abdel-
laoui and Mehrkanoon 2021). Measurements represent sets of data points that are collected 
(and sometimes analysed) in physics experiments. Here the target model is either an under-
lying theory than can be derived from first principles or not. In the first case, symbolic 
regression would either infer the correct model structure and parameters or contribute to 
the theory development of the studied process, whereas in the second case, the symbolic 
regression output could be the awaited theory.

9  Discussion

SR is a growing area of ML and is gaining more attention as interpretability is increasingly 
promoted (Rudin 2019) in AI applications. SR is propelled by the fact that ML models are 
becoming very big in parameters at the expense of making accurate predictions. An exem-
plary application is the chatGPT-4, a large language model comprising hundreds of billions 
of parameters and trained on hundreds of terabytes of textual data. Such big models are 
very complicated networks. ChatGPT-4, for example, is accomplishing increasingly com-
plicated and intelligent tasks to the point that it is showing emergent properties (Wei et al. 
2022). However, it is not straightforward to understand when it works and, more impor-
tantly, when it does not. In addition, its performance improves with increasing the number 
of parameters, highlighting that its prediction accuracy depends on the size of the training 
data set. Therefore, a new paradigm is needed, especially in scientific disciplines, such as 
physical sciences, where problems are of causal hypothesis-driven nature. SR is by far the 
most potential candidate to fulfill the interpretability requirements and is expected to play a 
central role in the future of ML.

Despite the significant advances made in this subfield and the high performance 
of most deep learning-based SR methods proposed in the literature, still, SR meth-
ods fail to recover relatively simple relationships. A case in point is the Nguyen-12 
expression, i.e., f (x, y) = x4 − x3 + y2∕2 − y , where x and y are uniformly sampled 
in the range [0,  1]. The NGPPS method could not recover this particular expression 
using the library basis L = {+,−,×,÷, sin, cos, exp, log, x, y} . A variant of this expres-
sion, Nguyen-12⋆ , consisting of the same equation but defined over a larger domain, 
i.e., data points sampled in [0, 10], was successfully covered using the same library, 
with a recovery rate of 12% . This result is significantly below the perfect performance 
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on all other Nguyen expressions. A similar observation is made for the Livermore-5 
whose expression is f (x, y) = x4 − x3 + x2 − y . We ran NGPPS on Nguyen-12 with 
two libraries, a pure polynomial basis L1 = {+,−,×,÷, (⋅)2, (⋅)3, (⋅)4, x, y} and a mixed 
basis L2 = L1 ∪ {sin, cos, exp, log, sqrt, expneg} . The algorithm succeeds in recovering 
Nguyen-12 only using a pure polynomial basis with a recovery rate of 3% . The same 
observation is made by applying linear SR on Nguyen-12. This highlights how strongly 
the predicted expression depends on the set of allowable mathematical operations. A 
practical way to encounter this limitation is to implement basic domain knowledge 
in SR applications whenever possible. For example, astronomical data collected by 
detecting the light curves of astronomical objects exhibit periodic behavior. In such 
cases, periodic functions such as trigonometric functions should be part of the library 
basis.

Most SR methods are only applied to synthetic data for which the input–output rela-
tionship is known. This is justified because the methods must be cross-checked, and their 
performance must be evaluated using ground-truth expressions. However, the reported 
results are for synthetic data only. To the best of our knowledge, only one physics applica-
tion (Lemos et al. 2022) succeeded in extracting New’s laws of gravitation by applying SR 
to astronomical data. The absence of such applications leads us to state that SR is still a rel-
atively nascent area with the potential to make a big impact. Physics in general, and physi-
cal sciences in particular, represent a very broad field for SR development purposes and 
are very rich both in data and expressions, e.g., areas such as astronomy and high-energy 
physics are very rich in data. In addition, lots of our acquired knowledge in physics can be 
used for SR methods test purposes because underlying phenomena and equations are well 
known. All that is needed is greater effort and investment.

10  Conclusion

This work presents an in-depth introduction to the symbolic regression problem and an 
expansive review of its methodologies and state-of-the-art applications. Also, this work 
highlights a number of conclusions that can be made about symbolic regression methods, 
including (1) linear symbolic regression suffer many limitations, all originating from pre-
defining the model structure, (2) neural network-based methods lead to numerical issues 
and the library can not include all mathematical operations, (3) expression tree-based 
methods are yet the most powerful in terms of model performance on synthetic data, in 
particular transformer-based ones, (4) model predictions strongly depend on the set of 
allowable operations in the library basis, and (5) generally, deep learning-based methods 
are performing better than other ML-based methods.

Symbolic regression represents a powerful tool for learning interpretable models in a 
data-driven manner. Its application is likely to grow in the future because it balances pre-
diction accuracy and interpretability. Despite the limited SR application to real data, the 
few existing ones are very promising. A potential path to boost progress in this subfield is 
to apply symbolic regression to experimental data in physics.

Appendix: Datasets benchmarks equations

See Tables 7, 8, 9, 10, and 11.
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Table 7  Ground-truth expressions for Koza  (1994), Nguyen  (Uy et  al. 2010), Jin  (Jin et  al. 2019), Kei-
jzer (Keijzer 2003) and R Krawiec and Pawlak (2013) benchmarks

a Same as Nguyen-2

Dataset Expression Variables Data range

Koza-1a
x4 + x3 + x2 + x 1 U[− 1, 1, 20]

Koza-2 x5 − 2x3 + x 1 U[− 1, 1, 20]
Koza-3 x6 − 2x4 + x2 1 U[− 1, 1, 20]
Nguyen-1 x3 + x2 + x 1 U(− 1,1,20)
Nguyen-2 x4 + x3 + x2 + x 1 U(− 1,1,20)
Nguyen-3 x5 + x4 + x3 + x2 + x 1 U(− 1,1,20)
Nguyen-4 x6 + x5 + x4 + x3 + x2 + x 1 U(− 1,1,20)
Nguyen-5 sin(x2) cos(x) − 1 1 U(− 1,1,20)
Nguyen-6 sin(x) + sin(x + x2) 1 U(− 1,1,20)
Nguyen-7 log(x + 1) + log(x2 + 1) 1 U(0,2,20)
Nguyen-8

√
x 1 U(0,4,20)

Nguyen-9 sin(x) + sin(y2) 2 U(− 1,1,100)
Nguyen-10 2 sin(x) cos(y) 2 U(− 1,1,100)
Nguyen-11 xy 2
Nguyen-12 x4 − x3 +

1

2
y2 − y 2

Jin-1 2.5x4 − 1.3x3 + 0.5y2 − 1.7y 2 U(− 3,3,100)
Jin-2 8.0x2 + 8.0y3 − 15.0 2 U(− 3,3,100)
Jin-3 0.2x3 + 1.5y3 − 1.2y − 0.5x 2 U(− 3,3,100)
Jin-4 1.5 exp(x) + 5.0 cos(y) 2 U(− 3,3,100)
Jin-5 6.0 sin(x) cos(y) 2 U(− 3,3,100)
Jin-6 1.35xy + 5.5 sin((x − 1.0)(y − 1.0) 2 U(− 3,3,100)
Keijzer-1 0.3x sin(2�x) 1 E[− 1, 1, 0.1]
Keijzer-2 0.3x sin(2�x) 1 E[− 2, 2, 0.1]
Keijzer-3 0.3x sin(2�x) 1 E[− 3, 3, 0.1]
Keijzer-4 x3e−x cos(x) sin(x)(sin2(x) cos(x) − 1) 1 E[0, 10, 0.05]
Keijzer-5 30xz∕(x − 10)y2 3 x, z :  U[− 1,1,1000]

y :  U[1,2,1000]
Keijzer-6 ∑x

1
i 1 E[1, 50, 1]

Keijzer-7 log x 1 E[1, 100, 1]
Keijzer-8

√
x 1 E[0, 100, 1]

Keijzer-9 arcsinh(x) = log(x +
√
x2 + 1) 1 E[0, 100, 1]

Keijzer-10 xy 2 U[0, 1, 100]
Keijzer-11 xy + sin((x − 1)(y − 1)) 2 U[− 3, 3, 20]
Keijzer-12 x4 − x3 + y2∕2 − y 2 U[− 3, 3, 20]
Keijzer-13 6 sin(x) cos(y) 2 U[− 3, 3, 20]
Keijzer-14 8∕(2 + x2 + y2) 2 U[− 3, 3, 20]
Keijzer-15 x3∕5 + y3∕2 − y − x 2 U[− 3, 3, 20]
R1 (x + 1)3∕(x2 − x + 1) 1 E[− 1,1,20]
R2 (x5 − 3x3 + 1)∕(x2 + 1) 1 E[− 1,1,20]
R3 (x6 + x5)∕(x4 + x3 + x2 + x + 1) 1 E[− 1,1,20]
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Table 8  Ground-truth expressions for Korns (2011) and Livermore (Petersen 2019) benchmarks

Dataset Expression Variables Data range

Korns-1 1.57 + (24.3v) 1 U[− 50, 50, 10000]
Korns-2 0.23 + 14.2

v+y

3�
3 U[− 50, 50, 10000]

Korns-3 −5.41 + 4.9
v−x+y∕w

3�
4 U[− 50, 50, 10000]

Korns-4 −2.3 + 0.13 sin(z) 1 U[− 50, 50, 10000]
Korns-5 3 + 2.13 ln(�) 1 U[− 50, 50, 10000]
Korns-6 1.3 + 0.13

√
x 1 U[− 50, 50, 10000]

Korns-7 213.80940889(1 − e−0.54723748542x) 1 U[− 50, 50, 10000]
Korns-8 6.87 + 11

√
7.23 x v � 3 U[− 50, 50, 10000]

Korns-9
√
x

ln(y)

ez

v2
4 U[− 50, 50, 10000]

Korns-10 0.81 + 24.3
2y+3z2

4v3+5�4

4 U[− 50, 50, 10000]

Korns-11 6.87 + 11 cos(7.23x3) 1 U[− 50, 50, 10000]
Korns-12 2 − 2.1 cos(9.8x) sin(1.3�) 2 U[− 50, 50, 10000]
Korns-13 32 − 3

tan(x)

tan(y)

tan(z)

tan(v)
4 U[− 50, 50, 10000]

Korns-14 22 − 4.2(cos(x) − tan(y))
tanh(z)

sin(v)
4 U[− 50, 50, 10000]

Korns-15 12 − 6
tan(x)

ey
(ln(z) − tan(v)) 4 U[− 50, 50, 10000]

Livermore-1 1∕3 + x + sin(x2) 1 U[− 10,10,1000]
Livermore-2 sin(x2) cos(x) − 2 1 U[− 1,1,20]
Livermore-3 sin(x3) cos(x2) − 1 1 U[− 1,1,20]
Livermore-4 log(x + 1) + log(x2 + 1) + log(x) 1 U[0,2,20]
Livermore-5 x4 − x3 + x2 − y 2 U[0,1,20]
Livermore-6 4x4 + 3x3 + 2x2 + x 1 U[− 1,1,20]
Livermore-7 sinh(x) 1 U[− 1,1,20]
Livermore-8 cosh(x) 1 U[− 1,1,20]
Livermore-9 x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x 1 U[− 1,1,20]
Livermore-10 6 sin(x) cos(y) 2 U[0,1,20]
Livermore-11 x2y2∕(x + y) 2 U[− 1,1,50]
Livermore-12 x5∕y3 2 U[− 1,1,50]
Livermore-13 x1∕3 1 U[0,4,20]
Livermore-14 x3 + x2 + x + sin(x) + sin(x2) 1 U[− 1,1,20]
Livermore-15 x1∕5 1 U[0,4,20]
Livermore-16 x2∕5 1 U[0,4,20]
Livermore-17 4 sin(x) cos(y) 2 U[0,1,20]
Livermore-18 sin(x2) cos(x) − 5 1 U[− 1,1,20]
Livermore-19 x5 + x4 + x2 + x 1 U[− 1,1,20]
Livermore-20 exp(−x2) 1 U[− 1,1,20]
Livermore-21 x8 + x7 + x6 + x5 + x4 + x3 + x2 + x 1 U[− 1,1,20]
Livermore-22 exp(−0.5x2) 1 U[− 1,1,20]
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Table 9  Ground-truth expressions for Vladislavleva et al. (2009) benchmark

Dataset Expression Variables Data range

Vladislavleva-1 e−(x−1)
2

1.2+(y−2.5)2
1 U[0.3, 4, 100]

Vladislavleva-2 e−xx3(cos x sin x)(cos x sin2 x − 1) 2 E[0.5, 10, 0.1]
Vladislavleva-3 e−xx3(cos x sin x)(cos x sin2 x − 1)(y − 5) 2 x : E[0.05,10,0.1]

y : E[0.05,10.05,2]
Vladislavleva-4 10

5+
∑5

i=1
(xi−3)

2
5 U[0.05, 6.05, 1024]

Vladislavleva-5 30(x − 1)
(z−1)

y2(x−10)
3 x :  U[0.05, 2, 300]

y :  U[1, 2, 300]
z :  U[0.05, 2, 300]

Vladislavleva-6 6 sin(x) cos(y) 2 U[0.1, 5.9, 30]
Vladislavleva-7 (x − 3)(y − 3) + 2 sin((x − 4)(y − 4)) 2 U[0.05, 6.05, 300]
Vladislavleva-8 (x−3)4+(y−3)3−(y−3)

(y−2)4+10
2 U[0.05, 6.05, 50]
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Table 10  Feynman physics equation (Udrescu and Tegmark 2019)

Function form #v Function form #v

f = exp(−�2∕2)∕
√
(2�) 1 n = n0 exp(−mgx∕(kbT)) 6

f = exp(−(�∕�)2∕2)∕(
√
(2�)�) 2 Lrad = h̄𝜔3∕(𝜋2c2(exp(h̄𝜔∕(kbT)) − 1)) 5

f = exp(−((� − �1)∕�)
2∕2)∕(

√
(2�)�) 3 v = mudriftqVe∕d 4

d =
√
(x2 − x1)

2 + (y2 − y1)
2 4 D = �ekbT 3

F =
Gm1m2

((x2−x1)
2+(y2−y1)

2+(z2−z1)
2

9 � = 1∕(� − 1)kbv∕A 4

m =
m0√

1−v2∕c2
3 E = nkbT ln(

V2

V1
) 5

A = x1y1 + x2y2 + x3y3 6 c =
√
(�pr∕�) 3

F = �Nn 2 E = mc2∕
√
1 − v2∕c2 3

F = q1q2∕(4��r
2) 4 x = x1(cos(�t) + � cos(�t)2) 4

Ef = q1r∕(4��r
3) 3 P = �(T2 − T1)A∕d 5

F = q2Ef 2 FE = Pwr∕(4�r2) 2
F = q(Ef + Bv sin(�)) 5 Ve = q∕(4��r) 3
K = 1∕2m(v2 + u2 + w2) 4 Ve =

1

4��
pd cos(�)∕r

2 4

U = Gm1m2(
1

r2
−

1

r1
) 5 Ef =

3

4��
pdz∕r

5
√
x2 + y2 6

U = mgz 3 Ef =
3

4��
pd cos(�) sin(�)∕r

3 4

U =
1

2
kspringx

2 2 E =
3

5
q2∕(4��d) 3

x� = (x − ut)∕
√
1 − u2∕c2 4 Eden = �Ef 2∕2 2

t� = (t − ux∕c2)∕
√
1 − u2∕c2 4 Ef = �den∕�1∕(1 + �) 3

p = m0v∕
√
1 − v2∕c2 3 x = qEf ∕(m(�

2
0
− �2)) 5

v� = (u + v)∕(1 + uv∕c2) 3 n = n0(1 + pdEf cos(�)∕(kbT)) 6
r = (m1r1 + m2r2)∕(m1 + m2) 4 P⋆ = nrhop

2
d
Ef ∕(3kbT) 5

� = rF sin(�) 3 P⋆ = n𝛼∕(1 − (n𝛼∕3))𝜖Ef 4
L = mrv sin(�) 4 � = 1 + n�∕(1 − (n�∕3)) 2

E =
1

4
m(�2 + �2

0
)x2 4 B = 1∕(4��c2)2I∕r 4

Ve = q∕C 2 �c = �c0∕
√
1 − v2∕c2 3

�1 = arcsin(n sin(�2)) 2 j = �c0v∕
√
1 − v2∕c2 3

ff = 1∕(
1

d1
+

n

d2
) 3 E = −�MB cos(�) 3

k = �∕c 2 E = −pdEf cos(�) 3

x =
√

x2
1
+ x2

2
− 2x1x2 cos(�1 − �2)

4 Ve = q∕(4��r(1 − v∕c)) 5

I⋆ = I0⋆ sin2(n𝜃∕2)∕ sin2(𝜃∕2) 3 k =
√
�2∕c2 − �2∕d2 3

� = arcsin(�∕nd) 3 FE = �cE2
f

3

P = q2a2∕(6��c3) 4 Eden = �E2
f

2

P = (1∕2�cE2
f
)(8�r2∕3)(�4∕(�2 − �2

0
)2) 6 I = qv∕(2�r) 3

� = qvB∕p 4 �M = qvr∕2 3
� = �0∕(1 − v∕c) 3 � = gqB∕(2m) 4

� = (1 + v∕c)∕
√
1 − v2∕c2�0

3 𝜇M = qh̄∕(2m) 3

E = h̄𝜔 2 E = g𝜇MBJz∕h̄ 5

I⋆ = I1 + I2 + 2
√
I1I2 cos(𝛿) 3 M = nrho�M tanh(�MB∕(kbT)) 5

r = 4𝜋𝜖h̄2∕(mq2) 4 f = �mB∕(kbT) + (�m�)∕(�c
2kbT)M 8

E =
3

2
pFV

2 E = �M(1 + �)B 6
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