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Abstract

Designing deep learning based methods with medical images has always been an attractive
area of research to assist clinicians in rapid examination and accurate diagnosis. Those
methods need a large number of datasets including all variations in their training stages. On
the other hand, medical images are always scarce due to several reasons, such as not enough
patients for some diseases, patients do not want to allow their images to be used, lack of
medical equipment or equipment, inability to obtain images that meet the desired criteria.
This issue leads to bias in datasets, overfitting, and inaccurate results. Data augmentation is
a common solution to overcome this issue and various augmentation techniques have been
applied to different types of images in the literature. However, it is not clear which data
augmentation technique provides more efficient results for which image type since different
diseases are handled, different network architectures are used, and these architectures are
trained and tested with different numbers of data sets in the literature. Therefore, in this
work, the augmentation techniques used to improve performances of deep learning based
diagnosis of the diseases in different organs (brain, lung, breast, and eye) from different
imaging modalities (MR, CT, mammography, and fundoscopy) have been examined.
Also, the most commonly used augmentation methods have been implemented, and
their effectiveness in classifications with a deep network has been discussed based on
quantitative performance evaluations. Experiments indicated that augmentation techniques
should be chosen carefully according to image types.

Keywords Data augmentation - GAN - Medical images - Synthesis

1 Introduction

Medical image interpretations are mostly performed by medical professionals like clinicians
and radiologists. However, the variations among different experts and complexities
of medical images make it very difficult for the experts to diagnose diseases accurately
all the time. Thanks to computerized techniques, the tedious image analysis task can be
performed by semi-/fully-automatically, and they help the experts to make objective, rapid
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and accurate diagnoses. Therefore, designing deep learning based methods with medical
images has always been an attractive area of research (Tsuneki 2022; van der Velden
et al. 2022; Chen et al. 2022a). Particularly, deep Convolutional Neural Network (CNN)
architectures have been used for several processes (e.g., image segmentation, classification,
registration, content-based image retrieval, identification of disease severity, and lesion/
tumor/tissue detection, etc.) in some medical diagnosis fields like eye, breast, brain, and
lung (Yu et al. 2021). Although CNNs can produce results with higher performance
compared to the results of traditional machine learning based methods, improving their
generalization abilities and developing robust models are still significant challenging
issues. Because training data sets should be constructed with a large number of images
including all variations (i.e., heterogeneous images) to provide the high generalization
ability and robustness of those architectures. However, the number of medical images is
usually limited. The data scarcity problem can be due to not enough patients for some
diseases, patients do not want to allow their images to be used, lack of medical equipment
or equipment, inability to obtain images that meet the desired criteria, inability to access
images of patients living in different geographical regions or of different races.

Another important issue is that, even if enough images are acquired, labeling them
(unlike natural image labeling which is relatively easy) is not easy, requires certain domain
knowledge of medical professionals, and is time-consuming. Also, legal issues and privacy
are other concerns in the labeling of medical images. Therefore, imbalanced data causing
overfitting, biased and inaccurate results is a significant challenge that should be handled
while developing deep network based methods.

To overcome these challenges by using balanced number of images and expanding
training datasets automatically, image augmentation methods are used. Thanks to the
augmentation methods, deep network architectures’ learning and generalization ability
can be improved, and the desired robustness property of the networks can be provided
(Sect. 2). However, various augmentation techniques have been applied with different types
of images in the literature. It is not clear which data augmentation technique provides more
efficient results for which image type since different diseases are handled, different network
architectures are used, and these architectures are trained and tested with different numbers
of data sets in the literature (Sect. 2). According to the segmentation or classification
results presented in the literature, it is not possible to understand or compare the impacts or
contributions of the used augmentation approaches on the results, and to decide the most
appropriate augmentation method.

In the literature, researchers have presented some surveys about augmentation methods.
However, they have focused on the augmentation methods applied either;

(i) with a specific type of images like natural images (Khosla and Saini 2020),
mammography images (Oza et al. 2022), Computed Tomography (CT), and
Magnetic Resonance (MR) images (Chlap et al. 2021) acquired with different
imaging techniques and have different properties.

(i) to improve the performance of specific operations like polyp segmentation (Dorizza
2021) and text classification (Bayer et al. 2021).

(i) with a specific technique, such as Generative Adversarial Network (GAN) (Chen
et al. 2022b), erasing and mixing (Naveed 2021).

In this work, a more comprehensive range of image types has been handled. Also,

a more in-depth analysis has been performed through the implementation of common
augmentation methods with the same data sets for objective comparisons, and
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evaluations based on quantitative results. According to our knowledge, there is no (i)
comprehensive review that covers a greater range of medical imaging modalities and
applications than articles in the literature, and (ii) any work on quantitative evaluations
of the augmentation methods applied with different medical images to determine the
most appropriate augmentation method.

To fill this gap in the literature, in this paper, the augmentation techniques that have
been applied to improve performances of deep learning-based diagnosis of diseases
in different organs (brain, lung, breast, and eye) using different imaging modalities
(MR, CT, mammography, and fundoscopy) have been examined. The chosen imaging
modalities are widely used in medicine for many applications such as classification
of brain tumors, lung nodules, and breast lesions (Meijering 2020). Also, in this
study, the most commonly used augmentation methods have been implemented using
the same datasets. Additionally, to evaluate the effectiveness of those augmentation
methods in classifications from the four types of images, a classifier model has been
designed and classifications with the augmented images for each augmentation
method have been performed with the same classifier model. The effectiveness of the
augmentation methods in the classifications has been discussed based on quantitative
results. This paper presents a novel comprehensive insight into the augmentation
methods proposed for diverse medical images by considering popular medical research
problems altogether.

The key features of this paper are as follows:

1. The techniques used for augmentation of brain MR images, lung CT images, breast
mammography images, and eye fundus images have been reviewed.

2. The papers published between 2020 and 2022 and mainly collected by Springer, IEEE
Xplore, and ELSEVIER, have been reviewed, and a systematic and comprehensive
review and analyses of the augmentation methods have been carried out.

3. Commonly used augmentations in the literature have been implemented with four
different medical image modalities.

4. For comparisons of the effectiveness of the augmentation methods in deep learning-
based classifications, the same network architecture and expanded data sets with the
augmented images from each augmentation methods have been used.

5. Five evaluation metrics have been used, and the results provided from each classification
have been evaluated with the same evaluation metrics.

6. The best augmentation method for different imaging modalities showing different organs
has been determined according to quantitative values.

We believe that the results and conclusions presented in this work will be helpful for
researchers to choose the most appropriate augmentation technique in developing
deep learning-based approaches to diagnose diseases with a limited number of
image data. Also, this work can be helpful for researchers interested in developing
new augmentation methods for different types of images. This manuscript has been
structured as follows: A detailed review of the augmentation approaches applied with
the medical images handled in this work between 2020 and 2022 is presented in the
second section. The data sets and methods implemented in this work are explained in
the third section. Evaluation metrics and quantitative results are given in the fourth
section. Discussions are given in the fifth section, and conclusions are presented in the
sixth section.
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2 Related works

In this section, the methods used in the literature for augmentation of brain MR images,
lung CT images, breast mammography images, and eye fundus images are presented.

2.1 Augmentation of brain MR images

In the literature, augmentation of brain MR images have been performed with various
methods such as rotation, noise addition, shearing, and translation to increase number of
images and improve performances of several tasks (Table 1). For example, augmentation
has been provided by noise addition and sharpening to increase the accuracy of tumor
segmentation and classification in a study (Khan et al. 2021). In another study, augmented
images have been obtained by translation, rotation, random cropping, blurring, and
noise addition to obtain high performance from the method applied for age prediction,
schizophrenia diagnosis, and sex classification (Dufumier et al. 2021). In different studies,
random scaling, rotation, and elastic deformation have been applied to increase tumor
segmentation accuracy (Isensee et al. 2020; Fidon et al. 2020). Although mostly those
techniques have been preferred in the literature, augmentation has also been provided by
producing synthetic images. To generate synthetic images, Mixup method, which combines
two randomly selected images and their labels, or modified Mixup, or GAN structures have
been used (Table 1).

For instance, a modified Mixup is a voxel-based approach called TensorMixup, which
combines two image patches using a tensor, and has been applied (Wang et al. 2022) to
boost the accuracy of tumor segmentation. In a recent study, a GAN based augmentation
has been used for cerebrovascular segmentation (Kossen et al. 2021).

All methods applied for augmentation of brain MR images in the publications
reviewed in this work and the details in those publications are presented in Table 1. Those
augmentation methods have been used in the applications developed for different purposes.
In those applications, different network architectures, datasets, and numbers of images have
been used, and also their performances have been evaluated with different metrics. High
performances have been obtained from those applications according to the reported results.
However, the most effective and appropriate augmentation method used in them with the
brain MR images is not clear due to those differences. Also, it is not possible to determine
augmentation methods’ contributions to those performances according to the presented
results in those publications.

2.2 Augmentation of lung CT images

In computerized methods being developed to assist medical professionals in various tasks
[e.g., nodule or lung parenchyma segmentation, nodule classification, prediction of malig-
nancy level, disease diagnosis like coronavirus (covid-19), etc.], augmentations of CT lung
images are commonly provided by traditional techniques like rotation, flipping, and scal-
ing (Table 2). For example, image augmentation has been provided using flipping, transla-
tion, rotation, and brightness changing to improve automated diagnosis of covid-19 by Hu
et al. (2020). Similarly, a set of augmentations (Gaussian noise addition, cropping, flipping,
blurring, brightness changing, shearing, and rotation) has been applied to increase the per-
formance of covid-19 diagnosis by Alshazly et al. (2021). Also, several GAN models have
been used to augment lung CT images by generating new synthetic images (Table 2). While
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doing a GAN based augmentation of lung CT scans, researchers usually tend to generate
the area showing lung nodules in the whole image. Because the lung nodules are small and
therefore it is more cost-effective than generating a larger whole image or background area.
For instance, guided GAN structures have been implemented to produce synthetic images
showing the area with lung nodules by Wang et al. (2021). Nodules’ size information and
guided GANs have been used to produce images with diverse sizes of lung nodules by
Nishio et al. (2020).

All methods applied for augmentation of breast mammography images in the
publications reviewed in this study and the details in those publications are presented in
Table 2. Those augmentation methods have been applied in the applications developed for
different purposes. In those applications, different network models, data sets and number
of images have been used, and also their performances have been evaluated with different
metrics. High performances have been obtained from those applications according to the
reported results. However, the most effective and appropriate augmentation method used in
them with the lung CT images is not clear due to those differences. Also, it is not possible
to determine augmentation methods’ contributions to those performances according to the
presented results in those publications.

2.3 Augmentation of breast mammography images

Generally, augmentation methods with mammography images have been applied to
improve automated recognition, segmentation, and detection of breast lesions. Because
failures in the detection or identification of the lesions lead to unnecessary biopsies or
inaccurate diagnoses. In some works, in the literature, augmentation methods have been
applied on extracted positive and negative patches instead of the whole image (Karthiga
et al. 2022; Zeiser et al. 2020; Miller et al. 2022; Kim and Kim 2022; Wu et al. 2020b).
Positive patches are extracted based on radiologist marks while negative patches are
extracted as random regions from the same image. Also, refinement and segmentation of
the lesion regions before the application of an augmentation method is the most preferred
way to provide good performance from the detection and classification of the lesions.
For instance, image refinement has been provided by noise reduction and resizing steps,
and then segmentation and augmentation steps have been applied (Zeiser et al. 2020).
Similarly, noise and artifacts have been eliminated before the segmentation of the images
into non-overlapping parts and augmentation (Karthiga et al. 2022). Augmentation of
patches or whole mammography images have usually been performed by scaling, noise
addition, mirroring, shearing, and rotation techniques or using several combinations of
them (Table 3). For instance, a set of augmentation methods (namely mirroring, zooming,
and resizing) has been applied to improve automated classification of images into three
categories (as normal, malignant, and benign) (Zeiser et al. 2020). Also, those techniques
have been used together with GANs to provide augmentations with new synthetic images.
For instance, flipping and deep convolutional GAN has been combined for binary
classifications of images (as normal and with a mass) by Alyafi et al. (2020). Only GAN
based augmentations have also been used. For instance, contextual GAN, which generates
new images by synthesizing lesions according to the context of surrounding tissue, has
been applied to improve binary classification (as normal and malignant) by Wu et al.
(2020Db). In another work (Shen et al. 2021), both contextual and deep convolutional GAN
have been used to generate synthetic lesion images with margin and texture information
and achieve improvement in the detection and segmentation of lesions.

@ Springer
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All methods applied for augmentation of breast mammography images in the publica-
tions reviewed in this work and the details in those publications are presented in Table 3.
Those augmentation methods have been applied in the applications developed for differ-
ent purposes. In those applications, different network architectures, datasets and number
of images have been used, and also their performances have been evaluated with different
metrics. High performances have been obtained from those applications according to the
reported results. However, the most effective and appropriate augmentation method used in
them with breast mammography images is not clear due to those differences. Also, it is not
possible to determine augmentation methods’ contributions to those performances accord-
ing to the presented results in those publications.

2.4 Augmentation of eye fundus images

Eye fundus images show various important features, which are symptoms of eye diseases,
such as abnormal blood veins (neovascularization), red/reddish spots (hemorrhages,
microaneurysms), and bright lesions (soft or hard exudates). Those features are used in
deep learning based methods being developed for different purposes like glaucoma
identification, classification of diabetic retinopathy (DR), and identification of DR severity.
Commonly used augmentation techniques with eye fundus images to boost the performance
of deep learning based approaches are rotation, shearing, flipping, and translation
(Table 4). For example, in a study (Shyamalee and Meedeniya 2022), a combined method
including rotation, shearing, zooming, flipping, and shifting has been applied for glaucoma
identification. Another combined augmentation including shifting and blurring has been
used by Tufail et al. (2021) before binary classification (as healthy and nonhealthy) and
multi-class (5 classes) classification of images to differentiate different stages of DR.
In a different study (Kurup et al. 2020), combination of rotation, translation, mirroring,
and zooming has been used to achieve automated detection of malaria retinopathy. Also,
pixel intensity values have been used in some augmentation techniques since fundus
images are colored images. For instance, to achieve robust segmentation of retinal
vessels, augmentation has been provided by a channel-wise random gamma correction
(Sun et al. 2021). The authors have also applied a channel-wise vessel augmentation
using morphological transformations. In another work (Agustin et al. 2020), to improve
the robustness of DR detection performance, image augmentation has been performed
by zooming and a contrast enhancement process known as Contrast Limited Adaptive
Histogram Equalization (CLAHE). Augmentations have also been provided by generating
synthetic images using GAN models. For instance, conditional GAN (Zhou et al. 2020)
and deep convolutional GAN (Balasubramanian et al. 2020) based augmentations
have been used to increase the performance of the methods developed for automatic
classifications of DR according to its severity level. In some works, retinal features (such as
lesion and vascular features) have been developed and added to new images. For instance,
NeoVessel (NV)-like structures have been synthesized in a heuristic image augmentation
(Ara’ujo et al. 2020) to improve detection of proliferative DR which is an advanced DR
stage characterized by neovascularization. In this augmentation, different NV kinds (trees,
wheels, brooms) have been generated depending on the expected shape and location of
NVs to synthesize new images.

All methods applied for augmentation of eye fundus images in the publications reviewed
in this study and the details in those publications are presented in Table 4. Those augmen-
tation methods have been applied in the applications developed for different purposes. In
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those applications, different network structures, data sets and number of images have been
used, and also their performances have been evaluated with different metrics. High per-
formances have been obtained from those applications according to the reported results.
However, the most effective and appropriate augmentation method used in them with eye
fundus images is not clear due to those differences. Also, it is not possible to determine
augmentation methods’ contributions to those performances according to the presented
results in those publications.

2.5 Commonly applied augmentation methods
2.5.1 Rotation

Rotation-based image augmentations are provided by rotating an image by concerning its
original position. The rotation uses a new coordinate system and retains the same relative
positions of the pixels of an image. It can be rightward or leftward across an axis within
the range of [1°, 359°]. Image labels may not always be preserved if the degree of rotation
increases. Therefore, the safety of this augmentation technique depends on the rotation
degree. Although rotation transformation is not safe on images showing 6 and 9 in digit
recognition applications, it is generally safe on medical images.

2.5.2 Flipping

Flipping is a technique generating a mirror image from an image. The pixel’s positions are
inverted by concerning one of the two axes (for a two-dimensional image). Although it can
be applied with vertical or/and horizontal axes, vertical flipping is rarely preferred since
the bottom and top regions of an image may not always be interchangeable (Nalepa et al.
2019).

2.5.3 Translation
Images are translated along an axis using a translation vector. This technique preserves
the relative positions between pixels. Therefore, translated images provide prevention of

positional bias (Shorten and Khoshgoftaar 2019) and the models do not focus on properties
in a single spatial location (Nalepa et al. 2019).

2.5.4 Scaling

Images are scaled along different axes with a scaling factor, which can be different or the
same for each axis. Especially, scaling changings can be interpreted as zoom out (when the
scaling factor is less than 1) or zoom in (when the scaling factor is greater than 1).

2.5.5 Shearing

This transformation slides one edge of an image along the vertical or horizontal axis,
creating a parallelogram. A vertical direction shear slides an edge along the vertical axis,

@ Springer
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while a horizontal direction shear slides an edge along the horizontal axis. The amount of
the shear is controlled by a shear angle.

2.5.6 Augmentation using intensities

This augmentation is provided by modification of contrast or brightness, blurring, intensity
normalization, histogram equalization, sharpening, and addition of noise. If the preferred
type of noise is Gaussian, intensity values are modified by sampling a Gaussian distribution
randomly. If it is salt-and-pepper type of noise, pixel values are set randomly to white and
black. Uniform noise addition is performed by modification of pixel values using randomly
sampling a uniform distribution.

2.5.7 Random cropping and random erasing

Augmentation by random cropping is applied by taking a small region from an original
image and resizing it to match the dimensions of the original image. Therefore, this
augmentation can also be called scaling or zooming. Augmentation by random erasing is
performed by randomly eliminating image regions.

2.5.8 Color modification

Image augmentation by color modification is performed in several ways. For example, an
RGB-colored image is stored as arrays, which correspond to 3 color channels representing
levels of red, green, and blue intensity values. Because of this, the color of the image
can be changed without losing its spatial properties. This operation is called color space
shifting, and it is possible to perform the operation in any number of spaces because the
original color channels are combined in different ratios in every space. Therefore, a way
to augment an RGB-colored image by color modification is to put the pixel values in the
color channels of the image into a histogram and then manipulate them using filters to
generate new images by changing the color space characteristics. Another way is to take 3
shifts (integer numbers) from 3 RGB filters and add each shift into a channel in the original
image. Also, image augmentation can be provided by updating values of hue, saturation,
and value components, isolating a channel (such as a blue, red, or green color channel),
and converting color spaces into one another to augment images. However, converting a
color image to its grayscale version should be performed carefully because this conversion
reduces performance by up 3% (Chatfield et al. 2014).

2.5.9 GAN based augmentation

GANSs are generative architectures constructed with a discriminator to separate synthetic
and true images and a generator to generate synthetic realistic images. The main
challenging issues of GAN based image augmentations are generating images with high
quality (i.e., high-resolution, clear) and maintaining training stability. To overcome those
issues, several GAN variants were developed such as conditional, deep convolutional,
and cycle GAN. Conditional GAN adds parameters (e.g., class labels) to the input of the
generator to control generated images and allows conditional image generation from the
generator. Deep convolutional GAN uses deep convolution networks in the GAN structure.
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Cycle GAN is a conditional GAN and translates images from one domain to another (i.e.,
image-to-image translation), which modifies input images into novel synthetic images that
meet specific conditions. Wasserstein GAN is the structure that is constructed with the
loss function designed with the earth-mover distance to increase the stability of the model.
Style GAN and progressively trained GAN add coarse to fine details and learn features
from training images to synthesize new images.

3 Materials and methods
3.1 Materials

In this work, publicly available brain MR, lung CT, breast mammography, and eye fundus
images have been used.

Brain MR images have been provided from Multimodal Brain Tumor Image Segmenta-
tion Challenge (BRaTS) (Bakas et al. 2018). The data for each patient includes four diverse
models of MR images which are Fluid-Attenuated Inversion Recovery (FLAIR) images,
T2-weighted MR images, T1-weighted MR images with Contrast Enhancement (T1-CE),
and T1-weighted MR images. Different modal images provide different information about
tumors. In this work, FLAIR images have been used. Example FLAIR images showing
High-Grade Glioma (HGG) (Fig. 1a, b) and Low-Grade Glioma (Fig. 1c, d) (LGG) are pre-
sented in Fig. 1. The BRaTS database contains 285 images including HGG (210 images)
and LGG (75 images) cases.

Lung images have been provided from Lung Image Database Consortium and Image
Database Resource Initiative (LIDC-IDRI) database (Armato et al. 2011; McNitt-Gray
et al. 2007; Wang et al. 2015) by the LUNA16 challenge (Setio et al. 2017). In the data-
base, there are 1018 CT scans which belong to 1010 people. Those scans were annotated
by four experienced radiologists. The nodules that were marked by those radiologists were
divided into three groups which are “non-nodule>3 millimeters”, “nodule <3 millim-
eters”, and “nodule >3 millimeters” (Armato et al. 2011). The images having a slice thick-
ness greater than 3 mm were removed due to their usefulness according to the suggestions
(Manos et al. 2014; Naidich et al. 2013). Also, the images having missing slices or not
consistent slice spacing were discarded. Therefore, there are a total of 888 images extracted
from 1018 cases. Example images with nodules (Fig. 2a) and without nodules (Fig. 2b)
have been presented in Fig. 2.

(@) (b)

(© (d)

Fig. 1 Brain MR scans showing HGG (a, b) and LGG (¢, d) (Bakas et al. 2018)
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Fig.2 Example images showing nodules (a) and non-nodule regions (b) (Armato et al. 2011)

Breast mammography images have been provided from the INbreast database
(Moreira et al. 2012). It contains 410 images, of which only 107 images show breast
masses, and the total number of mass lesions is 115 since an image may contain more
than one lesion. The number of benign and malignant masses is 52 and 63, respec-
tively. Example mammography images without any mass (Fig. 3a), with a benign mass
(Fig. 3b), and malignant mass (Fig. 3c) lesions have been presented in Fig. 3.

Eye fundus images have been provided from the Messidor database (Decenciere
et al. 2014) including 1200 images categorized into three classes (0-risk, 1-risk, and
2-risk) according to the diabetic macular edema risk level. The number of images in the

©

Fig.3 Mammography images without mass (a), a benign mass (b), and a malignant mass (¢) (Moreira et al.
2012)

(®) (©

Fig.4 Eye fundus images showing macular edema with O-risk (a), 1-risk (b), and 2-risk (¢) (Decenciere
et al. 2014)
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categories is 974, 75, and 151, respectively. Example images showing macular edema
with O-risk (Fig. 4a), 1-risk (Fig. 4b), and 2-risk (Fig. 4c) have been presented in Fig. 4.

3.2 Implemented augmentation methods

In this work, commonly used augmentation methods based on transformations and
intensity modifications have been implemented to see and compare their effects on the
performance of deep learning based classifications from MR, CT, and mammography
images. Also, a method based on a color modification to augment colored eye fundus
images has been applied. Those methods are explained below.

Ist Method In this method, a shearing angle, which is selected randomly within
the range [—15°, 15°], is used and a shearing operation is applied within the x and
y-axis. This operation is repeated 10 times with 10 different shearing angles. By this
method, 10 images are generated from an original image.

2nd Method In this method, translation operation is applied on the x and y-axis. This
operation is repeated 10 times by using different values sampled randomly within the
range [— 15, 15]. By this method, 10 images are generated from an original image.
3rd Method Rotation angles are selected randomly within the range [—25°, 25°]
and clockwise rotations are applied using 10 different angle values. 10 images are
generated from an original image by this method.

4th Method In this method, noise addition is applied by /=1 + (rand(size(l)) — FV) X N,
where the term FV refers to a fixed value, N refers to noise and [ refers to an input
image. The noise to be added is generated using a Gaussian distribution. The
variance of the distribution is computed from the input images while the mean value
is set to zero. In this study, three different fixed values (0.3, 0.4, and 0.5) are used and
3 images are generated from an input image.

5th Method In this method, noise is added to each image with 3 density values (0.01,
0.02, and 0.03) and a salt-and-pepper type noise is used. Therefore, 3 images are
generated from an input image by this method.

6th Method In this method, augmentation is provided by salt-and-pepper type noise
addition (5th method) followed by shearing (1st method). 30 images are generated
from an input image by this method.

7th Method In this method, augmentation is provided by Gaussian noise addition (4th
method) followed by rotation (3rd method). 30 images are generated from an input
image by this method.

8th Method In this augmentation method, clockwise rotation and then translation
operations are applied. Rotation angles are selected randomly within the range
[—25°, 25°] and translation is applied on the x and y-axis by using different values
sampled randomly within the range [— 15, 15]. This successive operation is applied
10 times, and 10 images are generated from an input image by this method.

9th Method In this method, translation is applied followed by the shearing. The
translation step is applied on the x and y-axis with different values sampled randomly
within the range [— 15, 15]. In the shearing step, an angle is selected randomly within
the range [— 15°, 15°], and shearing is applied within the x and y-axis. The subsequent
operations are applied 10 times and 10 images are generated from an input image by this
method.
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10th Method In this method, three operations (translation, shearing, and rotation)
are applied subsequently. Implementation of the translation and shearing operations
are performed as explained in the 9th method. In the rotation step, a random angle is
selected within the range [—25°, 25°] clockwise rotation is applied. The successive
operations are applied 10 times, and 10 images are generated from an input image by
this method.

11th Method Color shifting, sharpening, and contrast changing have been combined in
this method. Color shifting has been applied by taking 3 shifts (integer numbers) from
3 RGB filters and adding each shift into one of the 3 color channels in the original
images. Sharpening has been changed by blurring the original images and subtracting
the blurred images from the original images. A Gaussian filter, whose variance value is
1, has been used for the blurring process. Contrast changing has been applied by scaling
the original images linearly between i, and i, (i; <i,), which will be the maximum and
minimum intensities in the augmented images, and then mapping the original images’
pixels with intensity values higher than i, (or lower than i;) to 255 (or 0). Therefore, 3
images are generated from an input image by this method.

3.3 Classification

In this work, to compare the effectiveness of the augmentation approaches in classifications,
a CNN-based classifier has been used. In this step, the original images taken from the
public databases (Sect. 3.1) have been used in construction of training and testing datasets.
However, the databases have imbalanced class distributions. Therefore, to obtain unbiased
classification results, an equal number of images have been taken from the databases for
the classes. Those balanced numbers of images have been used with the augmentation
methods and the generated images from them have been added into the data sets. 80% of
the total data has been used in the training stage, the rest 20% of the data has been used in
the testing stage. It should be reminded here that the goal in this study is to evaluate the
augmentation techniques used with different types of images in improving the classification
rather than evaluations of classifier models. Therefore, ResNet101 architecture has been
chosen and implemented in this work. The reason to choose this architecture is to utilize
its advantage in addressing the gradient vanishing issue and high learning ability (He et al.
2016). Pre-training of networks by using large datasets [such as ImageNet (Russakovsky
et al. 2015)] and then fine-tuning the networks for target tasks having less training data has
been commonly applied in recent years. Pre-training has provided superior results on many
tasks, such as action recognition (Simonyan and Zisserman 2014; Carreira and Zisserman
2017), image segmentation (He et al. 2017; Long et al. 2015), and object detection (Ren
et al. 2015; Girshick 2015; Girshick et al. 2014). Therefore, transfer learning from a
model trained using ImageNet has been used in this work for fine-tuning of the network.
Optimization has been provided by Adam, and activation has been provided by ReL.U. The
initial learning rate has been chosen as 0.0003, and cross-entropy loss has been computed
to update the weights in the training phase. The number of epochs and mini-batch size have
been set as 6 and 10, respectively.
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4 Results

Classification results have been evaluated by using these five measurements: specificity,
accuracy, sensitivity, Matthew Correlation Coefficient (MCC), and F1-score computed by:

TP+ TN
Accuracy = (D
TP+ FP+ TN + FN
TN
Specificity = ————
pecificity = w0 Fp &)
Sensitivity = _TIr 3
" TP+FN 3)
2xXTP
Flscare = (4)

2XTP+FP+FN

MCC = TP X TN — FP X FN )

/(TP + FP)(TP + FN)(IN + FP)(IN + FN)

where FP, FN, TN, and TP refer to false positives, false negatives, true negatives, and true
positives, respectively. The number of images obtained from each augmentation method
for each augmentation approach is given in Table 5.

The augmentation methods and quantitative results obtained by classifications of HGG
and LGG cases from brain MR images have been presented in Table 6.

Lung CT scans have been classified as a pulmonary nodule or a non-nodule with the
same classifier. 1004 lung nodules of which 450 positive candidates provided by the
LIDC-IDRI have been used. After generation more positive candidate nodules with the
augmentation methods, equal number of negative and positive candidates have been used
in the classifications. The augmentation methods and quantitative results of classifications
have been presented in Table 7.

Table 5 The number of images from each augmentation method

Image augmentation method Operations Number of augmented
images from 1 image

1st augmentation method Shearing 10
2nd augmentation Method Translation

3rd augmentation method Rotation

4th augmentation method Gaussian noise addition 3
5th augmentation method Salt and pepper noise addition

6th augmentation method Salt and pepper noise addition and shearing 30
7th augmentation method Gaussian noise addition and rotation 30
8th augmentation method Rotation and translation 10
9th augmentation method Translation and shearing 10
10th augmentation method Translation, shearing and rotation 10
11th augmentation method Color shifting, sharpening, contrast changing 3
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Table 6 Results of classifications from brain MR images

Augmentation method Accuracy (%) Sensitivity (%) Specificity (%) Fl-score (%) MCC (%)
1st augmentation method 83.33 89.18 76.19 84.44 67.36
2nd augmentation method ~ 80.38 80.57 93.19 80.44 70.67
3rd augmentation method ~ 84.31 84.16 92.24 84.19 76.43
4th augmentation method ~ 79.52 79.34 96.68 78.65 78.81
5th augmentation method ~ 78.57 85.71 71.43 80.00 58.74
6th augmentation method ~ 62.38 65.16 70.06 62.51 56.08
7th augmentation method ~ 85.24 86.10 96.64 84.35 81.41
8th augmentation method ~ 85.69 80.95 90.78 85.00 71.46
9th augmentation method  83.81 84.82 94.38 83.06 80.22
10th augmentation method  88.24 90.48 97.13 88.52 82.79

Table 7 Results of classifications from lung CT images

Augmentation method Accuracy (%) Sensitivity (%) Specificity (%) Fl-score (%) MCC (%)
1st augmentation method 80.48 80.07 95.81 78.72 76.52
2nd augmentation method ~ 60.95 63.13 73.57 60.28 51.97
3rd augmentation method ~ 74.51 74.44 87.30 74.52 61.74
4th augmentation method ~ 84.12 85.10 96.11 83.15 81.62
Sth augmentation method ~ 72.55 74.21 86.29 72.86 59.61
6th augmentation method ~ 62.38 65.16 93.76 65.52 57.08
7th augmentation method ~ 75.00 83.38 76.67 76.92 54.71
8th augmentation method ~ 76.19 85.71 77.48 78.26 53.36
9th augmentation method  85.74 86.16 97.65 84.35 82.81
10th augmentation method  83.82 84.83 96.29 82.24 81.24

Table 8 Results from classifications from mammography images

Augmentation method Accuracy (%) Sensitivity (%) Specificity (%) Fl-score (%) MCC (%)
1st augmentation method 81.70 82.72 96.09 81.08 75.93
2nd augmentation method  70.00 73.30 84.92 70.33 55.88
3rd augmentation method ~ 73.33 74.72 86.75 73.50 60.68
4th augmentation method ~ 76.58 76.84 88.40 76.62 65.10
Sth augmentation method ~ 80.00 84.19 91.27 79.74 72.86
6th augmentation method  66.67 71.48 83.70 65.93 53.41
7th augmentation method ~ 78.57 78.45 91.52 77.72 74.73
8th augmentation method ~ 76.19 84.71 66.67 78.26 56.36
9th augmentation method ~ 76.67 77.50 88.60 76.53 65.49
10th augmentation method  83.34 85.29 97.21 83.60 78.95
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Table 9 Results of classifications from eye fundus images

Augmentation method Accuracy (%) Sensitivity (%) Specificity (%) Fl-score (%) MCC (%)
Ist augmentation method ~ 79.52 79.34 93.68 78.65 78.81
2nd augmentation method ~ 73.81 76.15 66.67 75.56 48.11
3rd augmentation method ~ 84.31 84.16 92.24 84.19 76.43
4th augmentation method  86.24 86.81 93.32 86.22 79.73
Sth augmentation method ~ 82.17 82.43 91.14 82.34 73.46
6th augmentation method ~ 78.43 78.59 89.24 78.32 67.58
7th augmentation method ~ 80.39 80.81 90.21 80.47 70.79
8th augmentation method ~ 82.35 82.67 91.19 82.56 73.68
9th augmentation method ~ 78.43 80.16 89.31 78.45 68.01
10th augmentation method ~ 82.35 82.59 91.25 82.32 73.67
11th augmentation method ~ 88.24 89.18 94.13 88.52 82.79

The breast mammography images have been classified into three groups as malignant,
benign, and normal. The augmentation methods and quantitative results of classifications
have been presented in Table 8.

Unlike from MR, CT, and mammography images, the eye fundus images are colored.
Therefore, in addition to those 10 augmentation methods applied for grayscale images,
the 11th method has also been used for augmentation of this images. The augmentation
methods and quantitative results of the classifications into three classes according to
macular edema risk level have been presented in Table 9.

5 Discussions

To overcome the imbalance distribution and data scarcity problems in deep learning based
approaches with medical images, data augmentations are commonly applied with vari-
ous techniques in the literature (Sect. 2). In those approaches, different network architec-
tures, different types of images, parameters, and functions have been used. Although they
achieved good performances with augmented images (Tables 1, 2, 3 and 4), the results
presented in the publications do not indicate on which aspects of the approaches contrib-
uted the most. Although augmentation methods are applied as pre-processing steps and
therefore have significant impacts on the remaining steps and overall performance, their
contributions are not clear. Because of this, it is not clear which data augmentation tech-
nique provides more efficient results for which image type. Therefore, in this study, the
effects of augmentation methods have been investigated to determine the most appropriate
method for automated diagnosis from different types of medical images. This has been per-
formed by these steps: (i) The augmentation techniques used to improve the performance
of deep learning based diagnosis of diseases in different organs (brain, lung, breast, and
eye) have been reviewed. (ii) The most commonly used augmentation methods have been
implemented with four types of images (MR, CT, mammography, and fundoscopy). (iii)
To evaluate the effectiveness of those augmentation methods in classifications, a classi-
fier model has been designed. (iv) Classifications using the augmented images for each
augmentation method have been performed with the same classifier and datasets for fair
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comparisons of those augmentation methods. (v) The effectiveness of the augmentation
methods in classifications have been discussed based on the quantitative results.

It has been observed from the experiments in this work that transformation-based
augmentation methods are easy to implement with medical images. Also, their effectiveness
depends on the characteristics (e.g., color, intensity, etc.) of the images, and whether all
significant visual features according to medical conditions exist in the training sets. If most
of the images in the training sets have similar features, then there is a risk of constructing a
classifier model with overfitting and less generalization capability. In general, the pros and
cons of the widely used traditional augmentation approaches are presented in Table 10.

Generating synthetic images by GAN based methods can increase diversity. However,
GANSs have their own challenging problems. A significant problem is vanishing gradient
and mode collapsing (Yi et al. 2019). Since the collapse of the mode restricts the capacity
of GAN architecture to be varied, this interconnection is detrimental for augmentations
of medical images (Zhang 2021). Another significant problem is that it is hard to acquire
satisfactory training results if the training procedure does not assure the symmetry and
alignment of both generator and discriminator networks. Artifacts can be added while
synthesizing images, and therefore the quality of the produced images can be very low.
Also, the trained model can be unpredictable since GANs are complex structures and
managing the coordination of the generator and discriminator is difficult. Furthermore,
they share similar flaws with neural networks (such as, poor interpretability). Additionally,
they require strong computer resources, a long processing time, and hamper the quality of
the generated images in case of running on computers having low computational power
with constrained resources.

Quality and diversity are two critical criteria in the evaluation of synthetically generated
images from GANSs. Quality criterion indicates the level of similarity between the synthetic
and real images. In other words, it shows how representative synthetic images are of that
class. A synthetic image’s quality is characterized by a low level of distortions, fuzziness,
noise (Thung and Raveendran 2009), and its feature distribution matching with the class
label (Zhou et al. 2020; Costa et al. 2017; Yu et al. 2019).

Diversity criteria indicates the level of dissimilarity of the synthetic and real images. In
other words, it shows how uniform or wide the feature distribution of the synthetic image
is (Shmelkov et al. 2018). When the training datasets are expanded with the images lacking
diversity, the datasets can provide only limited coverage of the target domain and cause low
classification performance due to incorrect classifications of the images containing features
that belong to the less represented regions. When the training datasets are expanded
by adding synthetic images with low quality, the classifier cannot learn the features
representing different classes which leads to low classification performance. Therefore,
if synthetic images are used in the training sets, they should be sufficiently diverse to
represent features of each class and have high quality.

The diversity and quality of the new images produced by GANs are evaluated manually
by a physician or quantitatively by using similarity evaluation measurements, which are
generally FID, structural similarity index, and peak signal-to-noise ratio (Borji 2019; Xu
et al. 2018). The validity of these measurements for medical image data sets is still under
investigation and there is no accepted consensus. Manual evaluations are subjective as well
as time-consuming (Xu et al. 2018) since they are based on the domain knowledge of the
physician. Also, there is no commonly accepted metric for evaluating the diversity and
quality of synthesized images.

About Brain MR Image Augmentation techniques The methods used for brain MR
image augmentation have some limitations or drawbacks. For instance, in a study
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(Isensee et al. 2020), the augmentation approach uses elastic deformations, which
add shape variations. However, the deformations can bring lots of damage and noise
when the deformation field is varied seriously. Also, the generated images seem not
to be realistic and natural. It has been shown in the literature that widely used elastic
deformations produce unrealistic brain MR images (Mok and Chung 2018). If the
simulated tumors are not in realistic locations, then the classifier model can focus on
the lesion’s appearance features and be invariant to contextual information. In another
study (Kossen et al. 2021), although the generated images yielded a high dice score
in the transfer learning approach, performance only slightly improved when training
the network with real images and additional augmented images according to the results
presented by the authors. This might be because of the less blurry and noisy appearance
of the images produced by the used augmentation. The discriminator observed results
of the generator network at intermediate levels in the augmentation with multi-scale
gradient GAN (Deepak and Ameer 2020). Because the proposed GAN structure
included a single discriminator and generator with multiple connections between them.
Although augmentation with TensorMixup improved the diversity of the dataset (Wang
et al. 2022), its performance should be further verified with more datasets including
medical images with complicated patterns as samples generated with this augmentation
may not satisfy the clinical characterizations of the images. Li et al. (2020) has observed
that an unseen tumor label cannot be provided with the augmentation method and
therefore the virtual semantic labels’ diversity is limited.

It has been observed that usage of the augmented images obtained by the combination
of rotation with shearing, and translation provides higher performance than the other
augmentation techniques in the classifications of HGG and LGG cases from FLAIR types
of brain images. On the other hand, augmentation with the combination of shearing and
salt-and-pepper noise addition is the least efficient approach for augmentation in improving
classification performance (Table 6).

About Lung CT Image Augmentation techniques Further studies on augmentation
techniques for lung CT images are still needed since current methods still suffer from
some issues. For instance, in a study (Onishi et al. 2020), although performance in the
classification of isolated nodules and nodules having pleural tails increased, it did not
increase in the classification of nodules connected to blood vessels or pleural. The reason
might be due to the heavy usage of isolated nodule images (rather than the images with the
nodules adjacent to other wide tissues like the pleural) for the training of the GAN. Also,
the Wasserstein GAN structure leads to gradient vanishing problems due to small weight
clipping and a long time to connect because of huge clipping. In another study (Nishio
et al. 2020), the quality of the generated 3-dimensional CT images that show nodules is
not low. On the other hand, in some of those images, the lung parenchyma surrounding the
nodules does not seem natural. For instance, the CT values around the lung parenchyma in
the generated images are relatively higher than the CT values around the lung parenchyma
in the real images. Also, lung vessels, chest walls, and bronchi in some of those generated
images are not regular. The radiologists easily distinguish those generated images
according to the irregular and unnatural structures. The augmentation method in a different
work (Nishio et al. 2020) generate only lung nodules’ 3-dimensional CT images. However,
there exist various radiological findings (e.g., ground glass, consolidation, and cavity) and
it is not clear whether those findings are generated or not. Also, the application can classify
nodules only according to their sizes rather than other properties (e.g., absence or presence
of spicules, margin characteristics, etc.). Therefore, further evaluation should be performed
to see whether nodule classification performance can be increased with the new lung
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nodules for other classifications, such as malignant or benign cases. A constant coefficient
was used in the loss function to synthesize lung nodules by Wang et al. (2021). It affects
the training performance and should be chosen carefully. Therefore, the performance of the
augmentation method should be evaluated with increased a number of images. Although
the method proposed by Toda et al. (2021) has the potential to generate images, spicula-like
features are obscure in the generated images and it does not include the distribution of true
images. Also, the generation of some features contained in the images (e.g., cavities around
or inside the tumor, prominent pleural tail signs, non-circular shapes) are difficult with the
proposed augmentation. Therefore, images with those features tend to be misclassified.
In a study, augmentation with elastic deformations, which add shape variations, brings
noise and damage when the deformation field is varied seriously (Miiller et al. 2021). In a
different approach, as it is identified by the authors, the predicted tumor regions are prone
to imperfections (Farheen et al. 2022).

It has been observed that usage of the augmented images obtained by the combination
of translation and shearing techniques in the classification of images with nodules and
without nodules provides the highest performance than the other augmentation methods.
On the other hand, augmentation only by shearing is the least efficient approach (Table 7).

About breast Mammography Image Augmentation techniques Augmentation of breast
mammography images is one of the significant and fundamental directions that need to
be focused on for further investigations and future research efforts. Although scaling,
translation, rotation, and flipping are widely used, they are not suitable enough for
augmentation since the additional information provided by them is not sufficient to make
variations in the images, and so the diversity of the resulting dataset is limited. For instance,
in a study performed by Zeiser et al. (2020), although the classifier classifies pixels having
high intensity values as masses as it is desired, the network ends up producing FPs in dense
breasts. Therefore, the augmentation technique applied as a pre-processing step should be
modified to expand the datasets more efficiently and to increase the generalization skill of
the proposed classifier. Besides, the performance of the applications should be tested with
not only virtual images but also real-world images. Although the results of the applications
that use generated images from a GAN based augmentation are promising (Table 3), their
performances should be evaluated with increased numbers and variations of images. Since
augmentations by synthesizing existing mammography images are difficult because of the
variations of masses in terms of shape and texture as well as the presence of diverse and
intricate breast tissues around the masses. The common problems in those GAN based
augmentations are mode collapsing and saddle point optimization (Yadav et al. 2017). In
the optimization problem, there exists almost no guarantee of equilibrium between the
training of the discriminator and generator functions, causing one network to inevitably
become stronger than the other network, which is generally the discriminator function. In
the collapsing mode problem, the generator part focuses on limited data distribution modes
and causes the generation of images with limited diversity.

Experiments in this study indicated that the combined technique consisting of
translation, shearing, and rotation is the most appropriate approach for the augmentation
of breast mammography images in order to improve the classification of the images as
normal, benign, and malignant. On the other hand, the combined technique consisting of
salt and pepper noise addition and shearing is the least appropriate approach (Table 8).

About Eye Fundus Image Augmentation techniques Further research on the
augmentation techniques for fundus images is still needed to improve the reliability and
robustness of computer-assisted applications. Because the tone qualities of fundus images
are affected by the properties of fundus cameras (Tyler et al. 2009) and the images used
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in the literature have been acquired from different types of fundus cameras. Therefore,
the presented applications fitting well to images obtained from a fundus camera may not
generalize images from other kinds of fundus camera systems. Also, images can be affected
by pathological alterations. Because of this reason, the applications should be robust on
those alterations, particularly on the pathological changes that do not exist in the images
used in the training steps. Therefore, although the results of the applications in the current
literature indicated high performances (Table 4), their robustness should be evaluated using
other data sets with increased numbers and variations of images and taken from different
types of fundus cameras. Also, the contributions of the applied augmentation techniques
to the presented performances are not clear. In a study performed by Zhou et al. (2020),
although the GAN structure is able to synthesize high-quality images in most cases, the
lesion and structural masks used as inputs are not real ground truth images. Therefore, the
generator’s performance depends on the quality of those masks. Also, the applied GAN
architecture fails to synthesize some lesions, such as microaneurysms. In another study
performed by Ju et al. (2021), the GAN based augmentation might lead to biased results
because of matching the generated images to the distribution of the target domain.

Experiments in this study indicated that usage of the augmented images obtained by
the combination of color shifting with sharpening, and contrast changing provides higher
performance than the other augmentation techniques in the classifications of eye fundus
images. On the other hand, augmentation with translation is the least efficient approach for
augmentation to improve classification performance (Table 9).

6 Conclusion

Transformation-based augmentation methods are easy to implement with medical images.
Also, their effectiveness depends on the characteristics (e.g., color, intensity, etc.) of the
images, and whether all significant visual features according to medical conditions exist in
the training sets.

GAN based augmentation methods can increase diversity. On the other hand, GANs
have vanishing gradient and mode collapsing problems. Also, obtaining satisfactory
training results is not easy if the training procedure does not assure the symmetry and
alignment of both generator and discriminator networks. Besides, GANs are complex
structures and managing the coordination of the generator and discriminator is difficult.

Combination of rotation with shearing, and translation provides higher performance
than the other augmentation techniques in the classifications of HGG and LGG cases from
FLAIR types of brain images. However, augmentation with the combination of shearing
and salt-and-pepper noise addition is the least efficient approach for augmentation in
improving classification performance.

Combination of translation and shearing techniques in the classification of lung CT
images with nodules and without nodules provides the highest performance than the other
augmentation methods. However, augmentation only by shearing is the least efficient
approach.

Combination of translation, shearing, and rotation is the most appropriate approach for
the augmentation of breast mammography images in order to improve the classification of
the images as normal, benign, and malignant. On the other hand, the combined technique
consisting of salt and pepper noise addition and shearing is the least appropriate approach.
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Combination of color shifting with sharpening, and contrast changing provides higher
performance than the other augmentation techniques in the classifications of eye fundus
images. On the other hand, augmentation with translation is the least efficient approach for
augmentation to improve classification performance.

As an extension of this work, the effectiveness of the augmentation methods will be
evaluated in the diagnosis of diseases from positron emission tomography, ultrasonography
images, other types of MR sequences (e.g., T2, T1, and proton density-weighted), and
also in the classification of other types of images such as satellite or natural images. Also,
GAN based augmentations will be applied, quantitative and qualitative analyses of the
generated images will be performed to ensure their diversity and realness. In this study,
ResNet101 has been used due to its advantage based on residual connections and efficiency
in classification. Therefore, the implementation of other convolutional network models will
be performed in our future works.
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